Plasma Membrane defines inside from outside. lasma membrane. Common features of all cells. Plasma Membrane defines inside from outside

Size: px
Start display at page:

Download "Plasma Membrane defines inside from outside. lasma membrane. Common features of all cells. Plasma Membrane defines inside from outside"

Transcription

1 A Tour of the Cell Friday Sept 16, 2005 BCOR 011 Lecture 8 Common features of all cells Plasma Membrane defines inside from outside 10 µm 1 2 lasma Functions as a selective barrier Specific portals for selective transport of materials in and out of cell Outside of cell Common features of all cells Plasma Membrane defines inside from outside Figure 6.8 A, B Inside of cell (a) 0.1 µm TEM of a plasma. The plasma, here in a red blood cell, appears as a pair of dark bands separated by a Hydrophilic region Hydrophobic region Hydrophilic region Carbohydrate side chain Phospholipid Proteins (b) Structure of the plasma 3 Cytosol - Semifluid inside of the cell DNA chromosomes - Genetic material hereditary instructions Ribosomes 4

2 Two Broad Classes of Cells ure 6.11 ER Carry out protein synthesis TEM showing ER and ribosomes 0.5 µm Cytosol Free ribosomes Membrane Bound ribosomes Proteins To be exported ibosome RNA & Protein Complex Large subunit Diagram of a ribosome Small subunit 5 Prokaryotes Pro = before DO NOT HAVE A NUCLEUS NO internal s karyon = nucleus bacteria, cyanobacteria archaebacteria Eukaryotes Eu = true HAVE A NUCLEUS -bound organelles Plants, Animals, 6 Fungi, protists Pili: attachment structures on the surface of some prokaryotes Nucleoid: region where the cell s DNA is located (not enclosed by a ) Ribosomes: organelles that synthesize proteins Plasma : enclosing the cytoplasm Cell wall: rigid structure outside the plasma No internal s Bacterial chromosome (a) A typical rod-shaped bacterium Capsule: jelly-like outer coating of many prokaryotes Flagella: locomotion organelles of some bacteria 0.5 µm (b) A thin section through the bacterium Bacillus coagul (TEM) Bacterial Cell (Prokaryotic) 7 Figure 6.6 A, B 8

3 On the same size scale: 11 Relative Sizes 12 Typical ~ 1-2 µm Bacterium Typical Animal Cell ~ 5 to 20 µm diameter Bacterial cell (Prokaryotic Animal Cell Typical ~ 5 to 50 µm diameter Plant Cell µm = micrometer or micron =10-6 meter 9 10 (Eukaryotic) Internal -bound organelles Why Internal Membranes? Compartmentalization (Division of Labor) I m sleeping I m playing my sax I m watching TV I m cooking dinner

4 endoplasmic reticulum ENDOPLASMIC RETICULUM (ER) Rough ER Smooth ER Animal Cell NUCLEUS nucleus Nucleus: Information storage double Centrosome cytosol CYTOSKELETON Plasma Nuclear Envelope Microfilaments termediate filaments Microtubules Ribosomes ribosomes nucleolus Peroxisome Figure 6.9 Mitochondrion mitochondrion Lysosome lysosome Golgi apparatus In animal cells but not plant cells: Lysosomes Centrioles 13 Flagella (in some plant sperm) DNA housed, copied, read 14 he NUCLEUS nuclear envelope Nucleus ouble embrane uclear ores uclear amina Nucleolus DNA RNA protein lipid () 1 µm Surface of nuclear envelope µm Nuclear envelope: Inner Outer Nuclear pores Ribosome Nucleolus Chromatin Pore complex Nucle Rough ER 1 µm uchromatin 15 Figure 6.10 Close-up of nuclear envelope 16

5 19 20 Nucleolus Site of Ribosome Subunit Assembly Euchromatin region Site of mrna synthesis Expression Of Informational RNAs Note: No Endoplasmic reticulum (ER) Endoplasmic reticulum (ER) [Reticulum network] Continuous network of flattened sacs tubules, vesicles, throughout eukaryotic cytoplasm Smooth ER Rough ER Smooth ER Synthesizes lipids Synthesizes steroids Stores calcium Detoxifies poison

6 Example: detoxification in smooth ER enzo(a)pyrene charred meat, cigarette smoke Oxidations more soluble Some metabolites are more toxic Chronic use of barbiturates, alcohol- SER proliferation, resistance 21 Rough ER ribosomes attached to cytoplasmic face Large flattened sheets Synthesizes secreted proteins, proteins exported Protein modification; initial steps of carbohydrate addition - glycoproteins 22 1 Nuclear envelope is connected to rough ER, which is also continuous with smooth ER Nucleus Rough ER ough ER lips proteins hrough ER embrane lycosylation dds ligosaccharides Figure Lysosome available 5 Transport vesicle carries 6 23 Plasma 24 expands 3 2 Membranes and proteins produced by the ER flow in the form of transport vesicles to the Golgi Golgi pinches off transport Vesicles and other vesicles that give rise to lysosomes and Vacuoles Smooth ER cis Golgi trans Golgi Plasma

7 27 28 olgi Apparatus: protein secretion Processing, packaging nd sorting center Cis Golgi Close To RER Trans Golgi Far side Away From RER 25 Functions of the Golgi Apparatus cis Golgi near - processing center trans Golgi - sorting center far Present wrapping Service modifies proteins Fed Ex Central Sorts for delivery To specific 26 compartments Functions of the Golgi Apparatus Trimming of Oligosaccharide side chains on glycosylated proteins Addition of new Oligosaccharide residues to existing side chains of glycosylated proteins Maturation Cleavages of specific proteins e.g., insulin Phosphorylation of specific sugar residues on oligosaccharide side chains of glycosylated proteins Molecular tags route proteins to proper destination P added in cis Golgi Proteins with M-6-P tag bind receptor in trans Golgi

