THE FORM OF HAEMOGLOBIN IN THE ERYTHROCYTES OF THE COD, GADUS CALLARIAS

Size: px
Start display at page:

Download "THE FORM OF HAEMOGLOBIN IN THE ERYTHROCYTES OF THE COD, GADUS CALLARIAS"

Transcription

1 J. Cell Set. 8, (1971) 407 Printed in Great Britain THE FORM OF HAEMOGLOBIN IN THE ERYTHROCYTES OF THE COD, GADUS CALLARIAS N.W.THOMAS Department of Anatomy, Marischal College, Aberdeen, Scotland SUMMARY The erythrocytes of the cod, Gadiu callarias have a flattened discoid shape; each contains a peripheral marginal band of approximately 10 microtubules and a centrally placed nucleus. The cytoplasmic and nuclear haemoglobins have a paracrystalline organization; individual filaments, presumably polymers of haemoglobin, are grouped into bundles which course in all directions through the cell. This organization shows a remarkable similarity to that of deoxygenated haemoglobin in sickled human red cells. However, paracrystalline haemoglobin in the cod is characteristic of the normal red cells and is not associated with a crenated shape. INTRODUCTION The detailed organization of functioning haemoglobin within the cytoplasm of the erythrocyte has yet to be elucidated. In previous fine-structure studies of nucleated erythrocytes particular attention has been given to the morphology of the erythrocyte nucleus (Davies, 1961, 1968; Davies & Spencer, 1962; Davies & Small, 1968; Tooze & Davies, 1963; Everid, Small & Davies, 1970; Small & Davies, 1970), and the nature and significance of the marginal band of microtubules (Fawcett & Witebsky, 1964; Maser & Philpott, 1964; Barclay, 1966; Sekhon & Beams, 1969; Behnke, 1970). In the electron micrographs from these studies haemoglobin appeared as a homogeneous electron-dense material. This communication presents observations made on the fine structure of the erythrocytes of the cod in which haemoglobin appears to have a paracrystalline organization; the findings are discussed with reference to similar studies on sickled human red cells (Dobler & Bertles, 1968; White, 1968) in which haemoglobin has a paracrystalline form. MATERIAL AND METHODS Specimens of cod (Gadus callarias) which had been collected by netting in Aberdeen Bay were killed with a blow on the head, and tissues and 2-4 ml of cardiac blood removed. No special steps were taken to ensure the complete deoxygenation of the cardiac blood samples while the tissues were assumed to contain erythrocytes at different states of deoxygenation. The tissues were fixed immediately in 3 % glutaraldehyde buffered at ph 7-3 with 01 M phosphate buffer, at 0-4 C. (Sabatini, Bensch & Barrnett, 1963). Blood samples were reduced to a pellet by centrifugation (30 x io 4 g av min. in a M.S.E. Mistral 6L centrifuge, angle head 62302) and the buffy layer removed before treatment with the same fixative. After fixation for 1 h the material was washed in buffer and post-fixed in 2 % osmium tetroxide in the same buffer

2 408 N. W. Thomas system, dehydrated through graded acetones and embedded in Epon (Luft, 1961). Sections were cut on a Reichert Om 2 ultramicrotome, stained with uranyl acetate and/or lead citrate (Reynolds, 1963) and viewed in a Jem 7 electron microscope. OBSERVATIONS In these specimens the erythrocytes had a flattened discoid shape and a diameter between 7-5 and 9-5 /im (Fig. 1). The nucleus was centrally placed and flattened in the main axis of the cell. At low magnifications the cytoplasm appeared homogeneous and finely granular while at higher magnifications fine filaments were apparent. These filaments were of indeterminate length and of about 13 nm diameter; when observed in cross-section the filaments appeared tubular with an electron-lucid core, and had an angular outline (Fig. 4). In some micrographs the filaments appeared to be made up of subunits and to have fine lateral arms projecting towards adjacent filaments. Large numbers of filaments in parallel array and equidistant from each other were grouped into bundles which coursed through the cytoplasm (Fig. 2) and showed no preferred orientation. The bundles did not distort the discoid shape of the cell. Bundles of similar filaments were observed in the nucleoplasm and were easily distinguished from the granular chromatin distributed around the periphery of the nucleoplasm (Fig. 3). The nuclear membrane was pierced by nuclear pores but no continuity between cytoplasmic and nuclear bundles was observed. Free ribosomes, mitochondria and myelin bodies were present in the cytoplasm surrounding the nucleus, especially at the poles of the nucleus (Fig. 2). A group of microtubules which made up the marginal band was located beneath the plasma membrane at the region of the cells' greatest circumference (Fig. 4). Up to 12 microtubules were present in the marginal band and each measured approximately 27 nm in diameter. DISCUSSION The erythrocyte of the cod appears to have a similar gross appearance to nucleated red cells from other species, with a marginal band of microtubules and haemoglobin rilling the cytoplasm and some of the nucleoplasm. However, the organization of normal haemoglobin in situ into filaments or tubules, smaller than typical microtubules (Slautterback, 1963), and different from tubular units associated with the nuclear membrane in some species (Davies & Small, 1968; Everid et al. 1970), does not seem to have been described previously. R. Bulger (unpublished observations) has found similar fibrillar haemoglobin in the erythrocytes of the large sea horse (Hippocampus punctulatus) and the midshipman (Porichthys notatus), but in these species the filaments do not appear to have an electron-lucid core and the cells contain fewer bundles. Fawcett & Witebsky (1964) observed crystalline haemoglobin in the nucleus of the toadfish; this consisted of parallel electron-dense striations 6 nm wide separated by interspaces of 6 nm. They pointed out the difficulty of assessing whether crystalline haemoglobin existed in vivo, and the same must also be said of the paracrystalline organization of the cod, in which each filament presumably represents a polymer of

