Self-organized Structures of Polynucleotides on the Stearic Acid Monolayers

Size: px
Start display at page:

Download "Self-organized Structures of Polynucleotides on the Stearic Acid Monolayers"

Transcription

1 WDS'05 Proceedings of Contributed Papers, Part III, , ISBN MATFYZPRESS Self-organized Structures of Polynucleotides on the Stearic Acid Monolayers S. Staritsyn and E. Dubrovin Moscow State University, Faculty of Physics. Lenin Gory, Moscow, , Russia. Abstract. Formation of polynucleotide complexes with Langmuir monolayers of stearic acid (SA) on the surface of synthetic polyadenine (polya) aqueous solution with different ionic strength has been studied. AFM topographic images of polya complexes with Langmuir monolayers deposited on the mica substrates were obtained. The complex structures and individual DNA molecules on the amphiphile monolayer surface were observed. The surface consists of domains of stretched parallel polya molecules, and each domain mostly has its own direction of alignment. The data obtained give evidence for the effectiveness of monolayer techniques for investigation the mechanisms of DNA/RNA complexation with amphiphilic anions and demonstrate its perspectives for creation of supramolecular planar RNA/DNA-based self-organized nanostructures with nanoscale structural ordering. Introduction Four main classes of biomolecules, namely, proteins, nucleic acids, polysaccharides and lipids are known to form highly organized molecular and supramolecular structures within the cell. Understanding the nature of nanoscale structural order in these systems and elucidation of the physicochemical mechanisms of formation of distinct functional molecular nanostructures is one of the most important fundamental problems in modern biophysics directly connected with a wide number of practical tasks in medicine biotechnology. DNA molecules are promising candidates for nanobiotechnology for fabrication of functional nanostructures and nanodevices due to the unique DNA recognition capabilities, physicochemical stability, mechanical rigidity, and possibilities to repeated denaturation-hybridization cycles. Langmuir-Blodgett (LB) technique (the molecular films at the liquid-gas interface and mono & multilayers transferred onto a sold substrate) is one of methods of nanofabrication such as photolithography or self-assembled monolayers (chemisorption). Furthermore, Langmuir monolayers are an ideal two-dimensional system and can be regarded as model systems for biomembranes. Budker et al. [1978, 1980] have shown the importance role of bivalent ions in the interactions between polynucleotides and zwitterionic lipid (phosphatidylcholine) membranes. His experiments provide a strong evidence that there is no direct electrostatic interaction between zwitterionic lipids and DNA, but the interaction mediated by divalent cations by formation of salt (Mg 2+ ) bridges between the phosphate residues of the polynucleotides and the phosphate groups in the phospholipids. But the mechanisms leading to the formation of polynucleotides and zwitterionic lipids complexes are still under consideration [McManus et al, 2003]. The characterization of many types of DNA-cationic lipid complexes has received much attention in recent years, since their potential for use in gene delivery applications was identified [Felgner et al, 1987]. A number of works utilized various techniques for preparation and investigation of the DNA/RNA complexes with cationic lipids and polycations, including LB technique and atomic force microscopy (AFM) [Sukhorukov et al, 1996; Antipina et al, 2003]. But there is a lack of investigating of nucleic acids anionic lipid complexes, although Patil et al [2004] show that transfection efficiency of anionic liposomes was similar to that of cationic ones, whereas their toxicity was significantly lower. It is possible to prepare aggregates from like-charged surfactants and polymers by mediating the electrostatic attraction using multivalent counterions. For example, it was demonstrated [Bhaumik et al, 2004] the immobilization of long dsdna on fatty acids monolayer with the help of Zn coordination and biological activity of immobilized DNA. Here, we report a system we have developed where long polynucleotide molecules are immobilized on a monolayer of stearic acid in a stretched manner. PolyA molecules are parallel each other, and form domains in which molecules have its own direction of alignment. We have applied the Langmuir-Blodgett technique to transfer polya/sa monolayer complexes onto the atomically flat mica and used AFM for its investigation. 535

2 Experimental Section Polyadenylic and stearic acids, MgCl 2 and EDTA were purchased from Sigma. The sodium chloride was USP-grade (>99.99%, Akzo Nobel). All reagents were used without additional purification. The polynucleotides have molecular mass of Da ( Sigma data) which corresponds to nucleotides in single-strand chain. The polynucleotide concentration in the subphase was mg/ml (molar concentration ~ 3*10-6 M of monomer units). The monolayers studied were obtained in Langmuir trough with dimensions cm. The deionized water (Millipore Milli-Q system) with specific conductivity no less than 18 MΩm cm -1 was used in all experiments. The bulk solutions of the RNA (the concentration of the RNA is 0.01 mg/ml) in the Milli-Q water, of the sodium chloride (the concentration of the salt is 2M) and of the magnesium chloride (100 mm) were prepared separately and stored in the refrigerator not more then 3 days. For the preparation of the final solutions the bulk solutions and Milli-Q water were mixed in the appropriate proportions just before use. Stearic acid was dissolved in chloroform (spectroscopic grade) to obtain 1mM solutions. The absence of pressure-area isotherm for chloroform itself after its evaporation from the water-air interface indicated the purity of the solvent. After surfactant deposition onto the subphase, the monolayer was stored during 10 minutes before its compression (30 minutes if the subphase contained a polynucleotide). In the case of polynucleotide free subphase, the shape of pressure-area curves for the surfactants did not depend on the time period of the monolayer storage (10 or 30 minutes) before compression. All experiments were done at 20 o C. For the AFM studies the monolayers were transferred by vertical dipping method onto the mica surfaces. The dipping was started when monolayer was compressed, and the surface pressure (18 mn/m) was kept constant during the monolayer transfer procedure. The substrate dipping speed for the monolayer transfer was 3 mm/min. The transfer ratio for the downstroke deposition was not more than 0.1 and for upstroke deposition it was 0.9±0.1. Hence a monolayer film was obtained onto the substrate. All the AFM measurements were provided in the air using Nanoscope IIIa microscope (Digital Instruments, USA) with the tapping mode of scanning. The commercial silicon cantilevers had 42 N/m stiffness; their resonance frequency lays at the range of khz. The scan frequency was about 2 Hz. Image processing was performed using FemtoScan software [Filonov et al, 2001]. Figure 1. AFM image of polyadenine molecules bound with stearic acid monolayer. Thread-like structures with dimensions typical for nucleic acid chains (height nm, width nm) are seen on the surface. The monolayer was created on the water subphase contained 1 M of NaCl and polya mg/ml. 536