8 Lysosomes: Recycling Center sacs of digestive enzymes Endocytosis And Phagocytosis Lysosome Lysosome contains active hydrolytic enzymes Food vacuole fuses with lysosome Hydrolytic enzymes digest food particles Digestive enzymes Lysosome Plasma Digestion Food vacuole 29 Figure 6.14 A 30 (a) Phagocytosis: lysosome digesting food In phagocytosis, a cell engulfs a particle by Wrapping pseudopodia around it and packaging it within a enclosed sac large enough to be classified as a vacuole. The particle is digested after the vacuole fuses with a lysosome containing hydrolytic enzymes. In pinocytosis, the cell gulps droplets of extracellular fluid into tiny vesicles. It is not the fluid itself that is needed by the cell, but the molecules dissolved in the droplet. Because any and all included solutes are taken into the cell, pinocytosis is nonspecific in the substances it transports. PHAGOCYTOSIS EXTRACELLULAR CYTOPLASM FLUID Pseudopodium Food or other particle Plasma Food vacuole PINOCYTOSIS Vesicle Bacterium 1 µm Pseudopodium of amoeba Food vacuole An amoeba engulfing a bacterium via phagocytosis (TEM). 0.5 µm Pinocytosis vesicles forming (arrows) in a cell lining a small blood vessel (TEM). Receptor-mediated endocytosis enables the cell to acquire bulk quantities of specific substances, even though those substances may not be very concentrated in the extracellular fluid. Embedded in the are proteins with specific receptor sites exposed to the extracellular fluid. The receptor proteins are usually already clustered in regions of the called coated pits, which are lined on their cytoplasmic side by a fuzzy layer of coat proteins. Extracellular substances (ligands) bind to these receptors. When binding occurs, the coated pit forms a vesicle containing the ligand molecules. Notice that there are relatively more bound molecules (purple) inside the vesicle, other molecules (green) are also present. After this ingested material is liberated from the vesicle, the receptors are recycled to the plasma by the same vesicle. Receptor RECEPTOR-MEDIATED ENDOCYTOSIS Coat protein Plasma Ligand Coat protein Coated pit Coated vesicle A coated pit and a coated vesicle formed during receptormediated endocytosis (TEMs). Figure µm 32

9 two damaged organelles Vesicles move thru the endo system Autophagy Mitochondrion fragment Peroxisome fragment exocytosis Lysosome fuses with vesicle containing damaged organelle Hydrolytic enzymes digest organelle components Lysosome Figure 6.14 B Vesicle containing damaged mitochondrion Digestion 33 endocytosis 34 (b) Autophagy: lysosome breaking down damaged organelle Mitochondria: Powerhouses of the cell Mitochondria singular = mitochondrion powerhouse of the animal cell produces ~ 90% of ATP Carries out oxidative reactions 35 Believed Derived from prokaryotic ancestor -DNA - ribosomes - double inner and outer *define two functional spaces 36

10 itochondria are enclosed by two s A smooth outer An inner folded into cristae Mitochondrion Inter space Outer Cell organelles = Cytosol Gel Important chemical reactions cytoskeleton - eukaryotes Free ribosomes in the mitochondrial matrix Inner Cristae Figure 6.17 Mitochondrial DNA Matrix µm 38 The cytoskeleton Is a network of fibers extending throughout the cytoplasm Structural Support Movement of Materials and Organelles Microtubule There are three types of fibers that make up the cytoskeleton Microtubules Microfilaments Intermediat Filaments Tubulin Actin various 25 µm dia 7 µm dia 8-15 µm dia Cell shape Organelle movt Chromosome separation Flagellar movt Motors: Dynein Kinesis Cell shape Cell cleavage Cytoplasmic streaming Muscle contract Motors: Myosin Nuclear lamina Tension bearing elements Anchors Figure µm Microfilaments 39 40

11 Movement of Vesicles along Microtubules Motor MAPs transport vesicles ATP Vesicle Receptor for motor protein Motor protein (ATP powered) Microtubule of cytoskeleton (a) Motor proteins that attach to receptors on organelles can walk the organelles along microtubules or, in some cases, microfilaments. Microtubule Vesicles 0.25 µm Dynein inbound outbound kinesin MTOC (b) Vesicles containing neurotransmitters migrate to the tips of nerve cell axons via the mechanism in (a). In this SEM of a squid giant axon, two vesicles can be seen moving along a microtubule. (A separate part of the Figure 6.21 A, B experiment provided the evidence that they were in fact moving.) Contains a pair of centrioles Animal cells Lack cell walls Are covered by an elaborate matrix, the ECM Centrosome The ECM Is made up of glycoproteins Centrioles Microtubule 0.25 µm microtubuleorganizing center Collagen Fibronectin Plasma EXTRACELLULAR FLUID A proteoglycan complex Integrins Polysaccharide molecule Carbohydrates Core protein Proteoglycan molecule Figure 6.22 Longitudinal section of one centriole Microtubules Cross section of the other centriole 43 Integrin Figure 6.29 Microfilaments CYTOPLASM 44

12 Functions of the ECM include Cell-Cell adhesion Cell-Cell recognition Regulation of cellular processes plant cell NUCLEUS Golgi apparatus Rough endoplasmic reticulum Smooth endoplasm reticulum Central vacuole/tonopla Microfilaments Intermediate filaments CYTOSKELETON Microtubules Mitochondrion Peroxisome Plasma Cell wall Chloroplast 45 Figure 6.9 Wall of adjacent cell Plasmodesmata 46 lant Central vacuoles - Tonoplasts Are found in plant cells Hold reserves of important organic compounds and water Regulates Turgor In plant cells, chloroplasts capture energy from the sun Chloroplast Photosynthesis Central vacuole Cytosol Chloroplast DNA Ribosomes Stroma Inner and outer s Tonoplast Nucleus Central vacuole Granum Cell wall 1 µm Figure 6.15 Chloroplast 47 Figure 6.18 Thylakoid 48

