number Done by Corrected by Doctor

Size: px
Start display at page:

Download "number Done by Corrected by Doctor"

Transcription

1 number 29 Done by Ali Yaghi Corrected by Shahd Alqudah Doctor Faisal Al-Khatibe In this lecture we will continue the steps of synthesizing cholesterol. in the previous sheet we reached the step of forming squaline. P age1

2 squaline is a compound composed of 30 carbons, it is a hydrocarbon molecule(formed from carbon+ hydrogen only),therefore it is hydrophobic and nonpolar. Note: In the cell, squaline it is maintained in the soluble form by binding to a protein. Steps of synthesizing cholesterol from squaline: 1- Adding oxygen to squaline to form squaline 2,3-epoxide 2- Cyclation of squaline2,3-epoxide to form Lanosterol 3- Reduction of 7-dehydrocholesterol to form cholesterol squaline The first step of synthesizing cholesterol from squaline is adding oxygen by an oxygenase enzyme to form squaline 2,3 epoxide (oxygen is connected to carbon 2 and 3, which makes it unstable as the angle is 60 degree). The next step is the cyclation step by cyclase enzyme to form lanosterol in several steps reaction involved in the closure of the rings. Note: The triangle(epioxide) makes it very unstable that s what drives the cyclation reaction. P age2

3 Note: Lanosterol is composed of 30 carbons: 4 rings (3 of them are 6membered rings connected to each other, and the last one is a five membered ring) with a hydrophobic tale. Note: Lanosterol is the first steroid intermediate. Note: The conversion of lanosterol to cholesterol is a multistep process involving shortening of the side chain, oxidative removal of methyl groups, reduction of double bonds, and migration of a double bond. we have to understand the last step of forming cholesterol from lanosterol only. The other steps aren't required from us. The last step of synthesizing cholesterol is the reduction of 7- dehydrocholestrol (the last intermediate) by NADPH into cholesterol Note: 7-dehydrocholestrol is a precursor in synthesis of vitamin d (synthesized in the body upon exposure to sunlight ). Revision for synthesizing cholesterol: P age3

4 1-3 Acetyl co-a condensed to give HMG CoA 2- HMG CoA is reduced by HMG CoA reductase to Mevalonate. 3- Mevalonate can be phosphorylated by the addition of 2 phosphates then decarboxylation to isopentenyl Pyrophosphate that has 5 carbons. 4- Isopentenyl Pyrophosphate can be condensed with its isomer to give Geranyl Pyrophosphate 5- Geranyl Pyrophosphate is condensed with another isopentenyl Pyrophosphate to give FarnesylPyrophosphate (C15 ). 6- Condensing 2 FarnesylPyrophosphate together forms Squaline 7- Squaline is modified further to give squaline 2,3 epoxide. 8- Cyclase enzyme converts squaline 2,3 epoxide to lanosterol. 9- Several reactions happen to form 7-dehydrocholestrol (the last intermediate) dehydrocholestrol is reduced by NADPH-dependent reductase. Note: Condensation step happens by removing pyrophosphate (which drives this reaction) and joining 2 compounds together. Synthesis of bile acids Note: Bile acids can be synthesized from cholesterol in similar steps. As example we are going to talk about cholic acid Notes: 1- Cholic acid differs from cholesterol by having 2 extra hydroxyl groups ( on c7 & c12). 2- The side chain is reduced from 8 carbons in cholesterol to 5 carbons in cholic acid. 3- And the side chain is oxidized to carboxyl group (carboxylic acid). 4- The dashed line means that the hydroxyl group is below the compound(organic chemistry). This means that cholic acid has 2 sides, one is hydrophilic composed of OH and the other is hydrophobic composed of CH3. Therefore cholic acid is an amphipathic molecule that helps in emulsification. 5- pka for cholic acid is close to 6. This explains how that molecule is found in the protonated and deprotonated (cholate) form. P age4

5 The synthesis of cholic acid is catalyzed by cholesterol 7 alpha hydroxylase enzyme which adds hydroxyl group on carbon 7. Note: 1- This is the rate limiting step 2- This step is inhibited by cholic acid (end product) and activated by cholesterol. Synthesis of Bile salts: ** Glycine can be added to cholic acid and will be named glycocholic acid ( a bile salt), and the COO- of glycocholic acid is much stronger (pka is 2) than cholic acid because of the prescence of the amide group. This means that glycocholic acid will be found mainly in the ionized form (a bile salt). **Taurine (sulfuric acid has SO4) can be added to chenodeoxycholic acid (bile acid) to form taurochenodeoxycholic acid (bile salt) Note: Taurine can be formed from cystine metabolism Note: Chenodeoxycholic acid has 2 hydroxyl groups only (OH on carbon 12 may or may not be there). Note: at least we have 2 bile acids (cholic acid, chenodeoxycholic acid) these are called primary bile acids. When they are combined with Glycine or Taurine they become primary bile salts. The Enterohepatic circulation. P age5

6 1- Bile salts are secreted through the bile either in the gall bladder or small intestine( In the small intestine, the primary bile salts can act as emulsifier). 2- Primary bile salts become separated from glycine and taurine and get converted to primary bile acids. 3- Primary bile acids are converted by some bacteria to secondary bile acids by removing a hydroxyl group from carbon 7. Note: both primary and secondary bile acids can work as emulsifiers. 4- In the Ilium, the primary and secondary bile acids can be reabsorbed through the portal vein and go back to the liver 5- In the liver, primary and secondary bile acids become conjugated again to Glycine and Taurine to resynthesize the primary and secondary bile salts. Note: Every day it is estimated that g of bile salt are rotating many times in the enterohepatic circulation. Each time, some of the primary and secondary bile salts (about.5 g) escape the enterohepatic circulation and they are excecreated in the feaces. Note: The excreted.5 g is compensated by the synthesis of new primary and secondary bile salts from cholesterol. [.5 g are synthesized from cholesterol and excreted in feaces each time] Lowering cholesterol levels: Why do we need that? It was found that high level of cholesterol is associated with atheloscelerosis(it is a risk factor). But don't forget that cholesterol is essential for our cells and the absence of it causes Distortions. Note: in normal adults the total cholesterol is 200 mg/100 ml P age6

