EDEMA. Learning Objectives

Size: px
Start display at page:

Download "EDEMA. Learning Objectives"

Transcription

1 EDEMA Learning Objectives Define edema Recognize and be able to describe the gross and microscopic appearance of edema Know the four pathophysiological mechanisms by which edema develops Understand the different mechanisms under which generalized and localized edema develop Know the terminology for edema/fluid accumulation in different tissues / regions of the body Understand the clinical significance and pathogenesis of edema at important sites (eg lung and brain) Understand the clinical significance, gross appearance, and pathogenesis of dehydration

2 Circulatory Disturbances 1: Introduction and Edema Shannon Martinson, January VPM 152 General Pathology

3 INTRODUCTION NORMAL CIRCULATORY SYSTEM Important concepts Distribution of fluid is carefully controlled (homeostasis) Deviations from normal can have profound pathological effects Normal function requires intact blood and lymph vessels Endothelial cells are important!

4 INTRODUCTION NORMAL CIRCULATORY SYSTEM Components of the Circulatory System Collection system Pump Distribution system Microcirculation system

5 INTRODUCTION NORMAL CIRCULATORY SYSTEM Components of the Circulatory System

6 INTRODUCTION NORMAL CIRCULATORY SYSTEM Endothelial cells All components of the circulatory system are lined by a single layer of endothelium Endothelial cells affect: Fluid balance Hemostasis Inflammation / immunity Angiogenesis / healing Image: Zachary PBVD 2017

7 INTRODUCTION NORMAL CIRCULATORY SYSTEM Microcirculation Capillaries Image: Mescher, Junqueira s Basic Histology, 12 ed volume: 1300 x crosssectional area of aorta Normally contain only ~5% of the blood Site where nutrients & wastes are exchanged Critical site for fluid balance

8 INTRODUCTION NORMAL CIRCULATORY SYSTEM Mechanisms for transport of substance across capillary walls Capillary wall is semipermeable membrane Direct diffusion Most small molecules move by passive diffusion through endothelial cell membrane or interendothelial pores Normal interendothelial pores too small to allow escape of large proteins* With inflammation endothelial cells contract, allowing larger molecules to escape* Water, Ions, Glucose, Amino acids Gas Lipid soluble molecules

9 INTRODUCTION NORMAL CIRCULATORY SYSTEM Mechanisms for transport of substance across capillary walls Capillary wall is semipermeable membrane Transcytosis With some endothelial cells, fluids / macromolecules can be transported across a cell by vesicles

10 INTRODUCTION NORMAL CIRCULATORY SYSTEM Fluid distribution and Homeostasis Total Body Water 60% 20% 40% Extracellular Fluid Intracellular fluid 5% Plasma Interstitial fluid 15%

11 INTRODUCTION NORMAL CIRCULATORY SYSTEM Interstitium The space between microcirculation and the cells Function Binds cell/structural elements into discrete tissue and organs Medium through which metabolic products pass between circulation and cells Structure Composed of extracellular matrix (ECM) and supporting cells ECM provides structural support and has adhesive absorptive properties

12 INTRODUCTION NORMAL CIRCULATORY SYSTEM Extracellular Matrix Structural molecules: Collagen, reticulin & elastin fibers Ground substance: Adhesive glycoproteins (eg fibronectin, laminin) Absorptive glycosaminoglycans / proteoglycans Image: Zachary PBVD 2017

13 INTRODUCTION NORMAL CIRCULATORY SYSTEM Distribution of Fluids Distribution of fluids, nutrients & wastes between blood interstitium cells controlled by physical structures, pressure gradients and ion concentration gradients

14 INTRODUCTION NORMAL CIRCULATORY SYSTEM Distribution of Fluids Capillaries (endothelial cells + basal lamina): Allow the free passage of H 2 O & ions Oppose the passage of plasma proteins Water distribution between plasma & interstitium is primarily determined by hydrostatic and osmotic pressure differences between the two compartments. Water Ions Protein Hydrostatic pressure is the pressure exerted by a fluid in a confined space The osmotic pressure exerted by proteins is referred to as oncotic pressure

15 Distribution of Fluids INTRODUCTION NORMAL CIRCULATORY SYSTEM Hydrostatic pressure in the vascular system + interstitial osmotic pressure moves fluid out of the vascular system Starlings Equation Plasma hydrostatic pressure Tissue colloidal osmotic pressure

16 Distribution of Fluids INTRODUCTION NORMAL CIRCULATORY SYSTEM Starlings Equation The osmotic pressure of the plasma proteins and tissue hydrostatic pressure contains the fluid within the vascular system. Plasma hydrostatic pressure Tissue colloidal osmotic pressure Plasma colloidal osmotic pressure Tissue hydrostatic pressure Hydrostatic pressure drops along the length of the capillary bed!

17 Distribution of Fluids INTRODUCTION NORMAL CIRCULATORY SYSTEM Starlings Equation Hydrostatic pressure drops along the length of the capillary bed!

18 INTRODUCTION NORMAL CIRCULATORY SYSTEM Distribution of Fluids Starlings Equation Net movement of fluid out of the capillaries Plasma hydrostatic pressure Tissue colloidal osmotic pressure Plasma colloidal osmotic pressure Tissue hydrostatic pressure Excess fluid is drained via lymphatics Excess fluid Lymphatic drainage

19 CIRCULATORY DISTURBANCES Edema Hyperemia and congestion Shock Hemorrhage Thrombosis and embolism Infarction

20 EDEMA EDEMA Abnormal (excess) accumulation of fluid in interstitial tissue spaces or body cavities Edema in the stomach wall Gross Appearance of Edema Organs wet (± gelatinous) and heavy Organs swollen and fluid may weep from cut surface Fluid present in the body cavities

21 EDEMA Histologic Appearance of Edema Lightly staining eosinophilic fluid (if some protein content) Clear / no staining (if protein content low) Lymphatics usually dilated Edema in the stomach wall

22 EDEMA Edema 4 Pathophysiological Mechanisms of Development 1) Intravascular hydrostatic pressure hronic local passive hyperemia 2) Plasma colloidal osmotic pressure 3) Lymphatic drainage 4) Vascular permeability