3 Haemoglobin in cod erythrocytes 409 haemoglobin. Ponder (1945) observed that crystallization of haemoglobin in rat erythrocyte occurred after prolonged storage (72 h) in 3 % sodium citrate at 4 C. The present observations were made on tissues fixed immediately on death of the fish and on blood samples fixed within 17 min of death, and it seems likely, therefore, that the paracrystalline organization of cod haemoglobin was not induced by cold treatment. The organization was not preserved when osmium fixation was used alone, but was present in cells in situ and in blood pellets when primary fixation was with glutaraldehyde. The organization showed a remarkable similarity to that observed in sickled cells from patients with sickle cell anaemia. Oxygenated red cells from patients with sickle cell anaemia have a biconcave discoid shape and resemble red cells from normal patients: in the deoxygenated state the cell outlines become irregular and they take on a prickled or holly-leaf shape. Murayama (1966) observed hollow filaments 17 nm in diameter in whole mount preparations of haemoglobin (HbS) from these cells and postulated that each filament was composed of 6 strands of a hypothetical monofilament. White (1968) described filaments 6-7 nm in diameter, which he presumed corresponded to Murayama's monofilament, and also rods nm m diameter in the cytoplasm of sickled erythrocytes. Dobler & Bertles (1968) observed 16-nm diameter filaments arranged in a paracrystalline form in erthrocytes in vivo. The filaments of the cod are slightly smaller than the filaments described in sickled cells but the subunit of the cod tubule may correspond to the monofilament postulated by Murayama (1966). It has been proposed that the change in cell shape in sickling involves the conformation of the erythrocyte membrane to the filaments or rods of deoxygenated HbS (Stetson, 1966; Murayama, 1966; Dobler & Bertles, 1968; White, 1968). However, Bertles & Dobler (1969), observed some sickled cells which showed a typical crenated outline but lacked haemoglobin filaments, and therefore suggested that cell distortion may be another factor dictatingfilament arrangement. The flattened discoid shape of the cod erythrocyte is unaffected by the paracrystalline bundles of haemoglobin and these observations would therefore support this latter hypothesis. The functional significance of the paracrystalline haemoglobin in the cod erythrocyte is as yet unknown. Normal human haemoglobin (HbA) and HbS differ only in the single replacement of the number 6 glutamic acid residue for valine in the B chain (Ingram, 1957) and it is tempting to postulate that cod haemoglobin may show similar substitutions. Unlike the other species offish studied by R. Bulger (unpublished observations), the paracrystalline haemoglobin in the cod completely fills the cell cytoplasm and presumably reflects a highly effective packing system. Preliminary results (N. W. Thomas & T. L. Coombs, unpublished) indicate that treatment with different gases will induce a change in this organization and it seems likely that the cod erythrocyte will prove a model system for the investigation of fine-structural changes of haemoglobin under different gaseous conditions. I am grateful to Dr P. T. Grant, Director of the Fisheries Biochemical Research Station, Aberdeen, for the provision of fish, Dr T. L. Coombs of the Station for valuable discussion and Professor D. C. Sinclair who read this manuscript. I am also grateful to the Science Research Council for financial support.

4 410 N. W. Thomas REFERENCES BARCLAY, N. (1966). Marginal bands in duck and camel erythrocytes. Anat. Rec. 154, 313. BEHNKE, O. (1970). A comparative study of microtubules of disk-shaped blood cells. J. Ultrastruct. Res. 31, BERTLES, J. F. & DOBLER, J. (1969). Reversible and irreversible sickling: a distinction by electron microscopy. Blood 33, DAVIES, H. G. (1961). Structure in nucleated erythrocytes. J. biophys. biochem. Cytol. 9, DAVIES, H. G. (1968). Electron-microscope observations of the organization of heterochromatin in certain cells. J. Cell Sci. 3, DAVIES, H. G. & SMALL, J. V. (1968). Structural units in chromatin and their orientation on membranes. Nature, Lond. 217, DAVIES, H. G. & SPENCER, M. (1962). The variation in the structure of the erythrocyte nuclei with fixation. J. Cell Biol. 14, DOBLER, J. & BERTLES, J. F. (1968). The physical state of hemoglobin in sickle cell anemia erythrocytes in vivo. J. exp. Med. 127, EVERID, A. C, SMALL, J. V. & DAVIES, H. G. (1970). Electron-microscope observations on the structure of condensed chromatin: Evidence for orderly arrays of unit threads on the surface of chicken erythrocyte nuclei. J. Cell Sci. 7, FAWCETT, D. W. & WITEBSKY, F. (1964). Observations on the ultrastructure of nucleated erythrocytes and thrombocytes with particular reference to the structural basis of their discoidal shape. Z. Zellforsch. mikrosk. Anat. 62, INGRAM, V. M. (1957). Gene mutation in human haemoglobin: The chemical difference between normal and sickle cell haemoglobin. Nature, Lond. 180, LUFT, J. H. (1961). Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, MASER, M. & PHILPOTT, C. (1964). Marginal bands in nucleated erythrocytes. Anat. Rec. 150, MURAYAMA, M. (1966). Molecular mechanism of red cell sickling. Science, N.Y. 153, PONDER, E. (1945). The paracrystalline state of the rat red cell. J. gen. Physiol. 29, REYNOLDS, E. S. (1963). The use of lead citrate at high ph as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, SABATINI, D., BENSCH, K. & BARRNETT, R. J. (1963). Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17, SEKHON, S. E. & BEAMS, H. W. (1969). Fine structure of the developing trout erythrocytes with special reference to the marginal band and the cytoplasmic organelles. Am. J. Anat. 125, SLAUTTERBACK, D. B. (1963). Cytoplasmic microtubules, I. Hydra. J. Cell Biol. 18, SMALL, J. V. & DAVIES, H. G. (1970). The haemoglobin in the condensed chromatin of mature amphibian erythrocytes: a further study. J. Cell Sci. 7, STETSON, C. A. (1966). The state of hemoglobin in sickled erythrocytes. J. exp. Med. 123, TOOZE, J. & DAVIES, H. G. (1963). The occurrence and possible significance of hemoglobin in the chromosomal regions of mature erythrocyte nuclei of the newt, Triturus cristatus cristatns. J. Cell Biol. 16, WHITE, J. G. (1968). The fine structure of sickled hemoglobin in situ. Blood 31, {Received 29 August 1970) Fig. 1. Electron micrograph of cod pancreas tissue showing 2 nucleated erythrocytes (e) within a small venule (v). x Fig. 2. Electron micrograph of an erythrocyte in situ showing bundles of haemoglobin tubules running in different directions through the cytoplasm. The tubular nature of the individual units of haemoglobin is clearly seen (arrow). («;, mitochondrion ; my, myelin body; n, nucleus; r, free ribosomes.) x

5 Haemoglobin in cod erythrocytes

6 412 N. W. Thomas Fig. 3. Electron micrograph of an erythrocyte from a pellet showing nuclear haemoglobin (nh) with the same electron-microscopic appearance as that of the cytoplasm, (p, nuclear pore.) x Fig. 4. Electron micrograph of an erythrocyte from a pellet showing the tubular nature of the haemoglobin units. Some have an angular outline with short lateral arms (arrows), (mb, marginal band.) x

ELECTRON MICROSCOPIC STUDIES ON EQUINE ENCEPHALOSIS VIRUS

ELECTRON MICROSCOPIC STUDIES ON EQUINE ENCEPHALOSIS VIRUS Onderstepoort]. vet. Res. 40 (2), 53-58 (1973) ELECTRON MICROSCOPIC STUDIES ON EQUINE ENCEPHALOSIS VIRUS G. LECATSAS, B. J. ERASMUS and H. J. ELS, Veterinary Research Institute, Onderstepoort ABSTRACT

More information

ELECTRON MICROSCOPIC STUDY OF THE FORMATION OF BLUETONGUE VIRUS*

ELECTRON MICROSCOPIC STUDY OF THE FORMATION OF BLUETONGUE VIRUS* Onderstepoort J. vet. Res. (1968), 35 (1), 139-150 Printed in the Repub. of S. Afr. by The Government Printer, Pretoria ELECTRON MICROSCOPIC STUDY OF THE FORMATION OF BLUETONGUE VIRUS* G. LECATSAS, Veterinary

More information

New aspect of hepatic nuclear glycogenosis

New aspect of hepatic nuclear glycogenosis J. clin. Path. (1968), 21, 19 New aspect of hepatic nuclear glycogenosis in diabetes1 F. CARAMIA, F. G. GHERGO, C. BRANCIARI, AND G. MENGHINI From the Institute of General Pathology, University of Rome,