7 Lowering Cholesterol Level in the Plasma Dietary 1- decrease Cholesterol intake 2- increase PUSFA / SFA (poly unsaturated fatty acids/ saturated fatty acids) 3- increase Fiber intake 4-daily Ingestion of Plant Steroid Esters Inhibition of Synthesis Decrease Enterohepatic Circulation of Bile Acids Notes about dietary ways of decreasing cholesterol intake: 1- If we decrease cholesterol intake, synthesis will increase. 2- Fibers are indigestible such as cellulose 3- Plant Steroid Esters lowers cholesterol absorption 4- These are not effective ways for lowering cholesterol levels. 5- Inhibition of synthesis is the most effective way How can we inhibit cholesterol synthesis? HMG CoA reductase enzyme inhibition will inhibit cholesterol synthesis Simvastatin drug has a similar shape for HMG so it competes with HMG for the enzyme in a competitive inhibition. There are many drugs that can be used to inhibit the HMG reductase enzyme, all of them end with statin ( such as atrovastatin,..) Bile sequestering agents We know that liver converts cholesterol to bile acids, and this conversion is inhibited by bile acids, so if we ingest a substance that binds to bile acids such as (cholestyramine) it will prevent their reabsorbing. As a result, the amount of bile acids secreted in the feces will increase and the reabsorbed will decrease. The decreasing of reabsorbing of bile acids will increase the conversion of cholesterol to bile acids and as a result decreases the amount of cholesterol. P age7

8 Esterification of Cholesterol in the Cells Note: Cholesterol ester is a storage form of cholesterol, while cholesterol is found in the plasma memberane. How it is done? 1- The form of fatty acid that is used in esterfication is the active form (fatty acyl co-a) 2- The fatty acyl co-a is added to OH of the cholesterol by the enzyme acyl co-a cholesterol:acyl transferase(because it is transferring acyl group from acyl coa to cholesterol). 3- The esterified cholesterol is never used in the plasma membrane because it lost its amphipathicity (it is esterified). The esterification of cholesterol in the plasma The esterification of cholesterol happens also in the plasma, but in the plasma there is no Acyl CoA transferase (it is found only in the cells), so the esterification happens in the HDL. The source of cholesterol that will be esterified in the plasma is HDL, and the source of fatty acids (to make acyl co-a ) is the phospholipids (lecithin). P age8

9 Fatty acid at number 2 is transferred from lecithin to cholesterol by the enzyme Lecithin:Cholesterol Acyl Transferase (LCAT) which is found in the HDL. Note: What is remained from lecithin is called lysolecithin (lysophosphatidic acid)[ the fatty acid is taken from c2] Regulation of Cholesterol Synthesis (regulation of the enzyme HMG co-a) Feedback inhibition: If the cholesterol amount is high, it will inhibit HMG CoA reductase enzyme (the third enzyme in synthesizing cholesterol) Regulation of Gene Expression Covalent Modification Hormonal Regulation Proteolytic Regulation 1- Gene expression: The gene of any enzyme is found on the DNA in the nucleus of all cells, but not all cells will express and transcripe this gene. The transcription of the gene and producing mrna is activated by transcriptional factors (proteins bind to DNA that allow the gene to be transcribed). There is something called sterol regulatory element(sre) that is a sequence of DNA found just before the gene.the gene can't be transcribed unless it has this regulatory element. The transcriptional factor of the gene that produces HMG CoA reductase is called SREBP (sterol regulatory element binding protein). The SREBP binds to SRE and initiate the transcription of the gene. When cholesterol level is decreased, the SREBP will dissociate from the ER and bind to the SRE on the DNA, this leads to transcription of the gene and synthesis of mrna which will be translated to HMG co-a reductase enzyme. 2- Covalent modification: HMG CoA reductase enzyme is present in 2 states: Active( dephosphorylated ) and inactive(phosphorylated). The addition of phosphate group to HMG CoA is catalyzed by enzyme kinase, and the removal of is is catalyzed by phosphatase. P age9

10 Note: Protein kinase is activated by AMP, when AMP level increases, it binds to protein kinase leading to phosphorylation of the HMG co-a reductase. Note: Adding phosphate group means low glucose level (energy level is low so it is not the time to make cholesterol which is important for cell division, growth, etc.. which happen when the body is in high energy state ) Note: AMP dependent protein kinase is regulated by insulin/glucagon and epinephrine ratio. If the insulin level is high, it will activate protein phosphatase(remove phosphate group from HMG co-a reductase) and inhibit protein kinase. 3- Hormonal regulation: High Glucagon: Phosphorylated Form ( kinase) High Insulin: Dephosphorylated Form ( Phosphatase) 4- Proteolitic regulation: high cholesterol level increases the rate of degredation of the HMG CoA reductase enzyme(proteolysis) Transport of Cholesterol in the Blood It is mentioned in previous sheets *** Extra hepatic tissue receives LDL from liver by endocytosis - Dietary cholesterol is transported from small intestine to the liver by chylomicron remnants. P age10

11 -VLDL is produced in liver and it carries cholesterol and then it is converted to IDL by removing TAGs. - IDL is taken into the liver. - LDL is taken by extrahepatic tissues and liver. *** When we measure the cholesterol, we measure the total level, but we can't know the risk factor in this way. The most important thing is to know the level of LDL and HDL LDL endocytosis 1- The LDL receptor is clustered on a region of the plasma membrane called the pit, and these pits are coated (from the inside) with protein called Clathrin. This allows the LDL to enter the cell with the help of Apolipoprotein B- 100 receptor. 2- The next step is endocytosis and a coated vesicle is formed. P age11