13 51 52 Chloroplasts -Contain DNA -Contain bacterial-like ribosomes -Believed derived from prokaryotic ancestor cyanobacterium = blue-green alga Thylakoid Space Stroma -Double organelle defines three functional spaces 3 Central Players Membrane OuterChlorpla Membrane 49 Thylakoid Membrane Inter Space (transports things in and out of the chloroplast, but not central to photosynthesis itself 50 Cell Walls of Plants The cell wall Is an extracellular structure of plant cells that distinguishes them from animal cells

14 55 Plant cell walls Are made of cellulose fibers embedded in other polysaccharides and protein May have multiple layers Central vacuole of cell Plasma Secondary cell wall Plasmodesmata Are channels that perforate plant cell walls Primary cell wall Cell walls Central vacuole of cell Middle lamella Interior of cell Central vacuole 1 µm Cytosol Plasma Plant cell walls Interior of cell Figure µm Plasmodesmata Plasma s Figure Plasmodesmata Summary Features of all cells Features of Prokaryotes Organelles of Animal Cells Organelles of Plant Cells

Human height. Length of some nerve and muscle cells. Chicken egg. Frog egg. Most plant and animal cells Nucleus Most bacteria Mitochondrion

Human height. Length of some nerve and muscle cells. Chicken egg. Frog egg. Most plant and animal cells Nucleus Most bacteria Mitochondrion 10 m 1 m 0.1 m 1 cm Human height Length of some nerve and muscle cells Chicken egg Unaided eye 1 mm Frog egg 100 µm 10 µm 1 µm 100 nm 10 nm Most plant and animal cells Nucleus Most bacteria Mitochondrion

More information

4 A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece

4 A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 4 A Tour of the Cell Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: The Fundamental Units of Life All

More information

(a) TEM of a plasma. Fimbriae. Nucleoid. Ribosomes. Plasma membrane. Cell wall Capsule. Bacterial chromosome

(a) TEM of a plasma. Fimbriae. Nucleoid. Ribosomes. Plasma membrane. Cell wall Capsule. Bacterial chromosome 0 m m 0. m cm mm 00 µm 0 µm 00 nm 0 nm Human height Length of some nerve and muscle cells Chicken egg Frog egg Most plant and animal cells Most bacteria Smallest bacteria Viruses Proteins Unaided eye Light

More information

Lecture 5- A Tour of the Cell

Lecture 5- A Tour of the Cell Lecture 5- A Tour of the Cell 1 In this lecture Prokaryotes vs. eukaryotes The organelles of the eukaryotic cell The cytoskeleton Extracellular components 2 What are cells? Cells are the fundamental unit

More information

The Golgi Apparatus: Shipping and Receiving Center. The Golgi apparatus. Functions of the Golgi apparatus. Lysosomes: Digestive Compartments

The Golgi Apparatus: Shipping and Receiving Center. The Golgi apparatus. Functions of the Golgi apparatus. Lysosomes: Digestive Compartments The Golgi Apparatus: Shipping and Receiving Center The Golgi apparatus Receives (on the cis-side) many of the transport vesicles produced in the rough ER Consists of flattened membranous sacs called cisternae

More information

Cytosol the fluid Cytoplasm cell interior, everything outside the nucleus but within the cell membrane, includes the organelles, cytosol, and

Cytosol the fluid Cytoplasm cell interior, everything outside the nucleus but within the cell membrane, includes the organelles, cytosol, and Cell Organelles Plasma Membrane comprised of a phospholipid bilayer and embedded proteins Outer surface has oligosaccharides separates the cells s contents from its surroundings Cytosol the fluid Cytoplasm

More information

A TOUR OF THE CELL 10/1/2012

A TOUR OF THE CELL 10/1/2012 A TOUR OF THE CELL Chapter 6 KEY CONCEPTS: Eukaryotic cells have internal membranes that compartmentalize their functions The eukaryotic cell s genetic instructions are housed in the nucleus and carried

More information

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 6 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Cells. Variation and Function of Cells

Cells. Variation and Function of Cells Cells Variation and Function of Cells Cell Theory states that: 1. All living things are made of cells 2. Cells are the basic unit of structure and function in living things 3. New cells are produced from

More information

Review from Biology A

Review from Biology A Chapter 4 Review from Biology A The Cell Theory All organisms are made of cells Cells come from pre-existing cells The cell is the simplest collection of matter that can live Scientists whose work you

More information

A. Major parts 1. Nucleus 2. Cytoplasm a. Contain organelles (see below) 3. Plasma membrane (To be discussed in Cellular Transport Lecture)

A. Major parts 1. Nucleus 2. Cytoplasm a. Contain organelles (see below) 3. Plasma membrane (To be discussed in Cellular Transport Lecture) Lecture 5: Cellular Biology I. Cell Theory Concepts: 1. Cells are the functional and structural units of living organisms 2. The activity of an organism is dependent on both the individual and collective

More information

Plasma Membrane. comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings

Plasma Membrane. comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings Cell Organelles Plasma Membrane comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings Cytosol the fluid Cytoplasm cell interior, everything outside

More information

A Tour of the Cell. Chapter 7

A Tour of the Cell. Chapter 7 A Tour of the Cell Chapter 7 Cytology: Study of Cells Light Microscopes uses light & a set of lenses Magnification ratio of object s image size to its real size Resolution measures the clarity of the image

More information

A Tour of the Cell. Chapter 6. Slide 1. Slide 2. Slide 3. Overview: The Fundamental Units of Life

A Tour of the Cell. Chapter 6. Slide 1. Slide 2. Slide 3. Overview: The Fundamental Units of Life Slide 1 Chapter 6 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan

More information

Early scientists who observed cells made detailed sketches of what they saw.

