Assessment of Coronary Plaque Vulnerability with Optical Coherence Tomography

Size: px
Start display at page:

Download "Assessment of Coronary Plaque Vulnerability with Optical Coherence Tomography"

Transcription

1 Review Article Acta Cardiol Sin 2014;30:1 9 Assessment of Coronary Plaque Vulnerability with Optical Coherence Tomography Shiro Uemura, Tsunenari Soeda, Yu Sugawara, Tomoya Ueda, Makoto Watanabe and Yoshihiko Saito Several catheter-based imaging modalities have been developed over the past 2 decades for visualizing the morphological features of coronary atherosclerotic plaques that are susceptible to future development of serious cardiovascular events. Optical coherence tomography (OCT) is a new high-resolution intracoronary imaging modality based on near-infrared interferometry, and it has been shown to be able to identify various components of atheromatous plaques. In this review, we examine the histopathology of vulnerable plaques as a target for imaging technology, and discuss the evidence of OCT in identifying vulnerable atherosclerotic lesions in patients with coronary artery disease. Key Words: Coronary artery disease Optical coherence tomography Vulnerable plaque It is well recognized that the culprit lesions in patients with acute coronary syndrome (ACS) are usually characterized by advanced atherosclerotic changes with concomitant thrombus formation. 1-3 The term vulnerable plaque is used to specify a high-risk plaque susceptible to the development of either rapid luminal stenosis or occlusive intraluminal thrombus, those lead to catastrophic cardiovascular events. 4-6 Over the past 2 decades, considerable effort has been made to identify such high-risk coronary plaques before their rupture for the prevention of the critical coronary events. In recent years, catheter-based intravascular imaging technologies, especially intravascular optical coherence tomography (OCT), have shown particular progress. Compared with non-invasive or other invasive technologies, intravascular OCT has advantages in terms of higher spatial resolution, precise plaque localization, and real-time Received: April 17, 2013 Accepted: August 28, 2013 First Department of Internal Medicine, Nara Medical University, Nara, Japan. Address correspondence and reprint requests to: Dr. Shiro Uemura, First Department of Internal Medicine, Nara Medical University, 840 Shijo-cho Kashihara, Nara Japan suemura@ naramed-u.ac.jp image processing. This review focuses on the usefulness of OCT for the evaluation of plaque vulnerability in patients with coronary artery disease. OCT TECHNOLOGY OCT is a relatively new high-resolution intracoronary imaging technology based on near-infrared interferometry. The spatial resolution of OCT, nearly 10 m on the lateral axis, is almost 10 times greater than that of intravascular ultrasound (IVUS). At present, 2 types of OCT systems, time domain (TD)- and Fourier domain (FD)-OCT, are available for clinical use. TD-OCT is a conventional type of intravascular device, and this system incorporates near infrared light source and optic al components that operate in a wavelength on 1,310 nm. Rather than using a broadband light source as in conventional TD-OCT systems, FD-OCT imaging systems employ a wavelength-swept laser as a light source, and this improvement enables faster image acquisition speeds and greater scan depths (Table 1). In addition, the higher pull-back speed of FD-OCT can prevent heart motion artifacts and thus allow precise assessment of the longitudinal distribution of plaque components. 1 Acta Cardiol Sin 2014;30:1 9

2 Shiro Uemura et al. Table 1. Platform comparison between time domain (TD)- and Fourier domain (FD)-optical coherence tomography (OCT) TD-OCT FD-OCT (ILUMIEN OPTIS) Pullback Mode Nominal Survey mode High resolution mode Engine speed 15.6 fps 180 fps 180 fps Pullback speed 2.0 mm/sec 36 mm/sec 18 mm/sec Frame rate 7.8 frames/mm 5 frames/mm 10 frames/mm Pullbacklength 20mm 75mm 54mm Lines/frame Scan diameter 6.8 mm 10.5 mm 10.5 mm AsshowninFigure1,OCTvisualizes3layerstructures of normal coronary artery as well as plaque component of atherosclerotic lesions. The ability of OCT in tissue characterization of coronary atherosclerotic lesions has been well validated in clinicopathological studies. 7-9 In addition, the drawback points of OCT are the relatively shallow depth of light penetration into the arterial wall in the comparison with ultrasound, and the necessity of blood removal by contrast medium during image acquisition. lesions, which instead showed features such as plaque erosion or calcified nodules. In current clinical practice, these non-rupture-type features in baseline lesions are also considered to be characteristics of vulnerable coronary plaques (Table 2). In clinical setting, OCT is able to visualize plaque morphology possibly agree with autopsy findings (Figure 2). Furthermore, recent studies have shown that vulnerable plaques can develop not only in native coronary arteries but also in the neointima after long-term coronary stent implantation. 14,15 Table 2. Pathological features of vulnerable plaque PATHOLOGICAL BACKGROUND OF PLAQUE VULNERABILITY Medical term vulnerable plaque was first used by Muller et al. in defining the plaque with rupture that is oneofthetriggersfortheonsetofacutecardiovascular disease. 10,11 In fact, pathological studies of the victims of sudden cardiac death have revealed that more than 70% of ACS are attributable to the formation of occlusive thrombus that is preceded by plaque rupture. 3,12,13 However, as noted in these autopsy studies, plaque rupture is not the sole pathological cause of coronary events; no rupture was seen in the remaining 30% of the culprit I. Macroscopic features Large necrotic or lipid core Luminal thrombus Plaque hemorrhage Spotty calcification Positive vascular remodeling II. Microscopic features Thin fibrous cap covering lipid core Macrophage infiltration Plaque neovasculization Endothelial denudation Smooth muscle cell apoptosis Protease expression Endothelial adhesion molecule expression III. Heat generation Figure 1. OCT findings of normal coronary artery. Note. Clear differentiation of 3 layers in vessel wall. A B C Figure 2. Representative OCT findings plaque observed in patients with acute coronary syndrome. (A) Plaque rupture. Arrow indicates disrupted fibrous cap. * Represents space previously contained lipid pool. (B) Plaque erosion with thrombus formation (arrow). (C) Calcified nodule (arrow). Acta Cardiol Sin 2014;30:1 9 2

