ORIGINAL CONTRIBUTION. Voxel-Based Morphometry Reveals Gray Matter Network Atrophy in Refractory Medial Temporal Lobe Epilepsy

Size: px
Start display at page:

Download "ORIGINAL CONTRIBUTION. Voxel-Based Morphometry Reveals Gray Matter Network Atrophy in Refractory Medial Temporal Lobe Epilepsy"

Transcription

1 ORIGINAL CONTRIBUTION -Based Morphometry Reveals Gray Matter Network Atrophy in Refractory Medial Temporal Lobe Epilepsy Leonardo Bonilha, MD, PhD; Chris Rorden, PhD; Gabriela Castellano, PhD; Fabrício Pereira, BSc; Pablo A. Rio, BSc; Fernando Cendes, MD, PhD; Li M. Li, MD, PhD Background: Conventional volumetric studies have shown that brain structures functionally and anatomically related to the hippocampus are smaller in patients with drug-refractory medial temporal lobe epilepsy (MTLE). Objectives: To determine the extent of gray matter atrophy in the brains of patients with MTLE and to examine the pattern of atrophy. Design: We performed a voxel-based morphometric study of 43 consecutive patients with unilateral drugrefractory MTLE (21 patients with right-sided MTLE and 22 patients with left-sided MTLE) whose magnetic resonance images showed signs of unilateral hippocampal atrophy. The data from the patients with MTLE were compared with the data from 49 healthy control subjects to identify differences between groups in gray matter concentration (GMC). Setting: Academic hospital s epilepsy clinic. Results: We observed that patients with left- and rightsided MTLE exhibited GMC reduction in the hippocampus ipsilateral to the seizure origin. In addition, we found GMC reduction in the ipsilateral parahippocampal and isocortical temporal regions. Patients with MTLE also showed GMC reduction in subcortical nuclei such as the thalamus and caudate, in the cerebellum, in the midbrain, and in parieto-occipital regions. Conclusions: Patients with MTLE exhibit a reduction in GMC in regions outside the temporal lobe, specifically in areas that are connected to the hippocampus and parahippocampal region, suggesting an anatomical route for atrophy. Arch Neurol. 2004;61: Author Affiliations: Laboratory of Neuroimaging, State University of Campinas, Campinas, Brazil (Drs Bonilha, Castellano, Cendes, and Li and Messrs Pereira and Rio); and School of Psychology, University of Nottingham, Nottingham, England (Dr Rorden). HIPPOCAMPAL SCLEROSIS (HS) is the most common pathologic abnormality associated with medial temporal lobe epilepsy (MTLE). 1 This abnormality is defined by neuronal loss and gliosis involving the CA1, CA3, and CA4 hippocampal subregions and the granule cell layer of the dentate gyrus, with relative sparing of the CA2 subregion. 2 The use of hippocampal volumetric quantification through magnetic resonance imaging (MRI) 3,4 has been successfully applied to detect HS in vivo, and its reliability is based on this measurement s correlation with neuronal counts of surgically resected hippocampal tissue. 5 Morphometric studies of the medial and anterior portion of the temporal lobe in patients with MTLE have demonstrated a reduction in the volume of structures functionally and anatomically related to the hippocampus, indicating that neuronal damage in the MTLE extends beyond the hippocampus. The entorhinal cortex and perirhinal cortices are the areas that convey most of the incoming information to the hippocampus, 6 and their volume is significantly reduced in patients with MTLE Neurophysiologic studies performed in patients with MTLE have shown that a large network is involved in the generation and maintenance of seizures and that in some cases the onset of seizures is outside of the hippocampus. 14,15 Because the neural network of the MTLE involves areas connected to the hippocampus and limbic system, there is reason to predict neuronal loss in the areas that participate in the network, both inside and outside the temporal lobe. We analyzed whole-brain gray matter concentration (GMC) in patients with MTLE using voxel-based morphometry (VBM). Our aim was to identify gray matter abnormalities in these patients, with special attention to areas functionally connected to the hippocampus and limbic system. 1379

2 METHODS SUBJECTS We recruited 49 healthy subjects who were State University of Campinas (Campinas, Brazil) employees and their acquaintances (17 men) with a mean ± SD age of 34±11 years, ranging from 19 to 60 years. We also studied 43 consecutive patients with chronic refractory MTLE. Twenty-two patients had leftsided MTLE (8 men) with a mean±sd age of 38±8 years, ranging from 18 to 54 years; 21 patients had right-sided MTLE (7 men) with a mean±sd age of 32±8 years, ranging from 17 to 55 years. There was no significant difference in age (F 2,89 =1.6; P=.20) or sex (Pearson 2 =0.02; P=.90) distribution between controls and patients with MTLE. All patients were referred from the outpatient epilepsy clinic of the State University of Campinas Hospital, where they were diagnosed based on their clinical history and physical examination results. Complementary investigation involved interictal electroencephalography (EEG), computed tomography, and MRI. All patients were diagnosed as having epileptic syndrome based on criteria from the International League Against Epilepsy. 16 Seizures were lateralized according to the medical history, a comprehensive neurological examination, interictal EEG, and prolonged video-eeg monitoring seizure onset. Visual analysis of the MRI studies revealed unilateral hippocampal atrophy in all included patients, a finding associated with HS. 17,18 All patients were considered to have drug-refractory MTLE with unilateral seizure onset and unilateral hippocampal atrophy. MRI ACQUISITION We acquired diagnostic MRI studies using a standardized protocol, 17 collecting T1-weighted images with either 1-mm isotropic voxels or mm voxels. All images were acquired with the same 2-T scanner (Prestige; Elscint, Haifa, Israel) using a spoiled gradient-echo sequence (time to repeat=22 ms; echo time=9 ms; flip angle=35 ; matrix= pixels). PREPROCESSING OF DATA The DICOM format images were transformed into ANALYZE format using MRIcro software (C.R.; 19 The VBM analysis was performed using SPM2 software (Wellcome Department of Imaging Neuroscience, London, England; 20 The SPM2 software s normalization stage was used to match the overall size and shape of each individual s MRI study to the T1.img template image supplied by SPM2. Default SPM2 settings were used for normalization parameter estimation (using 12 linear parameters and nonlinear basis functions as well as a brain mask to ensure that the fit was based on the shape of the brain rather than the surrounding scalp). Spatially normalized images were resliced to an isotropic 1.5 mm. Subsequent to normalization, the images from all participants were in a common stereotaxic space, allowing analysis between individuals and close correspondence to other neuroimaging studies. Next the images underwent segmentation of gray matter using SPM2 s built-in routines, which estimate the GMC for each voxel. In conventional VBM, the normalization process can enlarge atrophied regions when matching images from patients to stereotaxic space (the template image used in normalization is based on images from a neurologically healthy sample). Good et al 21 have proposed a technique for modulating the estimated concentration of tissue in segmented images based on the spatial deformations selected during normalization. This technique compensates for the deformation of the brain tissue during the normalization process, preserving the quantity of tissue (eg, gray matter) while ensuring a good spatial alignment between patients and controls. Therefore, we used the code developed by Good and colleagues 21 to modulate the GMC in the brains of participants. This modulation step was applied after the segmentation step. Finally, the images were convolved with a 10-mm isotropic gaussian kernel to minimize gyral interindividual variability. This smoothing creates images that are more normally distributed and permits voxelwise analysis. The resulting images were compared using the t test to search for differences in GMC between control subjects and patients with MTLE. Contrasts were defined to estimate the probability of each voxel being gray matter. STATISTICAL ANALYSIS Group differences for age were assessed using 1-way analysis of variance, and the sex distribution was evaluated with the 2 test. The normalized, segmented, modulated, and smoothed data were analyzed using SPM2 software. We conducted 2 analyses of GMC: one compared patients who had left-sided MTLE with the control participants, and the second compared those who had right-sided MTLE with controls. The parameters for these 2 comparisons were identical and were performed using 2-sample t tests. This analysis included grand mean scaling, proportional threshold masking (set to 0.8), and brain masking. The results from the analysis appear in a parametric map of the t statistic (SPM (t) ), and the SPM (t) is corrected for normal distribution (SPM (z) ). Our statistical threshold was a false discovery rate of 1% 22 with an extent threshold looking for clusters with at least 32 contiguous voxels. This technique attempts to control the rate of statistical false alarms during multiple statistical comparisons. In situations in which a real signal is present in the data, this technique typically offers increased statistical power compared with traditional techniques for controlling for familywise error (eg, the Bonferroni correction). In the context of VBM, a false discovery rate of 0.01 implies that approximately 1 of 100 voxels identified as statistically significant is actually a false alarm. RESULTS The SPM (t) and SPM (z) values are displayed in Table 1 and Table 2, revealing the regions of reduced GMC in patients with left-sided MTLE and right-sided MTLE as compared with control subjects. No regions of GMC excess were observed in patients with MTLE compared with controls, even with a liberal analysis performed without an extent threshold and an uncorrected threshold of P.05. The SPM (t) displayed in a normal T1-weighted MRI template is shown in the Figure. There was a significant reduction of GMC in patients with refractory MTLE that affected the hippocampus ipsilateral to the seizure focus and other regions beyond the medial temporal lobe. We observed a symmetrical pattern of GMC reduction in patients with left- and rightsided MTLE. Although the atrophied regions were similar in the 2 groups, the extent of statistically significant atrophy was greater in patients with left-sided MTLE. In patients with right-sided MTLE, we observed that the re- 1380