12 3- The Clathrin is recycled, and the vesicles can be joined together and form an endosome. 4- The ph in the vesicle is decreased by continuous pumping of protons into the vesicles. The increased acidity leads to separation of apolipoprotein from the receptor. 5- The receptors are recycled to the plasma membrane and the endosome is combined with the lysosome (which has hydrolytic enzymes) that degrades the lipids and the apolipoproteins. The digestion of endosome produces: 1- Aminoacids result from apolipoprotein degradation. 2- Fatty acids are from cholesterol ester degradation. 3- And free cholesterol: used to make cell membranes or to make bile salts in the liver orto make steroid hormones. Notes: 1- The oversupply of the cholesterol stimulates the enzyme ACAT which stimulates the storage of cholesterol and inhibition of HMG CoA reductase (to inhibit the synthesis of cholesterol). 2- It also inhibits the synthesis of LDL receptors. 3- If the LDL remains out of the cell for a long time, it might get damaged by oxidation. If it is damaged by oxidation, it won't be taken by LDL receptors which leads to its accumulation. 4- In order not to accumulate, there is another receptor that is found on the macrophages is called macrophage scavenger receptor. This receptor can bind to damaged LDL or LDL can't be taken by LDL receptors. 5- This receptor isn't regulated by the amount of cholesterol, so macrophages can take LDL until it is converted to foam cells. 6- Accumulation of foam cells in the subendothelial space is an Early evidence of atherosclerosis. Familial Hypercholesterolemia It is an increment of cholesterol because of genetic disease in some families. It can be inherited from one parent of from both of them. Homozygotes 680 mg/dl (from both parients) [no LDL receptors] P age12

13 Heterozygotes 300 mg/dl (from one parient) [half amount of normal LDL receptors] The cause of this disease is the absence of LDL receptor or abnormal receptors. Which can't carry the endocytosis. Accumulation of IDL leads to increase of LDL, which causes rapid forming of foam cells. The patient dies from myocardial infarction before the age of 20 in homozygotes. (الدكتور حكا ادرسوهم من الكتاب) HDL Origin: Liver and Intestine It has Nascent Discoid Shapeand it has a lot of phospholipids. The green is phospholipids The red dots are apoliporpotein A1 After the synthesis of HDL, it stores more cholesterol inside it by cholesterol esterification (which esterifies cholesterol on the membrane and stores it inside the cell ),and the HDL becomes spherical shape. HDL ends in the liver, so we can say that HDL transports cholesterol different tissues to the liver, so it is extremely important and it is a sign of good health. unlike the LDL that its increment is a sigh of bad health (because ir transports cholesterol from the liver to different tissues and blood vessels). P age13

Cholesterol Metabolism

Cholesterol Metabolism Cholesterol Metabolism Lippincott s Illustrated Review Chapter 18 Steroid Nucleus 1 2 Cholesterol was isolated from gall bladder stones in 1774 3 Sources and Elimination of Cholesterol Synthesis: 1000

More information

Acetyl CoA HMG CoA Mevalonate (C6) Dimethylallyl Pyrophosphate isopentenyl Pyrophosphate (C5) Geranyl Pyrophosphate (C10) FarnesylPyrophosphate (C15) Squalene (C30) Lanosterol (C30) 7 Dehydrocholesterol

More information

Cholesterol and its transport. Alice Skoumalová

Cholesterol and its transport. Alice Skoumalová Cholesterol and its transport Alice Skoumalová 27 carbons Cholesterol - structure Cholesterol importance A stabilizing component of cell membranes A precursor of bile salts A precursor of steroid hormones

More information

Cholesterol metabolism Ι

Cholesterol metabolism Ι Sheet # 22 Cholesterol metabolism Ι Today is the first lecture in the Cholesterol metabolism and you can refer to chapter 18 in Lippincott illustrated review Q: Why Cholesterol was written in 3 different

More information

Unit IV Problem 3 Biochemistry: Cholesterol Metabolism and Lipoproteins

Unit IV Problem 3 Biochemistry: Cholesterol Metabolism and Lipoproteins Unit IV Problem 3 Biochemistry: Cholesterol Metabolism and Lipoproteins - Cholesterol: It is a sterol which is found in all eukaryotic cells and contains an oxygen (as a hydroxyl group OH) on Carbon number

More information

Cholesterol metabolism. Function Biosynthesis Transport in the organism Hypercholesterolemia

Cholesterol metabolism. Function Biosynthesis Transport in the organism Hypercholesterolemia Cholesterol metabolism Function Biosynthesis Transport in the organism Hypercholesterolemia - component of all cell membranes - precursor of bile acids steroid hormones vitamin D Cholesterol Sources: dietary

More information

Plasma lipoproteins & atherosclerosis by. Prof.Dr. Maha M. Sallam

Plasma lipoproteins & atherosclerosis by. Prof.Dr. Maha M. Sallam Biochemistry Department Plasma lipoproteins & atherosclerosis by Prof.Dr. Maha M. Sallam 1 1. Recognize structures,types and role of lipoproteins in blood (Chylomicrons, VLDL, LDL and HDL). 2. Explain

More information

cholesterol structure Cholesterol FAQs Cholesterol promotes the liquid-ordered phase of membranes Friday, October 15, 2010

cholesterol structure Cholesterol FAQs Cholesterol promotes the liquid-ordered phase of membranes Friday, October 15, 2010 cholesterol structure most plasma cholesterol is in the esterified form (not found in cells or membranes) cholesterol functions in all membranes (drives formation of lipid microdomains) cholesterol is

More information

Cholest s er e o r l o ١

Cholest s er e o r l o ١ Cholesterol ١ Contents of The Lecture What is Cholesterol? Structure of Cholesterol Structure of Cholesteryl Ester Normal Cholestrol Level Sources of Cholesterol What Are The Exogenous Sources Of Cholesterol?

More information

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM The LDL Receptor, LDL Uptake, and the Free Cholesterol Pool

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM The LDL Receptor, LDL Uptake, and the Free Cholesterol Pool ANSC/NUTR 618 LIPIDS & LIPID METABOLISM The, LDL Uptake, and the Free Cholesterol Pool I. Michael Brown and Joseph Goldstein A. Studied families with familial hypercholesterolemia. B. Defined the relationship

More information

Bile acid metabolism. doc. Ing. Zenóbia Chavková, CSc.