3 Figure 2. AFM image of polyadenine molecules bound with stearic acid monolayer. Thread-like structures with dimensions typical for nucleic acid chains (height nm, width nm) are seen on the surface. The monolayer was created on the water subphase contained 100 mm of NaCl, 1 mm MgCl 2 and polya mg/ml. Results and Discussion Case 1 there are no guest molecules in the subphase. AFM image of stearic acid monolayer, transferred onto the mica substrate from the subphase free from the nucleic acids, represents a smooth, homogeneous surface with rare defects (holes). Monolayer defects (holes in the monolayer or artificial defects made by repeated scanning of the same region) testify the existence of the monolayer and can be used for the qualitative determination of its thickness. An additional evidence of the successful monolayer transfer is the change in the hydrophilic properties of the substrate it becomes hydrophobic, because the hydrocarbon chains of fatty acid molecules are placed on the film surface. Case 2 there are polya molecules and NaCl in the subphase. Samples obtained from the subphase containing polya and 1 mm of NaCl (or without any salt at all) looks just as stated above in Case 1 : a smooth surface without any traces of nucleic acids. Coulomb repulsion prevent adsorption of polynucleotides (anionic polymer) onto the like-charged fatty acid monolayer. In the presence of 10 mm of NaCl in the subphase some solitary fibers were visualized on the sample. The height ( nm) and the thickness of each fiber (10-20 nm) are typical for AFM images of RNA/DNA [Hansma H.G. et al, 1996], especially since polynucleotides are included in the lipid monolayer. The length of the fibers is up to some hundreds nanometers. Increase in concentration of sodium chloride in the subphase results in increasing of surface density of polya molecules adsorbed onto the monolayer. At 1000 mm of NaCl (we underline that none at all of bivalent ions were specially added) the surface of transferred monolayer consists of domains of stretched parallel polya molecules, and each domain mostly has its own direction of alignment (Figure 1). Addition of bivalent ions (Mg ++, 1мМ) into the subphase induced the intense complexation of polya with the fatty acids monolayer. Amount of adsorpted gene molecules is practically constant in the presence of Mg ++ regardless of concentration of NaCl at range mm (Figure 2). 537

4 When the concentration of the sodium chloride in the subphase was 1000 mm (and 1mM of the magnesium chloride), the quantity of adsorbed polya molecules drastic increased, but they were still placed randomly and there is no any ordering in its arrangement was found. Case 3 there are chelating agent in the subphase. In the case when 1M NaCl and chelating agent were in the subphase (EDTA sodium salt, 10 мм), polynucleotides were not found on the substrate (Figure 3). It s a strong evidence that in our experiments adsorption of polynucleotides onto the anionic surfactants is mediated by divalent cations by formation of salt (cationic) bridges between like-charged anionic molecules. Figure 3. AFM image of stearic acid LB monolayer transferred from the subphase containing poly(a) (0.001 mg/ml), NaCl (1M) and EDTA (10mM), represents a smooth, homogeneous surface. Conclusions We have demonstrated here a new promising method of creation of self-organized nanostructures of long single-stranded RNA using simple Langmuir-Blodgett (LB) technique and the transfer of the monolayer along with the polynucleotides onto a solid substrate. We observed that the gene molecules could be aligned in a stretched manner on the surface. The stretched parallel polya molecules forms domains, and each domain mostly has its own direction of alignment. Salt solution allows negatively charged polya molecules to reach stearic acid and to bind with it via bivalent ions mediation. NaCl salt also diminishes electrostatic interaction between polya molecules allowing them to be close to each other and to pack compactly. For the adsorption of polynucleotides onto the likely charged surface bivalent ions are needed, but a minute amount of them is sufficient (the total amount of bi- or polyvalent cations in NaCl used in our experiments for the preparation of the solutions was less then 5 mg/kg). Although in phosphatidylcholine DNA/RNA systems excess of monovalent cations inhibits the association of polynucleotides with lipid membranes [Budker et al, 1980], we ve demonstrated that binding of RNA onto the fatty acid monolayers via formation of salt bridges isn t disturbed by excess of sodium chloride. The data obtained give evidence for the effectiveness of monolayer techniques for investigation the mechanisms of DNA/RNA complexation with amphiphilic anions and demonstrate its perspectives for creation of supramolecular planar DNA-based selforganized nanostructures with nanoscale structural ordering. 538