3 Table 1. -Based Morphometric Results: GMC Reduction in Patients With Right-Sided MTLE* Location (cor) k (equiv) (unc) (FWE cor) (FDR cor) t Statistic z Score (equiv) Coordinates (x, y, z) Right cerebellum ,-69,-36 Left cerebellum ,-83,-42 Left middle frontal gyrus ,-21, 44 Right temporal lateral isocortex ,-30,-20 Right caudate nucleus , 14, 15 Right thalamus ,-14, 12 Right cingulate gyrus , 39, 29 Posterior portion of right hippocampus ,-41, -2 Right temporo-occipital region ,-80, 3 Anterior portion of right hippocampus and right parahippocampal gyrus , 2,-32 Left parieto-occipital region ,-48, 36 Left thalamus ,-17, 9 Right middle frontal gyrus ,-18, 41 Right dorsal midbrain ,-36,-11 Abbreviations: cor, corrected; equiv, equivalent; FDR, false discovery rate; FWE, familywise error rate; GMC, gray matter concentration; MTLE, medial temporal lobe epilepsy; unc, uncorrected. * P values are corrected for entire volume with significance at P.01. The uncorrected P value was P.001 for all locations. size is 32. Table 2. -Based Morphometric Results: GMC Reduction in Patients With Left-Sided MTLE* Location (cor) k (equiv) P value (unc) (FWE cor) (FDR cor) t Statistic z Score (equiv) (unc) Coordinates (x, y, z) Right cerebellum ,-69,-35 Left cerebellum ,-84,-41 Posterior portion of left hippocampus ,-39, 3 Left frontal operculum , 32, 11 Left cingulate gyrus , -8, 47 Left insulae , 3, -5 Right parieto-occipital area ,-69, 41 Left thalamus ,-11, 20 Anterior portion of left hippocampus ,-15,-18 Left fornix ,-36, 11 Left parieto-occipital area ,-65, 30 Left inferior frontal gyrus , 38, 3 Left caudate , 5, 11 Right caudate , 11, 17 Dorsal midbrain ,-19,-14 Right thalamus ,-15, 17 Right cingulate gyrus ,-41, 54 Right occipital area ,-68, 3 Left superior frontal sulcus , 41, 32 Right frontal operculum , 27,-18 Abbreviations are given in the footnote to Table 1. * P values are corrected for entire volume with significance at P.01. size is 32. duction of GMC affected the right hippocampus and right parahippocampal gyrus, left and right hemispheres of the cerebellum, bilateral thalamus, right caudate nucleus, right temporal isocortex, right temporo-occipital region, left and right middle frontal gyri, dorsal midbrain, and left parieto-occipital region (Figure). In patients with leftsided MTLE, we observed a reduction of GMC in the left hippocampus and left parahippocampal gyrus, left insulae, left and right cingulate gyri, left and right frontal opercula, left and right thalami, left and right parietooccipital regions, left and right cerebellum, midbrain, and bilateral caudate nuclei. COMMENT We performed a VBM analysis of patients with chronic refractory MTLE and found a reduction in GMC in brain areas within and beyond the hippocampus and temporal lobe. We observed a GMC reduction in patients with 1381

4 7 Z 3 7 Z Figure. The parametric map of the t statistic depicts the location and the statistical significance of voxels, with a decreased density of gray matter in patients with right-sided (top row) and left-sided (bottom row) medial temporal lobe epilepsy compared with controls. The map illustrates a multislice display of coronal images of a T1 template of a normal brain. A color bar indicating the z score value is shown at the right. A parasagittal slice of the T1 template is also displayed at the right, showing the location of the slices. Left side of images corresponds to the right brain hemisphere, and right side corresponds to the left brain hemisphere. 4 right- or left-sided MTLE involving areas that are widely distributed in the brain, located not only within the temporal lobes but also in brain regions such as the diencephalon, insulae, midbrain, and other isocortical areas. The VBM analysis suggests that areas functionally and anatomically related to the hippocampus undergo volume reduction. We observed that the patients with right-sided MTLE had a symmetrical pattern of volume reduction compared with those who had left-sided MTLE. This suggests similar pathologic consequences in both hemispheres. However, we found that the extent of statistically significant GMC reduction was more widespread in patients with left-sided MTLE, affecting clusters with a larger number of voxels. This may reflect a different behavior of left-sided MTLE, not in terms of the structures involved but rather in the intensity of damage. In recent studies, Keller et al 23,24 observed that patients with MTLE showed significant alterations in GMC, either an increase or decrease of GMC in specific regions. They found that the hippocampus had a significant decrease in GMC in patients with MTLE compared with controls 23,24 and that the reduction of GMC in the hippocampus was not dependent on the time of seizures. The GMC reduction was also observed in regions such as the dorsal prefrontal cortex of the right brain hemisphere 24 as well as the bilateral thalamic, prefrontal, and cerebellar regions. 23 In turn, GMC reduction in these regions was associated with the duration of epilepsy. The authors observed that patients with MTLE showed a significant increase in GMC in the parahippocampal, pericallosal, and cerebellar regions, 24 and this was interpreted as a reflection of white matter atrophy or structural displacement due to cerebrospinal fluid expansion. The findings of Keller et al 23,24 were not consistent with a previous VBM study by Woermann et al, 25 who studied 10 patients with left-sided MTLE and HS and 10 patients who had MTLE without hippocampal atrophy. Woermann and colleagues found a decrease of GMC in only a few patients when comparing each individual with the control group. They did not observe a reduction of GMC when comparing the group of patients who had MTLE with the group of control subjects, but in patients with MTLE who had normal MRI results, they found an excess of GMC in the inner interface of the temporal posterior region. However, the small number of patients examined in their study 25 may mean that the null results observed in the group comparison were due to limited statistical power. The use of different techniques for image normalization can probably explain the different results between our study and those by Keller et al. 23,24 In their studies, Keller and colleagues observed a widespread GMC reduction in the brains of patients with MTLE but did not observe GMC reduction in areas that are known from conventional morphometric studies to be atrophied in these patients, such as the parahippocampal gyrus, 7-13 thalamus, 26 and caudate nuclei. 27 The detection of GMC changes in the hippocampal region is hampered by the lack of sharp macroscopic boundaries between gray and white matter in the temporal lobe. 25,28 Recently described techniques have aimed to improve normalization and segmentation procedures and have increased the sensitivity of VBM analysis. 28 These technical improvements together with a larger sample size have made it possible to identify GMC differences in the medial temporal lobe region in patients with Alzheimer disease 29 and in healthy subjects who perform repetitive tasks. 30 This may partly explain the discrepancies between the VBM studies of MTLE described previously Normalization is a necessary but potentially treacherous stage of VBM analysis. Normalization is required to ensure that the same brain regions can be compared between individuals, but it can also reduce the structural abnormalities that will be investigated with VBM, transforming the shape of the brain image during the process and as a consequence artificially inflating atrophied areas (ie, ensuring a better spatial match between individuals but consequently yielding less difference in GMC between patients and controls). All prior VBM studies of MTLE have included nonlinear functions during normalization. Nonlinear functions greatly improve the fit of normalization but can also cause dramatic distortions to abnormal tissue. 21 We used a modulation of gray matter volume based on the warping applied during normalization. 21 This technique allows us to use normalization while minimizing the danger of distorting the structural abnormalities in the brains of the patients. Similarly, we used the false discovery rate to increase the sensitivity of multiple voxelwise comparisons, controlling 1382