Early scientists who observed cells made detailed sketches of what they saw. Early scientists who observed cells made detailed sketches of what they saw. Early scientists who observed cells made detailed sketches of what they saw. CORK Early scientists who observed cells made detailed

More information

Lectures by Erin Barley Kathleen Fitzpatrick Pearson Education, Inc Pearson Education, Inc. Figure 6.5. Bacterial chromosome

Lectures by Erin Barley Kathleen Fitzpatrick Pearson Education, Inc Pearson Education, Inc. Figure 6.5. Bacterial chromosome Chapter 6 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson A Tour of the Cell Overview:

More information

Organelles. copyright cmassengale 1

Organelles. copyright cmassengale 1 Organelles copyright cmassengale 1 Organelles Very small (Microscopic) Perform various functions for a cell Found in the cytoplasm May or may not be membrane-bound 2 Animal Cell Organelles Nucleolus Nucleus

More information

Organelles of the Cell & How They Work Together. Packet #7

Organelles of the Cell & How They Work Together. Packet #7 Organelles of the Cell & How They Work Together Packet #7 Introduction Introduction Organization of cells is basically similar in all cells. Additionally, most cells are tiny Ranging from 1 1000 cubic

More information

A Tour of the Cell. Chapter 6. Biology. Edited by Shawn Lester. Inner Life of Cell. Eighth Edition Neil Campbell and Jane Reece

A Tour of the Cell. Chapter 6. Biology. Edited by Shawn Lester. Inner Life of Cell. Eighth Edition Neil Campbell and Jane Reece Chapter 6 A Tour of the Cell Inner Life of Cell Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin

More information

Eukaryotic cell. Premedical IV Biology

Eukaryotic cell. Premedical IV Biology Eukaryotic cell Premedical IV Biology The size range of organisms Light microscopes visible light is passed through the specimen and glass lenses the resolution is limited by the wavelength of the visible

More information

Don t Freak Out. Test on cell organelle on Friday!

Don t Freak Out. Test on cell organelle on Friday! Cell Structure 1 Don t Freak Out Test on cell organelle on Friday! This test should be a buffer test and help raise your overall test score. All information will come from this week! 2 Cells Provide Compartments

More information

AP Biology Book Notes Chapter 4: Cells v Cell theory implications Ø Studying cell biology is in some sense the same as studying life Ø Life is

AP Biology Book Notes Chapter 4: Cells v Cell theory implications Ø Studying cell biology is in some sense the same as studying life Ø Life is AP Biology Book Notes Chapter 4: Cells v Cell theory implications Ø Studying cell biology is in some sense the same as studying life Ø Life is continuous v Small cell size is becoming more necessary as

More information

A Tour of the Cell 4/10/12. Chapter 6. Overview: The Fundamental Units of Life

A Tour of the Cell 4/10/12. Chapter 6. Overview: The Fundamental Units of Life Chapter 6 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson A Tour of the Cell Lectures by

More information

Microfilaments. myosin. In muscle cells. Microfilaments. Microfilaments. Video: Cytoplasmic Streaming. amoeboid movement. Pseudopodia.

Microfilaments. myosin. In muscle cells. Microfilaments. Microfilaments. Video: Cytoplasmic Streaming. amoeboid movement. Pseudopodia. Microfilaments Fig, 6-27a myosin Microfilaments protein func3ons in cellular mo3lity in addi3on to ac3n In muscle cells Thousands of ac3n filaments are arranged parallel to one another Thicker myosin filaments

More information

Chapter 7. (7-1 and 7-2) A Tour of the Cell

Chapter 7. (7-1 and 7-2) A Tour of the Cell Chapter 7 (7-1 and 7-2) A Tour of the Cell Microscopes as Windows to the World of Cells Cells were first described in 1665 by Robert Hooke. By the mid-1800s, the accumulation of scientific evidence led

More information

ORGANELLES OF THE ENDOMEMBRANE SYSTEM

ORGANELLES OF THE ENDOMEMBRANE SYSTEM Membranes compartmentalize the interior of the cell and facilitate a variety of metabolic activities. Chloroplasts and a rigid cell wall are what distinguish a plant cell from an animal cell. A typical

More information

A Tour of the Cell. Chapter 4. Most cells are microscopic. Cells vary in size and shape

A Tour of the Cell. Chapter 4. Most cells are microscopic. Cells vary in size and shape Chapter 4 A Tour of the Cell Most cells are microscopic Cells vary in size and shape 10 m Human height 1 m Length of some nerve and muscle cells 100 mm (10 cm) 10 mm (1 cm) Chicken egg Unaided eye 1 mm

More information

4/12/17. Cells. Cell Structure. Ch. 2 Cell Structure and Func.on. Range of Cell Sizes BIOL 100

4/12/17. Cells. Cell Structure. Ch. 2 Cell Structure and Func.on. Range of Cell Sizes BIOL 100 Ch. 2 Cell Structure and Func.on BIOL 100 Cells Fundamental units of life Cell theory All living things are composed of one or more cells. The cell is the most basic unit of life. All cells come from pre-existing

More information

CHAPTER 4 A TOUR OF THE CELL

CHAPTER 4 A TOUR OF THE CELL CHAPTER 4 A TOUR OF THE CELL Microscopes Con. 4.1 magnification: size resolution: clarity contrast: differences in parts Light Microscopy Techniques (p.68) a. Brightfield unstained b. Brightfield stained

More information

First to View Cells. copyright cmassengale

First to View Cells. copyright cmassengale CELL THEORY All living things are made of cells Cells are the basic unit of structure and function in an organism (basic unit of life) Cells come from the reproduction of existing cells (cell division)

More information

Cell Structure & Function. Source:

Cell Structure & Function. Source: Cell Structure & Function Source: http://koning.ecsu.ctstateu.edu/cell/cell.html Definition of Cell A cell is the smallest unit that is capable of performing life functions. http://web.jjay.cuny.edu/~acarpi/nsc/images/cell.gif

More information

A Tour of the Cell. reference: Chapter 6. Reference: Chapter 2

A Tour of the Cell. reference: Chapter 6. Reference: Chapter 2 A Tour of the Cell reference: Chapter 6 Reference: Chapter 2 Monkey Fibroblast Cells stained with fluorescent dyes to show the nucleus (blue) and cytoskeleton (yellow and red fibers), image courtesy of

More information

Nucleic acids. Nucleic acids are information-rich polymers of nucleotides

Nucleic acids. Nucleic acids are information-rich polymers of nucleotides Nucleic acids Nucleic acids are information-rich polymers of nucleotides DNA and RNA Serve as the blueprints for proteins and thus control the life of a cell RNA and DNA are made up of very similar nucleotides.

