General Pathology. Disturbances of Circulation Edema. (Web)

Size: px
Start display at page:

Download "General Pathology. Disturbances of Circulation Edema. (Web)"

Transcription

1 General Pathology Disturbances of Circulation Edema (Web) Paul Hanna Jan 2015

2 The health of cells and organs critically depends on an unbroken circulation to deliver oxygen and nutrients and to remove wastes The well-being of tissues requires normal fluid balance; abnormalities in vascular permeability or hemostasis can result in injury (Pathologic Basis of Disease)

3 NORMAL CIRCULATORY SYSTEM [For Information only] 1. Distribution of fluid is carefully controlled 2. Deviations from normal can have profound pathological effects 3. Normal function requires intact blood and lymph vessels 4. Endothelial cells are important!

4 Components of the Circulatory System [For Information only] Fig. 2-1 (McGavin)The vascular system. Blood travels from the left side of the heart to the right side of the heart via the systemic circulation, and from the right side of the heart to the left side via the pulmonary circulation. Blood flow rate and pressure in the systemic arterial circulation decrease in conjunction with increased total arterial cross-sectional area. In the venous systemic circulation, blood flow rate, but not pressure, increases in conjunction with decreased total venous crosssectional area. The flow, pressure, and cross-sectional area relationships are similar but reversed (i.e., veins deliver blood and arteries collect blood) in the pulmonary circulation. Pump Distribution system Nutrient / waste Collection system Pump exchange

5 [For Information only] Artery Figure 11 7 (Mescher). Walls of arteries, veins, and capillaries. Walls of both arteries and veins have a tunica intima, tunica media, and tunica externa (or adventitia), which correspond roughly to the heart s endocardium, myocardium and epicardium. An artery has a thicker tunica media and relatively narrow lumen. A vein has a larger lumen and its tunica externa is the thickest layer. The tunica intima of veins is often folded to form valves. Capillaries have only an endothelium, with no subendothelial layer or other tunics. Vein

6 Microcirulation [For Information only] Figure (Mescher) Structure of microvasculature. Microvasculature arises to meet nutritional needs of one organ or parts of one organ and consists of blood vessels of less than 0.5 mm diameter. Microvessels include arterioles and their smaller branches called metarterioles in which the layer of smooth muscle cells is dispersed as bands of cells that act as precapillary sphincters. The distal portion of the metarteriole, sometimes called a thoroughfare channel, lacks any smooth muscle cells. The wall of capillaries lacks smooth muscle cells altogether. The precapillary sphincters allow blood to enter the bed of capillaries in a pulsatile manner for maximally efficient exchange of nutrients, wastes, O2, and CO2 across the capillary wall. Capillaries and the metarteriole converge as postcapillary venules, the last component of the microvasculature. Blood enters microvasculature well oxygenated and leaves poorly oxygenated.

7 Capillaries [For Information only] enormous volume (1300 X cross-sectional area of aorta) but normally contain only ~5% of the blood site where nutrients & wastes are exchanged and are critical in fluid balance

8 Endothelial cells all components of the circulatory system lined by a single layer of endothelium [For Information only] effect: fluid balance hemostasis inflammation / immunity angiogenesis / healing Fig. 2-6 (McGavin) Structure and function of the endothelium. Endothelium is both a physical barrier between intravascular and extravascular spaces, and it is an important mediator of fluid distribution, hemostasis, inflammation, and healing.

9 Mechanisms for Substance Transport Across Capillary Wall capillary wall is semipermeable membrane [For Information only] Direct diffusion most small molecules move by passive diffusion through endothelial cell membrane or interendothelial pores normal interendothelial pores too small to allow escape of large proteins in inflammation, endothelial cells contract, allowing larger molecules to escape Transcytosis some endothelium, fluids / macromolecules transported across a cell by vesicles

10 Regional Differences in Capillary Lining [For Information only] Muscle Jejunum (Discontinuous) Liver

11 Fluid Distribution & Homeostasis [For Information only] TOTAL BODY WATER Intracellular fluid (40%) Plasma ( 5%) ECF Interstitial fluid (15%) Transcellular fluid ( 5%) 65% of Lean Body Weight

12 Interstitium [For Information only] is the space between microcirculation and the cells medium through which all metabolic products must pass between microcirculation and cells distribution of fluids, nutrients & wastes between blood-interstitium-cells controlled by physical structures, pressures and ion concentration gradients interstitium = ECM + fluid ECM properties: structural support adhesion absorption (hygroscopic)

13 Extracellular Matrix [For Information only] a) Structural molecules: collagen, reticulin & elastin fibers. b) Ground substance: Adhesive glycoproteins (eg fibronectin, laminin) Absorptive glycosaminoglycans / proteoglycans C = collagen E = elastic fibers F = fibroblasts Ground substance = appears as granular material in extracellular space (artifact of gluteraldehyde tannic acid fixation)

14 Glycosaminoglycans & Proteoglycans [For Information only] Glycosaminoglycans are unbranched polysaccharide chains composed of repeating disaccharide units. one of the sugars is always an amino sugar (N-acetylglucosamine or N-acetylgalactosamine); usually sulfated. second sugar is usually a uronic acid (glucuronic or iduronic); with carboxyl group. other than hyaluronic acid, GAG s are attached to a protein core forming a proteoglycan molecule. due to high negative charges (SO 3 - & CO 2- ) GAGs are the most anionic molecule produced, bind cations (esp Na + ), therefore extremely hydrophilic. Hyaluronan Proteoglycan Glycoprotein GAG chains Protein core

15 Extracellular Matrix [For Information only] Web Fig (Zachary & McGavin) Extracellular matrix (ECM). Main components of the extracellular matrix (ECM), including collagens, proteoglycans, and adhesive glycoproteins. Both epithelial and mesenchymal cells (e.g., fibroblasts) interact with ECM via integrins. Basement membranes and interstitial ECM have different architecture and general composition, although there is some overlap in their constituents. For the sake of simplification, many ECM components (e.g., elastin, fibrillin, hyaluronan, and syndecan) are not included.