5 for familywise error while providing a reasonable level of statistical power. 22 These differences in the methods used may well explain the different results we obtained in comparison with previous studies. The regions of GMC reduction beyond the hippocampus in patients with MTLE are not completely defined, specifically outside the temporal lobe and in the diencephalon. One possible explanation is that the areas of GMC reduction and therefore neuronal damage are those contained within the path observed in neurophysiologic studies as the mesolimbic route of seizure propagation. Spencer 14 revisited the issue of neural networks as a basis for the generation and maintenance of seizures, 15 describing possible routes for seizure spread formed by anatomically connected cortical and subcortical structures. 14,15 According to this theory, the hyperexcitability associated with seizures reverberates in the whole network. 14 If MTLE is indeed an expression of dysfunction in the neural networks, one would expect to find atrophy throughout the structures of the network. Animal and functional studies have shown that the hippocampus is densely connected to the parahippocampal region 6,31,32 and to thalamocortical circuits These regions are expected to be part of the network involving the hippocampus, which is affected in MTLE. In this study, we have observed a pattern of GMC atrophy in patients with MTLE that involves the hippocampus, parahippocampal region, and thalamocortical structures. We have found GMC reduction in regions that are functionally and anatomically connected to the medial temporal limbic system. The course of treatment following MRI varied for our patients: only a subset required surgical resections, and only a portion of these had preoperative assessment using single-photon emission computed tomography (a technique that can identify the regions most heavily activated during a seizure). Therefore, we did not have access to histological or blood flow analysis for these patients. However, because they were homogeneous in terms of having drugrefractory MTLE with unilateral MRI signs of HS and without additional lesions, they could be comparable with patients with MTLE who were evaluated in other studies. 1,4,14 We have observed that different areas within the brains of patients with MTLE exhibit GMC reduction. This group of structures has an underlying anatomical order; most of them are heavily connected and are associated with the hippocampus or pertain to the limbic system. The data presented in this article are unable to prove whether these structures are actually interconnected and part of a network. Resolving the relationship between these regions will require evaluating the functional connectivity of the structures and examining the white matter tracts between these areas. We have shown that patients with drug-refractory MTLE exhibit a GMC that is not restricted to the hippocampus but rather affects the brain in a widespread and organized fashion. However, this is an observation based on patients with a long history of poor seizure control and long-term use of antiepileptic drugs. The influence of long-term medication use or recurrent seizures on the pattern of GMC reduction is not yet understood. Moreover, it is not clear whether the pattern of GMC reduction we have observed applies to patients with other forms of refractory epilepsy. It is still unclear why some regions that are synchronously activated by the proposed network exhibit GMC reduction, 14 whereas other regions do not. This may reflect different susceptibility of brain regions to the excitotoxic effects of seizures. In addition, the presence of GMC reduction in regions that are not directly linked to the hippocampus and limbic system 14 may indicate that multiple networks are involved in maintaining and spreading seizures or that an undiscovered network lies beneath the pattern of seizure propagation in MTLE. However, the observation that GMC reduction primarily affects areas with connections to the medial portion of the temporal lobe points to a possible route of neuronal damage located within the networks involved in seizure generation and the maintenance of seizures in patients with MTLE. Accepted for publication: March 25, Correspondence: Li M. Li, MD, PhD, Department of Neurology, Faculty of Medicine, UNICAMP, , Campinas, SP, Brazil (limin@fcm.unicamp.br). Author Contributions: Study concept and design: Bonilha, Pereira, Rio, Cendes, and Li. Acquisition of data: Bonilha, Castellano, Pereira, Rio, Cendes, and Li. Analysis and interpretation of data: Bonilha, Rorden, and Li. Drafting of the manuscript: Bonilha, Pereira, Rio, and and Li. Critical revision of the manuscript for important intellectual content: Bonilha, Rorden, Castellano, Cendes, and Li. Statistical expertise: Bonilha, Rorden, Castellano, and Li. Obtained funding: Bonilha, Cendes, and Li. Administrative, technical and material support: Pereira, Rio, and Li. Study supervision: Cendes and Li. Funding/Support:This research is supported by grant 00/ from the Foundation of Support to the Research of the State of São Paulo, São Paulo, Brazil. REFERENCES 1. Babb TL, Brown WJ. Pathological findings in epilepsy. In: Engel J Jr, ed. Surgical Treatment of the Epilepsies. New York, NY: Raven Press; 1987: Margerison JH, Corselis JAN. Epilepsy and the temporal lobes: a clinical electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain. 1966;89: Jack CR, Sharbrough FW, Twomey CK, et al. Temporal lobe seizures: lateralization with MR volume measurements of the hippocampal formation. Radiology. 1990;175: Cendes F, Andermann F, Gloor P, et al. MRI volumetric measurements of amygdala and hippocampus in temporal lobe epilepsy. Neurology. 1993;43: Lencz T, McCarthy G, Bronen RA, et al. Quantitative magnetic resonance imaging in temporal lobe epilepsy: relationship to neuropathology and neuropsychological function. Ann Neurol. 1992;31: Squire LR, Zola-Morgan S. The medial temporal lobe memory system. Science. 1991;253: Bernasconi N, Bernasconi A, Andermann F, Dubeau F, Feindel W, Reutens DC. Entorhinal cortex in temporal lobe epilepsy: a quantitative MRI study. Neurology. 1999;52: Bernasconi N, Bernasconi A, Caramanos Z, Andermann F, Dubeau F, Arnold DL. Morphometric MRI analysis of the parahippocampal region in temporal lobe epilepsy. Ann N Y Acad Sci. 2000;911: Bernasconi N, Bernasconi A, Caramanos Z, et al. Entorhinal cortex atrophy in epilspsy patients exhibiting normal hippocampal volumes. Neurology. 2001; 56: Bernasconi N, Bernasconi A, Caramanos Z, Antel SB, Andermann F, Arnold DL. Mesial temporal damage in temporal lobe epilepsy: a volumetric MRI study of 1383

6 the hippocampus, amygdala and parahippocampal region. Brain. 2003;126: Jutila L, Ylinen A, Partanen K, et al. MR volumetry of the entorhinal, perirhinal, and temporopolar cortices in drug-refractory temporal lobe epilepsy. AJNR Am J Neuroradiol. 2001;22: Salmenpera T, Kalviainen R, Partanen K, Mervaala E, Pitkanen A. MRI volumetry of the hippocampus, amygdala, entorhinal cortex, and perirhinal cortex after status epilepticus. Epilepsy Res. 2000;40: Salmenpera T, Kalviainen R,Partanen K, Pitkanen A.Quantitative MRI volumetry of the entorhinal cortex in temporal lobe epilepsy. Seizure. 2000;9: Spencer SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia. 2002;43: Wennberg R, Arruda F, Quesney LF, Olivier A. Preeminence of extrahippocampal structures in the generation of mesial temporal seizures: evidence from human depth electrode recordings. Epilepsia. 2002;43: Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia. 1989;30: Kobayashi E, D Agostino MD, Lopes-Cendes I, et al. Hippocampal atrophy and T2-weighted signal changes in familial mesial temporal lobe epilepsy. Neurology. 2003;60: Kobayashi E, Lopes-Cendes I, Guerreiro CA, Sousa SC, Guerreiro MM, Cendes F. Seizure outcome and hippocampal atrophy in familial mesial temporal lobe epilepsy. Neurology. 2001;56: Rorden C, Brett M. Stereotaxic display of brain lesions. Behav Neurol. 2000;12: Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp. 1995;2: Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage. 2001;14: Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional neuroimaging using false discovery rate. Neuroimage. 2002;15: Keller SS, Wieshmann UC, Mackay CE, Denby CE, Webb J, Roberts N. based morphometry of grey matter abnormalities in patients with medically intractable temporal lobe epilepsy: effects of side of seizure onset and epilepsy duration. J Neurol Neurosurg Psychiatry. 2002;73: Keller SS, Mackay CE, Barrick TR, Wieshmann UC, Howard MA, Roberts N. based morphometric comparison of hippocampal and extrahippocampal abnormalities in patients with left and right hippocampal atrophy. Neuroimage. 2002; 16: Woermann FG, Free SL, Koepp MJ, Ashburner J, Duncan JS. -by-voxel comparison of automatically segmented cerebral gray matter a rater-independent comparison of structural MRI in patients with epilepsy. Neuroimage. 1999; 10: Natsume J, Bernasconi N, Andermann F, Bernasconi A. MRI volumetry of the thalamus in temporal, extratemporal, and idiopathic generalized epilepsy. Neurology. 2003;60: Dreifuss S, Vingerhoets FJ, Lazeyras F, et al. Volumetric measurements of subcortical nuclei in patients with temporal lobe epilepsy. Neurology. 2001;57: Ashburner J, Friston KJ. -based morphometry the methods. Neuroimage. 2000;11: Baron JC, Chetelat G, Desgranges B, et al. In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer s disease. Neuroimage. 2001; 14: Maguire EA, Gadian DG, Johnsrude IS, et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U. S. A. 2000;97: Kelly ME, McIntyre DC. Perirhinal cortex involvement in limbic kindled seizures. Epilepsy Res. 1996;26: McIntyre DC, Kelly ME. The parahippocampal cortices and kindling. Ann N Y Acad Sci. 2000;911: Bertram EH, Mangan PS, Zhang D, Scott CA, Williamson JM. The midline thalamus: alterations and a potential role in limbic epilepsy. Epilepsia. 2001;42: Bertram EH, Scott C. The pathological substrate of limbic epilepsy: neuronal loss in the medial dorsal thalamic nucleus as the consistent change. Epilepsia. 2000; 41(suppl 6):S3-S Bertram EH. Functional anatomy of spontaneous seizures in a rat model of limbic epilepsy. Epilepsia. 1997;38: Lothman EW, Bertram EH III, Stringer JL. Functional anatomy of hippocampal seizures. Prog Neurobiol. 1991;37: Zhang DX, Bertram EH. Midline thalamic region: widespread excitatory input to the entorhinal cortex and amygdala. J Neurosci. 2002;22:

Morphometric MRI Analysis of the Parahippocampal Region in Temporal Lobe Epilepsy

Morphometric MRI Analysis of the Parahippocampal Region in Temporal Lobe Epilepsy Morphometric MRI Analysis of the Parahippocampal Region in Temporal Lobe Epilepsy NEDA BERNASCONI, a ANDREA BERNASCONI, ZOGRAFOS CARAMANOS, FREDERICK ANDERMANN, FRANÇOIS DUBEAU, AND DOUGLAS L. ARNOLD Department

More information

Successful Treatment of Mesial Temporal Lobe Epilepsy with Bilateral Hippocampal Atrophy and False Temporal Scalp Ictal Onset: A case report

Successful Treatment of Mesial Temporal Lobe Epilepsy with Bilateral Hippocampal Atrophy and False Temporal Scalp Ictal Onset: A case report Hiroshima J. Med. Sci. Vol. 61, No. 2, 37~41, June, 2012 HIJM 61 7 37 Successful Treatment of Mesial Temporal Lobe Epilepsy with Bilateral Hippocampal Atrophy and False Temporal Scalp Ictal Onset: A case

More information

MR Volumetry of the Entorhinal, Perirhinal, and Temporopolar Cortices in Drug-Refractory Temporal Lobe Epilepsy

MR Volumetry of the Entorhinal, Perirhinal, and Temporopolar Cortices in Drug-Refractory Temporal Lobe Epilepsy AJNR Am J Neuroradiol 22:1490 1501, September 2001 MR Volumetry of the Entorhinal, Perirhinal, and Temporopolar Cortices in Drug-Refractory Temporal Lobe Epilepsy Leena Jutila, Aarne Ylinen, Kaarina Partanen,

More information

The Asymmetric Mamillary Body: Association with Medial Temporal Lobe Disease Demonstrated with MR

The Asymmetric Mamillary Body: Association with Medial Temporal Lobe Disease Demonstrated with MR The Mamillary Body: Association with Medial Temporal Lobe Disease Demonstrated with MR Alexander C. Mamourian, Lawrence Rodichok, and Javad Towfighi PURPOSE: To determine whether mamillary body atrophy

More information

Intracranial Studies Of Human Epilepsy In A Surgical Setting

Intracranial Studies Of Human Epilepsy In A Surgical Setting Intracranial Studies Of Human Epilepsy In A Surgical Setting Department of Neurology David Geffen School of Medicine at UCLA Presentation Goals Epilepsy and seizures Basics of the electroencephalogram

More information

Medial temporal lobe epilepsy is associated with neuronal fibre loss and paradoxical increase in structural connectivity of limbic structures

Medial temporal lobe epilepsy is associated with neuronal fibre loss and paradoxical increase in structural connectivity of limbic structures < Additional materials are published online only. To view these files please visit the journal online (http://jnnp.bmj. com/content/83/9.toc). 1 Department of Neurosciences, Medical University of South

More information

Automated detection of abnormal changes in cortical thickness: A tool to help diagnosis in neocortical focal epilepsy

Automated detection of abnormal changes in cortical thickness: A tool to help diagnosis in neocortical focal epilepsy Automated detection of abnormal changes in cortical thickness: A tool to help diagnosis in neocortical focal epilepsy 1. Introduction Epilepsy is a common neurological disorder, which affects about 1 %

More information

The Requirement for Ictal EEG Recordings Prior to Temporal Lobe Epilepsy Surgery

The Requirement for Ictal EEG Recordings Prior to Temporal Lobe Epilepsy Surgery Page 1 of 7 Archives of Neurology Issue: Volume 58(4), April 2001, pp 678-680 Copyright: Copyright 2001 by the American Medical Association. All Rights Reserved. Applicable FARS/DFARS Restrictions Apply

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,100 116,000 120M Open access books available International authors and editors Downloads Our

More information

Cortico-Thalamic Connections and Temporal Lobe Epilepsy: An Evolving Story

Cortico-Thalamic Connections and Temporal Lobe Epilepsy: An Evolving Story Current Literature In Clinical Science Cortico-Thalamic Connections and Temporal Lobe Epilepsy: An Evolving Story Mapping Thalamocortical Network Pathology in Temporal Lobe Epilepsy. Bernhardt BC, Bernasconi

More information

Brain gray matter volume changes associated with motor symptoms in patients with Parkinson s disease

Brain gray matter volume changes associated with motor symptoms in patients with Parkinson s disease Kang et al. Chinese Neurosurgical Journal (2015) 1:9 DOI 10.1186/s41016-015-0003-6 RESEARCH Open Access Brain gray matter volume changes associated with motor symptoms in patients with Parkinson s disease

More information

Surgical outcome in patients with epilepsy and dual pathology

Surgical outcome in patients with epilepsy and dual pathology Brain (1999), 122, 799 805 Surgical outcome in patients with epilepsy and dual pathology L. M. Li, 1 F. Cendes, 1 F. Andermann, 1 C. Watson, 2 D. R. Fish, 3 M. J. Cook, 4 F. Dubeau, 1 J. S. Duncan, 3 S.

More information

Voxel-based morphometry in clinical neurosciences

Voxel-based morphometry in clinical neurosciences Voxel-based morphometry in clinical neurosciences Ph.D. Thesis Ádám Feldmann Department of Behavioural Sciences Leader of Doctoral School: Prof. Dr.Sámuel Komoly, D.Sc. Program leader: Prof. Dr.Sámuel

More information

Magnetic resonance spectroscopy of the thalamus in patients with mesial temporal lobe epilepsy and hippocampal sclerosis

Magnetic resonance spectroscopy of the thalamus in patients with mesial temporal lobe epilepsy and hippocampal sclerosis Epileptology in Czech Republic Epileptic Disord 2007; 9 (Suppl. 1): S59-67 Magnetic resonance spectroscopy of the thalamus in patients with mesial temporal lobe epilepsy and hippocampal sclerosis Dagmar

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Redlich R, Opel N, Grotegerd D, et al. Prediction of individual response to electroconvulsive therapy via machine learning on structural magnetic resonance imaging data. JAMA

More information

Chapter 3. Structure and Function of the Nervous System. Copyright (c) Allyn and Bacon 2004

Chapter 3. Structure and Function of the Nervous System. Copyright (c) Allyn and Bacon 2004 Chapter 3 Structure and Function of the Nervous System 1 Basic Features of the Nervous System Neuraxis: An imaginary line drawn through the center of the length of the central nervous system, from the

More information

Abnormal cerebral structure in juvenile myoclonic epilepsy demonstrated with voxel-based analysis of MRI

Abnormal cerebral structure in juvenile myoclonic epilepsy demonstrated with voxel-based analysis of MRI Brain (1999), 122, 2101 2107 Abnormal cerebral structure in juvenile myoclonic epilepsy demonstrated with voxel-based analysis of MRI F. G. Woermann, S. L. Free, M. J. Koepp, S. M. Sisodiya and J. S. Duncan

More information

Is DTI Increasing the Connectivity Between the Magnet Suite and the Clinic?