3 OCT Assessment of Plaque Vulnerability Plaque rupture As previously described in the scientific literature, coronary arterial wall often develops significant atherosclerotic changes before the progression of luminal stenosis. Figure 3 shows the representative cross-sectional OCT images obtained from non-stenotic coronary plaque in patients with coronary artery disease (CAD). Among these complex characteristics, thin-cap fibroatheroma (TCFA) is known as a vulnerable plaque subtype which is susceptible to rupture. TCFA is pathologically diagnosed when the plaque has a large lipid or necrotic core (> 40% of total lesion cross-sectional area) and a thin fibrous cap (< 65 m thick). 3,16 An autopsy study of ruptured plaques in patients with sudden cardiac death found that 95% of these caps measured < 64 m thick. 3 Notably, a recent computer simulation study showed that fibrous cap thickness and necrotic core size are independent determinants for plaque disruption. 17 Additionally, TCFA is frequently accompanied by macrophage infiltration and matrix metalloproteinase (MMP) expression in the fibrous cap covering the lipid core. 18,19 Many studies have pointed out that high macrophage density is characteristic of lesions vulnerable to rupture. Ex vivo studies of human coronary artery plaques have shown that the density and pattern of macrophage infiltration at plaque shoulders correlate with degree of vulnerability Chronic inflammation within TCFA also stimulates smooth muscle cell apoptosis within fibrous caps, 23,24 development of calcification, 25 and heat generation. 26 Intraplaque new blood vessel formation is another unique morphological feature of TCFA, usually originating from the adventitial vasa vasorum. 27,28 Intraplaque microvessels are immature and leaky due to the lack of basement membranes and pericytes, 29,30 and their deterioration is known to cause intraplaque hemorrhage. This phenomena results in both rapid enlargement of plaque size and luminal stenosis These histopathological features observed within TCFA are candidate targets for coronary artery imaging with the goal of detecting plaque vulnerability. However, it should also be noted that clinically silent plaque rupture is not rare Non-rupture type vulnerable plaque Plaque erosion is characterized pathologically by a continuous intimal layer without rupture or discontinuation, usually accompanied by an intraluminal thrombus overlying a modestly occlusive plaque, although standard diagnostic criteria have not been defined. 3,36 Typically, the endothelial cell layer is denuded andtheexposedfibrouscapconsistsofsmoothmuscle cells, rich proteoglycans, and varying numbers of inflammatory cells. Autopsy data have demonstrated that plaque erosion is more frequent in women < 50 years of age, and lesions with such erosion are often negatively remodeled. 9 Autopsy studies have shown that 20% to A B C D E F G H Figure 3. Plaque characterization of non-stenotic coronary atherosclerotic lesions with optical coherence tomography. (A) Normal coronary artery. (B) Stable fibrous plaque. (C) Thick cap fibroatheroma, two arrows indicate thickness of fibrous cap. (D) Thin cap fibroatheroma, two arrows indicate thickness of fibrous cap. (E) Calcium deposition (arrow). (F) Plaque neovasculization (arrow). (G) Macrophage infiltration at the surface of plaque (arrows). (H) Possible plaque erosion with luminal thrombus (asterisk). 3 Acta Cardiol Sin 2014;30:1 9