More information

R,;habdomyosarcoma, the most common

R,;habdomyosarcoma, the most common Fine-structural classification of orbital rhabdomyosarcoma Arnold J. Kroll Six cases of orbital rhabdomyosarcoma were studied with the electron microscope. Tumor cells (rhabdomyoblasts) could be classified

More information

THE PREPARATION AND ULTRASTRUCTURE OF AVIAN ERYTHROCYTE NUCLEAR ENVELOPE ENCLOSED BY THE PLASMA MEMBRANE

THE PREPARATION AND ULTRASTRUCTURE OF AVIAN ERYTHROCYTE NUCLEAR ENVELOPE ENCLOSED BY THE PLASMA MEMBRANE J. Cell Sci. 34, 81-90 (1978) 8l Printed in Great Britain Company of Biologists Limited igj8 THE PREPARATION AND ULTRASTRUCTURE OF AVIAN ERYTHROCYTE NUCLEAR ENVELOPE ENCLOSED BY THE PLASMA MEMBRANE JAMES

More information

Cell Overview. Hanan Jafar BDS.MSc.PhD

Cell Overview. Hanan Jafar BDS.MSc.PhD Cell Overview Hanan Jafar BDS.MSc.PhD THE CELL is made of: 1- Nucleus 2- Cell Membrane 3- Cytoplasm THE CELL Formed of: 1. Nuclear envelope 2. Chromatin 3. Nucleolus 4. Nucleoplasm (nuclear matrix) NUCLEUS

More information

TRANSFER OF PREMELANOSOMES INTO THE KERATINIZING CELLS OF ALBINO HAIR FOLLICLE

TRANSFER OF PREMELANOSOMES INTO THE KERATINIZING CELLS OF ALBINO HAIR FOLLICLE TRANSFER OF PREMELANOSOMES INTO THE KERATINIZING CELLS OF ALBINO HAIR FOLLICLE PAUL F. PARAKKAL. From the Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02118 INTRODUCTION

More information

The appearance of muscle protein and myofibrils within the embryonic chick limb-bud

The appearance of muscle protein and myofibrils within the embryonic chick limb-bud /. Embryol. exp. Morph. Vol. 30, 3, pp. 673-679, 1973 673 Printed in Great Britain The appearance of muscle protein and myofibrils within the embryonic chick limb-bud By P. V. THOROGOOD 1 From the Department

More information

Electron Microscopy of Small Cells: Mycoplasma hominis

Electron Microscopy of Small Cells: Mycoplasma hominis JOURNAL of BAcTRiowOY, Dc. 1969, p. 1402-1408 Copyright 0 1969 American Society for Microbiology Vol. 100, No. 3 Printed In U.S.A. NOTES Electron Microscopy of Small Cells: Mycoplasma hominis JACK MANILOFF

More information

IDENTIFICATION OF GLYCOGEN IN THIN SECTIONS OF AMPHIBIAN EMBRYOS

IDENTIFICATION OF GLYCOGEN IN THIN SECTIONS OF AMPHIBIAN EMBRYOS J. Cell Sci. a, 257-264 (1967) 257 Printed in Great Britain IDENTIFICATION OF GLYCOGEN IN THIN SECTIONS OF AMPHIBIAN EMBRYOS MARGARET M. PERRY Institute of Animal Genetics, Edinburgh SUMMARY Embryonic

More information

A Compact and a Dispersed Form of the Golgi Apparatus

A Compact and a Dispersed Form of the Golgi Apparatus A Compact and a Dispersed Form of the Golgi Apparatus of Fish Liver 1 D. James Morre and Carole A. Lembi Department of Botany and Plant Pathology Purdue University, Lafayette, Indiana 47907, and H. H.

More information

Published Online: 25 November, 1956 Supp Info: on November 16, 2018 jcb.rupress.org Downloaded from

Published Online: 25 November, 1956 Supp Info: on November 16, 2018 jcb.rupress.org Downloaded from Published Online: 25 November, 1956 Supp Info: http://doi.org/10.1083/jcb.2.6.799 Downloaded from jcb.rupress.org on November 16, 2018 B~IEF NOrmS 799 Permanganate--A New Fixative for Electron Microscopy.*

More information

Genes and Genetic Diseases. Gene: Is a fundamental unit of information storage.

Genes and Genetic Diseases. Gene: Is a fundamental unit of information storage. GENETIC DISORDERS Genes and Genetic Diseases Gene: Is a fundamental unit of information storage. Genes determine the type of proteins and enzymes that are made by the cell. Genes control inheritance and

More information

Ultrastructure of Mycoplasmatales Virus laidlawii x

Ultrastructure of Mycoplasmatales Virus laidlawii x J. gen. Virol. (1972), I6, 215-22I Printed in Great Britain 2I 5 Ultrastructure of Mycoplasmatales Virus laidlawii x By JUDY BRUCE, R. N. GOURLAY, AND D. J. GARWES R. HULL* Agricultural Research Council,

More information

psittaci by Silver-Methenamine Staining and

psittaci by Silver-Methenamine Staining and JOURNAL OF BACTERIOLOGY, July 1972, p. 267-271 Copyright 1972 American Society for Microbiology Vol. 111, No. 1 Printed in U.S.A. Location of Polysaccharide on Chlamydia psittaci by Silver-Methenamine

More information

Some Observations on the Fine Structure of the Goblet Cells. Special Reference to the Well-Developed Agranular Endoplasmic Reticulum

Some Observations on the Fine Structure of the Goblet Cells. Special Reference to the Well-Developed Agranular Endoplasmic Reticulum Okajimas Folia Anat. Jpn., 58(4-6) : 583-594, March 1982 Some Observations on the Fine Structure of the Goblet Cells in the Nasal Respiratory Epithelium of the Rat, with Special Reference to the Well-Developed

More information

Basophilic. Basophilic structures are stained by basic dyes: Mnemonic: Basophilic = Blue

Basophilic. Basophilic structures are stained by basic dyes: Mnemonic: Basophilic = Blue Cell Overview Basophilic Basophilic structures are stained by basic dyes: Basic dyes are positive Basophilic structures are negative (ex. DNA, RNA, ribosomes, RER) Mnemonic: Basophilic = Blue Acidophilic

More information

(From The Rockefeller Institute) Materials and Methods. Observations with the Electron Microscope

(From The Rockefeller Institute) Materials and Methods. Observations with the Electron Microscope ELECTRON MICROSCOPE STUDY OF THE DEVELOPMENT OF THE PAPILLOMA VIRUS IN THE SKIN OF THE RABBIT* BY ROBERT S. STONE,~ M.D., RICHARD E. SHOPE, M.D., DAN H. MOORE, P,~.D. (From The Rockefeller Institute) PLATES

More information

ON THE PRESENCE OF A CILIATED COLUMNAR EPITHELIAL CELL TYPE WITHIN THE BOVINE CERVICAL MUCOSA 1

ON THE PRESENCE OF A CILIATED COLUMNAR EPITHELIAL CELL TYPE WITHIN THE BOVINE CERVICAL MUCOSA 1 ON THE PRESENCE OF A CILIATED COLUMNAR EPITHELIAL CELL TYPE WITHIN THE BOVINE CERVICAL MUCOSA 1 R. I. Wordinger, 2 J. B. Ramsey, I. F. Dickey and I. R. Hill, Jr. Clemson University, Clemson, South Carolina