Is DTI Increasing the Connectivity Between the Magnet Suite and the Clinic? Current Literature In Clinical Science Is DTI Increasing the Connectivity Between the Magnet Suite and the Clinic? Spatial Patterns of Water Diffusion Along White Matter Tracts in Temporal Lobe Epilepsy.

More information

Blurring the Lines Between Lesional and Nonlesional MRI

Blurring the Lines Between Lesional and Nonlesional MRI Current Literature In Clinical Science Blurring the Lines Between Lesional and Nonlesional MRI Blurring in Patients With Temporal Lobe Epilepsy: Clinical, High-field Imaging and Ultrastructural Study.

More information

ORIGINAL CONTRIBUTION. Composite SISCOM Perfusion Patterns in Right and Left Temporal Seizures

ORIGINAL CONTRIBUTION. Composite SISCOM Perfusion Patterns in Right and Left Temporal Seizures ORIGINAL CONTRIBUTION Composite SISCOM Perfusion Patterns in Right and Left Temporal Seizures R. Edward Hogan, MD; Kitti Kaiboriboon, MD; Mary E. Bertrand, MD; Venkat Rao, MD; Jayant Acharya, MD Objective:

More information

Title:Atypical language organization in temporal lobe epilepsy revealed by a passive semantic paradigm

Title:Atypical language organization in temporal lobe epilepsy revealed by a passive semantic paradigm Author's response to reviews Title:Atypical language organization in temporal lobe epilepsy revealed by a passive semantic paradigm Authors: Julia Miro (juliamirollado@gmail.com) Pablo Ripollès (pablo.ripolles.vidal@gmail.com)

More information

Multimodal Imaging in Extratemporal Epilepsy Surgery

Multimodal Imaging in Extratemporal Epilepsy Surgery Open Access Case Report DOI: 10.7759/cureus.2338 Multimodal Imaging in Extratemporal Epilepsy Surgery Christian Vollmar 1, Aurelia Peraud 2, Soheyl Noachtar 1 1. Epilepsy Center, Dept. of Neurology, University

More information

Typical childhood absence seizures are associated with thalamic activation

Typical childhood absence seizures are associated with thalamic activation Original article Epileptic Disord 005; 7 (): 373-7 Typical childhood absence seizures are associated with thalamic activation A. Labate 1, R.S. Briellmann 1,, D.F. Abbott 1,, A.B. Waites 1,, Graeme D.

More information

Supplementary Information Methods Subjects The study was comprised of 84 chronic pain patients with either chronic back pain (CBP) or osteoarthritis

Supplementary Information Methods Subjects The study was comprised of 84 chronic pain patients with either chronic back pain (CBP) or osteoarthritis Supplementary Information Methods Subjects The study was comprised of 84 chronic pain patients with either chronic back pain (CBP) or osteoarthritis (OA). All subjects provided informed consent to procedures

More information

Fig. 1. Localized single voxel proton MR spectroscopy was performed along the long axis of right hippocampus after extension of patient s head to

Fig. 1. Localized single voxel proton MR spectroscopy was performed along the long axis of right hippocampus after extension of patient s head to 125 A B C Fig. 1. Localized single voxel proton MR spectroscopy was performed along the long axis of right hippocampus after extension of patient s head to obtain entire dimension of the hippocampal body.

More information

A pproximately one million persons suffer a traumatic

A pproximately one million persons suffer a traumatic 984 PAPER Traumatic brain injury and grey matter concentration: a preliminary voxel based morphometry study S D Gale, L Baxter, N Roundy, S C Johnson... See end of article for authors affiliations... Correspondence

More information

Systems Neuroscience Dan Kiper. Today: Wolfger von der Behrens

Systems Neuroscience Dan Kiper. Today: Wolfger von der Behrens Systems Neuroscience Dan Kiper Today: Wolfger von der Behrens wolfger@ini.ethz.ch 18.9.2018 Neurons Pyramidal neuron by Santiago Ramón y Cajal (1852-1934, Nobel prize with Camillo Golgi in 1906) Neurons

More information

Procedia - Social and Behavioral Sciences 159 ( 2014 ) WCPCG 2014

Procedia - Social and Behavioral Sciences 159 ( 2014 ) WCPCG 2014 Available online at www.sciencedirect.com ScienceDirect Procedia - Social and Behavioral Sciences 159 ( 2014 ) 743 748 WCPCG 2014 Differences in Visuospatial Cognition Performance and Regional Brain Activation

More information

Brain anatomy and artificial intelligence. L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia

Brain anatomy and artificial intelligence. L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia Brain anatomy and artificial intelligence L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia The Fourth Conference on Artificial General Intelligence August 2011 Architectures

More information

Usefulness of Single Voxel Proton MR Spectroscopy in the Evaluation of Hippocampal Sclerosis

Usefulness of Single Voxel Proton MR Spectroscopy in the Evaluation of Hippocampal Sclerosis Usefulness of Single Voxel Proton MR Spectroscopy in the Evaluation of Hippocampal Sclerosis 1, 2, 3 Kee-Hyun Chang, MD Hong Dae Kim, MD 1 Sun-Won Park, MD 1 In Chan Song, PhD 2 In Kyu Yu, MD 1 1, 2, 3

More information

Early seizure propagation from the occipital lobe to medial temporal structures and its surgical implication

Early seizure propagation from the occipital lobe to medial temporal structures and its surgical implication Original article Epileptic Disord 2008; 10 (4): 260-5 Early seizure propagation from the occipital lobe to medial temporal structures and its surgical implication Naotaka Usui, Tadahiro Mihara, Koichi

More information

Cerebral MRI as an important diagnostic tool in temporal lobe epilepsy

Cerebral MRI as an important diagnostic tool in temporal lobe epilepsy Cerebral MRI as an important diagnostic tool in temporal lobe epilepsy Poster No.: C-2190 Congress: ECR 2014 Type: Educational Exhibit Authors: A. Puiu, D. Negru; Iasi/RO Keywords: Neuroradiology brain,

More information

Comparing event-related and epoch analysis in blocked design fmri

Comparing event-related and epoch analysis in blocked design fmri Available online at www.sciencedirect.com R NeuroImage 18 (2003) 806 810 www.elsevier.com/locate/ynimg Technical Note Comparing event-related and epoch analysis in blocked design fmri Andrea Mechelli,

More information

Temporal Lobe Epilepsy Lateralization Based on MR Image Intensity and Registration Features

Temporal Lobe Epilepsy Lateralization Based on MR Image Intensity and Registration Features Temporal Lobe Epilepsy Lateralization Based on MR Image Intensity and Registration Features S. Duchesne 1, N. Bernasconi 1, A. Janke 2, A. Bernasconi 1, and D.L. Collins 1 1 Montreal Neurological Institute,

More information

Quantitative MRI volumetry of the entorhinal cortex in temporal lobe epilepsy

Quantitative MRI volumetry of the entorhinal cortex in temporal lobe epilepsy Seizure 2000; 9: 208 215 doi: 10.1053/seiz.1999.0373, available online at http://www.idealibrary.com on Quantitative MRI volumetry of the entorhinal cortex in temporal lobe epilepsy TUULI SALMENPERÄ, REETTA

More information

fmri and Voxel-based Morphometry in Detection of Early Stages of Alzheimer's Disease

fmri and Voxel-based Morphometry in Detection of Early Stages of Alzheimer's Disease fmri and Voxel-based Morphometry in Detection of Early Stages of Alzheimer's Disease Andrey V. Sokolov 1,3, Sergey V. Vorobyev 2, Aleksandr Yu. Efimtcev 1,3, Viacheslav S. Dekan 1,3, Gennadiy E. Trufanov