4 Shiro Uemura et al. 40% of acute coronary events are attributable to nonruptured plaques, 12,37,38 indicating that coronary thrombosis resulting from plaque erosions is not rare but is rather an unexpectedly common phenomenon. In current clinical practice it is difficult to diagnose plaque erosion using imaging technologies, because the pathogenesis of plaque erosion has not been elucidated and no currently available imaging modalities can differentiate the existence of endothelial cells covering atherosclerotic plaques. As yet there have been very few clinical studies targeting the role of plaque erosion in the development of ACS, except for a few case reports using OCT. 39,40 Furtherresearchinbothbasicand clinical fields will be needed to precisely define plaque erosion and to determine its clinical significance. Calcified nodules are a type of vulnerable plaque that account for approximately 2% to 7% of all coronary events. 3 These nodules are defined pathologically as fibrocalcific plaques with disruption of the luminal surface, little or no underlying necrotic core, and thrombus formation overlying the calcified surface and protruding into the vascular lumen. The underlying plaques are usually characterized by heavy calcification and large plates of calcified matrix with surrounding areas of fibrosis, inflammation, and neovascularization. Interestingly, pathological examination has shown that these lesions are found predominantly in the mid-right coronary artery, where coronary torsion stress is maximal. 3 Intravascular ultrasound (IVUS) and OCT examination are able to diagnose calcified nodules in coronary arteries. 41 Although the calcified nodule has been categorized as a vulnerable plaque, a recent prospective clinical study using 3-vessel IVUS reported that this nodule type was not a predictor for major adverse events during 3 years of follow-up. 42 Natural course of vulnerable plaques Until recently, morphological findings regarding vulnerable plaques had been limited in the context of autopsy studies. Coronary specimens are retrospectively analyzed after event occurrence, so it is difficult for pathological studies to investigate longitudinal changes in vulnerable plaques as well as the baseline plaque morphologies that cause future development of coronary events. Only modern imaging technologies in clinical practice are able to observe the natural history of coronary plaques with vulnerable characteristics. A recent clinical study using serial virtual histology IVUS (VH-IVUS) reported that 75% of TCFA healed and 25% of TCFA maintained baseline characteristics during 12-month follow-up. 43 It is important to note that not all vulnerable plaques progress to rupture, although the mechanism of TCFA healing is not well established. Motoyama et al. performed computed tomography (CT) angiographic examinations on 1059 patients and prospectively followed them for 27 months for the development of ACS. 44 Coronary lesions were analyzed for the presence of 2 features indicating plaque vulnerability: positive remodeling (lesion diameter at the plaque site 10% larger than that of the reference segment) and low attenuation plaques (noncalcified plaques with a density < 30 Hounsfield units). Although these features are not completely consistent with pathological studies, ACS developed in 22% of patients who had plaques with both vulnerability features at baseline, compared with 0.5% of patients who had plaques without these features. None of the patients with normal CT angiography developed ACS. The presence of 1- or 2-feature positive plaques was the only significant independent predictor of ACS. VULNERABLE PLAQUE IMAGING WITH OCT Conventional gray-scale IVUS has been used in catheterization laboratories for over 20 years. 45,46 It is an established modality that is used not only for guidance during percutaneous coronary intervention (PCI), but also, in the context of clinical studies, for evaluating the tissue characteristics of coronary plaques and assessing plaque progression or regression. 47,48 Its ability to provide precise qualitative and quantitative measurements of total plaque area and volume (burden), even in cases with positive vascular remodeling, make it invaluable for evaluating the vulnerability of coronary plaques. However, since conventional IVUS is limited to relatively low spatial resolutions ( m) and cannot accurately differentiate plaque components. Because of its excellent spatial resolution, OCT is currently the only imaging technology that can precisely Acta Cardiol Sin 2014;30:1 9 4

5 OCT Assessment of Plaque Vulnerability measure the thickness of the fibrous cap and also directly visualize microvessels within coronary atherosclerotic plaques. Furthermore, OCT is able to identify macrophage infiltration in the plaque, an important feature of continuous inflammation in TCFA (Figure 3). 7,49 The other advantage of OCT is its ability to detect intracoronary thrombi that are not usually well visualized by other imaging modalities. OCT not only visualizes thrombi, but can also distinguish between red and platelet-rich white thrombi. 50 Vulnerable plaque in native coronary arteries In patients with CAD, TCFA was detected by OCT in 72% of cases with ST elevation myocardial infarction (STEMI) and 50% of those with non-stemi culprit lesions, as compared to 20% of cases with stable angina pectoris lesions; the fibrous cap thicknesses in these 3 groups were reported to be 47, 54, and 103 m, respectively. 8 Furthermore, OCT examination after thrombus aspiration in patients with ACS revealed that 73% of patients showed plaque rupture, and the mean thickness of the ruptured fibrous cap was 49 m. 51 These OCT observations in patients with ACS correspond well with established pathological findings of vulnerable plaques that resulted in coronary events. The incidence of secondary cardiovascular events is substantially higher in patients with previous ACS than in those with stable angina. Recent OCT study by Kato et al. showed that compared with non-culprit plaques in non-acs patients, the number of lipid-rich plaques was greaterintheacspatients(1.9inacspatientsvs.1.1in non-acs patients, p = 0.022) In addition, it is reported that non-culprit plaques in ACS patients had a wider lipid arc, a longer lipid length, a thinner fibrous cap, and a higher prevalence of neovascularization. Moreover, TCFA (67.4% vs. 14.9%, p < 0.001), macrophage (88.2% vs. 37.9%, p < 0.001), and thrombus (23.5% vs. 0%, p < 0.001) were more frequent in ACS patients, suggesting that non-culprit plaques in ACS patients are more vulnerable than in non-acs CAD patients. 52 Both diabetes mellitus (DM) and chronic kidney disease (CKD) are established risk factors for the development of ACS. Recent OCT study also has shown that compared with non-dm patients, DM patients have a larger lipid pool and a higher prevalence of calcification and thrombus. Especially, the lipid burden was larger and TCFA and macrophage were frequent in patients with inadequate glucose control of A1C > 8%. 53 In CKD patients, it is reported that compared to non-ckd patients, the patients with CKD had a larger lipid burden with a higher prevalence of calcium, cholesterol-crystal and disruption. 54 Neoatherosclerosis Recent studies have reported the development of neoatherosclerosis changes inside of both bare metal stents and drug eluting stents several years after implantation. 14,15 These changes include lipid accumulation, calcium deposition, macrophage infiltration development of neovascularization within neointima area ofthestent,andareassumedtoplayanimportantrole in the development of late in-stent restenosis and late stent thrombosis that leads to secondary coronary events related to the culprit lesion (Figure 4). Although precise mechanisms in the development of neoatherosclerosis, Kato et al. recently showed that several factors independently predicted neoatherosclerosis, including stent age 48 months [odds ratio (OR) 2.65, 95% confidence interval (CI) ], drug-eluting stents (DES, OR 2.65, 95% CI ), age 65 years old (OR 1.91, 95% CI ), current smoking (OR 2.30, 95% CI ), chronic kidney disease (CKD: OR 4.17, 95% CI ). In contrast, the use of angiotensin-converting enzyme inhibitors and angiotensin II receptor antagonists was a protective factor against neoatherosclerosis (OR 0.42, 95% CI ). 55 Although effective intervening treatment has not been established on neoatherosclerosis, these results may support the importance of secondary prevention after stent implantation. Recent advance in OCT technology enable us to reconstruct 3 dimensional images of neointimal tissue and coronary stent. By using this technology, it is easy to recognize the spatial distribution of neointimal coverage of stent struts as well as neoatherosclerotic changes within the stent (Figure 5). Prediction of future development of ACS In the recent longitudinal, multicenter PROSPECT study, ACS patients were evaluated using 3-vessel grayscale and VH-IVUS, and the relation between baseline IVUS characteristics of culprit and non-culprit 5 Acta Cardiol Sin 2014;30:1 9