16 Movement of Fluids [For Information only] capillary (endotheial cell / BL): allows the free passage of H 2 O & ions oppose the passage of plasma proteins H 2 O distribution between plasma & interstitium is primarily determined by hydrostatic and osmotic pressure differences between the 2 compartments

17 Starlings Equation [For Information only] hydrostatic pressure in the vascular system (+ interstitial osmotic pressure) moves fluid out of the vascular system the osmotic pressure of the plasma proteins (+ some tissue hydrostatic pressure) contains the fluid within the vascular system * * Factors influencing fluid transit across capillary walls. Capillary hydrostatic and osmotic forces are normally balanced so that there is no net loss or gain of fluid across the capillary bed. However, increased hydrostatic pressure (in the venule) or diminished plasma osmotic pressure will cause extravascular fluid to accumulate. Tissue lymphatics removes the small amount of excess volume, eventually returning it to the circulation via the thoracic duct; however, if the capacity for lymphatic drainage is exceeded, tissue edema results.

18

19 CIRCULATORY DISTURBANCES Edema Congestion and Hyperemia Hemorrhage Hemostasis Thrombosis and Embolism Infarction Shock

20 Edema Definition abnormal (excess) accumulation fluid in interstitial tissue spaces or body cavities Gross Appearance of Edema organs wet (± gelatinous) and heavy. organs swollen and fluid may weep from cut surface may be yellow Fig (McGavin) Pulmonary edema, lung, pig. The lung failed to collapse and has a firm rubbery texture attributable to edema fluid in alveoli and the interstitium. Note the prominent interlobular septa caused by edema (arrowhead) and the frothy edema fluid exuding from the bronchus (arrow).

21 Edema Histologic Appearance of Edema lightly staining eosinophilic fluid (if some protein content) clear / no staining (if protein content low) lymphatics usually dilated Normal Fig (McGavin) Pulmonary edema, lung, rat. There is eosinophilic (pink staining) fluid distending the alveoli in the lower specimen. Histologically, edema is an amorphous, pale eosinophilic fluid, and the depth of the eosinophilia is proportional to its protein content. The fluid in this specimen has a high protein content. The upper specimen is normal rat lung. H&E stain.

22 Edema Gastric and intestinal edema, horse. On gross examination, note the marked submucosal edema of the intestine (top right) and stomach wall (bottom right). Histologically (above) the clear (protein poor) edema fluid has markedly expanded the submucosa.

23 Edema Mechanisms Increased hydrostatic pressure (venous) Normal Note, the increased hydrostatic pressure applies only to the venous side of the capillary. Hypertension (high blood pressure) on the arterial side doesn t extend down to the arteriole!) Causes of Impaired Venous Return Generalized eg, right sided-heart failure. Localized eg, tight bandage causing local obstruction of venous return.

24 Edema Mechanisms Decreased plasma colloidal osmotic (oncotic) pressure Causes of Hypoproteinemia Proteins not absorbed Starvation Malabsorption Proteins not produced Liver disease Proteins lost Glomerular disease Intestinal damage

25 Edema Mechanisms Lymphatic obstruction Causes of Lymphatic Obstruction Damage / obstruction of lymphatics Surgery / trauma (fibrosis) Neoplasm Inflammation (lymphangitis)

26 Edema Fluid Characteristics Protein poor ( Non-inflammatory edema ) Transudate Low protein content < 30g/L Low specific gravity < Few nucleated cells <1.5 X10 9 /L

27 Eema Edema Mechanisms Increased Vascular Permeability / Endothelial damage mostly due to inflammatory / immune reactions inflammatory edema endothelium can also be directly damaged by specific agents (eg viruses, toxins) Fluid Characteristics - Protein rich - Exudate High protein content > 30g/L Specific gravity > Total nucleated cells > 7 X10 9 /L

28 inflammatory edema Normal lung & thoracic cavity Bronchopneumonia with pleuritis (pleuropneumonia) with abundant edema ( inflammatory edema, note fibrin clots)

29 Local Edema Mechanisms local impaired venous drainage local lymphatic blockage local inflammation note localized edema of the foot distal to constricting band

30 Generalized Edema Mechanisms hydrostatic psi (venous) colloid osmotic psi Location often see ascites, hydrothorax & subcutaneous ( dependent ) edema - subcutis of ventral abdomen / thorax ( brisket edema ) - subcutis of the ventral cervical / mandibular region ( bottle jaw ) - subcutis of the limbs ( stocking up ) Fig (McGavin) Subcutaneous edema, high altitude disease with congestive heart failure ( brisket disease ), presternal, sternal, and caudal sternocephalic regions (brisket), cow. The extensive subcutaneous edema is the result of chronic congestive heart failure.

31 Generalized Edema note, hypoproteinemia due to gastrointestinal parasitism is a common cause of dependant edema in sheep; bottle jaw in this case.

32 Generalized Edema Subcutaneous edema, limbs, equine. This horse had generalized edema due to protein losing enteropathy

33 Terminology Pitting Edema when pressure is applied to an area of subq edema and a depression / dent results

34 Terminology Anasarca severe and generalized edema with profound subcutaneous tissue swelling

35 Terminology Hydrothorax non-inflammatory fluid (transudate) in the thoracic cavity

36 Terminology Hydropericardium non-inflammatory fluid (transudate) in the pericardial sac

37 Terminology Ascites (= hydroperitoneum) non-inflammatory fluid (transudate) in the peritoneal cavity

38 Clinical Significance of Edema Dependent upon: Extent - mild vs moderate vs marked / severe Location - skin vs lung or brain Duration - increase in fibrous connective tissue after prolonged edema

39 Pulmonary Edema definition = accumulation of edema fluid in interstitium and alveoli of the lungs common cause of death in many disease processes Fig (McGavin) Pulmonary edema, lungs, pig. A, The lungs are distended by edema fluid, which has resulted in rounded edges and edematous distention of the interlobular septa. B, The cut surface is wet and the interlobular septa are markedly distended with edema fluid. Lung lobules are also congested.

40 Pulmonary Edema Mechanisms Circulatory failure increased hydrostatic pressure (esp left-sided heart failure) non-inflammatory edema into alveolar spaces Damage to pulmonary capillary endothelium usually with peracute inflammation ( inflammatory edema ) or toxins if increase in vascular permeability is substantial & widespread death

41 Pulmonary Edema Dynamics Fluid accumulates in interstitium: 1. Fluid moves through BM and accumulates in alveoli 2. Lymphatics dilated (± fibrosis if chronic) Alveolar space

42 Pulmonary Edema Gross lungs are heavy and wet froth in airways and on cut surface interlobular septa distended with fluid

43 Pulmonary Edema Histopathology fluid in interstitium / alveolar spaces dilated pleural / septal lymphatics often pink (inflamm. > non-inflamm.) Normal lung

44 Chronic Pulmonary Edema chronicity fibrosis of pleura & alveolar septa most commonly seen with cardiac failure and accompanying pulmonary congestion Masson trichrome staining highlights fibrous thickening (ie connective tissue stains green) of alveolar interstitium as the result of chronic pulmonary edema

45 Cerebral Edema (Edema of the Brain) Causes trauma to head obstruction of venous outflow intracranial infections Gross brain is heavier than normal sulci are narrow gyri are swollen & flattened Cerebral edema, dog. Note asymmetry of the cerebral hemispheres, since cerebral edema in this case is predominately in the left hemisphere.