23 EDEMA - Pathophysiological Mechanisms of Development 1. Increased intravascular hydrostatic pressure NORMAL Due to impaired venous blood flow Generalized edema: eg Heart failure** Localized edema: eg tight bandage causing local obstruction of venous return

24 EDEMA - Pathophysiological Mechanisms of Development 2. Decreased plasma colloidal osmotic pressure Plasma colloidal osmotic pressure is exerted mostly by plasma protein NORMAL Due to hypoproteinemia Proteins not produced Liver disease Proteins lost Kidney (glomerular) disease Intestinal damage Proteins not absorbed Starvation Malabsorption Causes generalized edema

25 EDEMA - Pathophysiological Mechanisms of Development 3. Decreased lymphatic drainage NORMAL Due to lymphatic obstruction / damage Surgery / trauma (fibrosis) Neoplasm (tumour) or mass Inflammation (lymphangitis) Typically localized

26 EDEMA - Pathophysiological Mechanisms of Development 4. Increased vascular permeability/ Endothelial damage NORMAL Increased permeability Mostly due to inflammatory / immune reactions release of inflammatory mediators inflammatory edema Endothelium can also be directly damaged by specific agents (eg viruses, toxins)

27 EDEMA - Pathophysiological Mechanisms of Development 1) Blood hydrostatic pressure 2) Plasma colloidal osmotic pressure 3) Lymphatic obstruction 4) Vascular permeability Transudate: Low protein content <30g/L Low specific gravity <1.025 Few nucleated cells <1.5x 10 9 / L Fluid Characteristics: Exudate: High protein content > 30g/L High specific gravity > High nucleated cells > 7 x 10 9 / L

28 Localized Edema LOCALIZED VS GENERALIZED EDEMA Mechanisms of Development Local impaired venous drainage Local lymphatic blockage Local inflammation

29 LOCALIZED VS GENERALIZED EDEMA Generalized Edema Mechanisms of Development Increased hydrostatic pressure Heart failure Decreased colloidal osmotic pressure Hypoproteinemia Common locations: Abdominal cavity (= ascites) Thoracic cavity (= hydrothorax) Dependent subcutaneous edema Subcutis on the ventrum of the abdomen / thorax ( brisket edema ) Subcutis of the ventral cervical / mandibular region ( bottle jaw ) Subcutis of the limbs ( stocking up )

30 Generalized Edema LOCALIZED VS GENERALIZED EDEMA

31 TERMINOLOGY OF EDEMA vet.uga.edu Pitting edema When pressure is applied to an area of edema and a depression or dent results

32 TERMINOLOGY OF EDEMA Anasarca Severe and generalized edema with profound subcutaneous tissue swelling

33 TERMINOLOGY OF EDEMA Hydrothorax Non-inflammatory fluid (transudate) in the thoracic cavity

34 TERMINOLOGY OF EDEMA Hydropericardium Non-inflammatory fluid (transudate) in the pericardial sac

35 TERMINOLOGY OF EDEMA Hydroperitoneum = Ascites Non-inflammatory fluid (transudate) in the peritoneal cavity

36 CLINICAL SIGNIFICANCE OF EDEMA Dependent upon: 1. Extent: mild < moderate < marked / severe 2. Location: skin < lung < brain 3. Duration: acute vs chronic Increase in fibrous connective tissue after prolonged edema

37 PULMONARY EDEMA Pulmonary edema Accumulation of fluid in interstitium and alveoli of the lungs Common cause of death in many disease processes Normal lung Pulmonary edema

38 PULMONARY EDEMA Mechanisms of development 1. Circulatory failure Increased hydrostatic pressure: especially left sided heart failure Flooding of the alveolar spaces with transudate

39 PULMONARY EDEMA Mechanisms of development 2. Damage to the pulmonary capillary endothelium Usually with acute inflammation (inflammatory edema) or toxins If increased vascular permeability is substantial and widespread death (ARDS acute respiratory distress syndrome)

40 PULMONARY EDEMA Gross appearance: Lungs are heavy and wet Interlobular septa are distended with fluid Froth in airways on cut surface

41 PULMONARY EDEMA Gross appearance: Lungs are heavy and wet Interlobular septa are distended with fluid Froth in airways on cut surface

42 PULMONARY EDEMA Histologic appearance: Fluid in interstitium / alveolar spaces Dilated pleural / septal lymphatics Often pink (proteinaceous) Normal lung

43 PULMONARY EDEMA Chronic pulmonary edema Chronicity fibrosis of pleura & alveolar septa Most commonly seen with cardiac failure and accompanying pulmonary congestion

44 CEREBRAL EDEMA Causes Trauma to brain Obstruction of venous outflow Intracranial inflammation Gross appearance Brain is heavier than normal Sulci are narrow Gyri are swollen and flattened

45 CEREBRAL EDEMA Cerebellar coning Herniation of the cerebellum through the foramen magnum Zachary, PBVD, 2017

46 CEREBRAL EDEMA Cerebral herniation Herniation of caudal cerebral cortex beneath the tentorium cerebelli Normal Zachary, PBVD, 2017

47 CEREBRAL EDEMA Histologic appearance Expansion of the Virchow-Robin spaces Normal Zachary, PBVD, 2017

48 DEHYDRATION Dehydration Deficiency of water (imbalance between uptake and loss of water from the body) Can be caused by: Uncontrolled diarrhea Vomiting Renal failure Heat stroke Water deprivation

49 DEHYDRATION Mechanism of development Total body water Deficit of water Shared amongst the plasma, IC and interstitial compartments Tissue perfusion is reduced +/- Hypovolemic shock

50 DEHYDRATION Gross Findings Skin pulled away from body tents Eyes are shrunken Mucous membranes and subcutaneous tissue are dry/sticky (tacky)

51

Circulatory Disturbances 1: Introduction and Edema

Circulatory Disturbances 1: Introduction and Edema Circulatory Disturbances 1: Introduction and Edema Shannon Martinson, January 2016 http://people.upei.ca/smartinson/ VPM 152 General Pathology INTRODUCTION NORMAL CIRCULATORY SYSTEM Important concepts