More information

Ultrastructure of Connective Tissue Cells of Giant African Snails Achatina fulica (Bowdich)

Ultrastructure of Connective Tissue Cells of Giant African Snails Achatina fulica (Bowdich) Kasetsart J. (Nat. Sci.) 36 : 285-290 (2002) Ultrastructure of Connective Tissue Cells of Giant African Snails Achatina fulica (Bowdich) Viyada Seehabutr ABSTRACT The connective tissue sheath of cerebral

More information

ENHANCEMENT OF THE GRANULATION OF ADRFNERGIC STORAGE VESICLES IN DRUG-FREE SOLUTION

ENHANCEMENT OF THE GRANULATION OF ADRFNERGIC STORAGE VESICLES IN DRUG-FREE SOLUTION ENHANCEMENT OF THE GRANULATION OF ADRFNERGIC STORAGE VESICLES IN DRUG-FREE SOLUTION TAKASHI IWAYAMA and J. B. FURNESS. From the Department of Zoology, University of Melbourne, Victoria, Australia. Dr.

More information

Fine Structure of the Normal Trigeminal Ganglion in the Cat and Monkey*

Fine Structure of the Normal Trigeminal Ganglion in the Cat and Monkey* Fine Structure of the Normal Trigeminal Ganglion in the Cat and Monkey* DAVID S. MAXWELL, PH.D. Principal Contributor and Leader of Discussion HE inclusion of animal material m a y be justified as a means

More information

AN ELECTRON-MICROSCOPIC STUDY OF THE STARCH-CONTAINING PLASTIDS IN THE FERN TODEA BARBARA

AN ELECTRON-MICROSCOPIC STUDY OF THE STARCH-CONTAINING PLASTIDS IN THE FERN TODEA BARBARA J. Cell Sci. 4, 211-221 (1969) 211 Printed in Great Britain AN ELECTRON-MICROSCOPIC STUDY OF THE STARCH-CONTAINING PLASTIDS IN THE FERN TODEA BARBARA H. M. SMITH* AND D. S. SMITHf Department of Biology,

More information

LOCALIZATION OF CARBONIC ANHYDRASE ACTIVITY IN TURTLE AND TOAD URINARY BLADDER MUCOSA

LOCALIZATION OF CARBONIC ANHYDRASE ACTIVITY IN TURTLE AND TOAD URINARY BLADDER MUCOSA Ti JOURNAL OF HISTOCHEMISTRY AND CYTOCHEM1STRY Copyright 1972 by The Histochemical Society. Inc. Vol. 20, No. 9. pp. 696-702, 1972 Printed in U.S.A. LOCALIZATION OF CARBONIC ANHYDRASE ACTIVITY IN TURTLE

More information

FIRST MIDTERM EXAMINATION

FIRST MIDTERM EXAMINATION FIRST MIDTERM EXAMINATION 1. True or false: because enzymes are produced by living organisms and because they allow chemical reactions to occur that would not otherwise occur, enzymes represent an exception

More information

Intercellular Matrix in Colonies of Candida

Intercellular Matrix in Colonies of Candida JouRNAL OF BAcTEROLOGY, Sept. 1975, p. 1139-1143 Vol. 123, No. 3 Copyright 0 1975 American Society for Microbiology Printed in U.S.A. ntercellular Matrix in Colonies of Candida K. R. JOSH, J. B. GAVN,*

More information

Cell Structure. Present in animal cell. Present in plant cell. Organelle. Function. strength, resist pressure created when water enters

Cell Structure. Present in animal cell. Present in plant cell. Organelle. Function. strength, resist pressure created when water enters Cell Structure Though eukaryotic cells contain many organelles, it is important to know which are in plant cells, which are in animal cells and what their functions are. Organelle Present in plant cell

More information

FINE STRUCTURE STUDY OF POLLEN DEVELOPMENT IN HAEMANTHUS KATHERINAE BAKER

FINE STRUCTURE STUDY OF POLLEN DEVELOPMENT IN HAEMANTHUS KATHERINAE BAKER J. Cell Sci. 8, 289-301 (1971) 289 Printed in Great Britain FINE STRUCTURE STUDY OF POLLEN DEVELOPMENT IN HAEMANTHUS KATHERINAE BAKER I. FORMATION OF VEGETATIVE AND GENERATIVE CELLS JEAN M. SANGER AND

More information

count the strands of Hb S molecules present in cross sections of to improve the resolution in cross sections of the fibers, we have

count the strands of Hb S molecules present in cross sections of to improve the resolution in cross sections of the fibers, we have Proc. Nati. Acad. Sci. USA Vol 76, No. 3, pp. 1140-1144, March 1979 Biochemistry Cross-sectional views of hemoglobin S fibers by electron microscopy and computer modeling (sickle cell hemoglobin fibers/thin

More information

LOW-ANGLE X-RAY DIFFRACTION AND ELECTRON-MICROSCOPE STUDIES OF ISOLATED CELL MEMBRANES

LOW-ANGLE X-RAY DIFFRACTION AND ELECTRON-MICROSCOPE STUDIES OF ISOLATED CELL MEMBRANES J. Cell Sci. I, 287-296 (1966) 287 Printed in Great Britain LOW-ANGLE X-RAY DIFFRACTION AND ELECTRON-MICROSCOPE STUDIES OF ISOLATED CELL MEMBRANES J. B. FINEAN, R. COLEMAN, W. G. GREEN* AND A. R. LIMBRICK

More information

Silver-Impregnation of the Golgi Complex in Epididymal Epithelial Cells of Mice

Silver-Impregnation of the Golgi Complex in Epididymal Epithelial Cells of Mice CELL STRUCTURE AND FUNCTION 8, 339-346 (1984) C by Japan Society for Cell Biology Silver-Impregnation of the Golgi Complex in Epididymal Epithelial Cells of Mice Ikuo Yamaoka, Sumie Katsuta and Yoshimi

More information

FIXATION BY MEANS OF GLUTARALDEHYDE-HYDROGEN PEROXIDE REACTION PRODUCTS

FIXATION BY MEANS OF GLUTARALDEHYDE-HYDROGEN PEROXIDE REACTION PRODUCTS FIXATION BY MEANS OF GLUTARALDEHYDE-HYDROGEN PEROXIDE REACTION PRODUCTS CAMILLO PERACCHIA and BRANT S. MITTLER. From the Department of Anatomy, Duke University Medical Center, Durham, North Carolina 27706,

More information

STUDIES OF THE HUMAN UNFERTILIZED TUBAL OVUM*t

STUDIES OF THE HUMAN UNFERTILIZED TUBAL OVUM*t FERTILITY AND STERILITY Copyright @ 1973 by The Williams & Wilkins Co. Vol. 24, No.8, August 1973 Printed in U.S.A. STUDIES OF THE HUMAN UNFERTILIZED TUBAL OVUM*t C. NORIEGA, M.D., AND C. OBERTI, M.D.