5 References Antipina, M.N., R.V. Gainutdinov, A.A. Rachnyanskaya, A.L. Tolstikhina, T.V. Yurova, G.B. Khomutov, Studies of nanoscale structural ordering in planar DNA complexes with amphiphilic mono- and polycations, Surface Science , , Bhaumik, A., M. Ramakanth, L.K. Brar, A.K. Raychaudhuri, F. Rondelez, D. Chatterji, Formation of a DNA Layer on Langmuir-Blodgett Films and Its Enzymatic Digestion, Langmuir, 20, , Budker, V.G., Yu. A Kazatchkov, L.P. Naumova, Polynucleotides adsorb on mitochondrial and model lipid membranes in the presence of bivalent cations, FEBS letters, 95, , Budker, V.G., A.A Godovikov, L.P. Naumova., I.A Slepneva, Interaction of polynucleotides with natural and model membranes, Nucleic Acids Research, 8, , Felgner, P. L., T.R Gadek, M. Holm, R. Roman, H.W. Chan, M. Wenz, J.P. Northrop, G.M. Ringold, M. Danielsen, Proc. Natl. Acad. Sci. U.S.A., 84, 7413, Filonov A.S., D.Yu. Gavrilko, I.V. Yaminsky, FemtoScan SPM Image Processing Software Manual, Advanced Tecnologies Center, Moscow, ( manual/en/index.html) Hansma H.G., I. Revenko, K. Kim, D.E. Laney, Atomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids, Nucleic Acid Research, 24, , McManus, J.J., J.O. Ra1dler, K.A. Dawson, Does Calcium Turn a Zwitterionic Lipid Cationic? J. Phys. Chem. B, 107, , Patil, S.D., D.G. Rhodes, D.J. Burgess, Anionic Liposomal Delivery System for DNA Transfection, The AAPS Journal, 6(4), 1-10, Sukhorukov, G.B., H. Mohwald, G. Decher, Y.M. Lvov, Assembly of polyelectrolyte multilayer films by consecutively alternating adsorption of polynucleotides and polycations, Thin Solid Films , ,

Chemical Surface Transformation 1

Chemical Surface Transformation 1 Chemical Surface Transformation 1 Chemical reactions at Si H surfaces (inorganic and organic) can generate very thin films (sub nm thickness up to µm): inorganic layer formation by: thermal conversion:

More information

LIPOSOME STABILITY VERIFICATION BY ATOMIC FORCE MICROSCOPY

LIPOSOME STABILITY VERIFICATION BY ATOMIC FORCE MICROSCOPY 34 Rev.Adv.Mater.Sci. 5 (2003) 34-40 E. F. de Souza and O. Teschke LIPOSOME STABILITY VERIFICATION BY ATOMIC FORCE MICROSCOPY E. F. de Souza 1 and O. Teschke 2 1 Faculdade de Química, CEATEC/PUC-Campinas,

More information

Surfactants. The Basic Theory. Surfactants (or surface active agents ): are organic compounds with at least one lyophilic. Paints and Adhesives

Surfactants. The Basic Theory. Surfactants (or surface active agents ): are organic compounds with at least one lyophilic. Paints and Adhesives Surfactants Surfactants (or surface active agents ): are organic compounds with at least one lyophilic ( solvent-loving ) group and one lyophobic ( solvent-fearing ) group in the molecule. In the simplest

More information

Protein directed assembly of lipids

Protein directed assembly of lipids Protein directed assembly of lipids D. Nordin, O. Yarkoni, L. Donlon, N. Savinykh, and D.J. Frankel SUPPLEMENTARY MATERIAL Materials and Methods Supported bilayer preparation 1,2-dioleoyl-sn-glycero-3-phosphocholine

More information

Self-Assembly. Lecture 3 Lecture 3 Surfactants Self-Assembly

Self-Assembly. Lecture 3 Lecture 3 Surfactants Self-Assembly Self-Assembly Lecture 3 Lecture 3 Surfactants Self-Assembly Anionic surfactants unsaturated omega-3 3 fatty acids rd carbon from the metyl end has double bond saturated Non-ionic surfactants Cationic surfactants

More information

Neutron reflectivity in biology and medicine. Jayne Lawrence

Neutron reflectivity in biology and medicine. Jayne Lawrence Neutron reflectivity in biology and medicine Jayne Lawrence Why neutron reflectivity studies? build up a detailed picture of the structure of a surface in the z direction n e u tro n s in n e u tro n s

More information

The Interaction between Lipid Bilayers and Biological Membranes. Chapter 18

The Interaction between Lipid Bilayers and Biological Membranes. Chapter 18 The Interaction between Lipid Bilayers and Biological Membranes Chapter 18 Introduction Membrane & Phospholipid Bilayer Structure Membrane Lipid bilayer 2 Introduction Forces Acting between Surfaces in

More information

Interactions between Bisphosphate. Geminis and Sodium Lauryl Ether

Interactions between Bisphosphate. Geminis and Sodium Lauryl Ether Chapter 5 Interactions between Bisphosphate Geminis and Sodium Lauryl Ether Sulphate 110 5.1 Introduction The physiochemical and surface active properties of mixed surfactants are of more interest and

More information

Cationic Liposome-Microtubule Complexes: Lipid-Protein Bio-Nanotubes with Open or Closed Ends

Cationic Liposome-Microtubule Complexes: Lipid-Protein Bio-Nanotubes with Open or Closed Ends Science Highlight October 2005 Cationic Liposome-Microtubule Complexes: Lipid-Protein Bio-Nanotubes with Open or Closed Ends Uri Raviv *,, Daniel J. Needleman *,, Youli Li *,, Herbert P. Miller, Leslie

More information

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Mathematical Sciences 2018, 52(3), p. 217 221 P h y s i c s STUDY OF THE SWELLING OF THE PHOSPHOLIPID BILAYER, DEPENDING ON THE ANGLE BETWEEN THE

More information

Influence of active sites organisation on calcium carbonate formation at model biomolecular interfaces

Influence of active sites organisation on calcium carbonate formation at model biomolecular interfaces Applied Surface Science 246 (2005) 362 366 www.elsevier.com/locate/apsusc Influence of active sites organisation on calcium carbonate formation at model biomolecular interfaces S. Hacke a, *,D.Möbius b,

More information

2.2 Properties of Water

2.2 Properties of Water 2.2 Properties of Water I. Water s unique properties allow life to exist on Earth. A. Life depends on hydrogen bonds in water. B. Water is a polar molecule. 1. Polar molecules have slightly charged regions

More information

Honors Biology Chapter 3: The Molecules of Cells Name Amatuzzi Carbohydrates pp Homework

Honors Biology Chapter 3: The Molecules of Cells Name Amatuzzi Carbohydrates pp Homework Honors Biology Chapter 3: The Molecules of Cells Name Amatuzzi Carbohydrates pp. 37-39 1. Which elements make up carbohydrates? a. In which ratio? 2. How do living things use most of their carbohydrates?