More information

General Pathology. Disturbances of Circulation Edema. (Web)

General Pathology. Disturbances of Circulation Edema. (Web) General Pathology Disturbances of Circulation Edema (Web) Paul Hanna Jan 2015 The health of cells and organs critically depends on an unbroken circulation to deliver oxygen and nutrients and to remove

More information

Hyperemia, Congestion, and Edema

Hyperemia, Congestion, and Edema Hyperemia, Congestion, and Edema Hyperemia Acute, actively increased blood flow Tissues look red (erythema) Congestion Chronic, passively reduced outflow Tissues look pale or blue (cyanosis) Edema Water

More information

Blood Vessels. Chapter 20

Blood Vessels. Chapter 20 Blood Vessels Chapter 20 Summary of the Characteristics of Arteries and Veins Characteristic Artery Vein Wall thickness thick thin Shape in cross section round flattened Thickest tunic media externa Collagen

More information

According to the etiology, edema may be:

According to the etiology, edema may be: What is edema? Edema : It refers to the accumulation of excess liquid in the interstitial (extracellular) spaces of a tissue or in pre-existing cavities. It may affect any organ, but most often it appears

More information

Disturbances of Circulation, Lab 1: Edema and Congestion/Hyperemia. Shannon Martinson, Feb

Disturbances of Circulation, Lab 1: Edema and Congestion/Hyperemia. Shannon Martinson, Feb Disturbances of Circulation, Lab 1: Edema and Congestion/Hyperemia Shannon Martinson, Feb 2017 http://people.upei.ca/smartinson/ Case #1 Signalment and History: 6-month old feeder lamb found dead on pasture

More information

HYPEREMIA AND CONGESTION

HYPEREMIA AND CONGESTION HYPEREMIA AND CONGESTION Learning Objectives Define congestion and hyperemia Differentiate between the two with regard to: Mechanisms / underlying causes Appearance (gross and histologic) Effects Differentiate

More information

Cardiovascular Module

Cardiovascular Module Cardiovascular Module Cardiovascular Physiology Lect. Six Microcirculation & Lymphatics (Edema formation) Prof. Dr. Najeeb Hassan Mohammed The microcirculation and the lymphatic system The microcirculation

More information

HEMODYNAMIC DISORDERS

HEMODYNAMIC DISORDERS HEMODYNAMIC DISORDERS Normal fluid homeostasis requires vessel wall integrity as well as maintenance of intravascular pressure and osmolarity within certain physiologic ranges. Increases in vascular volume

More information

Microcirculation and Edema. Faisal I. Mohammed MD, PhD.

Microcirculation and Edema. Faisal I. Mohammed MD, PhD. Microcirculation and Edema Faisal I. Mohammed MD, PhD. Objectives: Point out the structure and function of the microcirculation. Describe how solutes and fluids are exchang in capillaries. Outline what

More information

Microcirculation. Lecture Block 11 (contributions from Brett Burton)

Microcirculation. Lecture Block 11 (contributions from Brett Burton) Lecture Block 11 (contributions from Brett Burton) Elements of Arterioles, capillaries, venules Structure and function: transport Fluid balance Lymph system Vessels of the Circulatory System Diameter Aorta

More information

Ischaemia It means local anemia, it is characterized by a decrease amount of blood in an organ or region. Causes of Ischemia: *1.

Ischaemia It means local anemia, it is characterized by a decrease amount of blood in an organ or region. Causes of Ischemia: *1. المرحلة الثالثة م. هالة عباس ناجي Ischaemia It means local anemia, it is characterized by a decrease amount of blood in an organ or region. Causes of Ischemia: *1.External pressure upon an artery e.g:

More information

Microcirculation and Edema- L1 L2

Microcirculation and Edema- L1 L2 Microcirculation and Edema- L1 L2 Faisal I. Mohammed MD, PhD. University of Jordan 1 Objectives: Point out the structure and function of the microcirculation. Describe how solutes and fluids are exchanged

More information

5 DISTURBANCES IN CIRCULATION. Congestion / Hyperemia Haemorrhage Thrombosis Embolism Ischemia Infarction Oedema Shock Sludged blood Model Questions

5 DISTURBANCES IN CIRCULATION. Congestion / Hyperemia Haemorrhage Thrombosis Embolism Ischemia Infarction Oedema Shock Sludged blood Model Questions 5 DISTURBANCES IN CIRCULATION Congestion / Hyperemia Haemorrhage Thrombosis Embolism Ischemia Infarction Oedema Shock Sludged blood Model Questions CONGESTION/ HYPEREMIA Hyperemia is increased amount of

More information

Tala Saleh. Riham Abu Arrah, Abdallah AlQawasmeh. Yanal Shafagoj

Tala Saleh. Riham Abu Arrah, Abdallah AlQawasmeh. Yanal Shafagoj 27 Tala Saleh Riham Abu Arrah, Abdallah AlQawasmeh Yanal Shafagoj Cardiovascular system Think of the following situation: 5 Cancerous cells (for example: Lymphoma cells) are placed in a proper medium with

More information

Physiology of Circulation

Physiology of Circulation Physiology of Circulation Dr. Ali Ebneshahidi Blood vessels Arteries: Blood vessels that carry blood away from the heart to the lungs and tissues. Arterioles are small arteries that deliver blood to the

More information

Body Fluids and Fluid Compartments

Body Fluids and Fluid Compartments Body Fluids and Fluid Compartments Bởi: OpenStaxCollege The chemical reactions of life take place in aqueous solutions. The dissolved substances in a solution are called solutes. In the human body, solutes

More information

Shock, Hemorrhage and Thrombosis

Shock, Hemorrhage and Thrombosis Shock, Hemorrhage and Thrombosis 1 Shock Systemic hypoperfusion due to: Reduction in cardiac output Reduction in effective circulating blood volume Hypotension Impaired tissue perfusion Cellular hypoxia

More information

Causes of Edema That Result From an Increased Capillary Pressure. Student Name. Institution Affiliation

Causes of Edema That Result From an Increased Capillary Pressure. Student Name. Institution Affiliation Running Head: CAUSES OF EDEMA 1 Causes of Edema That Result From an Increased Capillary Pressure Student Name Institution Affiliation CAUSES OF EDEMA 2 Causes of Edema That Result From an Increased Capillary

More information

Fluid and Electrolytes P A R T 2

Fluid and Electrolytes P A R T 2 Fluid and Electrolytes P A R T 2 Fluid Shifts Extracellular fluid distribution is dynamic Interstitial fluid formation is continuous Venous system Large veins (capacitance vessels) Small veins (capacitance

More information

Hemodynamic Disorders, Thrombosis, and Shock. Richard A. McPherson, M.D.