6 Shiro Uemura et al. A B C D E F G H Figure 4. Development of neoatherosclerotic changes observed within coronary stent. (A) Fibrous neointima. (B) Microchannel. (C) Lipid accumulation. (D) Intimal laceration. (E) Calcium deposition. (F) Thin cap fibroatheroma. (G, H) Luminal thrombus. Note. Each OCT image involves stent strut images. plaques and the secondary occurrence of major adverse cardiovascular events (MACE) at 3 years was studied. In this patient population, the MACE rate during 3 year follow-up was 20.4%, and these events were equally attributable to the progression of non-culprit lesions and to index culprit lesions treated by PCI. For MACE related to non-culprit lesions, no angiographic variables were associated with subsequent events. By contrast, the following IVUS and VH-IVUS baseline plaque parameters independently predicted the subsequent development of non-culprit lesion-related MACE: large plaque burden ( 70%), higher stenosis rate (minimal luminal area 4.0 mm 2 ),orthepresenceofvh-ivusdetected TCFA. In addition, no events developed in coronary plaque segments with < 40% plaque crosssectional area. However, even when all 3 predictive variableswerepresent,theeventraterosetoonly 18.2%, indicating that although IVUS-derived characteristics suggest the occurrence of a subsequent event, they are not sufficient to predict which atheromas will undergo plaque progression. It is possible that the relatively low spatial resolution of IVUS failed to differentiate fine vulnerable structures in atheromatous non-culprit lesions, and that integration of systemic factors that influence plaque biology is necessary for more precise estimation of future ACS development. However, specific OCT findings for predicting the future development of ACS have not been established. A B C D Figure 5. 3D OCT image of coronary stent. In this case, bare metal stent (BMS) was implanted in the culprit lesion of acute myocardial infarction. FD-OCT examination was performed 8 months after implantation. (A) 3D image of BMS showing variety of neointimal coverage over coronary stent. (B) Cross-section of distal part of BMS showing uncovered stent strut. (C) Cross-section of middle part of BMS showing struts covered with fibrous neointima. (D) Cross-section of proximal part of BMS showing struts with malapposition. Note. Spatial distribution of various degree of neointimal coverage within stented Uemura et al. examined the baseline OCT findings in non-stenotic coronary plaque within non-culprit coronary artery, and followed these plaques up to 12 months. In their study, baseline OCT findings of TCFA and micro- Acta Cardiol Sin 2014;30:1 9 6

7 OCT Assessment of Plaque Vulnerability channels were selected as independent predictors for subsequent angiographic progression of non-stenotic coronary plaques. 57 Limitations The major drawback of OCT is the relatively shallow penetration of light into the vascular wall, which necessitates the use of other modalities, such as IVUS and coronary CT, to evaluate total plaque volume and vessel remodeling. Although OCT seems to hold promise for evaluating the vulnerability of coronary atherosclerotic lesions, there have not yet been any prospective studies on the role of OCT-derived vulnerable plaques in the occurrence of future ACS. Large-scale clinical studies will be needed to show that high-risk plaques identified with this imaging techniques can significantly improve the outcome of patients compared with modern clinical practice using conventional biological predictors. CONCLUSIONS In this review article, we described the current and future role of OCT in the clinical management of coronary artery disease. Notably, since coronary plaque imaging by itself is not able to precisely predict the future occurrence of adverse outcome in patients with CAD, coordinating clinical data obtained by OCT with pathological and clinical laboratory findings will enhance our understanding of CAD and facilitate the future improvement in patient care. These efforts and further advances in imaging technology will hopefully enable us to precisely identify vulnerable plaques and to develop more effective treatments for vulnerable patients. ACKNOWLEDGEMENT Authors thank Ms. Ikuyo Yoshida for her excellent technical assistance. DISCLOSURES The authors have declared no potential conflicts of interest. REFERENCES 1. Friedman M, Van den Bovenkamp GJ. The pathogenesis of a coronary thrombus. Am J Pathol 1966;48: Yutani C, Ishibashi-Ueda H, Konishi M, et al. Histopathological study of acute myocardial infarction and pathoetiology of coronary thrombosis: a comparative study in four districts in Japan. Jpn Circ J 1987;51: Virmani R, Kolodgie FD, Burke AP, et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20: Shah PK. Mechanisms of plaque vulnerability and rupture. JAm Coll Cardiol 2003;41:15S-22S. 5. LeFont A. Basic aspects of plaque vulnerability. Heart 2005; 89: Fuster V, Moreno P, Fayad Z, et al. Atherothrombosis and high-risk plaques part I: evolving concepts. J Am Coll Cardiol 2005;6: Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol 2012;59: Jang IK, Tearney GJ, MacNeill B, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 2005;111: Kume T, Akasaka T, Kawamoto T, et al. Assessment of coronary arterial plaque by optical coherence tomography. Am J Cardiol 2006;97: Muller JE, Tofler GH, Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 1989;79: Muller JE, Abela GS, Nesto RW, Tofler GH. Triggers, acute risk factors and vulnerable plaques: the lexicon of a new frontier. J Am Coll Cardiol 1994;23: van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994;89: Davies MJ. The composition of coronary-artery plaques. N Engl J Med 1997;336: Takano M, Yamamoto M, Inami S, et al. Appearance of lipid-laden intima and neovascularization after implantation of bare-metal stents extended late-phase observation by intracoronary optical coherence tomography. J Am Coll Cardiol 2009;55: Cho JM, Sohn IS, Kim CJ, Jang IK. Vulnerable plaque inside stent. JACC Cardiovasc Imaging 2011;4: Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol 2006;47:C Acta Cardiol Sin 2014;30:1 9