More information

Macromolecules. Molecules of Life

Macromolecules. Molecules of Life Macromolecules Molecules of Life Learning Objectives know the difference between a dehydration synthesis reaction and a hydrolysis reaction know the different types of biological macromolecules be able

More information

Electronic Supporting Information

Electronic Supporting Information Modulation of raft domains in a lipid bilayer by boundary-active curcumin Manami Tsukamoto a, Kenichi Kuroda* b, Ayyalusamy Ramamoorthy* c, Kazuma Yasuhara* a Electronic Supporting Information Contents

More information

Lipid Bilayer Based Binding Surfaces for Nucleic Acids

Lipid Bilayer Based Binding Surfaces for Nucleic Acids Lipid Bilayer Based Binding Surfaces for Nucleic Acids Caitlin Kreutz Major: Biology Mentor: Emin Oroudjev Faculty Advisor: Helen Hansma Funding By: National Institutes of Health July 28 th, 2005 Main

More information

Biomolecules. Unit 3

Biomolecules. Unit 3 Biomolecules Unit 3 Atoms Elements Compounds Periodic Table What are biomolecules? Monomers vs Polymers Carbohydrates Lipids Proteins Nucleic Acids Minerals Vitamins Enzymes Triglycerides Chemical Reactions

More information

AFM In Liquid: A High Sensitivity Study On Biological Membranes

AFM In Liquid: A High Sensitivity Study On Biological Membranes University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2006 AFM In Liquid: A High Sensitivity Study On Biological Membranes Michael J. Higgins

More information

Biophysical Journal Volume 94 May

Biophysical Journal Volume 94 May Biophysical Journal Volume 94 May 2008 3549 3564 3549 Atomic Force Microscopy Studies of Functional and Dysfunctional Pulmonary Surfactant Films. I. Micro- and Nanostructures of Functional Pulmonary Surfactant

More information

Chapter 2 The Chemistry of Life Part 2

Chapter 2 The Chemistry of Life Part 2 Chapter 2 The Chemistry of Life Part 2 Carbohydrates are Polymers of Monosaccharides Three different ways to represent a monosaccharide Carbohydrates Carbohydrates are sugars and starches and provide

More information

Investigation of Polymer-Cushioned Phospholipid Bilayers in the Solid Phase by Atomic Force Microscopy

Investigation of Polymer-Cushioned Phospholipid Bilayers in the Solid Phase by Atomic Force Microscopy 4074 Langmuir 2001, 17, 4074-4080 Investigation of Polymer-Cushioned Phospholipid Bilayers in the Solid Phase by Atomic Force Microscopy Guobin Luo, Tingting Liu, and Xin Sheng Zhao* State Key Laboratory

More information

Biochemistry Worksheet

Biochemistry Worksheet Biology 138 Name Section 3.1 Properties of Water Biochemistry Worksheet 1. Why is water such an important molecule to living things? 2. Describe the chemical make up and type of bonding found in water

More information

7/11/17. Cell Function & Chemistry. Molecular and Cellular Biology. 2. Bio-Chemical Foundations & Key Molecules of a Cell

7/11/17. Cell Function & Chemistry. Molecular and Cellular Biology. 2. Bio-Chemical Foundations & Key Molecules of a Cell Molecular and Cellular Biology Cell Function & Chemistry 2. Bio-Chemical Foundations & Key Molecules of a Cell Prof. Dr. Klaus Heese Interaction Molecular Bonds Define Cellular Functions Water H 2 O Interactions

More information

Electron-Transfer Properties of Cytochrome c Langmuir-Blodgett Films and Interactions of Cytochrome c with Lipids

Electron-Transfer Properties of Cytochrome c Langmuir-Blodgett Films and Interactions of Cytochrome c with Lipids Langmuir 1998, 14, 6215-6219 6215 Electron-Transfer Properties of Cytochrome c Langmuir-Blodgett Films and Interactions of Cytochrome c with Lipids S. Boussaad, L. Dziri, R. Arechabaleta, N. J. Tao,*,

More information

Carbohydrates, Lipids, Proteins, and Nucleic Acids

Carbohydrates, Lipids, Proteins, and Nucleic Acids Carbohydrates, Lipids, Proteins, and Nucleic Acids Is it made of carbohydrates? Organic compounds composed of carbon, hydrogen, and oxygen in a 1:2:1 ratio. A carbohydrate with 6 carbon atoms would have

More information

Biology Chapter 2 Review

Biology Chapter 2 Review Biology Chapter 2 Review Vocabulary: Define the following words on a separate piece of paper. Element Compound Ion Ionic Bond Covalent Bond Molecule Hydrogen Bon Cohesion Adhesion Solution Solute Solvent

More information

STATION 1 SCIENTIFIC INVESTIGATION VOCABULARY 2015 FALL BENCHMARK BIOLOGY

STATION 1 SCIENTIFIC INVESTIGATION VOCABULARY 2015 FALL BENCHMARK BIOLOGY STATION 1 SCIENTIFIC INVESTIGATION VOCABULARY 2015 FALL BENCHMARK BIOLOGY VOCABULARY TERM Observation Inference Quantitative Qualitative Hypothesis Independent variable Dependent variable Experimental