Hemodynamic Disorders, Thrombosis, and Shock. Richard A. McPherson, M.D. Hemodynamic Disorders, Thrombosis, and Shock Richard A. McPherson, M.D. Edema The accumulation of abnormal amounts of fluid in intercellular spaces of body cavities. Inflammation and release of mediators

More information

Cardiovascular System B L O O D V E S S E L S 3

Cardiovascular System B L O O D V E S S E L S 3 Cardiovascular System B L O O D V E S S E L S 3 Fluid Shifts Between Capillaries and Tissue Permeable capillaries allow plasma and solutes to pass into interstitial space interstitial or extracellular

More information

Physiology of Circulation

Physiology of Circulation Physiology of Circulation Rodolfo T. Rafael,M.D. 12/8/2005 1 PHYSIOLOGY OF CIRCULATION BLOOD FLOW THROUGH THE CAPILLARIES LYMPHATIC SYSTEM BLOOD PRESSURE 12/8/2005 2 1 Fig.21.08 12/8/2005 3 The Blood Pressure

More information

Hemodynamic Disorders Thrombosis and Shock. 1. Interstitial, between the cells, but outside of the vascular system. - water making up the blood and

Hemodynamic Disorders Thrombosis and Shock. 1. Interstitial, between the cells, but outside of the vascular system. - water making up the blood and Hemodynamic Disorders Thrombosis and Shock I. Body water, where is it and what keeps it there? A. Intracellular B. Extracellular (intercellular) 1. Interstitial, between the cells, but outside of the vascular

More information

Hemodynamic derangement. Komson Wannasai, M.D.,FRCPath. Department of Pathology Faculty of Medicine Chiang Mai University

Hemodynamic derangement. Komson Wannasai, M.D.,FRCPath. Department of Pathology Faculty of Medicine Chiang Mai University Hemodynamic derangement Komson Wannasai, M.D.,FRCPath. Department of Pathology Faculty of Medicine Chiang Mai University Objective The students should be able to Explain normal body fluid homeostasis Explain

More information

Water-electrolyte (im) Kiril Terziski, MD, PhD Pathophysiology Dept. Medical University of Plovdiv

Water-electrolyte (im) Kiril Terziski, MD, PhD Pathophysiology Dept. Medical University of Plovdiv Water-electrolyte (im) Kiril Terziski, MD, PhD Pathophysiology Dept. Medical University of Plovdiv Crawling out of... water Evolution Belief is optional. Participation is not! Water is life Medium for

More information

Blood Flow, Blood Pressure, Cardiac Output. Blood Vessels

Blood Flow, Blood Pressure, Cardiac Output. Blood Vessels Blood Flow, Blood Pressure, Cardiac Output Blood Vessels Blood Vessels Made of smooth muscle, elastic and fibrous connective tissue Cells are not electrically coupled Blood Vessels Arteries arterioles

More information

Any of these questions could be asked as open question or lab question, thus study them well

Any of these questions could be asked as open question or lab question, thus study them well Any of these questions could be asked as open question or lab question, thus study them well describe the factors which regulate cardiac output describe the sympathetic and parasympathetic control of heart

More information

CAPILLARY FLUID EXCHANGE

CAPILLARY FLUID EXCHANGE CAPILLARY FLUID EXCHANGE Aubrey E. Taylor and Timothy M. Moore Department of Physiology, University of South Alabama, College of Medicine, Mobile, Alabama 36688-0002 AM. J. PHYSIOL. 277 (ADV. PHYSIOL.

More information

Lymphatic System and Immunity. Lymphatic System

Lymphatic System and Immunity. Lymphatic System Lymphatic System and Immunity Lymphatic System Lymphatic System High hydrostatic pressure in the arterioles and capillaries at the arterial part of the circulation leads to move plasma fluid from the capillaries

More information

Introduction to Emergency Medical Care 1

Introduction to Emergency Medical Care 1 Introduction to Emergency Medical Care 1 OBJECTIVES 6.1 Define key terms introduced in this chapter. Slides 11, 15, 17, 26, 27, 31, 33, 37, 40 42, 44, 45, 51, 58 6.2 Describe the basic roles and structures

More information

Fluids and electrolytes

Fluids and electrolytes Body Water Content Fluids and electrolytes Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are about 60% water; healthy females

More information

Acute Heart Failure. Dr. Khaled M. Al-Qudah. 4/24/2013 Dr. Khaled Al-Qudah 1

Acute Heart Failure. Dr. Khaled M. Al-Qudah. 4/24/2013 Dr. Khaled Al-Qudah 1 Acute Heart Failure Dr. Khaled M. Al-Qudah 4/24/2013 Dr. Khaled Al-Qudah 1 Acute heart failure is one of the major causes of sudden death in animals, especially when death is associated with exertion or

More information

Rq : Serum = plasma w/ fibrinogen and other other proteins involved in clotting removed.