8 Shiro Uemura et al. 17. Akyildiz AC, Speelman L, van Brummelen H, et al. Effects of intima stiffness and plaque morphology on peak cap stress. Biomed Eng Online 2011;10: ShahPK,FalkE,BadimonJJ,etal.Humanmonocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Circulation 1995;92: Newby AC. Metalloproteinases and vulnerable atherosclerotic plaques. Trends Cardiovasc Med 2007;17: Moreno PR, Falk E, Palacios IF, et al. Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 1994;90: Boot RG, van Achterberg TA, van Aken BE, et al. Strong induction of members of the chitinase family of proteins in atherosclerosis: chitotriosidase and human cartilage gp-39 expressed in lesion macrophages. Arterioscler Thromb Vasc Biol 1999;19: Moreno PR, Murcia AM, Palacios IF, et al. Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation 2000;102: Bjorkerud S, Bjorkerud B. Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability. Am J Pathol 1996;149: Kolodgie FD, Narula J, Burke AP, et al. Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol 2000;157: Huang H, Virmani R, Younis H, et al. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 2001;103: Casscells W, Hathorn B, David M, et al. Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis. Lancet 1996; 347: Barger AC, Beeuwkes R III, Lainey LL, Silverman KJ. Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 1984;310: Zhang Y, Cliff WJ, Schoefl GI, Higgins G. Immunohistochemical study of intimal microvessels in coronary atherosclerosis. Am J Pathol 1993;143: Ribatti D, Levi-Schaffer F, Kovanen PT. Inflammatory angiogenesis in atherogenesis -- a double-edged sword. Ann Med 2008;40: Sluimer JC, Daemen MJ. Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol 2009;218: Virmani R, Kolodgie FD, Burke AP, et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 2005;25: Sluimer JC, Kolodgie FD, Bijnens AP, et al. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. JAm Coll Cardiol 2009;53: Kolodgie FD, Gold HK, Burke AP, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 2003;349: Burke AP, Kolodgie FD, Farb A, et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 2001;103: Frink RJ. Chronic ulcerated plaques: new insights into the pathogenesis of acute coronary disease. J Invasive Cardiol 1994;6: Kolodgie FD, Virmani R, Burke AP, et al. Pathologic assessment of the vulnerable human coronary plaque. Heart 2004;90: Farb A, Burke AP, Tang AL, et al. Coronary plaque erosion without rupture into a lipid core: a frequent cause of coronary thrombosis in sudden coronary death. Circulation 1996;93: Hisaki R, Yutani C. Plaque morphology of acute coronary syndrome. J Atheroscler Thromb 1998;4: Kubo T, Matsuo Y, Ino Y, et al. Optical coherence tomography analysis of attenuated plaques detected by intravascular ultrasound in patients with acute coronary syndromes. Cardiol Res Pract 2011;2011: Takano M, Kitamura M, Inami T, et al. Acute coronary syndrome without optical coherence tomography identification of plaque disruption: is this plaque erosion? Int J Cardiol 2012;10:163: e Lee JB, Mintz GS, Lisauskas JB, et al. Histopathologic validation of the intravascular ultrasound diagnosis of calcified coronary artery nodules. Am J Cardiol 2011;108: Xu Y, Mintz GS, Tam A, et al. Prevalence, distribution, predictors, and outcomes of patients with calcified nodules in native coronary arteries: a three-vessel intravascular ultrasound analysis from PROSPECT. Circulation 2012;126: Kubo T, Maehara A, Mintz GS, et al. The dynamic nature of coronary artery lesion morphology assessed by serial virtual histology intravascular ultrasound tissue characterization. JAm Coll Cardiol 2010;55: Motoyama S, Sarai M, Harigaya H, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 2009;54: Mintz GS, Nissen SE, Anderson WD, et al. American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). J Am Coll Cardiol 2001;37: Mintz GS, Maehara A. Serial intravascular ultrasound assessment of atherosclerosis progression and regression. State-of-the-art and limitations. Circ J 2009;73: NissenSE,TuzcuEM,SchoenhagenP,etal.REVERSALInvestigators. Effect of intensive compared with moderate lipidlowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 2004;291: Nissen SE, Nicholls SJ, Sipahi I, et al. Effect of very high-intensity Acta Cardiol Sin 2014;30:1 9 8