More information

Interactions of Polyethylenimines with Zwitterionic and. Anionic Lipid Membranes

Interactions of Polyethylenimines with Zwitterionic and. Anionic Lipid Membranes Interactions of Polyethylenimines with Zwitterionic and Anionic Lipid Membranes Urszula Kwolek, Dorota Jamróz, Małgorzata Janiczek, Maria Nowakowska, Paweł Wydro, Mariusz Kepczynski Faculty of Chemistry,

More information

Self-assembly and phase behavior

Self-assembly and phase behavior Self-assembly and phase behavior Amphiphiles and surface tension Lyotropic phases Micelles Key parameters for micellisation Critical packing parameter Other lyotropic phases Special lyotropic phases: vesicles

More information

The Structure and Function of Biomolecules

The Structure and Function of Biomolecules The Structure and Function of Biomolecules The student is expected to: 9A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic

More information

A look at macromolecules (Text pages 38-54) What is the typical chemical composition of a cell? (Source of figures to right: Madigan et al.

A look at macromolecules (Text pages 38-54) What is the typical chemical composition of a cell? (Source of figures to right: Madigan et al. A look at macromolecules (Text pages 38-54) What is the typical chemical composition of a cell? (Source of figures to right: Madigan et al. 2002 Chemical Bonds Ionic Electron-negativity differences cause

More information

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection From Atoms to Cells: A chemical connection Fundamental Building Blocks Matter - all materials that occupy space & have mass Matter is composed of atoms Atom simplest form of matter not divisible into simpler

More information

H 2 O. Liquid, solid, and vapor coexist in the same environment

H 2 O. Liquid, solid, and vapor coexist in the same environment Water H 2 O Liquid, solid, and vapor coexist in the same environment WATER MOLECULES FORM HYDROGEN BONDS Water is a fundamental requirement for life, so it is important to understand the structural and

More information

Biophysical Journal Volume 95 September

Biophysical Journal Volume 95 September Biophysical Journal Volume 95 September 2008 2779 2791 2779 Atomic Force Microscopy Studies of Functional and Dysfunctional Pulmonary Surfactant Films, II: Albumin-Inhibited Pulmonary Surfactant Films

More information

Model for measurement of water layer thickness under lipid bilayers by surface plasmon resonance

Model for measurement of water layer thickness under lipid bilayers by surface plasmon resonance Model for measurement of water layer thickness under lipid bilayers by surface plasmon resonance Koyo Watanabe Unit of Measurement Technology, CEMIS-OULU, University of Oulu, PO Box 51, 87101 Kajaani,

More information

Molecular and Cellular Biology. 2. Bio-Chemical Foundations & Key Molecules of a Cell

Molecular and Cellular Biology. 2. Bio-Chemical Foundations & Key Molecules of a Cell Molecular and Cellular Biology 2. Bio-Chemical Foundations & Key Molecules of a Cell Prof. Dr. Klaus Heese Cell Function & Chemistry Interaction 1 Molecular Bonds Define Cellular Functions Interactions

More information

The Chemical Building Blocks of Life. Chapter 3

The Chemical Building Blocks of Life. Chapter 3 The Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Biological Molecules

Biological Molecules The Chemical Building Blocks of Life Chapter 3 Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent bonds. Carbon may

More information

Structure-Function Relationships in Carrageenans and Agarose. Jana

Structure-Function Relationships in Carrageenans and Agarose. Jana Structure-Function Relationships in Carrageenans and Agarose Jana October 18, 2013 Polysaccharides Polysaccharides Anti-Tumor Polysaccharides Polysaccharides Polysaccharides systematic study Source Molecular

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Chapter 5 The Structure and Function of Large Biological Molecules PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Honors Biology Chapter 3: Macromolecules PPT Notes

Honors Biology Chapter 3: Macromolecules PPT Notes Honors Biology Chapter 3: Macromolecules PPT Notes 3.1 I can explain why carbon is unparalleled in its ability to form large, diverse molecules. Diverse molecules found in cells are composed of carbon

More information

Chapter Three (Biochemistry)

Chapter Three (Biochemistry) Chapter Three (Biochemistry) 1 SECTION ONE: CARBON COMPOUNDS CARBON BONDING All compounds can be classified in two broad categories: organic compounds and inorganic compounds. Organic compounds are made

More information

9/11/18. Cell Function & Chemistry. Molecular and Cellular Biology. 2. Bio-Chemical Foundations & Key Molecules of a Cell

9/11/18. Cell Function & Chemistry. Molecular and Cellular Biology. 2. Bio-Chemical Foundations & Key Molecules of a Cell Molecular and Cellular Biology Cell Function & Chemistry 2. Bio-Chemical Foundations & Key Molecules of a Cell Prof. Dr. Klaus Heese Interaction Molecular Bonds Define Cellular Functions Water H 2 O Interactions

More information

Paper 4. Biomolecules and their interactions Module 22: Aggregates of lipids: micelles, liposomes and their applications OBJECTIVE

Paper 4. Biomolecules and their interactions Module 22: Aggregates of lipids: micelles, liposomes and their applications OBJECTIVE Paper 4. Biomolecules and their interactions Module 22: Aggregates of lipids: micelles, liposomes and their applications OBJECTIVE The main aim of this module is to introduce the students to the types

More information

Practice Questions for Biochemistry Test A. 1 B. 2 C. 3 D. 4

Practice Questions for Biochemistry Test A. 1 B. 2 C. 3 D. 4 Practice Questions for Biochemistry Test 1. The quaternary structure of a protein is determined by: A. interactions between distant amino acids of the same polypeptide. B.interactions between close amino

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

The Carbon Atom (cont.)