More information

Investigation of Subcortical Gray Matter in Patients with Non-lesional Neocortical Focal Epilepsy

Investigation of Subcortical Gray Matter in Patients with Non-lesional Neocortical Focal Epilepsy Original Article 124 Investigation of Subcortical Gray Matter in Patients with Non-lesional Neocortical Focal Epilepsy Ying-Chi Fan 1, Syu-Jyun Peng 2,3, Tomor Harnod 4, Chien-Chun Huang 3, Yue-Loong Hsin

More information

Supporting online material. Materials and Methods. We scanned participants in two groups of 12 each. Group 1 was composed largely of

Supporting online material. Materials and Methods. We scanned participants in two groups of 12 each. Group 1 was composed largely of Placebo effects in fmri Supporting online material 1 Supporting online material Materials and Methods Study 1 Procedure and behavioral data We scanned participants in two groups of 12 each. Group 1 was

More information

Methods for Normalization of Hippocampal Volumes Measured with MR

Methods for Normalization of Hippocampal Volumes Measured with MR Methods for Normalization of Hippocampal Volumes Measured with MR S. L. Free, P. S. Bergin, D. R. Fish, M. J. Cook, S. D. Shorvon, and J. M. Stevens PURPOSE: To investigate the use of six cerebral measures

More information

Funding: NIDCF UL1 DE019583, NIA RL1 AG032119, NINDS RL1 NS062412, NIDA TL1 DA

Funding: NIDCF UL1 DE019583, NIA RL1 AG032119, NINDS RL1 NS062412, NIDA TL1 DA The Effect of Cognitive Functioning, Age, and Molecular Variables on Brain Structure Among Carriers of the Fragile X Premutation: Deformation Based Morphometry Study Naomi J. Goodrich-Hunsaker*, Ling M.

More information

An MR Protocol for Presurgical Evaluation of Patients with Complex Partial Seizures of Temporal Lobe Origin

An MR Protocol for Presurgical Evaluation of Patients with Complex Partial Seizures of Temporal Lobe Origin An MR Protocol for Presurgical Evaluation of Patients with Complex Partial Seizures of Temporal Lobe Origin Eric Achten, Paul Boon, John De Poorter, Luc Calliauw, Tom Van De Kerckhove, Jacques De Reuck,

More information

Visual Rating Scale Reference Material. Lorna Harper Dementia Research Centre University College London

Visual Rating Scale Reference Material. Lorna Harper Dementia Research Centre University College London Visual Rating Scale Reference Material Lorna Harper Dementia Research Centre University College London Background The reference materials included in this document were compiled and used in relation to

More information

Subcortical and cerebellar atrophy in mesial temporal lobe epilepsy revealed by automatic segmentation

Subcortical and cerebellar atrophy in mesial temporal lobe epilepsy revealed by automatic segmentation Epilepsy Research (2008) xxx, xxx xxx journal homepage: www.elsevier.com/locate/epilepsyres Subcortical and cerebellar atrophy in mesial temporal lobe epilepsy revealed by automatic segmentation Carrie

More information

Telencephalon (Cerebral Hemisphere)

Telencephalon (Cerebral Hemisphere) Telencephalon (Cerebral Hemisphere) OUTLINE The Cortex - Lobes, Sulci & Gyri - Functional Subdivisions - Limbic Lobe & Limbic System The Subcortex - Basal Ganglia - White Matter (Internal Capsule) - Relations

More information

The importance of accurate anatomic assessment for the volumetric analysis of the amygdala

The importance of accurate anatomic assessment for the volumetric analysis of the amygdala Brazilian Journal of Medical and Biological Research (2005) 38: 409-418 Volumetric analysis of the amygdala ISSN 0100-879X 409 The importance of accurate anatomic assessment for the volumetric analysis

More information

doi: /brain/awq006 Brain 2010: 133; Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection

doi: /brain/awq006 Brain 2010: 133; Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection doi:10.1093/brain/awq006 Brain 2010: 133; 1186 1199 1186 BRAIN A JOURNAL OF NEUROLOGY Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection Silvia B. Bonelli, 1,2

More information

Cerebral Cortex 1. Sarah Heilbronner

Cerebral Cortex 1. Sarah Heilbronner Cerebral Cortex 1 Sarah Heilbronner heilb028@umn.edu Want to meet? Coffee hour 10-11am Tuesday 11/27 Surdyk s Overview and organization of the cerebral cortex What is the cerebral cortex? Where is each

More information

Do seizures beget seizures?

Do seizures beget seizures? Does MTLE cause progressive neurocognitive damage? Andrew Bleasel Westmead Do seizures beget seizures? The tendency of the disease is toward self-perpetuation; each attack facilitates occurrence of another

More information

Electro-clinical manifestations of the epilepsy associated to the different anatomical variants of hypothalamic hamartomas

Electro-clinical manifestations of the epilepsy associated to the different anatomical variants of hypothalamic hamartomas Electro-clinical manifestations of the epilepsy associated to the different anatomical variants of hypothalamic hamartomas Alberto JR Leal Hospital Fernando Fonseca, Dep. Neurology Lisbon. Abstract Objective

More information

Supplemental Information. Triangulating the Neural, Psychological, and Economic Bases of Guilt Aversion

Supplemental Information. Triangulating the Neural, Psychological, and Economic Bases of Guilt Aversion Neuron, Volume 70 Supplemental Information Triangulating the Neural, Psychological, and Economic Bases of Guilt Aversion Luke J. Chang, Alec Smith, Martin Dufwenberg, and Alan G. Sanfey Supplemental Information

More information

Case reports functional imaging in epilepsy

Case reports functional imaging in epilepsy Seizure 2001; 10: 157 161 doi:10.1053/seiz.2001.0552, available online at http://www.idealibrary.com on Case reports functional imaging in epilepsy MARK P. RICHARDSON Medical Research Council Fellow, Institute

More information

Association between Size of the Lateral Ventricle and Asymmetry of the Fornix in Patients with Temporal Lobe Epilepsy

Association between Size of the Lateral Ventricle and Asymmetry of the Fornix in Patients with Temporal Lobe Epilepsy AJNR Am J Neuroradiol 19:9 13, January 1998 Association between Size of the Lateral Ventricle and Asymmetry of the Fornix in Patients with Temporal Lobe Epilepsy Alexander C. Mamourian, Charles H. Cho,

More information

Resistance to forgetting associated with hippocampus-mediated. reactivation during new learning

Resistance to forgetting associated with hippocampus-mediated. reactivation during new learning Resistance to Forgetting 1 Resistance to forgetting associated with hippocampus-mediated reactivation during new learning Brice A. Kuhl, Arpeet T. Shah, Sarah DuBrow, & Anthony D. Wagner Resistance to

More information

A voxel-based morphometric study of nondemented adults with Down Syndrome

A voxel-based morphometric study of nondemented adults with Down Syndrome NeuroImage 20 (2003) 393 403 www.elsevier.com/locate/ynimg Research Article A voxel-based morphometric study of nondemented adults with Down Syndrome Nathan S. White, a Michael T. Alkire, a and Richard

More information

Brain Mapping of Episodic Memory in Patients with Medial Temporal Lobe Epilepsy Using Activation Positron Emission Tomography

Brain Mapping of Episodic Memory in Patients with Medial Temporal Lobe Epilepsy Using Activation Positron Emission Tomography Brain Mapping of Episodic Memory in Patients with Medial Temporal Lobe Epilepsy Using Activation Positron Emission Tomography Hyunwoo Nam, M.D., Sang-Kun Lee, M.D., Dong Soo Lee, M.D.*, Jae Sung Lee, M.S.*,

More information

P. Hitchcock, Ph.D. Department of Cell and Developmental Biology Kellogg Eye Center. Wednesday, 16 March 2009, 1:00p.m. 2:00p.m.