More information

the structure of their ducts has been

the structure of their ducts has been Tza JOURNAL 0? INVEa'riGATrVN DEBMATOLOOT Copyright t 1966 by The Williams & Wilkins Co. Vol. 46, No. I Printed in U.S.A. AN ELECTRON MICROSCOPIC STUDY OF THE ADULT HUMAN APOCRINE DUCT* KEN HASHIMOTO,

More information

1. General characteristics of muscle tissues: 2. A. Skeletal muscle tissue ("striated muscle tissue")

1. General characteristics of muscle tissues: 2. A. Skeletal muscle tissue (striated muscle tissue) 1. General characteristics of muscle tissues: Muscle fibers, AKA, muscle cells Vascularized. Other tissues dense and loose C.T. nerves and nerve fibers Muscle fibers (muscle cells) close together. From

More information

Ultrastructure of synovial cells in vitro

Ultrastructure of synovial cells in vitro Ann. rheum. Dis. (1972), 31, 207 Ultrastructure of synovial cells in vitro A. MARY GLEN-BOTT Department ofanatomy, St. Thomas's Hospital Medical School, London, S.E.1 The ultrastructure of synovial membrane

More information

ELECTRON MICROSCOPIC STUDIES ON REOVIRUS TYPE I IN BHK 21 CELLS

ELECTRON MICROSCOPIC STUDIES ON REOVIRUS TYPE I IN BHK 21 CELLS Onderstepoort J. vet. Res. (1968), 35 (1), 151-158 Printed in the Republic of S. Afr. by the Government Printer, Pretoria ELECTRON MICROSCOPIC STUDIES ON REOVIRUS TYPE I IN BHK 21 CELLS G. LECATSAS, Veterinary

More information

The Cytoplasm Li Shulei Department of Histology & Embryology

The Cytoplasm Li Shulei Department of Histology & Embryology The Cytoplasm Li Shulei lishulei@tom.com Department of Histology & Embryology Cell components Cytoplasm Plasma membrane Organelles Cytoplasmic deposits Cytoskeleton Cytosol ( Matrix ) Nucleus Plasma membrane

More information

Ultrastructure of Azotobacter vinelandii

Ultrastructure of Azotobacter vinelandii JOURNAL OF BACTERIOLoGY, Nov. 1970, p. 933-939 Vol. 104, No. 2 Copyright a 1970 American Society for Microbiology Printed in U.S.A. Ultrastructure of Azotobacter vinelandii G. R. VELA, G. D. CAGLE, AND

More information

Fine Structure of Myocardial Mitochondria in Rats after Exercise for One-Half to Two Hours

Fine Structure of Myocardial Mitochondria in Rats after Exercise for One-Half to Two Hours Fine Structure of Myocardial Mitochondria in Rats after Exercise for One-Half to Two Hours By Ruben P. Laguens, M.D., and Cesar L. A. Gomex-Dumm, M.D. ABSTRACT Acute exercise (swimming in water at 24 C)

More information

Ultrastructural Study of Human Natural Killer CNK) Cell*)

Ultrastructural Study of Human Natural Killer CNK) Cell*) Hiroshima Journal of Medical Sciences Vol. 31, No. 1, March, 1982 HJIM 31-6 31 Ultrastructural Study of Human Natural Killer CNK) Cell*) Yoshinori KAWAGUCHI, Eishi KITTAKA, Yoshito TANAKA, Takeo TANAKA

More information

The Fine Structure of the Epithelial Cells of the Mouse Prostate* II. Ventral Lobe Epithelium

The Fine Structure of the Epithelial Cells of the Mouse Prostate* II. Ventral Lobe Epithelium Published Online: 1 June, 1960 Supp Info: http://doi.org/10.1083/jcb.7.3.511 Downloaded from jcb.rupress.org on September 28, 2018 The Fine Structure of the Epithelial Cells of the Mouse Prostate* II.

More information

ELECTRON MICROSCOPY OF A SMALL PIGMENTED CUTANEOUS LESION*

ELECTRON MICROSCOPY OF A SMALL PIGMENTED CUTANEOUS LESION* ELECTRON MICROSCOPY OF A SMALL PIGMENTED CUTANEOUS LESION* The description of the lesion in the title of this rcport is intentionally non-committal. Diagnosed clinically as a lentigo, it was removed as

More information

EDUCATIONAL COMMENTARY BLOOD CELL IDENTIFICATION

EDUCATIONAL COMMENTARY BLOOD CELL IDENTIFICATION EDUCATIONAL COMMENTARY BLOOD CELL IDENTIFICATION Educational commentary is provided through our affiliation with the American Society for Clinical Pathology (ASCP). To obtain FREE CME/CMLE credits click

More information

:1c.c :& Preliminary and Short Report GRANULE FORMATION IN THE LANGERHANS CELL* structure with rounded ends and a striated lamella

:1c.c :& Preliminary and Short Report GRANULE FORMATION IN THE LANGERHANS CELL* structure with rounded ends and a striated lamella THE JOURNAL OF INVESTIGATIVE DERMATOLOGY Copyright 1566 by The Williams & Wilkins Co. Vol. 7, No. 5 Printed in U.S.A. Preliminary and Short Report GRANULE FORMATION IN THE LANGERHANS CELL* ALVIN S. ZELICKSON,

More information

IT has been shown (Chou, 1957 a, b) that there are three kinds of lipid

IT has been shown (Chou, 1957 a, b) that there are three kinds of lipid 279 The Ultra-fine Structure of Lipid Globules in the Neurones of Helix aspersa By J. T. Y. CHOU and G. A. MEEK (From the Cytological Laboratory, Department of Zoology; and Department of Human Anatomy,

More information

Changes of organelles associated with the differentiation of epidermal melanocytes in the mouse

Changes of organelles associated with the differentiation of epidermal melanocytes in the mouse /. Embryol. exp. Morph. Vol. 43, pp. 107-121, 197S ]Ç)J Printed in Great Britain Company of Biologists Limited 1978 Changes of organelles associated with the differentiation of epidermal melanocytes in

More information

Further Observations on the Structure of Influenza Viruses A and C

Further Observations on the Structure of Influenza Viruses A and C J. gen. ViroL (I969), 4, 365-370 With 2 plates Printed in Great Britain 365 Further Observations on the Structure of Influenza Viruses A and C By K. APOSTOLOV The Wellcome Research Laboratories, Beckenham,

More information

Development of the myelin sheath of the hypogastric nerves in a human foetus aged 23 weeks

Development of the myelin sheath of the hypogastric nerves in a human foetus aged 23 weeks O R I G I N A L A R T I C L E Folia Morphol. Vol. 63, No. 3, pp. 289 301 Copyright 2004 Via Medica ISSN 0015 5659 www.fm.viamedica.pl Development of the myelin sheath of the hypogastric nerves in a human

More information

Blood Cells. Dr. Sami Zaqout. Dr. Sami Zaqout Faculty of Medicine IUG

Blood Cells. Dr. Sami Zaqout. Dr. Sami Zaqout Faculty of Medicine IUG Blood Cells Dr. Sami Zaqout Blood Blood Blood cells (45%) Erythrocytes Platelets Leukocytes Plasma (55%) Hematocrit tubes with blood Composition of Plasma Plasma Aqueous solution (90%) Substances (10%)

More information

Glycogen Aggregates in Cardiac Muscle Cell: A Cytopathological Study on Endomyocardial Biopsies