More information

Organelles of the Cell & How They Work Together. Packet #5

Organelles of the Cell & How They Work Together. Packet #5 Organelles of the Cell & How They Work Together Packet #5 Developed by Mr. Barrow 2018 1 Introduction Organization of cells is basically similar in all cells. Additionally, most cells are tiny Ranging

More information

Animal & Plant Cells Biology 20

Animal & Plant Cells Biology 20 Animal & Plant Cells Biology 20 Structures in Cells ALL cells start out as fully functional living things They must be able to create and maintain substances (compounds, ATP, ADP) and structures (membranes,

More information

10 m Human height 1 m Length of some nerve and muscle cells eye 100 mm (10 cm) Chicken egg aid n 10 mm

10 m Human height 1 m Length of some nerve and muscle cells eye 100 mm (10 cm) Chicken egg aid n 10 mm Biology 112 Unit Three Chapter Four 1 Cell Sizes Smallest Bacteria Largest Bird egg Longest Giraffe s Nerve Cell Most Cells Diameter of 0.7µm to 105 µm 2 10 m 1 m 100 mm (10 cm) 10 mm (1 cm) Human height

More information

A Tour of the Cell. Ch. 7

A Tour of the Cell. Ch. 7 A Tour of the Cell Ch. 7 Cell Theory O All organisms are composed of one or more cells. O The cell is the basic unit of structure and organization of organisms. O All cells come from preexisting cells.

More information

Biology Structures in Cells. 1.3 Structures in Cells

Biology Structures in Cells. 1.3 Structures in Cells Biology 2201 1.3 Structures in Cells Structures in Cells ALL cells start out as fully functional living things They must be able to create and maintain substances (compounds, ATP, ADP) and structures (membranes,

More information

Organelles of the Cell & How They Work Together. Packet #5

Organelles of the Cell & How They Work Together. Packet #5 Organelles of the Cell & How They Work Together Packet #5 Developed by Mr. Barrow 2018 1 Introduction Organization of cells is basically similar in all cells. Additionally, most cells are tiny Ranging

More information

Lab 3: Cellular Structure and Function

Lab 3: Cellular Structure and Function Lab 3: Cellular Structure and Function What is the basic unit of life? The simplest form of life is the cell! All living things are either: unicellular (only one cell) multicellular (many cells make one

More information

A Tour of the Cell Lecture 2, Part 1 Fall 2008

A Tour of the Cell Lecture 2, Part 1 Fall 2008 Cell Theory 1 A Tour of the Cell Lecture 2, Part 1 Fall 2008 Cells are the basic unit of structure and function The lowest level of structure that can perform all activities required for life Reproduction

More information

Cytology. Light microscopy resolving power Electron microscopy TEM SEM Cell fractionation Ultracentrifuges

Cytology. Light microscopy resolving power Electron microscopy TEM SEM Cell fractionation Ultracentrifuges Chapter 7: A Tour of the Cell Cytology Light microscopy resolving power Electron microscopy TEM SEM Cell fractionation Ultracentrifuges Prokaryotic cells Nucleoid No organelles with membranes Ribosomes

More information

Cell Structure. Cells. Why are cells so small? 9/15/2016. Schleiden and Schwann proposed Cell Theory in

Cell Structure. Cells. Why are cells so small? 9/15/2016. Schleiden and Schwann proposed Cell Theory in Cell Structure Cells Cells are sacs of fluid that are reinforced by proteins and surrounded by membranes. Inside the fluid float organelles. Organelles: structures inside the cell that are used for metabolic

More information

BIOLOGY. A Tour of the Cell CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick

BIOLOGY. A Tour of the Cell CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 6 A Tour of the Cell Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Concept 6.2: Eukaryotic cells have internal

More information

CELL PARTS TYPICAL ANIMAL CELL

CELL PARTS TYPICAL ANIMAL CELL AP BIOLOGY CText Reference, Campbell v.8, Chapter 6 ACTIVITY1.12 NAME DATE HOUR CELL PARTS TYPICAL ANIMAL CELL ENDOMEMBRANE SYSTEM TYPICAL PLANT CELL QUESTIONS: 1. Write the name of the cell part in the

More information

AP Biology Summer Assignment

AP Biology Summer Assignment AP Biology Summer Assignment 2018-2019 AP Biology is a rigorous course and due to the large amount of material that needs to be covered during the school year, a summer assignment is essential. The first

More information

All organisms are made of cells (cells are the basic units of life) Cell structure is highly correlated to cellular function

All organisms are made of cells (cells are the basic units of life) Cell structure is highly correlated to cellular function CELLS CHAPTER 6 I. CELL THEORY - All organisms are made of cells (cells are the basic units of life) Cell structure is highly correlated to cellular function All cells are related by their descent from

More information

A Tour of the Cell Chapter 4. Outline. Early contributors to Understanding Cells. Cell Theory. Cell Size s Matt Schleiden & Ted Schann