P. Hitchcock, Ph.D. Department of Cell and Developmental Biology Kellogg Eye Center. Wednesday, 16 March 2009, 1:00p.m. 2:00p.m. Normal CNS, Special Senses, Head and Neck TOPIC: CEREBRAL HEMISPHERES FACULTY: LECTURE: READING: P. Hitchcock, Ph.D. Department of Cell and Developmental Biology Kellogg Eye Center Wednesday, 16 March

More information

SWI including phase and magnitude images

SWI including phase and magnitude images On-line Table: MRI imaging recommendation and summary of key features Sequence Pathologies Visible Key Features T1 volumetric high-resolution whole-brain reformatted in axial, coronal, and sagittal planes

More information

epilepticus (SE) or trauma. Between this injury and the emergence of recurrent

epilepticus (SE) or trauma. Between this injury and the emergence of recurrent Introduction Epilepsy is one of the oldest medical disorders known. The word epilepsy derived from the Greek word epilamhanein, meaning to be seized or to be overwhelmed by surprise. Epilepsy is one of

More information

LIMBIC SYSTEM. Dr. Amani A. Elfaki Associate Professor Department of Anatomy

LIMBIC SYSTEM. Dr. Amani A. Elfaki Associate Professor Department of Anatomy LIMBIC SYSTEM Dr. Amani A. Elfaki Associate Professor Department of Anatomy Learning Objectives Define the limbic system Identify the parts of the limbic system Describe the circulation of the limbic system

More information

CISC 3250 Systems Neuroscience

CISC 3250 Systems Neuroscience CISC 3250 Systems Neuroscience Levels of organization Central Nervous System 1m 10 11 neurons Neural systems and neuroanatomy Systems 10cm Networks 1mm Neurons 100μm 10 8 neurons Professor Daniel Leeds

More information

(Electric) Source Analysis Kanjana Unnwongse, MD

(Electric) Source Analysis Kanjana Unnwongse, MD (Electric) Source Analysis Kanjana Unnwongse, MD Ruhr Epileptologie, Universtitätsklinikum Knappschaftskrankenhaus Bochum 1 What is source analysis? Source analysis or electric and magnetic source imaging

More information

Supplementary materials. Appendix A;

Supplementary materials. Appendix A; Supplementary materials Appendix A; To determine ADHD diagnoses, a combination of Conners' ADHD questionnaires and a semi-structured diagnostic interview was used(1-4). Each participant was assessed with

More information

Nature Neuroscience doi: /nn Supplementary Figure 1. Characterization of viral injections.

Nature Neuroscience doi: /nn Supplementary Figure 1. Characterization of viral injections. Supplementary Figure 1 Characterization of viral injections. (a) Dorsal view of a mouse brain (dashed white outline) after receiving a large, unilateral thalamic injection (~100 nl); demonstrating that

More information

Maguire (2000) Navigation-related structural changes in the hippocampi of taxi drivers.

Maguire (2000) Navigation-related structural changes in the hippocampi of taxi drivers. Maguire (2000) Navigation-related structural changes in the hippocampi of taxi drivers. Maguire (2000) Your Amazing Brain! What do a London taxi & a seahorse have to do with your brain? This study looks

More information

Do women with fragile X syndrome have problems in switching attention: Preliminary findings from ERP and fmri

Do women with fragile X syndrome have problems in switching attention: Preliminary findings from ERP and fmri Brain and Cognition 54 (2004) 235 239 www.elsevier.com/locate/b&c Do women with fragile X syndrome have problems in switching attention: Preliminary findings from ERP and fmri Kim Cornish, a,b, * Rachel

More information

Voxel-Based Morphometric Analysis of Gray Matter in First Episode Schizophrenia

Voxel-Based Morphometric Analysis of Gray Matter in First Episode Schizophrenia NeuroImage 17, 1711 1719 (2002) doi:10.1006/nimg.2002.1296 Voxel-Based Morphometric Analysis of Gray Matter in First Episode Schizophrenia M. Kubicki,*, M. E. Shenton,*, D. F. Salisbury,*, Y. Hirayasu,

More information

doi: /brain/awt105 Brain 2013: 136;

doi: /brain/awt105 Brain 2013: 136; doi:10.1093/brain/awt105 Brain 2013: 136; 1889 1900 1889 BRAIN A JOURNAL OF NEUROLOGY Memory reorganization following anterior temporal lobe resection: a longitudinal functional MRI study Silvia B. Bonelli,

More information

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. Gross Anatomy and General Organization of the Central Nervous System

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. Gross Anatomy and General Organization of the Central Nervous System 3 Gross Anatomy and General Organization of the Central Nervous System C h a p t e r O u t l i n e The Long Axis of the CNS Bends at the Cephalic Flexure Hemisecting a Brain Reveals Parts of the Diencephalon,

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Gregg NM, Kim AE, Gurol ME, et al. Incidental cerebral microbleeds and cerebral blood flow in elderly individuals. JAMA Neurol. Published online July 13, 2015. doi:10.1001/jamaneurol.2015.1359.

More information

Review of Longitudinal MRI Analysis for Brain Tumors. Elsa Angelini 17 Nov. 2006

Review of Longitudinal MRI Analysis for Brain Tumors. Elsa Angelini 17 Nov. 2006 Review of Longitudinal MRI Analysis for Brain Tumors Elsa Angelini 17 Nov. 2006 MRI Difference maps «Longitudinal study of brain morphometrics using quantitative MRI and difference analysis», Liu,Lemieux,

More information

Approximately 70% of childhood SURGICAL TREATMENTS FOR PEDIATRIC EPILEPSY PROCEEDINGS. Ronald P. Lesser, MD KEY POINTS

Approximately 70% of childhood SURGICAL TREATMENTS FOR PEDIATRIC EPILEPSY PROCEEDINGS. Ronald P. Lesser, MD KEY POINTS ASIM May p153-158 5/14/01 9:19 AM Page 153 SURGICAL TREATMENTS FOR PEDIATRIC EPILEPSY Ronald P. Lesser, MD KEY POINTS Most children with epilepsy refractory to drugs can improve with surgery Temporal lobe

More information

Prof. Saeed Abuel Makarem & Dr.Sanaa Alshaarawy

Prof. Saeed Abuel Makarem & Dr.Sanaa Alshaarawy Prof. Saeed Abuel Makarem & Dr.Sanaa Alshaarawy 1 Objectives By the end of the lecture, you should be able to: Describe the anatomy and main functions of the thalamus. Name and identify different nuclei

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Devenney E, Bartley L, Hoon C, et al. Progression in behavioral variant frontotemporal dementia: a longitudinal study. JAMA Neurol. Published online October 26, 2015. doi:10.1001/jamaneurol.2015.2061.

More information

Hallucinations and conscious access to visual inputs in Parkinson s disease

Hallucinations and conscious access to visual inputs in Parkinson s disease Supplemental informations Hallucinations and conscious access to visual inputs in Parkinson s disease Stéphanie Lefebvre, PhD^1,2, Guillaume Baille, MD^4, Renaud Jardri MD, PhD 1,2 Lucie Plomhause, PhD

More information

Biological Bases of Behavior. 3: Structure of the Nervous System

Biological Bases of Behavior. 3: Structure of the Nervous System Biological Bases of Behavior 3: Structure of the Nervous System Neuroanatomy Terms The neuraxis is an imaginary line drawn through the spinal cord up to the front of the brain Anatomical directions are

More information

Source localisation in the clinical practice: spontaneous EEG examinations with LORETA. Ph.D. thesis. Márton Tamás Tóth M.D.

Source localisation in the clinical practice: spontaneous EEG examinations with LORETA. Ph.D. thesis. Márton Tamás Tóth M.D. Source localisation in the clinical practice: spontaneous EEG examinations with LORETA Ph.D. thesis Márton Tamás Tóth M.D. Department of Neurology, University of Pécs Leader of project:: Prof. István Kondákor,

More information

Department of Cognitive Science UCSD

Department of Cognitive Science UCSD Department of Cognitive Science UCSD Verse 1: Neocortex, frontal lobe, Brain stem, brain stem, Hippocampus, neural node, Right hemisphere, Pons and cortex visual, Brain stem, brain stem, Sylvian fissure,

More information

Correlation of Apparent Diffusion Coefficient with Neuropsychological Testing in Temporal Lobe Epilepsy

Correlation of Apparent Diffusion Coefficient with Neuropsychological Testing in Temporal Lobe Epilepsy AJNR Am J Neuroradiol 26:1832 1839, August 2005 Correlation of Apparent Diffusion Coefficient with Neuropsychological Testing in Temporal Lobe Epilepsy Yvonne W. Lui, Annette O. Nusbaum, William B. Barr,