46 Cerebral Edema Cerebellar coning herniation of the cerebellum through the foramen magnum Fig (McGavin) Coning of the cerebellar vermis, brain, cat. A, Sagittal section. Coning of the cerebellum. The caudal cerebellar vermis has been displaced caudally through the foramen magnum, note the notch on the dorsal surface (arrow). This result has compressed the medulla oblongata (MO), which can cause death from compression of the respiratory center. Note the elevation of the corpus callosum (CC) and focal compression of the rostral cerebellar vermis by the tectum (quadrigeminal plate) (QP).

47 Cerebral herniation herniation of caudal cerebral cortex beneath the tentorium cerebelli Tentorium cerebelli portion of the dura mater that separates the cerebellum from the inferior portion of the occipital lobes Normal Normal Fig (McGavin) Gyral herniation, parahippocampal gyri, brain, transverse section, caudal face, at level of the rostral colliculi and crus cerebri, horse. The caudal displacement of the parahippocampal gyri (arrows; note bulging beneath the tentorium cerebelli dura matter removed) was caused by a sudden swelling of the brain (increase in intracranial pressure) from severe cerebral blunt force trauma to the head. The other cerebral gyri are swollen and flattened and sulci are indistinct (cerebral edema).

48 Cerebral Edema Histo expansion of Virchow-Robin spaces Normal Fig Edema. A, Vasogenic edema. The perivascular spaces are wide as a result of fluid leakage through the blood-brain barrier (arrows) (Fig ). A similar change can be seen around neurons. These fluid-filled spaces are often very difficult to differentiate from artifactual spaces caused by shrinkage from fixation and dehydration in the preparation of the paraffin-embedded sections. H&E stain.

49 DEHYDRATION Definition deficiency of water (imbalance between uptake and loss) Causes uncontrolled diarrhea vomiting renal failure diabetes heat-stroke water deprivation Note deeply sunken eye in this dehydrated animal

50 DEHYDRATION Mechanism in total body water deficit of water shared among plasma--cells--interstitium renal perfusion is reduced when severe see hypovolemic shock (plasma water drawn into interstitium & cells)

51 DEHYDRATION Gross skin pulled away from body tents eyes are shrunken mucous membranes and subq tissues (at necropsy) are dry / sticky Note skin along dorsal neck and back region remains tented in in this severely dehydrated dog

52

EDEMA. Learning Objectives

EDEMA. Learning Objectives EDEMA Learning Objectives Define edema Recognize and be able to describe the gross and microscopic appearance of edema Know the four pathophysiological mechanisms by which edema develops Understand the

More information

Circulatory Disturbances 1: Introduction and Edema

Circulatory Disturbances 1: Introduction and Edema Circulatory Disturbances 1: Introduction and Edema Shannon Martinson, January 2016 http://people.upei.ca/smartinson/ VPM 152 General Pathology INTRODUCTION NORMAL CIRCULATORY SYSTEM Important concepts

More information

Hyperemia, Congestion, and Edema

Hyperemia, Congestion, and Edema Hyperemia, Congestion, and Edema Hyperemia Acute, actively increased blood flow Tissues look red (erythema) Congestion Chronic, passively reduced outflow Tissues look pale or blue (cyanosis) Edema Water

More information

Blood Vessels. Chapter 20

Blood Vessels. Chapter 20 Blood Vessels Chapter 20 Summary of the Characteristics of Arteries and Veins Characteristic Artery Vein Wall thickness thick thin Shape in cross section round flattened Thickest tunic media externa Collagen

More information

According to the etiology, edema may be:

According to the etiology, edema may be: What is edema? Edema : It refers to the accumulation of excess liquid in the interstitial (extracellular) spaces of a tissue or in pre-existing cavities. It may affect any organ, but most often it appears

More information

Cardivascular System Module 5: Structure and Function of Blood Vessels *

Cardivascular System Module 5: Structure and Function of Blood Vessels * OpenStax-CNX module: m49689 1 Cardivascular System Module 5: Structure and Function of Blood Vessels * Donna Browne Based on Structure and Function of Blood Vessels by OpenStax This work is produced by

More information

Fluid and Electrolytes P A R T 2

Fluid and Electrolytes P A R T 2 Fluid and Electrolytes P A R T 2 Fluid Shifts Extracellular fluid distribution is dynamic Interstitial fluid formation is continuous Venous system Large veins (capacitance vessels) Small veins (capacitance

More information

Copyright 2010 Pearson Education, Inc. Blood Vessel Structure

Copyright 2010 Pearson Education, Inc. Blood Vessel Structure Blood Vessel Structure Structure of Blood Vessel Walls Arteries and veins Tunica intima, tunica media, and tunica externa Lumen Central blood-containing space Capillaries Endothelium with sparse basal

More information

Disturbances of Circulation, Lab 1: Edema and Congestion/Hyperemia. Shannon Martinson, Feb

Disturbances of Circulation, Lab 1: Edema and Congestion/Hyperemia. Shannon Martinson, Feb Disturbances of Circulation, Lab 1: Edema and Congestion/Hyperemia Shannon Martinson, Feb 2017 http://people.upei.ca/smartinson/ Case #1 Signalment and History: 6-month old feeder lamb found dead on pasture

More information

Microcirculation. Lecture Block 11 (contributions from Brett Burton)

Microcirculation. Lecture Block 11 (contributions from Brett Burton) Lecture Block 11 (contributions from Brett Burton) Elements of Arterioles, capillaries, venules Structure and function: transport Fluid balance Lymph system Vessels of the Circulatory System Diameter Aorta

More information

Cardiovascular System B L O O D V E S S E L S 3

Cardiovascular System B L O O D V E S S E L S 3 Cardiovascular System B L O O D V E S S E L S 3 Fluid Shifts Between Capillaries and Tissue Permeable capillaries allow plasma and solutes to pass into interstitial space interstitial or extracellular

More information

Any of these questions could be asked as open question or lab question, thus study them well