Glycogen Aggregates in Cardiac Muscle Cell: A Cytopathological Study on Endomyocardial Biopsies Arch. histol. jap., Vol. 45, No. 4 (1982) p. 347-354 Glycogen Aggregates in Cardiac Muscle Cell: A Cytopathological Study on Endomyocardial Biopsies Kazumasa MIURA, Tohru IZUMI, Junichi FUKUDA, Masaru

More information

Identification of the spermatogenic stages in living seminiferous tubules of man

Identification of the spermatogenic stages in living seminiferous tubules of man Identification of the spermatogenic stages in living seminiferous tubules of man V. Nikkanen, K.-O. S\l=o"\derstr\l=o"\m and M. Parvinen Department of Obstetrics and Gynecology, Turku University Central

More information

Cell Structure and Function. Biology 12 Unit 1 Cell Structure and Function Inquiry into Life pages and 68-69

Cell Structure and Function. Biology 12 Unit 1 Cell Structure and Function Inquiry into Life pages and 68-69 Cell Structure and Function Biology 12 Unit 1 Cell Structure and Function Inquiry into Life pages 45 59 and 68-69 Assignments for this Unit Pick up the notes/worksheet for this unit and the project There

More information

Skeletal Muscle : Structure

Skeletal Muscle : Structure 1 Skeletal Muscle : Structure Dr.Viral I. Champaneri, MD Assistant Professor Department of Physiology 2 Learning objectives 1. Gross anatomy of the skeletal muscle 2. Myofilaments & their molecular structure

More information

AET-treated normal red cells (PNH-like cells)

AET-treated normal red cells (PNH-like cells) J. clin. Path., 1971, 24, 677-684 Electron microscope study of PNH red cells and AET-treated normal red cells (PNH-like cells) S. M. LEWIS, G. LAMBERTENGHI, S. FERRONE, AND G. SIRCHIA From the Department

More information

1 (a) State the maximum magnification that can be achieved by a light microscope and a transmission electron microscope.

1 (a) State the maximum magnification that can be achieved by a light microscope and a transmission electron microscope. 1 (a) State the maximum magnification that can be achieved by a light microscope and a transmission electron microscope. Select your answers from the list below. 10x 40x 100x light microscope... x transmission

More information

POLLEN-WALL PROTEINS: ELECTRON- MICROSCOPIC LOCALIZATION OF ACID PHOSPHATASE IN THE INTINE OF CROCUS VERNUS

POLLEN-WALL PROTEINS: ELECTRON- MICROSCOPIC LOCALIZATION OF ACID PHOSPHATASE IN THE INTINE OF CROCUS VERNUS J. Cell Sci. 8, 727-733 (197O 727 Printed in Great Britain POLLEN-WALL PROTEINS: ELECTRON- MICROSCOPIC LOCALIZATION OF ACID PHOSPHATASE IN THE INTINE OF CROCUS VERNUS R.B. KNOX* AND J. HESLOP-HARRISONf

More information

(Plates LXVIII-LXXI)

(Plates LXVIII-LXXI) [GANN, 54, 481-486; December, 1963] UDC 616.155.392-076.4:578.69 VIRUS-LIKE PARTICLES IN HUMAN CHLOROLEUKEMIA CELLS (Plates LXVIII-LXXI) Zensuke OTA, Shin-ya SUZUKI, and Satoru HIGASHI (Department of Internal

More information

THE QUESTION OF RELATIONSHIP BETWEEN GOLGI VESICLES AND SYNAPTIC VESICLES IN OCTOPUS NEURONS

THE QUESTION OF RELATIONSHIP BETWEEN GOLGI VESICLES AND SYNAPTIC VESICLES IN OCTOPUS NEURONS J. Cell Set. 7, 89- (97) Printed in Great Britain THE QUESTION OF RELATIONSHIP BETWEEN GOLGI VESICLES AND SYNAPTIC VESICLES IN OCTOPUS NEURONS E. G. GRAY Department of Anatomy, University College London,

More information

Scanning electron microscopy of pulmonary alveolar capillary vessels

Scanning electron microscopy of pulmonary alveolar capillary vessels Thorax (1973), 28, 222. Scanning electron microscopy of pulmonary alveolar capillary vessels I. G. S. ALEXANDER', B. C. RITCHIE, and J. E. MALONEY Departments of Anatomy and Medicine, Monash University,

More information

The % of blood consisting of packed RBCs is known as the hematocrit. Blood s color ranges from scarlet (oxygen-rich) to dark red (oxygen poor).

The % of blood consisting of packed RBCs is known as the hematocrit. Blood s color ranges from scarlet (oxygen-rich) to dark red (oxygen poor). Biology Blood Blood is a fluid connective tissue consisting of cells suspended in a liquid fibrous matrix. The cells are called formed elements and the liquid matrix is known as plasma. The formed elements

More information

Title. Author(s)SUGIMURA, Makoto. CitationJapanese Journal of Veterinary Research, 20(1-2): 1- Issue Date DOI. Doc URL. Type.

Title. Author(s)SUGIMURA, Makoto. CitationJapanese Journal of Veterinary Research, 20(1-2): 1- Issue Date DOI. Doc URL. Type. Title MYOID CELLS IN THE CALF'S THYMUS Author(s)SUGIMURA, Makoto CitationJapanese Journal of Veterinary Research, 20(1-2): 1- Issue Date 1972-06 DOI 10.14943/jjvr.20.1-2.1 Doc URL http://hdl.handle.net/2115/1986

More information

The Cell Organelles. Eukaryotic cell. The plasma membrane separates the cell from the environment. Plasma membrane: a cell s boundary

The Cell Organelles. Eukaryotic cell. The plasma membrane separates the cell from the environment. Plasma membrane: a cell s boundary Eukaryotic cell The Cell Organelles Enclosed by plasma membrane Subdivided into membrane bound compartments - organelles One of the organelles is membrane bound nucleus Cytoplasm contains supporting matrix

More information

LONG-TERM ORGAN CULTURE OF THE SALAMANDER HEART

LONG-TERM ORGAN CULTURE OF THE SALAMANDER HEART Published Online: 1 January, 1971 Supp Info: http://doi.org/10.1083/jcb.48.1.1 Downloaded from jcb.rupress.org on July 10, 2018 LONG-TERM ORGAN CULTURE OF THE SALAMANDER HEART EDWARD W. MILLHOUSE, JR.,

More information

DEVELOPMENT AND DISPERSAL OF P-PROTEIN IN THE PHLOEM OF COLEUS BLUMEI BENTH.

DEVELOPMENT AND DISPERSAL OF P-PROTEIN IN THE PHLOEM OF COLEUS BLUMEI BENTH. J. Cell Sci. 4, 155-169 (1969) 155 Printed in Great Britain DEVELOPMENT AND DISPERSAL OF P-PROTEIN IN THE PHLOEM OF COLEUS BLUMEI BENTH. M. W. STEER AND E. H. NEWCOMB Department of Botany, University of

More information

Muscle tissue. 1) Striated skeletal muscle tissue. 2) Striated cardiac muscle tissue. 3) Smooth muscle tissue.