9 OCT Assessment of Plaque Vulnerability statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 2006;295: MacNeill BD, Jang IK, Bouma BE, et al. Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease. J Am Coll Cardiol 2004;44: Kume T, Akasaka T, Kawamoto T, et al. Assessment of coronary arterial thrombus by optical coherence tomography. Am J Cardiol 2006;97: Kubo T, Imanishi T, Takarada S, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol 2007;50: Kato K, Yonetsu T, Kim SJ, et al. Nonculprit plaques in patients with acute coronary syndromes have more vulnerable features compared with those with non-acute coronary syndromes: a 3-vessel optical coherence tomography study. Circ Cardiovasc Imaging 2012;5: Kato K, Yonetsu T, Kim SJ, et al. Comparison of nonculprit coronary plaque characteristics between patients with and without diabetes: a 3-vessel optical coherence tomography study. JACC Cardiovasc Interv 2012;5: Kato K, Yonetsu T, Jia H, et al. Nonculprit coronary plaque characteristics of chronic kidney disease. Circ Cardiovasc Imaging 2013;6: Yonetsu T, Kato K, Kim SJ, et al. Predictors for neoatherosclerosis: a retrospective observational study from the optical coherence tomography registry. Circ Cardiovasc Imaging 2012;5: Stone GW, Maehara A, Lansky AJ, et al. A prospective naturalhistory study of coronary atherosclerosis. N Engl J Med 2011; 364: Uemura S, Ishigami K, Soeda T, et al. Thin-cap fibroatheroma and microchannel findings in optical coherence tomography correlate with subsequent progression of coronary atheromatous plaques. Eur Heart J 2012;33: Acta Cardiol Sin 2014;30:1 9

Imaging Atheroma The quest for the Vulnerable Plaque

Imaging Atheroma The quest for the Vulnerable Plaque Imaging Atheroma The quest for the Vulnerable Plaque P.J. de Feijter 1. Department of Cardiology 2. Department of Radiology Coronary Heart Disease Remains the Leading Cause of Death in the U.S, Causing

More information

2yrs 2-6yrs >6yrs BMS 0% 22% 42% DES 29% 41% Nakazawa et al. J Am Coll Cardiol 2011;57:

2yrs 2-6yrs >6yrs BMS 0% 22% 42% DES 29% 41% Nakazawa et al. J Am Coll Cardiol 2011;57: Pathology of In-stent Neoatherosclerosis in BMS and DES 197 BMS, 103 SES, and 106 PES with implant duration >30 days The incidence of neoatherosclerosis was significantly greater in DES (31%) than BMS

More information

Added Value of Invasive Coronary Imaging for Plaque Rupture and Erosion

Added Value of Invasive Coronary Imaging for Plaque Rupture and Erosion Assessment of Coronary Plaque Rupture and Erosion Added Value of Invasive Coronary Imaging for Plaque Rupture and Erosion Yukio Ozaki, MD, PhD, FACC, FESC Cardiology Dept., Fujita Health Univ. Toyoake,

More information

Review Article Optical Coherence Tomography Imaging in Acute Coronary Syndromes

Review Article Optical Coherence Tomography Imaging in Acute Coronary Syndromes SAGE-Hindawi Access to Research Cardiology Research and Practice Volume 2011, Article ID 312978, 7 pages doi:10.4061/2011/312978 Review Article Optical Coherence Tomography Imaging in Acute Coronary Syndromes

More information

Imaging Overview for Vulnerable Plaque: Data from IVUS Trial and An Introduction to VH-IVUS Imgaging

Imaging Overview for Vulnerable Plaque: Data from IVUS Trial and An Introduction to VH-IVUS Imgaging Imaging Overview for Vulnerable Plaque: Data from IVUS Trial and An Introduction to VH-IVUS Imgaging Gary S. Mintz,, MD Cardiovascular Research Foundation New York, NY Today, in reality, almost everything

More information

Vulnerable Plaque Pathophysiology, Detection, and Intervention. VP: A Local Problem or Systemic Disease. Erling Falk, Denmark

Vulnerable Plaque Pathophysiology, Detection, and Intervention. VP: A Local Problem or Systemic Disease. Erling Falk, Denmark Vulnerable Plaque Pathophysiology, Detection, and Intervention VP: A Local Problem or Systemic Disease Erling Falk, Denmark Vulnerable Plaque Pathophysiology, Detection, and Intervention VP: A Local Problem

More information

CLINICAL APPLICATIONS OF OPTICAL COHERENCE TOMOGRAPHY. Konstantina P. Bouki, FESC 2 nd Department of Cardiology General Hospital Of Nikea, Pireaus

CLINICAL APPLICATIONS OF OPTICAL COHERENCE TOMOGRAPHY. Konstantina P. Bouki, FESC 2 nd Department of Cardiology General Hospital Of Nikea, Pireaus CLINICAL APPLICATIONS OF OPTICAL COHERENCE TOMOGRAPHY Konstantina P. Bouki, FESC 2 nd Department of Cardiology General Hospital Of Nikea, Pireaus OPTICAL COHERENCE TOMOGRAPHY (OCT) IVUS and OCT IVUS OCT

More information

Chapter 43 Noninvasive Coronary Plaque Imaging

Chapter 43 Noninvasive Coronary Plaque Imaging hapter 43 Noninvasive oronary Plaque Imaging NIRUDH KOHLI The goal of coronary imaging is to define the extent of luminal narrowing as well as composition of an atherosclerotic plaque to facilitate appropriate

More information

Invasive Coronary Imaging Modalities for Vulnerable Plaque Detection

Invasive Coronary Imaging Modalities for Vulnerable Plaque Detection Invasive Coronary Imaging Modalities for Vulnerable Plaque Detection Gary S. Mintz, MD Cardiovascular Research Foundation New York, NY Greyscale IVUS studies have shown Plaque ruptures do not occur randomly

More information

Appearance of Lipid-Laden Intima and Neovascularization After Implantation of Bare-Metal Stents

Appearance of Lipid-Laden Intima and Neovascularization After Implantation of Bare-Metal Stents Journal of the American College of Cardiology Vol. 55, No. 1, 2010 2010 by the American College of Cardiology Foundation ISSN 0735-1097/10/$36.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2009.08.032