Any of these questions could be asked as open question or lab question, thus study them well Any of these questions could be asked as open question or lab question, thus study them well describe the factors which regulate cardiac output describe the sympathetic and parasympathetic control of heart

More information

Physiology of Circulation

Physiology of Circulation Physiology of Circulation Dr. Ali Ebneshahidi Blood vessels Arteries: Blood vessels that carry blood away from the heart to the lungs and tissues. Arterioles are small arteries that deliver blood to the

More information

Blood Vessels. Types of Blood Vessels Arteries carry blood away from the heart Capillaries smallest blood vessels. Veins carry blood toward the heart

Blood Vessels. Types of Blood Vessels Arteries carry blood away from the heart Capillaries smallest blood vessels. Veins carry blood toward the heart C H A P T E R Blood Vessels 20 Types of Blood Vessels Arteries carry blood away from the heart Capillaries smallest blood vessels The site of exchange of molecules between blood and tissue fluid Veins

More information

Cardiovascular System Blood Vessels

Cardiovascular System Blood Vessels Cardiovascular System Blood Vessels Structure of Blood Vessels The three layers (tunics) Tunica intima composed of simple squamous epithelium Tunica media sheets of smooth muscle Contraction vasoconstriction

More information

Tala Saleh. Riham Abu Arrah, Abdallah AlQawasmeh. Yanal Shafagoj

Tala Saleh. Riham Abu Arrah, Abdallah AlQawasmeh. Yanal Shafagoj 27 Tala Saleh Riham Abu Arrah, Abdallah AlQawasmeh Yanal Shafagoj Cardiovascular system Think of the following situation: 5 Cancerous cells (for example: Lymphoma cells) are placed in a proper medium with

More information

CVS HISTOLOGY. Dr. Nabil Khouri.

CVS HISTOLOGY. Dr. Nabil Khouri. CVS HISTOLOGY Dr. Nabil Khouri http://anatomy.kmu.edu.tw/blockhis/block3/slides/block4_24.html The Heart Wall Contract as a single unit Cardiac Muscle Simultaneous contraction due to depolarizing at the

More information

The Circulatory System

The Circulatory System The Circulatory System Dr. Sami Zaqout The circulatory system Circulatory system Blood vascular systems Lymphatic vascular systems Blood vascular systems Blood vascular systems The circulatory system Circulatory

More information

HEMODYNAMIC DISORDERS

HEMODYNAMIC DISORDERS HEMODYNAMIC DISORDERS Normal fluid homeostasis requires vessel wall integrity as well as maintenance of intravascular pressure and osmolarity within certain physiologic ranges. Increases in vascular volume

More information

Ischaemia It means local anemia, it is characterized by a decrease amount of blood in an organ or region. Causes of Ischemia: *1.

Ischaemia It means local anemia, it is characterized by a decrease amount of blood in an organ or region. Causes of Ischemia: *1. المرحلة الثالثة م. هالة عباس ناجي Ischaemia It means local anemia, it is characterized by a decrease amount of blood in an organ or region. Causes of Ischemia: *1.External pressure upon an artery e.g:

More information

Histology of the Cardiac System. Dr. Nabil Khoury Anatomy Department

Histology of the Cardiac System. Dr. Nabil Khoury Anatomy Department Histology of the Cardiac System Dr. Nabil Khoury Anatomy Department Objectives 1. Identify the 3 layers of the heart endocardium, myocardium, epicardium 2. Differentiate cardiacmuscle 3. Define intercalated

More information

UNIT 4: BLOOD VESSELS

UNIT 4: BLOOD VESSELS UNIT 4: BLOOD VESSELS Dr. Moattar Raza Rizvi NRS237, Physiology Generalized Structure of Blood Vessels 1 Tunica interna (tunica intima) Endothelial layer that lines the lumen of all vessels In vessels

More information

Physiology of Circulation

Physiology of Circulation Physiology of Circulation Rodolfo T. Rafael,M.D. 12/8/2005 1 PHYSIOLOGY OF CIRCULATION BLOOD FLOW THROUGH THE CAPILLARIES LYMPHATIC SYSTEM BLOOD PRESSURE 12/8/2005 2 1 Fig.21.08 12/8/2005 3 The Blood Pressure

More information

Practical Histology. Cardiovascular System. Dr Narmeen S. Ahmad

Practical Histology. Cardiovascular System. Dr Narmeen S. Ahmad Practical Histology Cardiovascular System Dr Narmeen S. Ahmad The Cardiovascular System A closed system of the heart and blood vessels Functions of cardiovascular system: Transport nutrients, hormones

More information

5 DISTURBANCES IN CIRCULATION. Congestion / Hyperemia Haemorrhage Thrombosis Embolism Ischemia Infarction Oedema Shock Sludged blood Model Questions

5 DISTURBANCES IN CIRCULATION. Congestion / Hyperemia Haemorrhage Thrombosis Embolism Ischemia Infarction Oedema Shock Sludged blood Model Questions 5 DISTURBANCES IN CIRCULATION Congestion / Hyperemia Haemorrhage Thrombosis Embolism Ischemia Infarction Oedema Shock Sludged blood Model Questions CONGESTION/ HYPEREMIA Hyperemia is increased amount of

More information

2. capillaries - allow exchange of materials between blood and tissue fluid

2. capillaries - allow exchange of materials between blood and tissue fluid Chapter 19 - Vascular System A. categories and general functions: 1. arteries - carry blood away from heart 2. capillaries - allow exchange of materials between blood and tissue fluid 3. veins - return

More information

The Cardiovascular and Lymphatic Systems Cardiovascular System Blood Vessels Blood Vessels Arteries Arteries Arteries

The Cardiovascular and Lymphatic Systems Cardiovascular System Blood Vessels Blood Vessels Arteries Arteries Arteries CH 12 The Cardiovascular and s The Cardiovascular and s OUTLINE: Cardiovascular System Blood Vessels Blood Pressure Cardiovascular System The cardiovascular system is composed of Blood vessels This system

More information

Heart. Large lymphatic vessels Lymph node. Lymphatic. system Arteriovenous anastomosis. (exchange vessels)

Heart. Large lymphatic vessels Lymph node. Lymphatic. system Arteriovenous anastomosis. (exchange vessels) Venous system Large veins (capacitance vessels) Small veins (capacitance vessels) Postcapillary venule Thoroughfare channel Heart Large lymphatic vessels Lymph node Lymphatic system Arteriovenous anastomosis