A Tour of the Cell Chapter 4. Outline. Early contributors to Understanding Cells. Cell Theory. Cell Size s Matt Schleiden & Ted Schann A Tour of the Cell Chapter 4 Outline History of the science behind cells Cell theory & its importance Why are cells small? Microscopes Cell structure and function Prokaryotic cells Eukaryotic cells Early

More information

Unit 2:The Cell. Section 3: Organelle Structure and Function Mrs. McNamara Biology

Unit 2:The Cell. Section 3: Organelle Structure and Function Mrs. McNamara Biology Unit 2:The Cell Section 3: Organelle Structure and Function Mrs. McNamara Biology Organelle-cell part that performs a specific function for the cell Most are surrounded by a membrane Each helps to maintain

More information

The Cell. Biology 105 Lecture 4 Reading: Chapter 3 (pages 47 62)

The Cell. Biology 105 Lecture 4 Reading: Chapter 3 (pages 47 62) The Cell Biology 105 Lecture 4 Reading: Chapter 3 (pages 47 62) Outline I. Prokaryotic vs. Eukaryotic II. Eukaryotic A. Plasma membrane transport across B. Main features of animal cells and their functions

More information

THE CELL Cells: Part 1

THE CELL Cells: Part 1 THE CELL Cells: Part 1 OBJECTIVES By the end of the lesson you should be able to: State the 2 types of cells Relate the structure to function for all the organelles TYPES OF CELLS There are two types of

More information

BIOSC 041. v Today s lecture. v Today s lab. v Note- Monday is a holiday good time to do some reading!

BIOSC 041. v Today s lecture. v Today s lab. v Note- Monday is a holiday good time to do some reading! BIOSC 041 v Today s lecture Review questions Chapter 6, Cells More review questions v Today s lab Quick review of lab safety The Scientific Method start thinking about which environments you might want

More information

Human Epithelial Cells

Human Epithelial Cells The Cell Human Epithelial Cells Plant Cells Cells have an internal structure Eukaryotic cells are organized Protective membrane around them that communicates with other cells Organelles have specific jobs

More information

Bell Work: What is the fundamental unit of life? 2014 Pearson Education, Inc.

Bell Work: What is the fundamental unit of life? 2014 Pearson Education, Inc. Bell Work: What is the fundamental unit of life? All organisms are made of cells The cell is the simplest collection of matter that can be alive All cells are related by their descent from earlier cells

More information

CH 4: A tour of the cell Overview: The Fundamental Units of Life. Concept 4.1: Biologists use microscopes and the tools of biochemistry to study cells

CH 4: A tour of the cell Overview: The Fundamental Units of Life. Concept 4.1: Biologists use microscopes and the tools of biochemistry to study cells CH 4: A tour of the cell Overview: The Fundamental Units of Life All organisms are made of cells The cell is the simplest collection of matter that is alive All cells are related by descent from earlier

More information

BIOLOGY 111. CHAPTER 3: The Cell: The Fundamental Unit of Life

BIOLOGY 111. CHAPTER 3: The Cell: The Fundamental Unit of Life BIOLOGY 111 CHAPTER 3: The Cell: The Fundamental Unit of Life The Cell: The Fundamental Unit of Life Learning Outcomes 3.1 Explain the similarities and differences between prokaryotic and eukaryotic cells

More information

SBI3U7 Cell Structure & Organelles. 2.2 Prokaryotic Cells 2.3 Eukaryotic Cells

SBI3U7 Cell Structure & Organelles. 2.2 Prokaryotic Cells 2.3 Eukaryotic Cells SBI3U7 Cell Structure & Organelles 2.2 Prokaryotic Cells 2.3 Eukaryotic Cells No nucleus Prokaryotic Cells No membrane bound organelles Has a nucleus Eukaryotic Cells Membrane bound organelles Unicellular

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 6 A Tour of the Cell Lectures by

More information

Cell Theory. Chapter 6. cell. fundamental unit of structure and function for all living organisms. arise only from previously existing cell

Cell Theory. Chapter 6. cell. fundamental unit of structure and function for all living organisms. arise only from previously existing cell Chapter 6 cell Cell Theory fundamental unit of structure and function for all living organisms arise only from previously existing cell Figure 5.4 The size range of cells WHY are your brain cells the same

More information

CHAPTER 6: A TOUR OF THE CELL AP BIOLOGY 2011

CHAPTER 6: A TOUR OF THE CELL AP BIOLOGY 2011 CHAPTER 6: A TOUR OF THE CELL AP BIOLOGY 2011 1 IMPORTANCE OF CELLS ALL ORGANISMS ARE MADE OF CELLS CELLS ARE THE SMALLEST LIVING UNIT STRUCTURE IS CORRELATED TO FUNCTION ALL CELLS ARE RELATED BY THEIR

More information

Lysosomes. Vacuoles. Phagocytosis. One cell engulfing another. forms a food vacuole. fuses with lysosome. Autophagy. Lysosomes use enzymes

Lysosomes. Vacuoles. Phagocytosis. One cell engulfing another. forms a food vacuole. fuses with lysosome. Autophagy. Lysosomes use enzymes Lysosomes Phagocytosis One cell engulfing another forms a food vacuole fuses with lysosome Autophagy Lysosomes use enzymes to recycle the cell s own organelles and macromolecules Fig. 6-14 Nucleus 1 µm

More information

CELL PART OF THE DAY. Chapter 7: Cell Structure and Function

CELL PART OF THE DAY. Chapter 7: Cell Structure and Function CELL PART OF THE DAY Chapter 7: Cell Structure and Function Cell Membrane Cell membranes are composed of two phospholipid layers. Cell membrane is flexible, not rigid The cell membrane has two major functions.