The Carbon Atom (cont.) Organic Molecules Organic Chemistry The chemistry of the living world. Organic Molecule a molecule containing carbon and hydrogen Carbon has 4 electrons in its outer shell and can share electrons with

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

A. Lipids: Water-Insoluble Molecules

A. Lipids: Water-Insoluble Molecules Biological Substances found in Living Tissues Lecture Series 3 Macromolecules: Their Structure and Function A. Lipids: Water-Insoluble Lipids can form large biological molecules, but these aggregations

More information

Biology 12. Biochemistry. Water - a polar molecule Water (H 2 O) is held together by covalent bonds.

Biology 12. Biochemistry. Water - a polar molecule Water (H 2 O) is held together by covalent bonds. Biology 12 Biochemistry Water - a polar molecule Water (H 2 O) is held together by covalent bonds. Electrons in these bonds spend more time circulating around the larger Oxygen atom than the smaller Hydrogen

More information

Colloid Chemistry. Lecture #2 Association colloid

Colloid Chemistry. Lecture #2 Association colloid Colloid Chemistry Lecture #2 Association colloid 1 https://ilustracionmedica.wordpress.com/2014/08/27/fisicos-haciendo-medicina-john-tyndall/ Solution Classical vs. Colloid solution Tyndall effect Increased

More information

CHAPTER 2- BIOCHEMISTRY I. WATER (VERY IMPORTANT TO LIVING ORGANISMS) A. POLAR COMPOUND- 10/4/ H O KENNEDY BIOLOGY 1AB

CHAPTER 2- BIOCHEMISTRY I. WATER (VERY IMPORTANT TO LIVING ORGANISMS) A. POLAR COMPOUND- 10/4/ H O KENNEDY BIOLOGY 1AB CHAPTER 2- BIOCHEMISTRY KENNEDY BIOLOGY 1AB I. WATER (VERY IMPORTANT TO LIVING ORGANISMS) WATER S UNIQUE PROPERTIES MAKE IT ESSENTIAL FOR ALL LIFE FUNCTIONS IT IS POLAR, AND HAS BOTH ADHESIVE AND COHESIVE

More information

Reconstruction of a transmembrane protein tetraspanin (CD9) into lipid bilayer by interaction of ganglioside GM3 and tetraspanin

Reconstruction of a transmembrane protein tetraspanin (CD9) into lipid bilayer by interaction of ganglioside GM3 and tetraspanin Reconstruction of a transmembrane protein tetraspanin (CD9) into lipid bilayer by interaction of ganglioside GM3 and tetraspanin Glycobiology World Congress August 12, 2015 Tokyo University of Science,

More information

Macromolecules. Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own.

Macromolecules. Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own. Macromolecules Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own. Macromolecules are giant molecules made up of thousands or hundreds

More information

Bull. Mater. Sci., Vol. 18, No. 4, August 1995, pp Printed in India.

Bull. Mater. Sci., Vol. 18, No. 4, August 1995, pp Printed in India. Bull. Mater. Sci., Vol. 18, No. 4, ugust 1995, pp. 375-384. Printed in India. Novel concept for the aggregation structure of fatty acid monolayers on the water surface and direct observation.of molecular

More information

Chapter 2 Part 3: Organic and Inorganic Compounds

Chapter 2 Part 3: Organic and Inorganic Compounds Chapter 2 Part 3: Organic and Inorganic Compounds Objectives: 1) List the major groups of inorganic chemicals common in cells. 2) Describe the functions of various types of inorganic chemicals in cells.

More information

Introduction of emulsions Effect of polysaccharides on emulsion stability Use of polysaccharides as emulsifier. Polysaccharides in Food Emulsions

Introduction of emulsions Effect of polysaccharides on emulsion stability Use of polysaccharides as emulsifier. Polysaccharides in Food Emulsions 1 Introduction of emulsions Effect of polysaccharides on emulsion stability Use of polysaccharides as emulsifier 2 Basic concepts of emulsions Interfacial tension (): the force that operates on an interface

More information

Biological Molecules

Biological Molecules Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Biology 5A Fall 2010 Macromolecules Chapter 5

Biology 5A Fall 2010 Macromolecules Chapter 5 Learning Outcomes: Macromolecules List and describe the four major classes of molecules Describe the formation of a glycosidic linkage and distinguish between monosaccharides, disaccharides, and polysaccharides

More information

Biology. Chapter 3. Molecules of Life. Concepts and Applications 9e Starr Evers Starr

Biology. Chapter 3. Molecules of Life. Concepts and Applications 9e Starr Evers Starr Biology Concepts and Applications 9e Starr Evers Starr Chapter 3 Molecules of Life 2015 3.1 What Are the Molecules of Life? The molecules of life contain a high proportion of carbon atoms: Complex carbohydrates

More information

Lecture 15. Membrane Proteins I

Lecture 15. Membrane Proteins I Lecture 15 Membrane Proteins I Introduction What are membrane proteins and where do they exist? Proteins consist of three main classes which are classified as globular, fibrous and membrane proteins. A

More information

Soft Matter PAPER. ssrna base pairing at a bilayer interface can be controlled by the acyl chain order. Dynamic Article Links C <

Soft Matter PAPER. ssrna base pairing at a bilayer interface can be controlled by the acyl chain order. Dynamic Article Links C < Soft Matter / Journal Homepage / Table of Contents for this issue Dynamic Article Links C < Cite this: Soft Matter, 2012, 8, 10428 www.rsc.org/softmatter ssrna base pairing at a bilayer interface can be

More information

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2.