More information

HYPEREMIA AND CONGESTION

HYPEREMIA AND CONGESTION HYPEREMIA AND CONGESTION Learning Objectives Define congestion and hyperemia Differentiate between the two with regard to: Mechanisms / underlying causes Appearance (gross and histologic) Effects Differentiate

More information

The cardiovascular system

The cardiovascular system The cardiovascular system Components of the Cardiovascular system Heart Vessels: Arteries Capillaries Veins Functions of CVS: Transportation system where blood is the transporting vehicle Carries oxygen,

More information

Extra notes for lab- 1 histology. Slide 1 : cross section in the elastic artery ( aortic arch, ascending aorta, descending aorta )

Extra notes for lab- 1 histology. Slide 1 : cross section in the elastic artery ( aortic arch, ascending aorta, descending aorta ) Extra notes for lab- 1 histology Slide 1 : cross section in the elastic artery ( aortic arch, ascending aorta, descending aorta ) - twin of ascending aorta is the pulmonary trunk. Ascending aorta represents

More information

Cardiovascular Module

Cardiovascular Module Cardiovascular Module Cardiovascular Physiology Lect. Six Microcirculation & Lymphatics (Edema formation) Prof. Dr. Najeeb Hassan Mohammed The microcirculation and the lymphatic system The microcirculation

More information

Most mammalian cells are located in tissues where they are surrounded by a complex extracellular matrix (ECM) often referred to as connective tissue.

Most mammalian cells are located in tissues where they are surrounded by a complex extracellular matrix (ECM) often referred to as connective tissue. GLYCOSAMINOGLYCANS Most mammalian cells are located in tissues where they are surrounded by a complex extracellular matrix (ECM) often referred to as connective tissue. The ECM contains three major classes

More information

Cardiovascular System. Blood Vessel anatomy Physiology & regulation

Cardiovascular System. Blood Vessel anatomy Physiology & regulation Cardiovascular System Blood Vessel anatomy Physiology & regulation Path of blood flow Aorta Arteries Arterioles Capillaries Venules Veins Vena cava Vessel anatomy: 3 layers Tunica externa (adventitia):

More information

Chapter 21. Blood Vessels and Circulation

Chapter 21. Blood Vessels and Circulation Chapter 21 Openstax: Chapter 20 Blood Vessels and Circulation Chapter 21 Learning Outcomes After completing Chapter 21, you will be able to: 1. Distinguish among the types of blood vessels based on their

More information

Blood Flow, Blood Pressure, Cardiac Output. Blood Vessels

Blood Flow, Blood Pressure, Cardiac Output. Blood Vessels Blood Flow, Blood Pressure, Cardiac Output Blood Vessels Blood Vessels Made of smooth muscle, elastic and fibrous connective tissue Cells are not electrically coupled Blood Vessels Arteries arterioles

More information

The Cardiovascular and Lymphatic Systems

The Cardiovascular and Lymphatic Systems BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 12 The Cardiovascular and Lymphatic Systems Lecture Presentation Anne Gasc Hawaii Pacific University and

More information

Cardiovascular System

Cardiovascular System Cardiovascular System Purpose Transport oxygen and nutrients Take waste products away from tissues & organs Things we learned Blood pressure: the force of blood pushing against the walls of blood vessels

More information

Characteristic features of CNS pathology. By: Shifaa AlQa qa

Characteristic features of CNS pathology. By: Shifaa AlQa qa Characteristic features of CNS pathology By: Shifaa AlQa qa Normal brain: - The neocortex (gray matter): six layers: outer plexiform, outer granular, outer pyramidal, inner granular, inner pyramidal, polymorphous

More information

Histology of the myocardium and blood vessels. Prof. Abdulameer Al-Nuaimi

Histology of the myocardium and blood vessels. Prof. Abdulameer Al-Nuaimi Histology of the myocardium and blood vessels Prof. Abdulameer Al-Nuaimi E-mail: a.al-nuaimi@sheffield.ac.uk E-mail: abdulameerh@yahoo.com Histology of blood vessels The walls of arteries and veins are

More information

Cardiovascular (Circulatory) System

Cardiovascular (Circulatory) System Cardiovascular (Circulatory) System Piryaei May 2011 Circulatory System Heart Blood Vessels Macrovasculature (More than 0.1mm) Elastic Artery Muscular (Distributing) Artery Large Arteriol Small Vein Muscular

More information

Pulmonary circulation. Lung Blood supply : lungs have a unique blood supply system :

Pulmonary circulation. Lung Blood supply : lungs have a unique blood supply system : Dr. Ali Naji Pulmonary circulation Lung Blood supply : lungs have a unique blood supply system : 1. Pulmonary circulation 2. Bronchial circulation 1- Pulmonary circulation : receives the whole cardiac

More information

Microcirculation and Edema. Faisal I. Mohammed MD, PhD.

Microcirculation and Edema. Faisal I. Mohammed MD, PhD. Microcirculation and Edema Faisal I. Mohammed MD, PhD. Objectives: Point out the structure and function of the microcirculation. Describe how solutes and fluids are exchang in capillaries. Outline what

More information

Body Fluids and Fluid Compartments

Body Fluids and Fluid Compartments Body Fluids and Fluid Compartments Bởi: OpenStaxCollege The chemical reactions of life take place in aqueous solutions. The dissolved substances in a solution are called solutes. In the human body, solutes

More information

Study of different tissues Abnormal cells and tissues can be compared to normal tissues to identify disease, such as cancer Being able to know and

Study of different tissues Abnormal cells and tissues can be compared to normal tissues to identify disease, such as cancer Being able to know and CHAPTER 4 Study of different tissues Abnormal cells and tissues can be compared to normal tissues to identify disease, such as cancer Being able to know and recognize normal tissues under the microscope

More information

Blood flows away from the heart in arteries, to the capillaries and back to the heart in the veins

Blood flows away from the heart in arteries, to the capillaries and back to the heart in the veins Cardiovascular System Summary Notes The cardiovascular system includes: The heart, a muscular pump The blood, a fluid connective tissue The blood vessels, arteries, veins and capillaries Blood flows away

More information

Chapter 21 (1) An Introduction to Blood Vessels and Circulation

Chapter 21 (1) An Introduction to Blood Vessels and Circulation Chapter 21 (1) An Introduction to Blood Vessels and Circulation Lecture Objectives Compare and contrast the structure of an artery, arteriole, vein, venule, and capillary Discuss the structure and function

More information

Microcirculation and Edema- L1 L2

Microcirculation and Edema- L1 L2 Microcirculation and Edema- L1 L2 Faisal I. Mohammed MD, PhD. University of Jordan 1 Objectives: Point out the structure and function of the microcirculation. Describe how solutes and fluids are exchanged