More information

José A Mendes-Ribeiro, Raquel Soares, Fernanda Simões-Ribeiro, M Luiza Guimarães

José A Mendes-Ribeiro, Raquel Soares, Fernanda Simões-Ribeiro, M Luiza Guimarães 58 Neurophysiology Unit J A Mendes-Ribeiro M L Guimarães Department of Neurology and Neurosurgery, Hospital S João, Porto, Portugal F Simões-Ribeiro Magnetic Resonance Unit, IPO, Porto, Portugal R Soares

More information

Assessing Brain Volumes Using MorphoBox Prototype

Assessing Brain Volumes Using MorphoBox Prototype MAGNETOM Flash (68) 2/207 33 Assessing Brain Volumes Using MorphoBox Prototype Alexis Roche,2,3 ; Bénédicte Maréchal,2,3 ; Tobias Kober,2,3 ; Gunnar Krueger 4 ; Patric Hagmann ; Philippe Maeder ; Reto

More information

NST II Psychology NST II Neuroscience (Module 5)

NST II Psychology NST II Neuroscience (Module 5) NST II Psychology NST II Neuroscience (Module 5) Brain Mechanisms of Memory and Cognition 4 Forms of memory. Neural basis of memory (1): amnesia, the hippocampus Rudolf Cardinal Department of Experimental

More information

Seizure Semiology and Neuroimaging Findings in Patients with Midline Spikes

Seizure Semiology and Neuroimaging Findings in Patients with Midline Spikes Epilepsia, 42(12):1563 1568, 2001 Blackwell Science, Inc. International League Against Epilepsy Seizure Semiology and Neuroimaging Findings in Patients with Midline Spikes *Ekrem Kutluay, *Erasmo A. Passaro,

More information

Reproducibility of Visual Activation During Checkerboard Stimulation in Functional Magnetic Resonance Imaging at 4 Tesla

Reproducibility of Visual Activation During Checkerboard Stimulation in Functional Magnetic Resonance Imaging at 4 Tesla Reproducibility of Visual Activation During Checkerboard Stimulation in Functional Magnetic Resonance Imaging at 4 Tesla Atsushi Miki*, Grant T. Liu*, Sarah A. Englander, Jonathan Raz, Theo G. M. van Erp,

More information

Scalp EEG Findings in Temporal Lobe Epilepsy

Scalp EEG Findings in Temporal Lobe Epilepsy Scalp EEG Findings in Temporal Lobe Epilepsy Seyed M Mirsattari M.D., Ph.D., F.R.C.P.(C) Assistant Professor Depts. of CNS, Medical Biophysics, Medical Imaging, and Psychology University of Western Ontario

More information

A possible mechanism for impaired joint attention in autism

A possible mechanism for impaired joint attention in autism A possible mechanism for impaired joint attention in autism Justin H G Williams Morven McWhirr Gordon D Waiter Cambridge Sept 10 th 2010 Joint attention in autism Declarative and receptive aspects initiating

More information

Lateralizing Ability of Single-voxel Proton MR Spectroscopy in Hippocampal Sclerosis: Comparison with MR Imaging and Positron Emission Tomography

Lateralizing Ability of Single-voxel Proton MR Spectroscopy in Hippocampal Sclerosis: Comparison with MR Imaging and Positron Emission Tomography AJNR Am J Neuroradiol 22:625 631, April 2001 Lateralizing Ability of Single-voxel Proton MR Spectroscopy in Hippocampal Sclerosis: Comparison with MR Imaging and Positron Emission Tomography Sun-Won Park,

More information

SEIZURE OUTCOME AFTER EPILEPSY SURGERY

SEIZURE OUTCOME AFTER EPILEPSY SURGERY SEIZURE OUTCOME AFTER EPILEPSY SURGERY Prakash Kotagal, M.D. Head, Pediatric Epilepsy Cleveland Clinic Epilepsy Center LEFT TEMPORAL LOBE ASTROCYTOMA SEIZURE OUTCOME 1 YEAR AFTER EPILEPSY SURGERY IN ADULTS

More information

Medical Neuroscience Tutorial

Medical Neuroscience Tutorial Pain Pathways Medical Neuroscience Tutorial Pain Pathways MAP TO NEUROSCIENCE CORE CONCEPTS 1 NCC1. The brain is the body's most complex organ. NCC3. Genetically determined circuits are the foundation

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/324/5927/646/dc1 Supporting Online Material for Self-Control in Decision-Making Involves Modulation of the vmpfc Valuation System Todd A. Hare,* Colin F. Camerer, Antonio

More information

Human Paleoneurology and the Evolution of the Parietal Cortex

Human Paleoneurology and the Evolution of the Parietal Cortex PARIETAL LOBE The Parietal Lobes develop at about the age of 5 years. They function to give the individual perspective and to help them understand space, touch, and volume. The location of the parietal

More information

Est-ce que l'eeg a toujours sa place en 2019?

Est-ce que l'eeg a toujours sa place en 2019? Est-ce que l'eeg a toujours sa place en 2019? Thomas Bast Epilepsy Center Kork, Germany Does EEG still play a role in 2019? What a question 7T-MRI, fmri, DTI, MEG, SISCOM, Of ieeg course! /HFO, Genetics

More information

The Clinical and Electrophysiological Characteristics of Temporal Lobe Epilepsy with Normal MRI

The Clinical and Electrophysiological Characteristics of Temporal Lobe Epilepsy with Normal MRI Journal of Clinical Neurology / Volume 2 / March, 2006 Original Articles The Clinical and Electrophysiological Characteristics of Temporal Lobe Epilepsy with Normal MRI S.E. Kim, M.D., Ph.D., F. Andermann,

More information

Supplementary Online Material Supplementary Table S1 to S5 Supplementary Figure S1 to S4

Supplementary Online Material Supplementary Table S1 to S5 Supplementary Figure S1 to S4 Supplementary Online Material Supplementary Table S1 to S5 Supplementary Figure S1 to S4 Table S1: Brain regions involved in the adapted classification learning task Brain Regions x y z Z Anterior Cingulate

More information

CEREBRUM Dr. Jamila Elmedany Dr. Essam Eldin Salama

CEREBRUM Dr. Jamila Elmedany Dr. Essam Eldin Salama CEREBRUM Dr. Jamila Elmedany Dr. Essam Eldin Salama Objectives At the end of the lecture, the student should be able to: List the parts of the cerebral hemisphere (cortex, medulla, basal nuclei, lateral

More information

Theory of mind skills are related to gray matter volume in the ventromedial prefrontal cortex in schizophrenia

Theory of mind skills are related to gray matter volume in the ventromedial prefrontal cortex in schizophrenia Theory of mind skills are related to gray matter volume in the ventromedial prefrontal cortex in schizophrenia Supplemental Information Table of Contents 2 Behavioral Data 2 Table S1. Participant demographics

More information

Regional and Lobe Parcellation Rhesus Monkey Brain Atlas. Manual Tracing for Parcellation Template

Regional and Lobe Parcellation Rhesus Monkey Brain Atlas. Manual Tracing for Parcellation Template Regional and Lobe Parcellation Rhesus Monkey Brain Atlas Manual Tracing for Parcellation Template Overview of Tracing Guidelines A) Traces are performed in a systematic order they, allowing the more easily

More information

DLB is recognized as the second major form of dementia

DLB is recognized as the second major form of dementia ORIGINAL RESEARCH R. Takahashi K. Ishii N. Miyamoto T. Yoshikawa K. Shimada S. Ohkawa T. Kakigi K. Yokoyama Measurement of Gray and White Matter Atrophy in Dementia with Lewy Bodies Using Diffeomorphic

More information

Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References

Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References Supplementary Information Supplementary Figure 1. The mean parameter

More information

Visual Activation Positron Emission Tomography for Presurgical Evaluation of Occipital Lobe Epilepsy

Visual Activation Positron Emission Tomography for Presurgical Evaluation of Occipital Lobe Epilepsy Neurol Med Chir (Tokyo) 42, 356 360, 2002 Visual Activation Positron Emission Tomography for Presurgical Evaluation of Occipital Lobe Epilepsy Case Report Hideyuki NAKAMA, SatoruOHTOMO, TaisukeOTSUKI,

More information

Voxel-based Lesion-Symptom Mapping. Céline R. Gillebert

Voxel-based Lesion-Symptom Mapping. Céline R. Gillebert Voxel-based Lesion-Symptom Mapping Céline R. Gillebert Paul Broca (1861) Mr. Tan no productive speech single repetitive syllable tan Broca s area: speech production Broca s aphasia: problems with fluency,

More information