Muscle tissue. 1) Striated skeletal muscle tissue. 2) Striated cardiac muscle tissue. 3) Smooth muscle tissue. Muscle tissue 1) Striated skeletal muscle tissue. 2) Striated cardiac muscle tissue. 3) Smooth muscle tissue. General characteristic of muscle tissue Origin: mesoderm and mesenchyme Excitability Contraction

More information

Blood & Blood Formation

Blood & Blood Formation Module IB Blood & Blood Formation Histology and Embryology Martin Špaček, MD (m.spacek@centrum.cz) http://www.lf3.cuni.cz/histologie Approximately 7% of a person's weight is blood (about 5 L) Blood consists

More information

7-2 : Plasma Membrane and Cell Structures

7-2 : Plasma Membrane and Cell Structures 7-2 : Plasma Membrane and Cell Structures Plasma Membrane of aveolar sac But first... Let s Review What is cell theory? Light microscopes vs. electron microscopes Prokaryotic vs. eukaryotic Basic Cell

More information

Organelles. copyright cmassengale 1

Organelles. copyright cmassengale 1 Organelles copyright cmassengale 1 Organelles Very small (Microscopic) Perform various functions for a cell Found in the cytoplasm May or may not be membrane-bound 2 Animal Cell Organelles Nucleolus Nucleus

More information

Blood Cell Identification Graded

Blood Cell Identification Graded BCP-21 Blood Cell Identification Graded Case History The patient is a 37-year-old female with a history of multiple sickle cell crises. She now presents with avascular necrosis of the left hip. Laboratory

More information

7-2 : Plasma Membrane and Cell Structures

7-2 : Plasma Membrane and Cell Structures 7-2 : Plasma Membrane and Cell Structures Plasma Membrane of aveolar sac But first... Let s Review What is cell theory? Light microscopes vs. electron microscopes Prokaryotic vs. eukaryotic Basic Cell

More information

Chapter 4: Cell Structure and Function

Chapter 4: Cell Structure and Function Chapter 4: Cell Structure and Function Robert Hooke Fig. 4-2, p.51 The Cell Smallest unit of life Can survive on its own or has potential to do so Is highly organized for metabolism Senses and responds

More information

Eukaryotic Cell Structures

Eukaryotic Cell Structures Comparing the Cell to a Factory Eukaryotic Cell Structures Structures within a eukaryotic cell that perform important cellular functions are known as organelles. Cell biologists divide the eukaryotic cell

More information

ARANEUS SERICATUS CHANGES IN FINE STRUCTURE DURING SILK PROTEIN PRODUCTION IN THE AMPULLATE GLAND OF THE SPIDER. ALLEN L. BELL and DAVID B.

ARANEUS SERICATUS CHANGES IN FINE STRUCTURE DURING SILK PROTEIN PRODUCTION IN THE AMPULLATE GLAND OF THE SPIDER. ALLEN L. BELL and DAVID B. Published Online: 1 July, 1969 Supp Info: http://doi.org/10.1083/jcb.42.1.284 Downloaded from jcb.rupress.org on September 18, 2018 CHANGES IN FINE STRUCTURE DURING SILK PROTEIN PRODUCTION IN THE AMPULLATE

More information

INVESTIGATIVE OPHTHALMOLOGY. Corneal and conjunctival changes in dysproteinemia

INVESTIGATIVE OPHTHALMOLOGY. Corneal and conjunctival changes in dysproteinemia August 1969 Volume 8, Number 4 INVESTIGATIVE OPHTHALMOLOGY Corneal and conjunctival changes in dysproteinemia 7?. M. H. Pinkerton and David M. Robertson A case of dysproteinemia with corneal and conjunctival

More information

Skeletal muscle. General features :

Skeletal muscle. General features : Muscular tissues In the first embryonic life the muscular tissues arise from mesoderm, The function of movement in multicellular organisms is usually assumed by specialized cells called muscle fibers which

More information

Starch grains - excess sugars

Starch grains - excess sugars (a) Membrane system - site of light reactions (photosynthesis) - chlorpophyll pigments - enzymes - electron carriers - flattened, fluid-filled sacs (called thylakoids which are stacked to form grana) -

More information

COMPARATIVE DISTRIBUTION OF CARBOHYDRATES AND LIPID DROPLETS IN THE GOLGI APPARATUS OF INTESTINAL ABSORPTIVE CELLS

COMPARATIVE DISTRIBUTION OF CARBOHYDRATES AND LIPID DROPLETS IN THE GOLGI APPARATUS OF INTESTINAL ABSORPTIVE CELLS COMPARATIVE DISTRIBUTION OF CARBOHYDRATES AND LIPID DROPLETS IN THE GOLGI APPARATUS OF INTESTINAL ABSORPTIVE CELLS JEAN A. SAGE and RALPH A. JERSILD, JR. Medical Center, Indianapolis, Indiana 46202 From

More information

Chapter 3 Cell Structures & Functions

Chapter 3 Cell Structures & Functions Biology 12 Name: Cell Biology Per: Date: Chapter 3 Cell Structures & Functions Complete using BC Biology 12, pages 62-107 Diagnostic Questions (mark using the answer key on page 527) 1. 2. 3. 4. 9. What

More information

PRODUCTION AND FATE OF ERYTHROID CELLS IN ANAEMIC XENOPUS LAEVIS

PRODUCTION AND FATE OF ERYTHROID CELLS IN ANAEMIC XENOPUS LAEVIS J. Cell Sci. 35, 403-415 (1979) 403 Printed in Great Britain Company of Biologists Limited PRODUCTION AND FATE OF ERYTHROID CELLS IN ANAEMIC XENOPUS LAEVIS N. CHEGINI, V. ALEPOROU, G. BELL, V. A. HILDER

More information

FREEZE-ETCHED SURFACES OF MEMBRANES AND ORGANELLES IN THE CELLS OF PEA ROOT TIPS

FREEZE-ETCHED SURFACES OF MEMBRANES AND ORGANELLES IN THE CELLS OF PEA ROOT TIPS J. Cell Sci. 3, 199-206 (1968) I0.0. Printed in Great Britain FREEZE-ETCHED SURFACES OF MEMBRANES AND ORGANELLES IN THE CELLS OF PEA ROOT TIPS D. H. NORTHCOTE AND D. R. LEWIS Department of Biochemistry,

More information

Ultrastructure of abnormal membrane inclusions

Ultrastructure of abnormal membrane inclusions British Heart Journal, 1977, 39, 145-151 Ultrastructure of abnormal membrane inclusions in nuclei of human myocardial cells' HOGNE ENGEDAL, HELGE JENSEN, AND THV. SELMER SITERSDAL From the Cellular Cardiology

More information

Medical Biology. Dr. Khalida Ibrahim

Medical Biology. Dr. Khalida Ibrahim Dr. Khalida Ibrahim Medical Biology MUSCLE TISSUE 1. Muscle tissue is characterized by its well-developed properties of contraction. 2. Muscle is responsible for the movements of the body and the various

More information

Chapter 7 Notes. Section 1

Chapter 7 Notes. Section 1 Chapter 7 Notes Section 1 Cells Cells remained out of sight during most of human history until the invention of the first microscopes. It was not until the mid 1600s that scientists began to use microscopes