More information

1. Distinguish among the types of blood vessels on the basis of their structure and function.

1. Distinguish among the types of blood vessels on the basis of their structure and function. Blood Vessels and Circulation Objectives This chapter describes the structure and functions of the blood vessels Additional subjects contained in Chapter 13 include cardiovascular physiology, regulation,

More information

Causes of Edema That Result From an Increased Capillary Pressure. Student Name. Institution Affiliation

Causes of Edema That Result From an Increased Capillary Pressure. Student Name. Institution Affiliation Running Head: CAUSES OF EDEMA 1 Causes of Edema That Result From an Increased Capillary Pressure Student Name Institution Affiliation CAUSES OF EDEMA 2 Causes of Edema That Result From an Increased Capillary

More information

Hemodynamic Disorders, Thrombosis, and Shock. Richard A. McPherson, M.D.

Hemodynamic Disorders, Thrombosis, and Shock. Richard A. McPherson, M.D. Hemodynamic Disorders, Thrombosis, and Shock Richard A. McPherson, M.D. Edema The accumulation of abnormal amounts of fluid in intercellular spaces of body cavities. Inflammation and release of mediators

More information

The Cardiovascular System. The Structure of Blood Vessels. The Structure of Blood Vessels. The Blood Vessels. Blood Vessel Review

The Cardiovascular System. The Structure of Blood Vessels. The Structure of Blood Vessels. The Blood Vessels. Blood Vessel Review The Cardiovascular System The Blood Vessels The Structure of Blood Vessels Blood Vessel Review Arteries carry blood away from the heart Pulmonary trunk to lungs Aorta to everything else Microcirculation

More information

Vascular System Part One

Vascular System Part One Vascular System Part One Objectives Trace the route taken by blood as it leaves, and then returns to the heart. Describe the structure of the walls of arteries and veins. Discuss the structure and function

More information

Cardiovascular system

Cardiovascular system Cardiovascular system L-4 Blood pressure & special circulation Dr Than Kyaw 27 February 2012 Blood Pressure (BP) Pressure generation and flow Blood is under pressure within its closed system. Pressure

More information

General Pathology. Hemorrhage (Web)

General Pathology. Hemorrhage (Web) General Pathology Hemorrhage (Web) Paul Hanna Feb 2015 Hemorrhage escape of blood from the cardiovascular system may be external or internal Hemorrhage Causes Trauma Sepsis, viruses or toxins Coagulation

More information

CAPILLARY FLUID EXCHANGE

CAPILLARY FLUID EXCHANGE CAPILLARY FLUID EXCHANGE Aubrey E. Taylor and Timothy M. Moore Department of Physiology, University of South Alabama, College of Medicine, Mobile, Alabama 36688-0002 AM. J. PHYSIOL. 277 (ADV. PHYSIOL.

More information

10. Thick deposits of lipids on the walls of blood vessels, called, can lead to serious circulatory issues. A. aneurysm B. atherosclerosis C.

10. Thick deposits of lipids on the walls of blood vessels, called, can lead to serious circulatory issues. A. aneurysm B. atherosclerosis C. Heart Student: 1. carry blood away from the heart. A. Arteries B. Veins C. Capillaries 2. What is the leading cause of heart attack and stroke in North America? A. alcohol B. smoking C. arteriosclerosis

More information

Lymphatic System and Immunity. Lymphatic System

Lymphatic System and Immunity. Lymphatic System Lymphatic System and Immunity Lymphatic System Lymphatic System High hydrostatic pressure in the arterioles and capillaries at the arterial part of the circulation leads to move plasma fluid from the capillaries

More information

Chapter 14. The Cardiovascular System

Chapter 14. The Cardiovascular System Chapter 14 The Cardiovascular System Introduction Cardiovascular system - heart, blood and blood vessels Cardiac muscle makes up bulk of heart provides force to pump blood Function - transports blood 2

More information

The Cardiovascular System: Vessels and Routes. Pulmonary Circulation H E A R T. Systemic Circulation

The Cardiovascular System: Vessels and Routes. Pulmonary Circulation H E A R T. Systemic Circulation The Cardiovascular System: Vessels and Routes 1. Overview of Blood Circulation A. Pulmonary Circulation Lung Arterioles Pulmonary Artery Capillaries Pulmonary Circulation Venules Pulmonary Veins H E A

More information

Bronchioles. Alveoli. Type I alveolar cells are very thin simple squamous epithelial cells and form most of the lining of an alveolus.

Bronchioles. Alveoli. Type I alveolar cells are very thin simple squamous epithelial cells and form most of the lining of an alveolus. 276 Bronchioles Bronchioles continue on to form bronchi. The primary identifying feature is the loss of hyaline cartilage. The epithelium has become simple ciliated columnar, and there is a complete ring

More information

Physiology of Circulation. Dr. Hiwa Shafiq 16/12/2018

Physiology of Circulation. Dr. Hiwa Shafiq 16/12/2018 Physiology of Circulation Dr. Hiwa Shafiq 16/12/2018 Overview of the circulation The function of the circulation is to: 1. transport nutrients to the body tissues 2. transport waste products away 3. conduct

More information

Lecture name: blood 2 & The Circulatory System Edited by: Buthainah Al masaeed & Yousef Qandeel

Lecture name: blood 2 & The Circulatory System Edited by: Buthainah Al masaeed & Yousef Qandeel Lecture name: blood 2 & The Circulatory System Edited by: Buthainah Al masaeed & Yousef Qandeel Now we will take about A granulocytes : Lymphocyte Monocytes 1- Lymphocyte - The second major type of presence

More information

Cardiovascular Physiology III.