Rq : Serum = plasma w/ fibrinogen and other other proteins involved in clotting removed. Functions of the blood Transport Nutritive Respiratory Excretory Hormone transport Temperature regulation Acid base balance ph (7.30 7.45) Protective (immunology) Rq : It comprises both ECF (plasma) &

More information

DRUG DISTRIBUTION. Distribution Blood Brain Barrier Protein Binding

DRUG DISTRIBUTION. Distribution Blood Brain Barrier Protein Binding DRUG DISTRIBUTION Distribution Blood Brain Barrier Protein Binding DRUG DISTRIBUTION Drug distribution is a reversible transport of drug through the body by the systemic circulation The drug molecules

More information

Pathophysiology. Tutorial 3 Hemodynamic Disorders

Pathophysiology. Tutorial 3 Hemodynamic Disorders Pathophysiology Tutorial 3 Hemodynamic Disorders ILOs Recall different causes of thrombosis. Explain different types of embolism and their predisposing factors. Differentiate between hemorrhage types.

More information

Physiology Unit 3 CARDIOVASCULAR PHYSIOLOGY: THE VASCULAR SYSTEM

Physiology Unit 3 CARDIOVASCULAR PHYSIOLOGY: THE VASCULAR SYSTEM Physiology Unit 3 CARDIOVASCULAR PHYSIOLOGY: THE VASCULAR SYSTEM In Physiology Today Hemodynamics F = ΔP/R Blood flow (F) High to low pressure Rate = L/min Pressure (P) Hydrostatic pressure Pressure exerted

More information

Study of different tissues Abnormal cells and tissues can be compared to normal tissues to identify disease, such as cancer Being able to know and

Study of different tissues Abnormal cells and tissues can be compared to normal tissues to identify disease, such as cancer Being able to know and CHAPTER 4 Study of different tissues Abnormal cells and tissues can be compared to normal tissues to identify disease, such as cancer Being able to know and recognize normal tissues under the microscope

More information

Introduction to Lesson 4 - The Lymphatic System

Introduction to Lesson 4 - The Lymphatic System Introduction to Lesson 4 - The Lymphatic System Your circulatory system is not your body s only vascular transport system. Closely associated with the blood vessels of the circulatory system is the lymphatic

More information

Circulatory Disturbances 5: Thrombosis, Embolism, Infarction, Shock

Circulatory Disturbances 5: Thrombosis, Embolism, Infarction, Shock Circulatory Disturbances 5: Thrombosis, Embolism, Infarction, Shock Shannon Martinson, Feb 2016 http://people.upei.ca/smartinson/ VPM 152 General Pathology Thrombosis, Embolism, Infarction, Shock Learning

More information

Copyright 2010 Pearson Education, Inc. Blood Vessel Structure

Copyright 2010 Pearson Education, Inc. Blood Vessel Structure Blood Vessel Structure Structure of Blood Vessel Walls Arteries and veins Tunica intima, tunica media, and tunica externa Lumen Central blood-containing space Capillaries Endothelium with sparse basal

More information

UNIVERSITY OF MEDICAL SCIENCES, ONDO DEPARTMENT OF PHYSIOLOGY PHS 211 TRANSPORT MECHANISM LECTURER: MR A.O. AKINOLA

UNIVERSITY OF MEDICAL SCIENCES, ONDO DEPARTMENT OF PHYSIOLOGY PHS 211 TRANSPORT MECHANISM LECTURER: MR A.O. AKINOLA UNIVERSITY OF MEDICAL SCIENCES, ONDO DEPARTMENT OF PHYSIOLOGY PHS 211 TRANSPORT MECHANISM LECTURER: MR A.O. AKINOLA OUTLINE Introduction Basic mechanisms Passive transport Active transport INTRODUCTION

More information

CSF. Cerebrospinal Fluid(CSF) System

CSF. Cerebrospinal Fluid(CSF) System Cerebrospinal Fluid(CSF) System By the end of the lecture, students must be able to describe Physiological Anatomy of CSF Compartments Composition Formation Circulation Reabsorption CSF Pressure Functions

More information

Disturbance of Circulation Hemodynamic Disorder

Disturbance of Circulation Hemodynamic Disorder Disturbance of Circulation Hemodynamic Disorder 2/17/2017 By Dr. Hemn Hassan Othman PhD, Pathology Fall 2016 1 Thrombosis Definition: Thrombosis is the formation of solid or semisolid blood clot within

More information

ANATOMY & PHYSIOLOGY ONLINE COURSE - SESSION 11 THE LYMPHATIC SYSTEM AND IMMUNITY

ANATOMY & PHYSIOLOGY ONLINE COURSE - SESSION 11 THE LYMPHATIC SYSTEM AND IMMUNITY ANATOMY & PHYSIOLOGY ONLINE COURSE - SESSION 11 THE LYMPHATIC SYSTEM AND IMMUNITY Functions of the Lymphatic System The lymphatic system has three primary functions. First of all, it returns excess interstitial

More information

Dr. Mohamed S. Daoud Biochemistry Department College of Science, KSU. Dr. Mohamed Saad Daoud

Dr. Mohamed S. Daoud Biochemistry Department College of Science, KSU. Dr. Mohamed Saad Daoud Dr. Mohamed S. Daoud Biochemistry Department College of Science, KSU 1 Course symbol: BCH 472 Course Title: Biochemistry of biological fluids Credit hours: 3(2+1) 2 Clinical Biochemistry is one of the

More information

Cardiovascular Physiology III.

Cardiovascular Physiology III. Cardiovascular Physiology III. 43. The microcirculation: capillary solute exchange and fluid dynamics. 44. The microcirculation: lymphatic circulation and edema formation. 45. The characteristics of the

More information

Cardiovascular System. Blood Vessel anatomy Physiology & regulation

Cardiovascular System. Blood Vessel anatomy Physiology & regulation Cardiovascular System Blood Vessel anatomy Physiology & regulation Path of blood flow Aorta Arteries Arterioles Capillaries Venules Veins Vena cava Vessel anatomy: 3 layers Tunica externa (adventitia):

More information

Cardiovascular system

Cardiovascular system Cardiovascular system L-4 Blood pressure & special circulation Dr Than Kyaw 27 February 2012 Blood Pressure (BP) Pressure generation and flow Blood is under pressure within its closed system. Pressure

More information

Bronchioles. Alveoli. Type I alveolar cells are very thin simple squamous epithelial cells and form most of the lining of an alveolus.