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. A possible explanation for an event that occurs in nature is

More information

The Star of The Show (Ch. 3)

The Star of The Show (Ch. 3) The Star of The Show (Ch. 3) Why study Carbon? All of life is built on carbon Cells ~72% 2 O ~25% carbon compounds carbohydrates lipids proteins nucleic acids ~3% salts Na, Cl, K Chemistry of Life Organic

More information

Phospholipid-assisted formation and dispersion of aqueous nano-c 60

Phospholipid-assisted formation and dispersion of aqueous nano-c 60 Phospholipid-assisted formation and dispersion of aqueous nano-c 60 Yanjing Chen and Geoffrey D. Bothun* Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA Introduction Water-soluble

More information

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids Biological Molecules Carbohydrates, Proteins, Lipids, and Nucleic Acids Organic Molecules Always contain Carbon (C) and Hydrogen (H) Carbon is missing four electrons Capable of forming 4 covalent bonds

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water.

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water. BIOCHEMISTRY Organic compounds Compounds that contain carbon are called organic. Inorganic compounds do not contain carbon. Carbon has 4 electrons in outer shell. Carbon can form covalent bonds with as

More information

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules.

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Macromolecules 1 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 2 Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

Biochemistry Macromolecules and Enzymes. Unit 02

Biochemistry Macromolecules and Enzymes. Unit 02 Biochemistry Macromolecules and Enzymes Unit 02 Organic Compounds Compounds that contain CARBON are called organic. What is Carbon? Carbon has 4 electrons in outer shell. Carbon can form covalent bonds

More information

Cell Chemistry - Intro

Cell Chemistry - Intro Cell Chemistry - Intro SBI 3C Cell Chemistry All things are made of atoms, including living things. As we explore the cell we need to have a basic understanding of the chemistry and molecules that make

More information

small molecules that make up larger molecules organic compound made up of sugar molecules sugar that contains one sugar unit

small molecules that make up larger molecules organic compound made up of sugar molecules sugar that contains one sugar unit organic molecule carbon based compound inorganic molecule hydrocarbon functional group hydrophilic NON-carbon based compound organic molecule made of only carbon and hydrogen group of atoms bonded to a

More information

Effects of hydrocarbon chains saturation degree on molecular interaction between phospholipids and cholesterol in mixed monolayers

Effects of hydrocarbon chains saturation degree on molecular interaction between phospholipids and cholesterol in mixed monolayers Indian Journal of Biochemistry & Biophysics Vol. 54, October 2017, pp. 186-190 Effects of hydrocarbon chains saturation degree on molecular interaction between phospholipids and cholesterol in mixed monolayers

More information

Physical Cell Biology Lecture 10: membranes elasticity and geometry. Hydrophobicity as an entropic effect

Physical Cell Biology Lecture 10: membranes elasticity and geometry. Hydrophobicity as an entropic effect Physical Cell Biology Lecture 10: membranes elasticity and geometry Phillips: Chapter 5, Chapter 11 and Pollard Chapter 13 Hydrophobicity as an entropic effect 1 Self-Assembly of Lipid Structures Lipid

More information

Maejo International Journal of Science and Technology

Maejo International Journal of Science and Technology Short Communication Maejo International Journal of Science and Technology ISSN 1905-7873 Available online at www.mijst.mju.ac.th Surface investigation of chitosan film with fatty acid monolayers Esam A.

More information

Interaction of pulmonary surfactant protein A with dipalmitoylphosphatidylcholine

Interaction of pulmonary surfactant protein A with dipalmitoylphosphatidylcholine Interaction of pulmonary surfactant protein A with dipalmitoylphosphatidylcholine and cholesterol at the air/water interface Shou-Hwa Yu 1, *, and Fred Possmayer*,, Department of Obstetrics and Gynecology,*

More information

Biology Chapter 5. Biological macromolecules

Biology Chapter 5. Biological macromolecules Biology Chapter 5 Biological macromolecules Small molecules (like water and NaCl) have certain properties that arise from the bonds which hold atoms together in a particular arrangement. Many of the molecules

More information

Anatomy & Physiology I. Macromolecules

Anatomy & Physiology I. Macromolecules Anatomy & Physiology I Macromolecules Many molecules in the human body are very large, consisting of hundreds or even thousands of atoms. These are called macromolecules. Four types of macromolecules are

More information

Qualitative test of protein-lab2

Qualitative test of protein-lab2 1- Qualitative chemical reactions of amino acid protein functional groups: Certain functional groups in proteins can react to produce characteristically colored products. The color intensity of the product

More information

Organic & Biochemistry Pacing Guide. Day Date SCS Objectives Essential Questions Content Tasks/Strategies. How are covalent compounds formed?

Organic & Biochemistry Pacing Guide. Day Date SCS Objectives Essential Questions Content Tasks/Strategies. How are covalent compounds formed? Organic & Biochemistry Pacing Guide Course Description: Course Description: This course is designed to provide students with an opportunity to continue their study of the principles of chemistry. The topics

More information

Physical Pharmacy. Interfacial phenomena. Khalid T Maaroof MSc. Pharmaceutical sciences School of pharmacy Pharmaceutics department

Physical Pharmacy. Interfacial phenomena. Khalid T Maaroof MSc. Pharmaceutical sciences School of pharmacy Pharmaceutics department Physical Pharmacy Interfacial phenomena Khalid T Maaroof MSc. Pharmaceutical sciences School of pharmacy Pharmaceutics department 1 Introduction The boundary between two phases is generally described as

More information

Aggregation and Self-Organization of a Chromophore-Labeled Double-Chain Amphiphile

Aggregation and Self-Organization of a Chromophore-Labeled Double-Chain Amphiphile Langmuir 2000, 16, 3651-3659 3651 Aggregation and Self-Organization of a Chromophore-Labeled Double-Chain Amphiphile Guobin Luo, Tingting Liu, Liming Ying, and Xin Sheng Zhao* State Key Laboratory of Molecular