More information

LIFE IS CELLULAR. Cell Theory. Cells Are Small. Prokaryotic Cell 10/4/15. Chapter 7 Cell Structure and Function

LIFE IS CELLULAR. Cell Theory. Cells Are Small. Prokaryotic Cell 10/4/15. Chapter 7 Cell Structure and Function Chapter 7 Cell Structure and Function The cell basic unit of life, all living things are made of a cell (unicellular) or more than one cell (multicellular). LIFE IS CELLULAR The invention of the microscope

More information

The Cell. BIOLOGY OF HUMANS Concepts, Applications, and Issues. Judith Goodenough Betty McGuire

The Cell. BIOLOGY OF HUMANS Concepts, Applications, and Issues. Judith Goodenough Betty McGuire BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 3 The Cell Lecture Presentation Anne Gasc Hawaii Pacific University and University of Hawaii Honolulu

More information

10/13/11. Cell Theory. Cell Structure

10/13/11. Cell Theory. Cell Structure Cell Structure Grade 12 Biology Cell Theory All organisms are composed of one or more cells. Cells are the smallest living units of all living organisms. Cells arise only by division of a previously existing

More information

Delve AP Biology Lecture 4: 10/9/11 Melissa Ko and Anne Huang

Delve AP Biology Lecture 4: 10/9/11 Melissa Ko and Anne Huang Today s Agenda: I. Review of organelles II. More important organelles III. Plasma membrane structure IV. Diffusion and transport Delve AP Biology Lecture 4: 10/9/11 Melissa Ko and Anne Huang I. Review

More information

Chapters 2 and 3. Pages and Pages Prayer Attendance Homework

Chapters 2 and 3. Pages and Pages Prayer Attendance Homework Chapters 2 and 3 Pages 44-45 and Pages 59-62 Prayer Attendance Homework The Cell The cell is the basic unit of life on Earth, separated from its environment by a membrane and sometimes an outer wall. Prokaryotic

More information

Cell Cell

Cell Cell Go to cellsalive.com. Select Interactive Cell Models: Plant and Animal. Fill in the information on Plant and Animal Organelles, then Click on Start the Animation Select Plant or Animal Cell below the box.

More information

Cell Structure and Function. Biology 12 Unit 1 Cell Structure and Function Inquiry into Life pages and 68-69

Cell Structure and Function. Biology 12 Unit 1 Cell Structure and Function Inquiry into Life pages and 68-69 Cell Structure and Function Biology 12 Unit 1 Cell Structure and Function Inquiry into Life pages 45 59 and 68-69 Assignments for this Unit Pick up the notes/worksheet for this unit and the project There

More information

Cells and Tissues 3PART A. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

Cells and Tissues 3PART A. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College Cells and Tissues 3PART A Cells and Tissues Carry out all chemical activities needed to sustain life

More information

(d) are made mainly of lipids and of proteins that lie like thin sheets on the membrane surface

(d) are made mainly of lipids and of proteins that lie like thin sheets on the membrane surface Which of the following statements is no true? Biological membranes (a) are composed partly of amphipathic lipids (b) have hydrophobic and hydrophilic regions (c) are typically in a fluid state (d) are

More information

Chapter 6. A Tour of the Cell. Concept 6.1 Biologists use microscopes and the tools of biochemistry to study cells

Chapter 6. A Tour of the Cell. Concept 6.1 Biologists use microscopes and the tools of biochemistry to study cells Chapter 6 A Tour of the Cell Chapter Outline Concept 6.1 Biologists use microscopes and the tools of biochemistry to study cells In a light microscope (LM), visible light passes through the specimen and

More information

Cell Biology. a review! Cell Theory & Cell Structures

Cell Biology. a review! Cell Theory & Cell Structures Cell Biology Cell Theory & a review! Cell Structures Cell Theory refers to the idea that cells are the basic unit of structure and function of all living things. Cells are either prokaryotic or eukaryotic

More information

Types of cells. Cell size comparison. The Jobs of Cells 10/5/2015. Cells & Cell Organelles. Doing Life s Work

Types of cells. Cell size comparison. The Jobs of Cells 10/5/2015. Cells & Cell Organelles. Doing Life s Work Types of cells Prokaryote Cells & Cell Organelles bacteria cells Doing Life s Work Eukaryotes 2009-2010 animal cells plant cells Cell size comparison Animal cell Bacterial cell most bacteria (prokaryotic)

More information

Cell and Cell Membrane Structure and Function

Cell and Cell Membrane Structure and Function Lesson 3 Cell and Cell Membrane Structure and Function Introduction to Life Processes - SCI 102 1 The Cell Theory Three principles comprise the cell theory 1) Every living organism is made up of one or

More information

Name 4 A Tour of the Cell Test Date Study Guide You must know: The difference between prokaryotic and eukaryotic cells. The structure and function of

Name 4 A Tour of the Cell Test Date Study Guide You must know: The difference between prokaryotic and eukaryotic cells. The structure and function of Name _ 4 A Tour of the Cell Test Date Study Guide You must know: The difference between prokaryotic and eukaryotic cells. The structure and function of organelles common to plant and animal cells. The

More information

Unit A: Cells. Ch. 4 A Tour of the Cell

Unit A: Cells. Ch. 4 A Tour of the Cell Unit A: Cells Ch. 4 A Tour of the Cell Standards By the end of this unit you should be able to: Recognize and explain the function of each organelle Look at micrographs/diagrams/pictures and correctly

More information

10/5/2015. Cell Size. Relative Rate of Reaction

10/5/2015. Cell Size. Relative Rate of Reaction The Cell Biology 102 Fundamental unit of life Smallest unit that displays all the basic elements of life Lecture 5: Cells Cell Theory 1. All living things are made of one or more cells Cell Theory 2. The

More information

Basic Structure of a Cell. copyright cmassengale

Basic Structure of a Cell. copyright cmassengale Basic Structure of a Cell 1 Review Facts About Living Things 2 What Are the Main Characteristics of organisms? 1. Made of CELLS 2. Require ENERGY (food) 3. REPRODUCE (species) 4. Maintain HOMEOSTASIS 5.