Bronchioles. Alveoli. Type I alveolar cells are very thin simple squamous epithelial cells and form most of the lining of an alveolus. 276 Bronchioles Bronchioles continue on to form bronchi. The primary identifying feature is the loss of hyaline cartilage. The epithelium has become simple ciliated columnar, and there is a complete ring

More information

General Pathology. Hemorrhage (Web)

General Pathology. Hemorrhage (Web) General Pathology Hemorrhage (Web) Paul Hanna Feb 2015 Hemorrhage escape of blood from the cardiovascular system may be external or internal Hemorrhage Causes Trauma Sepsis, viruses or toxins Coagulation

More information

The Cardiovascular and Lymphatic Systems Cardiovascular System Blood Vessels Blood Vessels Arteries Arteries Arteries

The Cardiovascular and Lymphatic Systems Cardiovascular System Blood Vessels Blood Vessels Arteries Arteries Arteries CH 12 The Cardiovascular and s The Cardiovascular and s OUTLINE: Cardiovascular System Blood Vessels Blood Pressure Cardiovascular System The cardiovascular system is composed of Blood vessels This system

More information

Cells & Tissues. Chapter 3

Cells & Tissues. Chapter 3 Cells & Tissues Chapter 3 Cell Theory Cell is structural and functional unit of life Activity of an organism is dependent upon its cells Principle of Complementarity functions of cells are dependent upon

More information

4. A phospholipid is an example of organization at the level.

4. A phospholipid is an example of organization at the level. 1. Physiology is the study of a. the structures of anatomical features. b. cellular metabolism. c. processes that allow organisms to function. d. how organ systems develop from the embryo. 2. Mary spends

More information

Pharmacokinetics I. Dr. M.Mothilal Assistant professor

Pharmacokinetics I. Dr. M.Mothilal Assistant professor Pharmacokinetics I Dr. M.Mothilal Assistant professor DRUG TRANSPORT For a drug to produce a therapeutic effect, it must reach to its target and it must accumulate at that site to reach to the minimum

More information

Histology = the study of tissues. Tissue = a complex of cells that have a common function

Histology = the study of tissues. Tissue = a complex of cells that have a common function { EPITHELIAL TISSUE Histology = the study of tissues Tissue = a complex of cells that have a common function The Four Primary Tissue Types: Epithelium (epithelial tissue) covers body surfaces, lines body

More information

1. 09/07/16 Ch 1: Intro to Human A & P 1

1. 09/07/16 Ch 1: Intro to Human A & P 1 Table of Contents # Date Title Page # 1. 09/07/16 Ch 1: Intro to Human A & P 1 2. 09/19/16 Ch 18: Water, Electrolyte, and Acid-Base Balance 5 i 1 09/19/16 Chapter 18: Water, Electrolyte, and Acid-Base

More information

PHSI2006/2906: Integrated Physiology B

PHSI2006/2906: Integrated Physiology B PHSI2006/2906: Integrated Physiology B TOPIC 1: RESPIRATION 1. The Mechanics of Breathing...2 2. Work of Breathing....5 3. Pulmonary Gas Exchange.. 10 4. Transport of Oxygen...16 5. Control of Respiration...20

More information

Pulmonary circulation. Lung Blood supply : lungs have a unique blood supply system :

Pulmonary circulation. Lung Blood supply : lungs have a unique blood supply system : Dr. Ali Naji Pulmonary circulation Lung Blood supply : lungs have a unique blood supply system : 1. Pulmonary circulation 2. Bronchial circulation 1- Pulmonary circulation : receives the whole cardiac

More information

Interactions Between Cells and the Extracellular Environment

Interactions Between Cells and the Extracellular Environment Chapter 6 Interactions Between Cells and the Extracellular Environment Et Extracellular lll environment Includes all parts of the body outside of cells Cells receive nourishment Cells release waste Cells

More information

Sinusoids and venous sinuses

Sinusoids and venous sinuses LYMPHOID SYSTEM General aspects Consists of organs that are made of lymphoid tissue; Immune defense Breakdown of red blood cells. 1 Sinusoids In place of capillaries Endothelium; often fenestrated More

More information

Heart. Large lymphatic vessels Lymph node. Lymphatic. system Arteriovenous anastomosis. (exchange vessels)

Heart. Large lymphatic vessels Lymph node. Lymphatic. system Arteriovenous anastomosis. (exchange vessels) Venous system Large veins (capacitance vessels) Small veins (capacitance vessels) Postcapillary venule Thoroughfare channel Heart Large lymphatic vessels Lymph node Lymphatic system Arteriovenous anastomosis

More information

Body Water Content Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are

Body Water Content Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are Fluid, Electrolyte, and Acid-Base Balance Body Water Content Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are about 60%

More information

Body fluid volume is small (~5L (blood + serum)) Composition can change rapidly e.g. due to increase in metabolic rate

Body fluid volume is small (~5L (blood + serum)) Composition can change rapidly e.g. due to increase in metabolic rate Renal physiology The kidneys Allow us to live on dry land. Body fluid volume is small (~5L (blood + serum)) Composition can change rapidly e.g. due to increase in metabolic rate Kidneys maintain composition

More information

Chapter 4 Cell Membrane Transport

Chapter 4 Cell Membrane Transport Chapter 4 Cell Membrane Transport Plasma Membrane Review o Functions Separate ICF / ECF Allow exchange of materials between ICF / ECF such as obtaining O2 and nutrients and getting rid of waste products

More information

P215 SPRING 2019: CIRCULATORY SYSTEM Chaps 13, 14 & 15: pp , , , I. Major Functions of the Circulatory System

P215 SPRING 2019: CIRCULATORY SYSTEM Chaps 13, 14 & 15: pp , , , I. Major Functions of the Circulatory System P215 SPRING 2019: CIRCULATORY SYSTEM Chaps 13, 14 & 15: pp 360-390, 395-404, 410-428 433-438, 441-445 I. Major Functions of the Circulatory System 1. 2. 3. 4. II. Structure of the Heart 1. atria 2. ventricles