Bile acid metabolism. doc. Ing. Zenóbia Chavková, CSc. Bile acid metabolism doc. Ing. Zenóbia Chavková, CSc. Bile acid metabolism Importance: Availability for fat & cholesterol absorption Regulates total body pool of cholesterol Factors that synthesis promote

More information

Cellular control of cholesterol. Peter Takizawa Department of Cell Biology

Cellular control of cholesterol. Peter Takizawa Department of Cell Biology Cellular control of cholesterol Peter Takizawa Department of Cell Biology Brief overview of cholesterol s biological role Regulation of cholesterol synthesis Dietary and cellular uptake of cholesterol

More information

Lipid metabolism in familial hypercholesterolemia

Lipid metabolism in familial hypercholesterolemia Lipid metabolism in familial hypercholesterolemia Khalid Al-Rasadi, BSc, MD, FRCPC Head of Biochemistry Department, SQU Head of Lipid and LDL-Apheresis Unit, SQUH President of Oman society of Lipid & Atherosclerosis

More information

Chapter 26 Biochemistry 5th edition. phospholipids. Sphingolipids. Cholesterol. db=books&itool=toolbar

Chapter 26 Biochemistry 5th edition. phospholipids. Sphingolipids. Cholesterol.   db=books&itool=toolbar http://www.ncbi.nlm.nih.gov/sites/entrez? db=books&itool=toolbar 1 The surface of a soap bubble is a bilayer formed by detergent molecules 2 Chapter 26 Biochemistry 5th edition phospholipids Sphingolipids

More information

LIPID METABOLISM. Sri Widia A Jusman Department of Biochemistry & Molecular Biology FMUI

LIPID METABOLISM. Sri Widia A Jusman Department of Biochemistry & Molecular Biology FMUI LIPID METABOLISM Sri Widia A Jusman Department of Biochemistry & Molecular Biology FMUI Lipid metabolism is concerned mainly with fatty acids cholesterol Source of fatty acids from dietary fat de novo

More information

CHM333 LECTURE 34: 11/30 12/2/09 FALL 2009 Professor Christine Hrycyna

CHM333 LECTURE 34: 11/30 12/2/09 FALL 2009 Professor Christine Hrycyna Lipid Metabolism β-oxidation FA Acetyl-CoA Triacylglycerols (TAGs) and glycogen are the two major forms of stored energy in vertebrates Glycogen can supply ATP for muscle contraction for less than an hour

More information

Companion to Biosynthesis of Ketones & Cholesterols, Regulation of Lipid Metabolism Lecture Notes

Companion to Biosynthesis of Ketones & Cholesterols, Regulation of Lipid Metabolism Lecture Notes Companion to Biosynthesis of Ketones & Cholesterols, Regulation of Lipid Metabolism Lecture Notes The major site of acetoacetate and 3-hydorxybutyrate production is in the liver. 3-hydorxybutyrate is the

More information

Lipid Metabolism in Familial Hypercholesterolemia

Lipid Metabolism in Familial Hypercholesterolemia Lipid Metabolism in Familial Hypercholesterolemia Khalid Al-Rasadi, BSc, MD, FRCPC Head of Biochemistry Department, SQU Head of Lipid and LDL-Apheresis Unit, SQUH President of Oman society of Lipid & Atherosclerosis

More information

Lipoproteins Metabolism Reference: Campbell Biochemistry and Lippincott s Biochemistry

Lipoproteins Metabolism Reference: Campbell Biochemistry and Lippincott s Biochemistry Lipoproteins Metabolism Reference: Campbell Biochemistry and Lippincott s Biochemistry Learning Objectives 1. Define lipoproteins and explain the rationale of their formation in blood. 2. List different

More information

Moh Tarek + Suhayb. Tamara Al-Azzeh + Asmaa Aljeelani ... Faisal

Moh Tarek + Suhayb. Tamara Al-Azzeh + Asmaa Aljeelani ... Faisal 28 Moh Tarek + Suhayb Tamara Al-Azzeh + Asmaa Aljeelani... Faisal Digestion of dietary lipids Lipid digestion and absorption are complex processes. They involve soluble enzymes, substrates with different

More information

Digestion and transport of TAG by plasma lipoproteins

Digestion and transport of TAG by plasma lipoproteins Digestion and transport of TAG by plasma lipoproteins Lipoproteins are multimolecular complexes of lipids and proteins, they are not macromolecules They transport lipids in the plasma because lipids are

More information

Chapter VIII: Dr. Sameh Sarray Hlaoui

Chapter VIII: Dr. Sameh Sarray Hlaoui Chapter VIII: Dr. Sameh Sarray Hlaoui Lipoproteins a Lipids are insoluble in plasma. In order to be transported they are combined with specific proteins to form lipoproteins: Clusters of proteins and lipids.

More information

BCM 221 LECTURES OJEMEKELE O.

BCM 221 LECTURES OJEMEKELE O. BCM 221 LECTURES BY OJEMEKELE O. OUTLINE INTRODUCTION TO LIPID CHEMISTRY STORAGE OF ENERGY IN ADIPOCYTES MOBILIZATION OF ENERGY STORES IN ADIPOCYTES KETONE BODIES AND KETOSIS PYRUVATE DEHYDROGENASE COMPLEX

More information

Lipids digestion and absorption, Biochemistry II

Lipids digestion and absorption, Biochemistry II Lipids digestion and absorption, blood plasma lipids, lipoproteins Biochemistry II Lecture 1 2008 (J.S.) Triacylglycerols (as well as free fatty acids and both free and esterified cholesterol) are very

More information

BIOL2171 ANU TCA CYCLE

BIOL2171 ANU TCA CYCLE TCA CYCLE IMPORTANCE: Oxidation of 2C Acetyl Co-A 2CO 2 + 3NADH + FADH 2 (8e-s donated to O 2 in the ETC) + GTP (energy) + Heat OVERVIEW: Occurs In the mitochondrion matrix. 1. the acetyl portion of acetyl-coa

More information

By: Dr Hadi Mozafari 1

By: Dr Hadi Mozafari 1 Biological lipids are a chemically diverse group of compounds, the common and defining feature of which is their insolubility in water. By: Dr Hadi Mozafari 1 Fats and oils are the principal stored forms

More information

Topic 3: Molecular Biology

Topic 3: Molecular Biology Topic 3: Molecular Biology 3.2 Carbohydrates and Lipids Essen=al Understanding: Carbon, hydrogen and oxygen are used to supply and store energy. Carbohydrates CARBOHYDRATES CHO sugars Primarily consist