More information

1st Department of Cardiology, University of Athens, Hippokration Hospital, Athens, Greece

1st Department of Cardiology, University of Athens, Hippokration Hospital, Athens, Greece Konstantinos Toutouzas, Maria Riga, Antonios Karanasos, Eleftherios Tsiamis, Andreas Synetos, Maria Drakopoulou, Chrysoula Patsa, Georgia Triantafyllou, Aris Androulakis, Christodoulos Stefanadis 1st Department

More information

Left main coronary artery (LMCA): The proximal segment

Left main coronary artery (LMCA): The proximal segment Anatomy and Pathology of Left main coronary artery G Nakazawa Tokai Univ. Kanagawa, Japan 1 Anatomy Difinition Left main coronary artery (LMCA): The proximal segment RCA AV LAD LM LCX of the left coronary

More information

High-risk vulnerable plaques. Kostis Raisakis G.Gennimatas General Hospital of Athens

High-risk vulnerable plaques. Kostis Raisakis G.Gennimatas General Hospital of Athens High-risk vulnerable plaques. Kostis Raisakis G.Gennimatas General Hospital of Athens Overview: 1 Definition-Pathology 2 3 Diagnostic Strategies Invasive Non Invasive Prognostic Value of Detection 4 Treatment

More information

Pathology of Coronary Artery Disease

Pathology of Coronary Artery Disease Pathology of Coronary Artery Disease Seth J. Kligerman, MD Pathology of Coronary Artery Disease Seth Kligerman, MD Assistant Professor Medical Director of MRI University of Maryland Department of Radiology

More information

OCT; Comparative Imaging Results with IVUS, VH and Angioscopy

OCT; Comparative Imaging Results with IVUS, VH and Angioscopy OCT; Comparative Imaging Results with IVUS, VH and Angioscopy Takashi Akasaka, M.D. Department of Cardiovascular Medicine Wakayama, Japan Comparison among coronary imaging techniques OCT IVUS MRI CAG Angioscopy

More information

Optical Coherence Tomography (OCT): A New Imaging Tool During Carotid Artery Stenting

Optical Coherence Tomography (OCT): A New Imaging Tool During Carotid Artery Stenting Chapter 6 Optical Coherence Tomography (OCT): A New Imaging Tool During Carotid Artery Stenting Shinichi Yoshimura, Masanori Kawasaki, Kiyofumi Yamada, Arihiro Hattori, Kazuhiko Nishigaki, Shinya Minatoguchi

More information

Optical Coherence Tomography for Intracoronary Imaging

Optical Coherence Tomography for Intracoronary Imaging Optical Coherence Tomography for Intracoronary Imaging Lorenz Räber Stephan Windecker Department of Cardiology Swiss Cardiovascular Center and Clinical Trials Unit Bern Bern University Hospital, Switzerland

More information

Can IVUS Define Plaque Features that Impact Patient Care?

Can IVUS Define Plaque Features that Impact Patient Care? Can IVUS Define Plaque Features that Impact Patient Care? A Pichard L Satler, K Kent, R Waksman, W Suddath, N Bernardo, N Weissman, M Angelo, D Harrington, J Lindsay, J Panza. Washington Hospital Center

More information

Assessment of Culprit Lesion Morphology in Acute Myocardial Infarction

Assessment of Culprit Lesion Morphology in Acute Myocardial Infarction Journal of the American College of Cardiology Vol. 50, No. 10, 2007 2007 by the American College of Cardiology Foundation ISSN 0735-1097/07/$32.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2007.04.082

More information

Assessment of plaque morphology by OCT in patients with ACS

Assessment of plaque morphology by OCT in patients with ACS Assessment of plaque morphology by OCT in patients with ACS Takashi Akasaka, M.D. Department of Cardiovascular Medicine Wakayama, Japan Unstable plaque Intima Lipid core Plaque rupture and coronary events

More information

Evaluation of stent placement and outcomes with optical coherence tomography

Evaluation of stent placement and outcomes with optical coherence tomography REVIEW Evaluation of stent placement and outcomes with optical coherence tomography Optical coherence tomography (OCT) is an imaging modality based on fiberoptic technology. OCT imaging systems use optical

More information

State of the Art. Advances in Cardiovascular Imaging. ESC Congres Stockholm September 1, 2010 Frank E. Rademakers, MD, PhD, FESC

State of the Art. Advances in Cardiovascular Imaging. ESC Congres Stockholm September 1, 2010 Frank E. Rademakers, MD, PhD, FESC State of the Art Advances in Cardiovascular Imaging ESC Congres Stockholm September 1, 2010 Frank E. Rademakers, MD, PhD, FESC Coronary Artery Disease Content Patho Physiology Imaging requirements Economical

More information

Plaque Characteristics in Coronary Artery Disease. Chourmouzios Arampatzis MD, PhD, FESC

Plaque Characteristics in Coronary Artery Disease. Chourmouzios Arampatzis MD, PhD, FESC Plaque Characteristics in Coronary Artery Disease Chourmouzios Arampatzis MD, PhD, FESC Disclosure Statement of Financial Interest Regarding this Presentation NONE Atherosclerosis Model proposed by Stary

More information

as a Mechanism of Stent Failure

as a Mechanism of Stent Failure In-Stent t Neoatherosclerosis e osc e os s as a Mechanism of Stent Failure Soo-Jin Kang MD., PhD. University of Ulsan College of Medicine, Heart Institute Asan Medical Center, Seoul, Korea Disclosure I

More information

OCT. molecular imaging J Jpn Coll Angiol, 2008, 48: molecular imaging MRI positron-emission tomography PET IMT