More information

Reverse (fluid) resuscitation Should we be doing it? NAHLA IRTIZA ISMAIL

Reverse (fluid) resuscitation Should we be doing it? NAHLA IRTIZA ISMAIL Reverse (fluid) resuscitation Should we be doing it? NAHLA IRTIZA ISMAIL 65 Male, 60 kg D1 in ICU Admitted from OT intubated Diagnosis : septic shock secondary to necrotising fasciitis of the R lower limb

More information

Cardiac Output 1 Fox Chapter 14 part 1

Cardiac Output 1 Fox Chapter 14 part 1 Vert Phys PCB3743 Cardiac Output 1 Fox Chapter 14 part 1 T. Houpt, Ph.D. Regulation of Heart & Blood Pressure Keep Blood Pressure constant if too low, not enough blood (oxygen, glucose) reaches tissues

More information

The Cardiovascular and Lymphatic Systems

The Cardiovascular and Lymphatic Systems BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 12 The Cardiovascular and Lymphatic Systems Lecture Presentation Anne Gasc Hawaii Pacific University and

More information

Blood flows away from the heart in arteries, to the capillaries and back to the heart in the veins

Blood flows away from the heart in arteries, to the capillaries and back to the heart in the veins Cardiovascular System Summary Notes The cardiovascular system includes: The heart, a muscular pump The blood, a fluid connective tissue The blood vessels, arteries, veins and capillaries Blood flows away

More information

Fahed alkarmi. Bahaa najjar. Muhammad khatatbeh

Fahed alkarmi. Bahaa najjar. Muhammad khatatbeh 13 Fahed alkarmi Bahaa najjar Muhammad khatatbeh We have said before that we have a certain amount of water in our bodies, this amount is distributed as follows: 1- Two thirds (2/3) of that water is inside

More information

Burn shock ( 燒燙傷休克 ) 馬偕紀念醫院整形重建外科 姚文騰醫師 2015/10/22

Burn shock ( 燒燙傷休克 ) 馬偕紀念醫院整形重建外科 姚文騰醫師 2015/10/22 Burn shock ( 燒燙傷休克 ) 馬偕紀念醫院整形重建外科 姚文騰醫師 2015/10/22 重建階梯 Sheet STSG FTSG Mesh Meek Stamp Meek Introduction Cutaneous thermal injury involving more than one-third of the total body surface area (TBSA)

More information

Principles of Fluid Balance

Principles of Fluid Balance Principles of Fluid Balance I. The Cellular Environment: Fluids and Electrolytes A. Water 1. Total body water (TBW) = 60% of total body weight 2. Fluid Compartments in the Body a. Intracellular Compartment

More information

The functions of the kidney:

The functions of the kidney: The functions of the kidney: After reading this lecture you should be able to.. 1. List the main functions of the kidney. 2. Know the basic physiological anatomy of the kidney and the nephron 3. Describe

More information

The Microcirculation and the Lymphatic System

The Microcirculation and the Lymphatic System C H A P T E R 16 The Microcirculation and the Lymphatic System H. Glenn Bohlen, Ph.D. CHAPTER OUTLINE THE ARTERIAL MICROVASCULATURE THE CAPILLARIES THE VENOUS MICROVASCULATURE THE LYMPHATIC VASCULATURE

More information

Physiology of Circulation. Dr. Hiwa Shafiq 16/12/2018

Physiology of Circulation. Dr. Hiwa Shafiq 16/12/2018 Physiology of Circulation Dr. Hiwa Shafiq 16/12/2018 Overview of the circulation The function of the circulation is to: 1. transport nutrients to the body tissues 2. transport waste products away 3. conduct

More information

Vertebrates possess kidneys: internal organs which are vital to ion and water balance and excretion.

Vertebrates possess kidneys: internal organs which are vital to ion and water balance and excretion. The Kidney Vertebrates possess kidneys: internal organs which are vital to ion and water balance and excretion. The kidney has 6 roles in the maintenance of homeostasis. 6 Main Functions 1. Ion Balance

More information

Chapter 38: Pulmonary Circulation, Pulmonary Edema, Pleural Fluid UNIT VII. Slides by Robert L. Hester, PhD

Chapter 38: Pulmonary Circulation, Pulmonary Edema, Pleural Fluid UNIT VII. Slides by Robert L. Hester, PhD UNIT VII Chapter 38: Pulmonary Circulation, Pulmonary Edema, Pleural Fluid Slides by Robert L. Hester, PhD Objectives Describe the pulmonary circulation Describe the pulmonary blood pressures List the

More information

بسم اهلل الرحمن الرحيم

بسم اهلل الرحمن الرحيم بسم اهلل الرحمن الرحيم o Always we try to maintain a Homeostasis mechanism. Homeostasis : maintenance of internal environment. How?! The environment,that cells live in it,must be in a constant natural

More information

** Accordingly GFR can be estimated by using one urine sample and do creatinine testing.

** Accordingly GFR can be estimated by using one urine sample and do creatinine testing. This sheet includes the lecture and last year s exam. When a patient goes to a clinic, we order 2 tests: 1) kidney function test: in which we measure UREA and CREATININE levels, and electrolytes (Na+,

More information

Chapter 12. Excretion and the Interaction of Systems

Chapter 12. Excretion and the Interaction of Systems Chapter 12 Excretion and the Interaction of Systems 1 2 Goals for This Chapter 1. Identify the main structures and functions of the human excretory system 2. Explain the function of the nephron 3. Describe

More information

Chapter 16 Lymphatic System and Immunity. Lymphatic Pathways. Lymphatic Capillaries. network of vessels that assist in circulating fluids

Chapter 16 Lymphatic System and Immunity. Lymphatic Pathways. Lymphatic Capillaries. network of vessels that assist in circulating fluids Chapter 16 Lymphatic System and Immunity network of vessels that assist in circulating fluids closely associated with the cardiovascular system transports excess fluid away from interstitial spaces transports

More information

Tissues. tissue = many cells w/ same structure and function. cell shape aids its function tissue shape aids its function

Tissues. tissue = many cells w/ same structure and function. cell shape aids its function tissue shape aids its function Tissues tissue = many cells w/ same structure and function cell shape aids its function tissue shape aids its function Histology = study of tissues 4 types of tissues Epithelial coverings contact openings