More information

Biosynthesis of Ketones & Cholesterols, Regulation of Lipid Metabolism- 2015

Biosynthesis of Ketones & Cholesterols, Regulation of Lipid Metabolism- 2015 Biosynthesis of Ketones & Cholesterols, Regulation of Lipid Metabolism- 2015 The major site of acetoacetate and 3-hydorxybutyrate production is the liver. They are preferred substrates for myocardiocytes

More information

Oxidation of Long Chain Fatty Acids

Oxidation of Long Chain Fatty Acids Oxidation of Long Chain Fatty Acids Dr NC Bird Oxidation of long chain fatty acids is the primary source of energy supply in man and animals. Hibernating animals utilise fat stores to maintain body heat,

More information

23.1 Lipid Metabolism in Animals. Chapter 23. Micelles Lipid Metabolism in. Animals. Overview of Digestion Lipid Metabolism in

23.1 Lipid Metabolism in Animals. Chapter 23. Micelles Lipid Metabolism in. Animals. Overview of Digestion Lipid Metabolism in Denniston Topping Caret Copyright! The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 23 Fatty Acid Metabolism Triglycerides (Tgl) are emulsified into fat droplets

More information

Biological role of lipids

Biological role of lipids Lipids Lipids Organic compounds present in living organisms, insoluble in water but able to be extracted by organic solvents such as: chloroform, acetone, benzene. Extraction = the action of taking out

More information

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM Lipoprotein Metabolism

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM Lipoprotein Metabolism ANSC/NUTR 618 LIPIDS & LIPID METABOLISM Lipoprotein Metabolism I. Chylomicrons (exogenous pathway) A. 83% triacylglycerol, 2% protein, 8% cholesterol plus cholesterol esters, 7% phospholipid (esp. phosphatidylcholine)

More information

Factors to Consider in the Study of Biomolecules

Factors to Consider in the Study of Biomolecules Factors to Consider in the Study of Biomolecules What are the features of the basic building blocks? (ex: monosaccharides, alcohols, fatty acids, amino acids) 1) General structure and functional groups

More information

Lipids are used to store and excess energy from extra carbohydrates in animals

Lipids are used to store and excess energy from extra carbohydrates in animals Lipids Lipids are a major source of energy used by cells, however lipids are more difficult for your body to break down. They produce nearly twice the amount of energy than proteins or carbohydrates. Lipids

More information

Bio 366: Biological Chemistry II Test #1, 100 points (7 pages)

Bio 366: Biological Chemistry II Test #1, 100 points (7 pages) Bio 366: Biological Chemistry II Test #1, 100 points (7 pages) READ THIS: Take a numbered test and sit in the seat with that number on it. Remove the numbered sticker from the desk, and stick it on the

More information

Lipid Metabolism. Catabolism Overview

Lipid Metabolism. Catabolism Overview Lipid Metabolism Pratt & Cornely, Chapter 17 Catabolism Overview Lipids as a fuel source from diet Beta oxidation Mechanism ATP production Ketone bodies as fuel 1 High energy More reduced Little water

More information

number Done by Corrected by Doctor Faisal Al-Khatibe

number Done by Corrected by Doctor Faisal Al-Khatibe number 24 Done by Mohammed tarabieh Corrected by Doctor Faisal Al-Khatibe 1 P a g e *Please look over the previous sheet about fatty acid synthesis **Oxidation(degradation) of fatty acids, occurs in the

More information

Glossary For TheFatNurse s For All Ages Series Adipocytes, also known as lipocytes and fat cells, are the cells that primarily compose adipose tissue, specialized in storing energy as fat. Apolipoprotein

More information

Essential Components of Food

Essential Components of Food Essential Components of Food The elements of life living things are mostly (98%) made of 6 elements: C carbon H hydrogen O oxygen P phosphorus N nitrogen S sulphur -each element makes a specific number

More information

Biochemistry: A Short Course

Biochemistry: A Short Course Tymoczko Berg Stryer Biochemistry: A Short Course Second Edition CHAPTER 27 Fatty Acid Degradation Dietary Lipid (Triacylglycerol) Metabolism - In the small intestine, fat particles are coated with bile

More information

Dr. Nafith Abu Tarboush

Dr. Nafith Abu Tarboush 5 Dr. Nafith Abu Tarboush June 25 th 2013 Mohammad Abu Dosh Sheet 5.. Lipids ( Dr. Nafith ) : Classification of fatty acids : - they are classified depending on the existence of double bonds to : 1) Saturated

More information

Lipoprotein Formation, Structure and Metabolism: Cholesterol Balance and the Regulation of Plasma Lipid Levels

Lipoprotein Formation, Structure and Metabolism: Cholesterol Balance and the Regulation of Plasma Lipid Levels Lipoprotein Formation, Structure and Metabolism: Balance and the Regulation of Plasma Lipid Levels David E. Cohen, MD, PhD Director of Hepatology, Gastroenterology Division, Brigham and Women s Hospital

More information

Regulating Hepatic Cellular Cholesterol

Regulating Hepatic Cellular Cholesterol Under circumstances of cholesterol deficiency, Sterol Regulatory Element Binding Proteins (SREBPs) via binding to DNA nuclear response elements set off genomic production of proteins and enzymes that induce

More information

Membrane Lipids & Cholesterol Metabolism

Membrane Lipids & Cholesterol Metabolism Membrane Lipids & Cholesterol Metabolism Learning Objectives 1. How Are Acylglycerols and Compound Lipids Produced? 2. The synthesis of Sphingolipids from Ceramide 3. Diseases due to Disruption of Lipid

More information

Lipid Chemistry. Presented By. Ayman Elsamanoudy Salwa Abo El-khair

Lipid Chemistry. Presented By. Ayman Elsamanoudy Salwa Abo El-khair Lipid Chemistry Presented By Ayman Elsamanoudy Salwa Abo El-khair 6 1. By the end of this chapter the student should be able to: define lipids. describe the biological importance of lipids. point out basic

More information

Chapter 16 - Lipid Metabolism

Chapter 16 - Lipid Metabolism Chapter 16 - Lipid Metabolism Fatty acids have four major physiologic roles in the cell: Building blocks of phospholipids and glycolipids Added onto proteins to create lipoproteins, which targets them

More information

2.3 Carbon-Based Molecules. KEY CONCEPT Carbon-based molecules are the foundation of life.

2.3 Carbon-Based Molecules. KEY CONCEPT Carbon-based molecules are the foundation of life. KEY CONCEPT Carbon-based molecules are the foundation of life. Carbon atoms have unique bonding properties. Carbon forms covalent bonds with up to four other atoms, including other carbon atoms. Carbon-based

More information

2. lipophobic: Adverse to fat solvents; insoluble fat and fat solvents. 4. squalene: A cholesterol precursor found in whale liver and plants.