Cardiovascular Physiology III. Cardiovascular Physiology III. 43. The microcirculation: capillary solute exchange and fluid dynamics. 44. The microcirculation: lymphatic circulation and edema formation. 45. The characteristics of the

More information

EXTRACELLULAR MATRIX (pp 9-17)

EXTRACELLULAR MATRIX (pp 9-17) EXTRACELLULAR MATRIX (pp 9-17) Extracellular Matrix (ECM) Apart from specific cells, tissues contain matrix of macromolecules in the extracellular space- Extracellular Matrix. ECM is secreted by cells

More information

Disturbances of Circulation. Histopathology Lab #2 (Web)

Disturbances of Circulation. Histopathology Lab #2 (Web) Disturbances of Circulation Histopathology Lab #2 (Web) Paul Hanna Winter 2015 Slide #96 History: pig was fine in the morning & found dead in the afternoon there was ~100 mls of clear fluid in the pericardial

More information

Physiology Unit 3 CARDIOVASCULAR PHYSIOLOGY: THE VASCULAR SYSTEM

Physiology Unit 3 CARDIOVASCULAR PHYSIOLOGY: THE VASCULAR SYSTEM Physiology Unit 3 CARDIOVASCULAR PHYSIOLOGY: THE VASCULAR SYSTEM In Physiology Today Hemodynamics F = ΔP/R Blood flow (F) High to low pressure Rate = L/min Pressure (P) Hydrostatic pressure Pressure exerted

More information

Derived copy of Structure and Function of Blood Vessels *

Derived copy of Structure and Function of Blood Vessels * OpenStax-CNX module: m56696 1 Derived copy of Structure and Function of Blood Vessels * Stephanie Fretham Based on Structure and Function of Blood Vessels by OpenStax This work is produced by OpenStax-CNX

More information

SCPA602 Cardiovascular System

SCPA602 Cardiovascular System SCPA602 Cardiovascular System Associate Professor Dr. Wannee Jiraungkoorskul Department of Pathobiology, Faculty of Science, Mahidol University Tel: 02-201-5563, E-mail: wannee.jir@mahidol.ac.th 1 Objectives

More information

DEBRIDEMENT: ANATOMY and PHYSIOLOGY. Professor Donald G. MacLellan Executive Director Health Education & Management Innovations

DEBRIDEMENT: ANATOMY and PHYSIOLOGY. Professor Donald G. MacLellan Executive Director Health Education & Management Innovations DEBRIDEMENT: ANATOMY and PHYSIOLOGY Professor Donald G. MacLellan Executive Director Health Education & Management Innovations ANATOMY and PHYSIOLOGY Epidermal Layers ECM Structure Dermis Structure Skin

More information

Levels of Organization. Chapter 19 6/11/2012. Homeostasis & Organization of the animal body. 4 Primary Tissues

Levels of Organization. Chapter 19 6/11/2012. Homeostasis & Organization of the animal body. 4 Primary Tissues Levels of Organization Chapter 19 Homeostasis & Organization of the animal body Chemical Cellular Tissue Organs System Level Organismic 1-2 4 Primary Tissues 1. Epithelial Tissue: covers surfaces lines

More information

Cardiovascular System: Vessels and Circulation (Chapter 21)

Cardiovascular System: Vessels and Circulation (Chapter 21) Cardiovascular System: Vessels and Circulation (Chapter 21) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Primary Sources for figures and content: Marieb,

More information

Chapter 21 Peripheral circulation and Regulation

Chapter 21 Peripheral circulation and Regulation Chapter 21 Peripheral circulation and Regulation I. Blood vessel structure A. Blood flows from large arteries to small capillaries 1. Large arteries contain large amounts of elastic tissue and little smooth

More information

(b) Stomach s function 1. Dilution of food materials 2. Acidification of food (absorption of dietary Fe in small intestine) 3. Partial chemical digest

(b) Stomach s function 1. Dilution of food materials 2. Acidification of food (absorption of dietary Fe in small intestine) 3. Partial chemical digest (1) General features a) Stomach is widened portion of gut-tube: between tubular and spherical; Note arranged of smooth muscle tissue in muscularis externa. 1 (b) Stomach s function 1. Dilution of food

More information

Fluids and electrolytes

Fluids and electrolytes Body Water Content Fluids and electrolytes Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are about 60% water; healthy females

More information

Cardiovascular system: Blood vessels, blood flow. Latha Rajendra Kumar, MD

Cardiovascular system: Blood vessels, blood flow. Latha Rajendra Kumar, MD Cardiovascular system: Blood vessels, blood flow Latha Rajendra Kumar, MD Outline 1- Physical laws governing blood flow and blood pressure 2- Overview of vasculature 3- Arteries 4. Capillaries and venules

More information

Sinusoids and venous sinuses

Sinusoids and venous sinuses LYMPHOID SYSTEM General aspects Consists of organs that are made of lymphoid tissue; Immune defense Breakdown of red blood cells. 1 Sinusoids In place of capillaries Endothelium; often fenestrated More

More information

Vessels by Design: Basic Vessel Anatomy. Student Information Page 3A

Vessels by Design: Basic Vessel Anatomy. Student Information Page 3A Vessels by Design: Basic Vessel Anatomy Student Information Page 3A Activity Introduction: Once you get home from running around all day, your throat is probably a little dry. You go to your kitchen, get

More information

Six main classes of blood vessels (on handout) Wall structure of arteries and veins (on handout) Comparison: Arteries vs. Veins (on handout)

Six main classes of blood vessels (on handout) Wall structure of arteries and veins (on handout) Comparison: Arteries vs. Veins (on handout) Cardiovascular System: Vessels and Circulation (Chapter 21) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Six main classes of blood vessels Primary Sources

More information

Chapter 21! Chapter 21 Blood Vessels and Circulation! Blood Vessels and Circulation!

Chapter 21! Chapter 21 Blood Vessels and Circulation! Blood Vessels and Circulation! Chapter 21! Blood Vessels and Circulation! SECTION 21-1! Blood vessels differ in size, structure, and functional properties! 2 Major Vessel Types! Arteries - carry blood away from the heart Higher pressure

More information

Anatomy and Physiology, Spring 2015 Exam II: Form A April 9, Name Student Number

Anatomy and Physiology, Spring 2015 Exam II: Form A April 9, Name Student Number Anatomy and Physiology, Spring 2015 Exam II: Form A April 9, 2015 Name Student Number For Questions 1 2 refer to the following table. 1 Ventricular pressure is greater than aortic 6 AV valve is open 2

More information

Blood Vessels. Over view. We have about 60,000 miles of blood vessels!

Blood Vessels. Over view. We have about 60,000 miles of blood vessels! Blood Vessels Over view 3 types of blood vessels arteries - carry blood away from heart "branch", "diverge", and "fork" veins - carry blood toward heart "join", "merge", and "converge" capillaries - site

More information

Chapter 21! Blood Vessels and Circulation! SECTION 21-1! Blood vessels differ in size, structure, and functional properties!