More information

Bio10 Cell Structure SRJC

Bio10 Cell Structure SRJC 3.) Cell Structure and Function Structure of Cell Membranes Fluid mosaic model Mixed composition: Phospholipid bilayer Glycolipids Sterols Proteins Fluid Mosaic Model Phospholipids are not packed tightly

More information

First discovered in 1665 since then every organism observed with microscopes shows cells

First discovered in 1665 since then every organism observed with microscopes shows cells The Cell Cell theory (1838): 1. All organisms are composed of one or more cells, and the life processes of metabolism and heredity occur within these cells. 2. Cells are the smallest living things, the

More information

8/7/18. UNIT 2: Cells Chapter 3: Cell Structure and Function. I. Cell Theory (3.1) A. Early studies led to the development of the cell theory

8/7/18. UNIT 2: Cells Chapter 3: Cell Structure and Function. I. Cell Theory (3.1) A. Early studies led to the development of the cell theory 8/7/18 UNIT 2: Cells Chapter 3: Cell Structure and Function I. Cell Theory (3.1) A. Early studies led to the development of the cell theory 1. Discovery of Cells a. Robert Hooke (1665)-Used compound microscope

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 6 A Tour of the Cell Lectures by

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 6 A Tour of the Cell Lectures by

More information

Objectives. To determine the differences between plant and animal cells To discover the structure and function of cellular organelles.

Objectives. To determine the differences between plant and animal cells To discover the structure and function of cellular organelles. Cell Organelles 3.2 Objectives To determine the differences between plant and animal cells To discover the structure and function of cellular organelles. Basic Cellular Structures Cell membrane (cytoplasmic

More information

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 6 1 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Chapter 4. A Tour of the Cell. Lecture by Richard L. Myers

Chapter 4. A Tour of the Cell. Lecture by Richard L. Myers Chapter 4 A Tour of the Cell PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture by Richard L. Myers Introduction: Cells on the Move

More information

Chapter 4. A Tour of the Cell. Lecture by Richard L. Myers

Chapter 4. A Tour of the Cell. Lecture by Richard L. Myers Chapter 4 A Tour of the Cell PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture by Richard L. Myers Introduction: Cells on the Move

More information

Peroxisomes. Endomembrane System. Vacuoles 9/25/15

Peroxisomes. Endomembrane System. Vacuoles 9/25/15 Contains enzymes in a membranous sac that produce H 2 O 2 Help survive environmental toxins including alcohol Help the cell use oxygen to break down fatty acids Peroxisomes Endo System Components of the

More information

Anatomy Chapter 2 - Cells

Anatomy Chapter 2 - Cells Cells Cells are the basic living structural, functional unit of the body Cytology is the branch of science that studies cells The human body has 100 trillion cells 200 different cell types with a variety

More information

Cells: The Basic Units of Life

Cells: The Basic Units of Life Cells: The Basic Units of Life 4 Cells: The Basic Units of Life The Cell: The Basic Unit of Life Prokaryotic Cells Eukaryotic Cells Organelles that Process Information The Endomembrane System Organelles

More information

Cell Category? Prokaryote

Cell Category? Prokaryote CELLS Cell Category? Prokaryote Prokaryote Eukaryote Cell Category? Cell Type? Cell Category? Cell Type? Endosymbiosis eukaryotic cells were formed from simpler prokaryotes Endo within Symbiosis together

More information

Cell Overview. Hanan Jafar BDS.MSc.PhD

Cell Overview. Hanan Jafar BDS.MSc.PhD Cell Overview Hanan Jafar BDS.MSc.PhD THE CELL is made of: 1- Nucleus 2- Cell Membrane 3- Cytoplasm THE CELL Formed of: 1. Nuclear envelope 2. Chromatin 3. Nucleolus 4. Nucleoplasm (nuclear matrix) NUCLEUS

More information

Basic Structure of a Cell

Basic Structure of a Cell Basic Structure of a Cell 1 Introduction to Cells Cells are the basic units of organisms Cells can only be observed under microscope Basic types of cells: Animal Cell Plant Cell Bacterial Cell 2 Number

More information

Cell are made up of organelles. An ORGANELLE is a specialized subunit within a cell that has a specific function.

Cell are made up of organelles. An ORGANELLE is a specialized subunit within a cell that has a specific function. Plant and Animal Cells The Cell Theory All living things are made up of one or more cells. All cells come from other cells. Organization of Living Things Cell are made up of organelles. An ORGANELLE is

More information

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 6 1 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Cell Structure and Function

Cell Structure and Function Cell Structure and Function Agre and cells in the news Cells Smallest living unit Most are microscopic Discovery of Cells Robert Hooke (mid-1600s) Observed sliver of cork Saw row of empty boxes Coined

More information

2. scanning electron microscope vs. transmission electron microscope. nucleus, nuclear envelope, nucleolus, ribosomes

2. scanning electron microscope vs. transmission electron microscope. nucleus, nuclear envelope, nucleolus, ribosomes Honors Biology Unit 2 Chapter 4 A TOUR OF THE CELL 1. light microscope 2. scanning electron microscope vs. transmission electron microscope 3. surface area to volume ratio 4. prokaryotic cell vs. animal

More information

Eukaryotic cells contain organelles that allow the specializations and the separation of functions within the cell.

Eukaryotic cells contain organelles that allow the specializations and the separation of functions within the cell. Section 3: Eukaryotic cells contain organelles that allow the specializations and the separation of functions within the cell. K What I Know W What I Want to Find Out L What I Learned Essential Questions

More information

Chapter 4: Cell Structure and Function

Chapter 4: Cell Structure and Function Chapter 4: Cell Structure and Function Robert Hooke Fig. 4-2, p.51 The Cell Smallest unit of life Can survive on its own or has potential to do so Is highly organized for metabolism Senses and responds

More information