2. lipophobic: Adverse to fat solvents; insoluble fat and fat solvents. 4. squalene: A cholesterol precursor found in whale liver and plants. Chapter 5 Lipids Key Terms 1. hydrophilic: Can mix with or dissolve in water. 2. lipophobic: Adverse to fat solvents; insoluble fat and fat solvents. 3. adipocytes: Fat cells. 4. squalene: A cholesterol

More information

1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C

1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C I. Carbon atoms form an enormous variety of structures A. Carbon has 4 valence electrons in the outer shell and therefore may form up to 4 covalent bonds B. Carbon tends to bond to C, H, O, N, S, and P

More information

Topic 11. Coronary Artery Disease

Topic 11. Coronary Artery Disease Topic 11 Coronary Artery Disease Lipid metabolism http://news.bbc.co.uk/2/hi/health/7372495.stm Sterol Metabolism and Coronary Artery Disease Big Picture: Exogenous Cholesterol and Fat Metabolism Fats-Triglycerides

More information

Chapt. 10 Cell Biology and Biochemistry. The cell: Student Learning Outcomes: Describe basic features of typical human cell

Chapt. 10 Cell Biology and Biochemistry. The cell: Student Learning Outcomes: Describe basic features of typical human cell Chapt. 10 Cell Biology and Biochemistry Cell Chapt. 10 Cell Biology and Biochemistry The cell: Lipid bilayer membrane Student Learning Outcomes: Describe basic features of typical human cell Integral transport

More information

Nutrition, Food, and Fitness. Chapter 6 Fats: A Concentrated Energy Source

Nutrition, Food, and Fitness. Chapter 6 Fats: A Concentrated Energy Source Nutrition, Food, and Fitness Chapter 6 Fats: A Concentrated Energy Source Tools: Printer (color optional) 4 sheets of 8.5 x 11 paper Scissors Directions: 1. Print 2. Fold paper in half vertically 3. Cut

More information

Lipoproteins Metabolism

Lipoproteins Metabolism Lipoproteins Metabolism LEARNING OBJECTIVES By the end of this Lecture, the student should be able to describe: What are Lipoproteins? Describe Lipoprotein Particles. Composition of Lipoproteins. The chemical

More information

Chapter 20 Lipids. Organic and Biochem

Chapter 20 Lipids. Organic and Biochem Chapter 20 Lipids rganic and Biochem 20.1 Introduction Found in living organisms Insoluble in water but Soluble in non-polar substances Example of Lipid Solvent: diethyl ether Polar groups in lipids are

More information

History. Aron first proposed that fat may be essential for normal growth Tested on animals-vitamins A,D,E added. Fat deficiency severely affected

History. Aron first proposed that fat may be essential for normal growth Tested on animals-vitamins A,D,E added. Fat deficiency severely affected Chapter 5 LIPIDS History 1918 Aron first proposed that fat may be essential for normal growth Tested on animals-vitamins A,D,E added Fat deficiency severely affected Bone growth Reproduction Called Vitamin

More information

Definition: Water insoluble No common structure (though generally large R groups)

Definition: Water insoluble No common structure (though generally large R groups) Lipids Definition Definition: Water insoluble No common structure (though generally large R groups) Water Solubility (Hydrophilic) What makes molecules water soluble (hydrophilic)? Like dissolves like

More information

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds:

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Organic Chemistry All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Do not contain carbon Organic compounds

More information

Nutrition & Wellness for Life 2012 Chapter 6: Fats: A Concentrated Energy Source

Nutrition & Wellness for Life 2012 Chapter 6: Fats: A Concentrated Energy Source Tools: Printer 8.5 x 11 paper Scissors Directions: 1. Print 2. Fold paper in half vertically 3. Cut along dashed lines Copyright Goodheart-Willcox Co., Inc. All rights reserved. Tissue in which the body

More information

Good Afternoon! 11/30/18

Good Afternoon! 11/30/18 Good Afternoon! 11/30/18 1. The term polar refers to a molecule that. A. Is cold B. Has two of the same charges C. Has two opposing charges D. Contains a hydrogen bond 2. Electrons on a water molecule

More information

Ali Yaghi. Yaseen Fatayer. M.Khatatbeh

Ali Yaghi. Yaseen Fatayer. M.Khatatbeh 6 Ali Yaghi Yaseen Fatayer M.Khatatbeh P a g e 1 pancreatic secretions note: The pancreas has endocrine (secretions are released toward the blood) and exocrine(secretions are released through the canalicular

More information

Carbohydrates, Lipids, Proteins, and Nucleic Acids

Carbohydrates, Lipids, Proteins, and Nucleic Acids Carbohydrates, Lipids, Proteins, and Nucleic Acids Is it made of carbohydrates? Organic compounds composed of carbon, hydrogen, and oxygen in a 1:2:1 ratio. A carbohydrate with 6 carbon atoms would have

More information

Lipid Metabolism. Remember fats?? Triacylglycerols - major form of energy storage in animals

Lipid Metabolism. Remember fats?? Triacylglycerols - major form of energy storage in animals Remember fats?? Triacylglycerols - major form of energy storage in animals Your energy reserves: ~0.5% carbs (glycogen + glucose) ~15% protein (muscle, last resort) ~85% fat Why use fat for energy? 1 gram

More information

BIOB111_CHBIO - Tutorial activity for Session 12

BIOB111_CHBIO - Tutorial activity for Session 12 BIOB111_CHBIO - Tutorial activity for Session 12 General topic for week 6 Session 12 Lipids Useful Links: 1. Animations on Cholesterol (its synthesis, lifestyle factors, LDL) http://www.wiley.com/college/boyer/0470003790/animations/cholesterol/cholesterol.htm

More information

Topic 3.1 Nutrients. - Lipids are an essential part of the and are a part of cell in the body.