Chapter 21! Blood Vessels and Circulation! SECTION 21-1! Blood vessels differ in size, structure, and functional properties! Chapter 21! Blood Vessels and Circulation! SECTION 21-1! Blood vessels differ in size, structure, and functional properties! 2 1! Major Vessel Types! Arteries - carry blood away from the heart Higher pressure

More information

Introduction to Emergency Medical Care 1

Introduction to Emergency Medical Care 1 Introduction to Emergency Medical Care 1 OBJECTIVES 6.1 Define key terms introduced in this chapter. Slides 11, 15, 17, 26, 27, 31, 33, 37, 40 42, 44, 45, 51, 58 6.2 Describe the basic roles and structures

More information

1. Which of the following blood vessels has a thin elastic layer? A. Aorta. B. Pulmonary artery. C. Posterior vena cava. D. Mesenteric capillary.

1. Which of the following blood vessels has a thin elastic layer? A. Aorta. B. Pulmonary artery. C. Posterior vena cava. D. Mesenteric capillary. CIRCULATORY SYSTEM 1. Which of the following blood vessels has a thin elastic layer? A. Aorta. B. Pulmonary artery. C. Posterior vena cava. D. Mesenteric capillary. 2. Capillary beds are equipped with

More information

The Microcirculation and the Lymphatic System

The Microcirculation and the Lymphatic System C H A P T E R 16 The Microcirculation and the Lymphatic System H. Glenn Bohlen, Ph.D. CHAPTER OUTLINE THE ARTERIAL MICROVASCULATURE THE CAPILLARIES THE VENOUS MICROVASCULATURE THE LYMPHATIC VASCULATURE

More information

30.1 Respiratory and Circulatory Functions. KEY CONCEPT The respiratory and circulatory systems bring oxygen and nutrients to the cells.

30.1 Respiratory and Circulatory Functions. KEY CONCEPT The respiratory and circulatory systems bring oxygen and nutrients to the cells. 30.1 Respiratory and Circulatory Functions KEY CONCEPT The respiratory and circulatory systems bring oxygen and nutrients to the cells. 30.1 Respiratory and Circulatory Functions The respiratory and circulatory

More information

Types of Blood Vessels

Types of Blood Vessels Chapter 21 Peripheral Circulation and Regulation 21-1 Types of Blood Vessels Capillaries: site of exchange with tissue Arteries in dif. Types & sizes Elastic Muscular Arterioles Veins: thinner walls than

More information

Shock, Hemorrhage and Thrombosis

Shock, Hemorrhage and Thrombosis Shock, Hemorrhage and Thrombosis 1 Shock Systemic hypoperfusion due to: Reduction in cardiac output Reduction in effective circulating blood volume Hypotension Impaired tissue perfusion Cellular hypoxia

More information

CNS pathology Third year medical students. Dr Heyam Awad 2018 Lecture 5: disturbed fluid balance and increased intracranial pressure

CNS pathology Third year medical students. Dr Heyam Awad 2018 Lecture 5: disturbed fluid balance and increased intracranial pressure CNS pathology Third year medical students Dr Heyam Awad 2018 Lecture 5: disturbed fluid balance and increased intracranial pressure ILOs Understand causes and symptoms of increased intracranial pressure.

More information

Ch. 12 The Circulatory System. The heart. The heart is a double pump. A quick note on arteries vs. veins. = the muscular pump of the CV system

Ch. 12 The Circulatory System. The heart. The heart is a double pump. A quick note on arteries vs. veins. = the muscular pump of the CV system Ch. 12 The Circulatory System The heart A.k.a. the cardiovascular system Blood was discussed in Ch. 11 Focus of Ch. 12: heart and blood vessels = the muscular pump of the CV system ~ 100,000 heartbeats/day!

More information

Hemodynamic Disorders Thrombosis and Shock. 1. Interstitial, between the cells, but outside of the vascular system. - water making up the blood and

Hemodynamic Disorders Thrombosis and Shock. 1. Interstitial, between the cells, but outside of the vascular system. - water making up the blood and Hemodynamic Disorders Thrombosis and Shock I. Body water, where is it and what keeps it there? A. Intracellular B. Extracellular (intercellular) 1. Interstitial, between the cells, but outside of the vascular

More information

Histopathology: pulmonary pathology

Histopathology: pulmonary pathology Histopathology: pulmonary pathology These presentations are to help you identify basic histopathological features. They do not contain the additional factual information that you need to learn about these

More information

Cardiovascular Anatomy Dr. Gary Mumaugh

Cardiovascular Anatomy Dr. Gary Mumaugh Cardiovascular Anatomy Dr. Gary Mumaugh Location of Heart Approximately the size of your fist Location o Superior surface of diaphragm o Left of the midline in mediastinum o Anterior to the vertebral column,

More information

CHAPTER 21 LECTURE OUTLINE

CHAPTER 21 LECTURE OUTLINE CHAPTER 21 LECTURE OUTLINE I. INTRODUCTION A. One main focus of this chapter considers hemodynamics, the means by which blood flow is altered and distributed and by which blood pressure is regulated. B.

More information

CIE Biology GCSE. 9: Transport in animals. Notes.

CIE Biology GCSE. 9: Transport in animals. Notes. CIE Biology GCSE 9: Transport in animals Notes The circulatory system acts as the main transport system in animals. It is made up of blood vessels such as arteries, veins and capillaries, in which blood

More information

Acute Heart Failure. Dr. Khaled M. Al-Qudah. 4/24/2013 Dr. Khaled Al-Qudah 1

Acute Heart Failure. Dr. Khaled M. Al-Qudah. 4/24/2013 Dr. Khaled Al-Qudah 1 Acute Heart Failure Dr. Khaled M. Al-Qudah 4/24/2013 Dr. Khaled Al-Qudah 1 Acute heart failure is one of the major causes of sudden death in animals, especially when death is associated with exertion or

More information

THE CIRCULATORY SYSTEM

THE CIRCULATORY SYSTEM Biology 30S THE CIRCULATORY SYSTEM Name: This module adapted from bblearn.merlin.mb.ca 1 Introduction to Circulation The first organ to form, and the last organ to die. The heart is the pump of life. The

More information

The Lymphoid System Pearson Education, Inc.

The Lymphoid System Pearson Education, Inc. 23 The Lymphoid System Introduction The lymphoid system consists of: Lymph Lymphatic vessels Lymphoid organs An Overview of the Lymphoid System Lymph consists of: Interstitial fluid Lymphocytes Macrophages

More information

Respiration & Circulation

Respiration & Circulation Respiration & Circulation Objectives Describe the purpose of the respiratory system List & describe the structures of the respiratory system Describe the respiratory cycle, frequency, and factors that

More information