More information

Chapter 2 Cell. Zhou Li Prof. Dept. of Histology and Embryology

Chapter 2 Cell. Zhou Li Prof. Dept. of Histology and Embryology Chapter 2 Cell Zhou Li Prof. Dept. of Histology and Embryology The inner life of the cell Ⅰ. Plasma membrane (Plasmalemma) 1.1 The structure Unit membrane: inner layer 3-layered structure outer layer mediat

More information

ON THE THICKNESS OF THE UNIT MEMBRANE

ON THE THICKNESS OF THE UNIT MEMBRANE Published Online: 1 May, 1963 Supp Info: http://doi.org/10.1083/jcb.17.2.413 Downloaded from jcb.rupress.org on September 1, 2018 ON THE THICKNESS OF THE UNIT MEMBRANE TOSHIYUKI YAMAMOTO, M.D. From the

More information

Acid phosphatase activity in the neutral red granules of mouse exocrine pancreas cells

Acid phosphatase activity in the neutral red granules of mouse exocrine pancreas cells 343 Acid phosphatase activity in the neutral red granules of mouse exocrine pancreas cells By JENNIFER M. BYRNE (From the Cytological Laboratory, Department of Zoology, University Museum, Oxford) With

More information

BLOOD RUNS THROUGH YOUR BODY

BLOOD RUNS THROUGH YOUR BODY BLOOD RUNS THROUGH YOUR BODY WORKSHEET A Your heart and blood vessels make up your blood system. At the centre of your blood system is your heart. Its job is to pump the blood around your body. The rest

More information

Plasma Membrane. comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings

Plasma Membrane. comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings Cell Organelles Plasma Membrane comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings Cytosol the fluid Cytoplasm cell interior, everything outside

More information

Development of retinal synaptic arrays in the inner plexiform layer of dark-reared mice

Development of retinal synaptic arrays in the inner plexiform layer of dark-reared mice /. Embryo/, exp. Morph. Vol. 54, pp. 219-227, 1979 219 Printed in Great Britain Company of Biologists Limited 1977 Development of retinal synaptic arrays in the inner plexiform layer of dark-reared mice

More information

Structures in Cells. Cytoplasm. Lecture 5, EH1008: Biology for Public Health, Biomolecules

Structures in Cells. Cytoplasm. Lecture 5, EH1008: Biology for Public Health, Biomolecules Structures in Cells Lecture 5, EH1008: Biology for Public Health, Biomolecules Limian.zheng@ucc.ie 1 Cytoplasm Nucleus Centrioles Cytoskeleton Cilia Microvilli 2 Cytoplasm Cellular material outside nucleus

More information

Electron Microscope Studies of HeLa Cells Infected with Herpes Virus

Electron Microscope Studies of HeLa Cells Infected with Herpes Virus 244 STOKER, M. G. P., SMITH, K. M. & Ross, R. W. (1958). J. gen. Microbiol. 19,244-249 Electron Microscope Studies of HeLa Cells Infected with Herpes Virus BY M: G. P. STOKER, K. M. SMITH AND R. W. ROSS

More information

In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. CHAPTER 3 TEST Cell Structure Circle T if the statement is true or F if it is false. T F 1. Small cells can transport materials and information more quickly than larger cells can. T F 2. Newly made proteins

More information

ELECTRON MICROSCOPIC STUDY OF MELANIN-PHAGOCYTOSIS BY CUTANEOUS VESSELS IN CELLULAR BLUE NEVUS*

ELECTRON MICROSCOPIC STUDY OF MELANIN-PHAGOCYTOSIS BY CUTANEOUS VESSELS IN CELLULAR BLUE NEVUS* THE JOURNAL 05' INVESTIGATIVE DERMATOLOGY Copyright 1969 by The Williams & Wilkinl Co. Vol. 62, No. 6 Printed in U.S.A. ELECTRON MICROSCOPIC STUDY OF MELANIN-PHAGOCYTOSIS BY CUTANEOUS VESSELS IN CELLULAR

More information

INTRANUCLEAR MEMBRANOUS INCLUSIONS IN OOCYTES OF A VIVIPAROUS TELEOST (XIPHOPHORUS HELLERI)

INTRANUCLEAR MEMBRANOUS INCLUSIONS IN OOCYTES OF A VIVIPAROUS TELEOST (XIPHOPHORUS HELLERI) J. Cell Sci. 22, 325-334 (1976) 325 Printed in Great Britain INTRANUCLEAR MEMBRANOUS INCLUSIONS IN OOCYTES OF A VIVIPAROUS TELEOST (XIPHOPHORUS HELLERI) CARLOS AZEVEDO* Department of Histology and Embryology,

More information

Further Electron Microscope Characterization of Spore Appendages of Clostridium bifermentans

Further Electron Microscope Characterization of Spore Appendages of Clostridium bifermentans JOURNAL OF BACTERIOLOGY, Jan. 1968, p. 231-238 Copyright (e 1968 American Society for Microbiology Vol. 95, No. I Prinited in U.S.A. Further Electron Microscope Characterization of Spore Appendages of

More information

NUCLEOLUS CELL MEMBRANE MITOCHONDRIA CELL WALL CHLOROPLAST NUCLEAR MEMBRANE VACOULE NUCLEUS ORGANELLE CARD ORGANELLE CARD ORGANELLE CARD

NUCLEOLUS CELL MEMBRANE MITOCHONDRIA CELL WALL CHLOROPLAST NUCLEAR MEMBRANE VACOULE NUCLEUS ORGANELLE CARD ORGANELLE CARD ORGANELLE CARD CELL MEMBRANE NUCLEOLUS CELL WALL MITOCHONDRIA NUCLEAR MEMBRANE CHLOROPLAST NUCLEUS VACOULE CENTRAL VACOULE LEUCOPLAST CHROMOPLAST LYSOSOME CYTOPLASM CYTOSKELETON CENTRIOLE RIBOSOME CHROMATIN ROUGH ENDOPLASMIC

More information

Structures in Cells. Lecture 5, EH1008: Biology for Public Health, Biomolecules.

Structures in Cells. Lecture 5, EH1008: Biology for Public Health, Biomolecules. Structures in Cells Lecture 5, EH1008: Biology for Public Health, Biomolecules Limian.zheng@ucc.ie 1 Cytoplasm Nucleus Centrioles Cytoskeleton Cilia Microvilli 2 Cytoplasm Cellular material outside nucleus

More information

Surface characteristics of human articular cartilagea scanning electron microscope study

Surface characteristics of human articular cartilagea scanning electron microscope study J. Anat. (1971), 108, 1, pp. 23-30 23 With 16 figures Printed in Great Britain Surface characteristics of human articular cartilagea scanning electron microscope study IAN C. CLARKE BioEngineering Unit,

More information

Electron Microscopy. dishes in Eagle minimum essential medium with 10% serum to a density that allowed them to grow in a C02

Electron Microscopy. dishes in Eagle minimum essential medium with 10% serum to a density that allowed them to grow in a C02 JOURNAL OF BACTERIOLOGY, Mar. 1978, p. 1452-1456 0021-9193/78/0133-1452$02.00/0 Copyright 1978 American Society for Microbiology Vol. 133, No. 3 Printed in U.S.A. Positive Detection of Mycoplasma Contamination

More information