Topic 3.1 Nutrients. - Lipids are an essential part of the and are a part of cell in the body. Name: Topic 3.1 Nutrients Date: IB SEHS 3.1.1. List the macronutrients and micronutrients Macronutrients: - lipid (fat) - carbohydrate - protein - water (says the book) Micronutrients: - vitamins - minerals

More information

The Star of The Show (Ch. 3)

The Star of The Show (Ch. 3) The Star of The Show (Ch. 3) Why study Carbon? All of life is built on carbon Cells ~72% 2 O ~25% carbon compounds carbohydrates lipids proteins nucleic acids ~3% salts Na, Cl, K Chemistry of Life Organic

More information

Lipids and Classification:

Lipids and Classification: Lipids and Classification: Lipids: Biological lipids are a chemically diverse group of organic compounds which are insoluble or only poorly soluble in water. They are readily soluble in non-polar solvents

More information

BIOLOGY 111. CHAPTER 2: The Chemistry of Life Biological Molecules

BIOLOGY 111. CHAPTER 2: The Chemistry of Life Biological Molecules BIOLOGY 111 CHAPTER 2: The Chemistry of Life Biological Molecules The Chemistry of Life : Learning Outcomes 2.4) Describe the significance of carbon in forming the basis of the four classes of biological

More information

Lipids Definition. Definition: Water insoluble No common structure (though generally large R groups)

Lipids Definition. Definition: Water insoluble No common structure (though generally large R groups) Lipids Definition Definition: Water insoluble No common structure (though generally large R groups) Water Solubility (Hydrophilic) What makes molecules water soluble (hydrophilic)? Like dissolves like

More information

Ex : Butter contain large proportion of short chains of fatty acids, so it has high saponification number while margarine with more long fatty acids,

Ex : Butter contain large proportion of short chains of fatty acids, so it has high saponification number while margarine with more long fatty acids, Lec 2 1. Saponification number Definition : The number of m gms of KOH required to saponify the free and combined fatty acids in one gram of a given fat. Uses : The amount of alkali needed to saponify

More information

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins Lecture 6: Membranes and Cell Transport Biological Membranes I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins 1. Characteristics a. Phospholipids form bilayers

More information

Podcast (Video Recorded Lecture Series): Lipoprotein Metabolism and Lipid Therapy for the USMLE Step One Exam

Podcast (Video Recorded Lecture Series): Lipoprotein Metabolism and Lipid Therapy for the USMLE Step One Exam Podcast (Video Recorded Lecture Series): Lipoprotein Metabolism and Lipid Therapy for the USMLE Step One Exam Howard J. Sachs, MD www.12daysinmarch.com Email: Howard@12daysinmarch.com Podcast (Video Recorded

More information

1.4. Lipids - Advanced

1.4. Lipids - Advanced 1.4. Lipids - Advanced www.ck12.org In humans, triglycerides are a mechanism for storing unused calories, and their high concentration in blood correlates with the consumption of excess starches and other

More information

Dr. Nafith Abu Tarboush

Dr. Nafith Abu Tarboush 4 Dr. Nafith Abu Tarboush June 24 th 2013 Ahmad Moayd 1 Definition and general properties refer to slide no. 2 Lipids: macromolecules made from Alcohol and Fatty acid bonded by ester linkage. Amphipathic

More information

Lipids and Membranes

Lipids and Membranes Lipids and Membranes Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy Lipids and Membranes I. overview Lipids are related

More information

NOTE: For studying for the final, you only have to worry about those with an asterix (*)

NOTE: For studying for the final, you only have to worry about those with an asterix (*) NOTE: For studying for the final, you only have to worry about those with an asterix (*) (*)1. An organic compound is one that: a. contains carbon b. is slightly acidic c. forms long chains d. is soluble

More information

Carbon s Bonding Pattern

Carbon s Bonding Pattern Organic Compounds It used to be thought that only living things could synthesize the complicated carbon compounds found in cells German chemists in the 1800 s learned how to do this in the lab, showing

More information

Anatomy & Physiology I. Macromolecules

Anatomy & Physiology I. Macromolecules Anatomy & Physiology I Macromolecules Many molecules in the human body are very large, consisting of hundreds or even thousands of atoms. These are called macromolecules. Four types of macromolecules are

More information

CLINICAL BIOCHEMISTRY - 5 LIPID METABOLISM

CLINICAL BIOCHEMISTRY - 5 LIPID METABOLISM CLINICAL BIOCHEMISTRY - 5 LIPID METABOLISM DIGESTIVE MECHANISM FOR LIPIDS The average lipid intake is about 80g/day, of which more than 90% is triacylglycerol (TAG); the remainder consists of cholesterol,

More information

Nafith Abu Tarboush DDS, MSc, PhD

Nafith Abu Tarboush DDS, MSc, PhD Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush Lipids (cholesterol, cholesterol esters, phospholipids & triacylglycerols) combined with proteins (apolipoprotein) in

More information

Name: Date: Block: Biology 12

Name: Date: Block: Biology 12 Name: Date: Block: Biology 12 Provincial Exam Review: Cell Processes and Applications January 2003 Use the following diagram to answer questions 1 and 2. 1. Which labelled organelle produces most of the

More information

Leen Alsahele. Razan Al-zoubi ... Faisal

Leen Alsahele. Razan Al-zoubi ... Faisal 25 Leen Alsahele Razan Al-zoubi... Faisal last time we started talking about regulation of fatty acid synthesis and degradation *regulation of fatty acid synthesis by: 1- regulation of acetyl CoA carboxylase

More information

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary Macromolecules 1. If you remove all of the functional groups from an organic molecule so that it has only carbon and hydrogen atoms, the molecule become a molecule. A) carbohydrate B) carbonyl C) carboxyl

More information

Chapter 3. Table of Contents. Section 1 Carbon Compounds. Section 2 Molecules of Life. Biochemistry