More information

Pressure Modulation of the Enzymatic Activity of. Phospholipase A2, a Putative Membraneassociated

Pressure Modulation of the Enzymatic Activity of. Phospholipase A2, a Putative Membraneassociated SUPPORTING INFORMATION Pressure Modulation of the Enzymatic Activity of Phospholipase A2, a Putative Membraneassociated Pressure Sensor Saba Suladze, Suleyman Cinar, Benjamin Sperlich, and Roland Winter*

More information

Biochimica et Biophysica Acta

Biochimica et Biophysica Acta Biochimica et Biophysica Acta 1808 (2011) 1832 1842 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamem Comparative study of clinical

More information

Selective removal of octadecylphosphonic acid (OPA) molecules from their self-assembled monolayers (SAMs) formed on a Si substrate

Selective removal of octadecylphosphonic acid (OPA) molecules from their self-assembled monolayers (SAMs) formed on a Si substrate IOP Publishing Journal of Physics: Conference Series 61 (2007) 869 873 doi:10.1088/1742-6596/61/1/173 International Conference on Nanoscience and Technology (ICN&T 2006) Selective removal of octadecylphosphonic

More information

Biology Kevin Dees. Biology Chapter 5. Biological macromolecules

Biology Kevin Dees. Biology Chapter 5. Biological macromolecules Biology Chapter 5 Biological macromolecules Small molecules (like water and NaCl) have certain properties that arise from the bonds which hold atoms together in a particular arrangement. Many of the molecules

More information

Summer Assignment for Biology 1

Summer Assignment for Biology 1 Summer Assignment for Biology 1 Teacher Name: Mr. Collins/Ms. Thalhamer Course: Biology 1 Teacher contact information: Mr. Collins: acollins5@bostonpublicschools.org, Phone: 617-335-2663 Ms. Thalhamer:

More information

KEY NAME (printed very legibly) UT-EID

KEY NAME (printed very legibly) UT-EID BIOLOGY 311C - Brand Spring 2007 KEY NAME (printed very legibly) UT-EID EXAMINATION II Before beginning, check to be sure that this exam contains 7 pages (including front and back) numbered consecutively,

More information

Supplementary Figure 1. Sample preparation schematic. First (Stage I), square islands of MoO 3 are prepared by either photolithography followed by

Supplementary Figure 1. Sample preparation schematic. First (Stage I), square islands of MoO 3 are prepared by either photolithography followed by Supplementary Figure 1. Sample preparation schematic. First (Stage I), square islands of MoO 3 are prepared by either photolithography followed by thermal evaporation and liftoff or by a process where

More information

Introduction to Biochemistry

Introduction to Biochemistry Life is Organized in Increasing Levels of Complexity Introduction to Biochemistry atom simple molecule What is the chemical makeup of living things? macromolecule organ organ system organism organelle

More information

CLASS SET. Modeling Life s Important Compounds. AP Biology

CLASS SET. Modeling Life s Important Compounds. AP Biology Modeling Life s Important Compounds AP Biology CLASS SET OBJECTIVES: Upon completion of this activity, you will be able to: Explain the connection between the sequence and the subcomponents of a biological

More information

Chapter 5 THE STRUCTURE AND FUNCTION OF LARGE BIOLOGICAL MOLECULES

Chapter 5 THE STRUCTURE AND FUNCTION OF LARGE BIOLOGICAL MOLECULES Chapter 5 THE STRUCTURE AND FUNCTION OF LARGE BIOLOGICAL MOLECULES You Must Know The role of dehydration synthesis in the formation of organic compounds and hydrolysis in the digestion of organic compounds.

More information

Bio 12 Chapter 2 Test Review

Bio 12 Chapter 2 Test Review Bio 12 Chapter 2 Test Review 1.Know the difference between ionic and covalent bonds In order to complete outer shells in electrons bonds can be Ionic; one atom donates or receives electrons Covalent; atoms

More information

2 3 Carbon Compounds Slide 1 of 37

2 3 Carbon Compounds Slide 1 of 37 1 of 37 The Chemistry of Carbon The Chemistry of Carbon Organic chemistry is the study of all compounds that contain bonds between carbon atoms. Carbon atoms have four valence electrons that can join with

More information

REPRODUCTION the of new or Cells to form new HEREDITY the of from cells to cells

REPRODUCTION the of new or Cells to form new HEREDITY the of from cells to cells Biochemistry NOTES What is Biology? The of WHAT ARE THE CHARACTERISTICS OF LIFE? (7 TOTAL) MADE UP OF CELLS What is a cell? The smallest of cell exhibits the characteristics of life Very and Unicellular

More information

Biochemistry. 2. Besides carbon, name 3 other elements that make up most organic compounds.

Biochemistry. 2. Besides carbon, name 3 other elements that make up most organic compounds. Biochemistry Carbon compounds Section 3-1 1. What is an organic compound? 2. Besides carbon, name 3 other elements that make up most organic compounds. 3. Carbon dioxide, CO 2, is NOT an organic compound.

More information

Unit 3: Chemistry of Life Mr. Nagel Meade High School

Unit 3: Chemistry of Life Mr. Nagel Meade High School Unit 3: Chemistry of Life Mr. Nagel Meade High School IB Syllabus Statements 3.2.1 Distinguish between organic and inorganic compounds. 3.2.2 Identify amino acids, glucose, ribose and fatty acids from

More information

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1 Lesson 2 Biological Molecules Introduction to Life Processes - SCI 102 1 Carbon in Biological Molecules Organic molecules contain carbon (C) and hydrogen (H) Example: glucose (C 6 H 12 O 6 ) Inorganic

More information