More information

Cardiovascular System L-5 Special Circulations, hemorrhage and shock. Dr Than Kyaw March 2012

Cardiovascular System L-5 Special Circulations, hemorrhage and shock. Dr Than Kyaw March 2012 Cardiovascular System L-5 Special Circulations, hemorrhage and shock Dr Than Kyaw March 2012 Special circulation (Coronary, Pulmonary, and Cerebral circulations) Introduction Special attention to circulation

More information

CNS pathology Third year medical students. Dr Heyam Awad 2018 Lecture 5: disturbed fluid balance and increased intracranial pressure

CNS pathology Third year medical students. Dr Heyam Awad 2018 Lecture 5: disturbed fluid balance and increased intracranial pressure CNS pathology Third year medical students Dr Heyam Awad 2018 Lecture 5: disturbed fluid balance and increased intracranial pressure ILOs Understand causes and symptoms of increased intracranial pressure.

More information

Levels of Organization. Chapter 19 6/11/2012. Homeostasis & Organization of the animal body. 4 Primary Tissues

Levels of Organization. Chapter 19 6/11/2012. Homeostasis & Organization of the animal body. 4 Primary Tissues Levels of Organization Chapter 19 Homeostasis & Organization of the animal body Chemical Cellular Tissue Organs System Level Organismic 1-2 4 Primary Tissues 1. Epithelial Tissue: covers surfaces lines

More information

Epithelial Lecture Test Questions

Epithelial Lecture Test Questions Epithelial Lecture Test Questions 1. Which of the following free surfaces lack(s) epithelia: a. lung alveoli (air sacs) b. hard palate c. joint cavities d. abdominal cavity e. salivary gland ducts 2. Which

More information

Circulatory System. and. Respiratory System. Ari Min, Yerim Lee and Min Ji Song THE HEART LUNGS. Monday, May 23, 2011

Circulatory System. and. Respiratory System. Ari Min, Yerim Lee and Min Ji Song THE HEART LUNGS. Monday, May 23, 2011 Human Anatomy Circulatory System and THE HEART Respiratory System LUNGS Ari Min, Yerim Lee and Min Ji Song Purpose of the Circulatory System Function of circulatory system: exchange gases with cardiovascular

More information

CIRCULATORY DISTURBANCES

CIRCULATORY DISTURBANCES CIRCULATORY DISTURBANCES Shannon Martinson, January 2016 Email: smartinson@upei.ca All lecture notes and slide shows are available online: http://people.upei.ca/smartinson Office: 418N REFERENCE TEXTS:

More information

Collin County Community College RENAL PHYSIOLOGY

Collin County Community College RENAL PHYSIOLOGY Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 12 Urinary System 1 RENAL PHYSIOLOGY Glomerular Filtration Filtration process that occurs in Bowman s Capsule Blood is filtered and

More information

ANATOMY & PHYSIOLOGY II

ANATOMY & PHYSIOLOGY II ANATOMY & PHYSIOLOGY II THE BODY SYSTEMS Anatomy & Physiology II The Body Systems Michelle Cochrane 2014 All rights reserved. This material is subject to copyright and may not be reprinted or reproduced

More information

Dean s Signature: Date Reviewed: / /

Dean s Signature: Date Reviewed: / / Fall 2015 22TBio 142 22THuman Anatomy and Physiology II Faculty Name: Virginia Garden Program Head: Virginia Garden Dean s Review: Dean s Signature: Date Reviewed: / / Revised: Semester/Year 22TBio 142

More information

Objectives. Pulmonary Vascular Changes in Heart Disease. Pressure, Flow, Resistance. Pressure, Flow, Resistance FETAL CIRCULATION

Objectives. Pulmonary Vascular Changes in Heart Disease. Pressure, Flow, Resistance. Pressure, Flow, Resistance FETAL CIRCULATION Objectives Pulmonary Vascular Changes in Heart Disease To review the normal physiology of the pulmonary circulation To define pulmonary hypertension, its causes especially related to heart disease, and

More information

APPROACH TO PLEURAL EFFUSIONS. Raed Alalawi, MD, FCCP

APPROACH TO PLEURAL EFFUSIONS. Raed Alalawi, MD, FCCP APPROACH TO PLEURAL EFFUSIONS Raed Alalawi, MD, FCCP CASE 65-year-old woman with H/O breast cancer presented with a 1 week H/O progressively worsening exersional dyspnea. Physical exam: Diminished breath

More information

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes The cell membrane is the gateway into the cell, and must allow needed things such as nutrients into the cell without letting them escape.

More information

NOTES: CH 40 Introduction to Human Anatomy & Physiology

NOTES: CH 40 Introduction to Human Anatomy & Physiology NOTES: CH 40 Introduction to Human Anatomy & Physiology THE HUMAN BODY Anatomy Physiology (= structures) (= functions or processes) Characteristics of LIFE: 1) Made up of 1 or more CELLS. 2) Obtain and

More information

Lec #2 histology. Bronchioles:

Lec #2 histology. Bronchioles: Lec #2 histology. Last lecture we talked about the upper respiratory tract histology, this one is about the lower part histology. We will discuss the histology of: -bronchioles -respiratory bronchioles

More information

The Cardiovascular System. The Structure of Blood Vessels. The Structure of Blood Vessels. The Blood Vessels. Blood Vessel Review

The Cardiovascular System. The Structure of Blood Vessels. The Structure of Blood Vessels. The Blood Vessels. Blood Vessel Review The Cardiovascular System The Blood Vessels The Structure of Blood Vessels Blood Vessel Review Arteries carry blood away from the heart Pulmonary trunk to lungs Aorta to everything else Microcirculation

More information

Part 1 The Cell and the Cellular Environment

Part 1 The Cell and the Cellular Environment 1 Chapter 3 Anatomy and Physiology Part 1 The Cell and the Cellular Environment 2 The Human Cell The is the fundamental unit of the human body. Cells contain all the necessary for life functions. 3 Cell

More information