Chapter 3. Table of Contents. Section 1 Carbon Compounds. Section 2 Molecules of Life. Biochemistry Biochemistry Table of Contents Section 1 Carbon Compounds Section 2 Molecules of Life Section 1 Carbon Compounds Objectives Distinguish between organic and inorganic compounds. Explain the importance of

More information

Chapter Three (Biochemistry)

Chapter Three (Biochemistry) Chapter Three (Biochemistry) 1 SECTION ONE: CARBON COMPOUNDS CARBON BONDING All compounds can be classified in two broad categories: organic compounds and inorganic compounds. Organic compounds are made

More information

Biology: Life on Earth Chapter 3 Molecules of life

Biology: Life on Earth Chapter 3 Molecules of life Biology: Life on Earth Chapter 3 Molecules of life Chapter 3 Outline 3.1 Why Is Carbon So Important in Biological Molecules? p. 38 3.2 How Are Organic Molecules Synthesized? p. 38 3.3 What Are Carbohydrates?

More information

CHAPTER 3. Carbon & the Molecular Diversity of Life

CHAPTER 3. Carbon & the Molecular Diversity of Life CHAPTER 3 Carbon & the Molecular Diversity of Life Carbon: The Organic Element Compounds that are synthesized by cells and contain carbon are organic So what is inorganic? Why are carbon compounds so prevalent?

More information

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2.

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. A possible explanation for an event that occurs in nature is

More information

Details of Organic Chem! Date. Carbon & The Molecular Diversity of Life & The Structure & Function of Macromolecules

Details of Organic Chem! Date. Carbon & The Molecular Diversity of Life & The Structure & Function of Macromolecules Details of Organic Chem! Date Carbon & The Molecular Diversity of Life & The Structure & Function of Macromolecules Functional Groups, I Attachments that replace one or more of the hydrogens bonded to

More information

Biomolecules. Unit 3

Biomolecules. Unit 3 Biomolecules Unit 3 Atoms Elements Compounds Periodic Table What are biomolecules? Monomers vs Polymers Carbohydrates Lipids Proteins Nucleic Acids Minerals Vitamins Enzymes Triglycerides Chemical Reactions

More information

Fatty acid breakdown

Fatty acid breakdown Fatty acids contain a long hydrocarbon chain and a terminal carboxylate group. Most contain between 14 and 24 carbon atoms. The chains may be saturated or contain double bonds. The complete oxidation of

More information

Disaccharides. Compound dehydration synthesis puts sugars together Hydrolysis (hydro-water, lysisbreakdown)

Disaccharides. Compound dehydration synthesis puts sugars together Hydrolysis (hydro-water, lysisbreakdown) Carbohydrate Carbo-hydrate -carbon, water Cn(H2O) n Monosaccharides Hexose hex = 6 [carbons], "-ose" means sugar Glucose monosaccaccharide usually assume a ring structure Disaccharides Compound dehydration

More information

Organic Molecules. 8/27/2004 Mr. Davenport 1

Organic Molecules. 8/27/2004 Mr. Davenport 1 Organic Molecules 8/27/2004 Mr. Davenport 1 Carbohydrates Commonly called sugars and starches Consist of C, H, O with H:O ration 2:1 Usually classified as to sugar units Monosaccharide are single sugar

More information

Lipids, lipoproteins and cardiovascular disease

Lipids, lipoproteins and cardiovascular disease Lipids, lipoproteins and cardiovascular disease Presented by Dr. Mohammad Saadeh The requirements for the Clinical Chemistry Philadelphia University Faculty of pharmacy Cardiovascular disease Plasma enzymes

More information

CELLULAR METABOLISM. Metabolic pathways can be linear, branched, cyclic or spiral

CELLULAR METABOLISM. Metabolic pathways can be linear, branched, cyclic or spiral CHM333 LECTURE 24 & 25: 3/27 29/13 SPRING 2013 Professor Christine Hrycyna CELLULAR METABOLISM What is metabolism? - How cells acquire, transform, store and use energy - Study reactions in a cell and how

More information

Chapter 3: Biochemistry Adapted from PPT by S. Edwards. By PresenterMedia.com

Chapter 3: Biochemistry Adapted from PPT by S. Edwards. By PresenterMedia.com Chapter 3: Biochemistry Adapted from PPT by S. Edwards By PresenterMedia.com CARBON COMPOUNDS CHAPTER 3 SECTION 1 By PresenterMedia.com Compounds LOOK NO Carbon!!! ORGANIC COMPOUNDS Compounds that contain

More information

Lipids fatty, oily, or waxy hydrophobic organic compounds.

Lipids fatty, oily, or waxy hydrophobic organic compounds. Lipids Lipids Lipids fatty, oily, or waxy hydrophobic organic compounds. u long hydrocarbon chain u composed of CHO Diverse group u fats u oils u waxes u steroids Do not form polymers u big molecules made

More information

Chapter Sections: 3.1 Carbon s Place in the Living World 3.2 Functional Groups 3.3 Carbohydrates 3.4 Lipids 3.5 Proteins 3.

Chapter Sections: 3.1 Carbon s Place in the Living World 3.2 Functional Groups 3.3 Carbohydrates 3.4 Lipids 3.5 Proteins 3. Chapter Sections: 3.1 Carbon s Place in the Living World 3.2 Functional Groups 3.3 Carbohydrates 3.4 Lipids 3.5 Proteins 3.6 Nucleic Acids Student Goals: By the end of this lecture series, students should

More information

Unit 3: Chemistry of Life Mr. Nagel Meade High School

Unit 3: Chemistry of Life Mr. Nagel Meade High School Unit 3: Chemistry of Life Mr. Nagel Meade High School IB Syllabus Statements 3.2.1 Distinguish between organic and inorganic compounds. 3.2.2 Identify amino acids, glucose, ribose and fatty acids from

More information

Chemistry of Carbon. All living things rely on one particular type of molecule: carbon

Chemistry of Carbon. All living things rely on one particular type of molecule: carbon Ach Chemistry of Carbon All living things rely on one particular type of molecule: carbon Carbon atom with an outer shell of four electrons can form covalent bonds with four atoms. In organic molecules,

More information