OCT. molecular imaging J Jpn Coll Angiol, 2008, 48: molecular imaging MRI positron-emission tomography PET IMT 48 6 CT MRI PET OCT molecular imaging J Jpn Coll Angiol, 2008, 48: 456 461 atherosclerosis, imaging gold standard computed tomography CT magnetic resonance imaging MRI CT B intima media thickness IMT B

More information

Coronary Artery Thermography

Coronary Artery Thermography Coronary Artery Thermography The 10th Anniversary, Interventional Vascular Therapeutics Angioplasty Summit 2005 TCT Asia Pacific Christodoulos Stefanadis Professor of Cardiology Athens Medical School In

More information

Catch-up Phenomenon: Insights from Pathology

Catch-up Phenomenon: Insights from Pathology Catch-up Phenomenon: Insights from Pathology Michael Joner, MD CVPath Institute Inc. Gaithersburg, MD USA Path Lessons learned from the BMS and DES (1 st Gen) era Neointimal Thickness [mm] In Stent Re

More information

OCT Findings: Lesson from Stable vs Unstable Plaques

OCT Findings: Lesson from Stable vs Unstable Plaques ANGIOPLASTY SUMMIT TCTAP 2010 Imaging Workshop OCT Findings: Lesson from Stable vs Unstable Plaques Giulio Guagliumi MD Ospedali Riuniti di Bergamo, Italy DISCLOSURE OF FINANCIAL INTERESTS Consultant Boston

More information

Culprit Lesion Remodeling and Long-term (> 5years) Prognosis in Patients with Acute Coronary Syndrome

Culprit Lesion Remodeling and Long-term (> 5years) Prognosis in Patients with Acute Coronary Syndrome Culprit Lesion Remodeling and Long-term (> 5years) Prognosis in Patients with Acute Coronary Syndrome Hiroyuki Okura*, MD; Nobuya Matsushita**,MD Kenji Shimeno**, MD; Hiroyuki Yamaghishi**, MD Iku Toda**,

More information

Pathology of Vulnerable Plaque Angioplasty Summit 2005 TCT Asia Pacific, Seoul, April 28-30, 2005

Pathology of Vulnerable Plaque Angioplasty Summit 2005 TCT Asia Pacific, Seoul, April 28-30, 2005 Pathology of Vulnerable Plaque Angioplasty Summit 25 TCT Asia Pacific, Seoul, April 28-3, 25 Renu Virmani, MD CVPath, A Research Service of the International Registry of Pathology Gaithersburg, MD Plaque

More information

Cardiovascular Research Foundation and Columbia University Medical Center, New York.

Cardiovascular Research Foundation and Columbia University Medical Center, New York. Virtual Histology Intravascular Ultrasound Analysis of Non-culprit Attenuated Plaques Detected by Grayscale Intravascular Ultrasound in Patients with Acute Coronary Syndromes Xiaofan Wu, Akiko Maehara,

More information

Can We Identify Vulnerable Patients & Vulnerable Plaque?

Can We Identify Vulnerable Patients & Vulnerable Plaque? Can We Identify Vulnerable Patients & Vulnerable Plaque? We Know Enough to Treat High-Risk Lesions? Takashi Akasaka, MD, PhD Department of Cardiovascular Medicine, Japan Disclosure Statement of Financial

More information

Quantitative Imaging of Transmural Vasa Vasorum Distribution in Aortas of ApoE -/- /LDL -/- Double Knockout Mice using Nano-CT

Quantitative Imaging of Transmural Vasa Vasorum Distribution in Aortas of ApoE -/- /LDL -/- Double Knockout Mice using Nano-CT Quantitative Imaging of Transmural Vasa Vasorum Distribution in Aortas of ApoE -/- /LDL -/- Double Knockout Mice using Nano-CT M. Kampschulte 1, M.D.; A. Brinkmann 1, M.D.; P. Stieger 4, M.D.; D.G. Sedding

More information

Insights in Thrombosis and In-Stent Restenosis

Insights in Thrombosis and In-Stent Restenosis Clinical Value of OCT Insights in Thrombosis and In-Stent Restenosis Fernando Alfonso MD, PhD, FESC Interventional Cardiology. Cardiovascular Institute. Clinico San Carlos University Hospital. Madrid.

More information

Neointimal coverage of bare-metal and sirolimuseluting stents evaluated with optical coherence tomography

Neointimal coverage of bare-metal and sirolimuseluting stents evaluated with optical coherence tomography Neointimal coverage of bare-metal and sirolimuseluting stents evaluated with optical coherence tomography B X Chen, F Y Ma, W Luo, J H Ruan, W L Xie, X Z Zhao, S H Sun, X M Guo, F Wang, T Tian, X W Chu

More information

Gary S. Mintz,, MD. IVUS Observations in Acute (vs Chronic) Coronary Artery Disease: Structure vs Function

Gary S. Mintz,, MD. IVUS Observations in Acute (vs Chronic) Coronary Artery Disease: Structure vs Function Gary S. Mintz,, MD IVUS Observations in Acute (vs Chronic) Coronary Artery Disease: Structure vs Function Important IVUS Observations: Remodeling Originally used (first by Glagov) ) to explain atherosclerosis

More information

Coronary Paque Imaging by Coronary Angioscopy Comparison with the Other Modalities

Coronary Paque Imaging by Coronary Angioscopy Comparison with the Other Modalities Review Angioscopy 2017; 3: 19 27 Coronary Paque Imaging by Coronary Angioscopy Comparison with the Other Modalities Hiroaki Watabe, MD, PhD, * Akira Sato, MD, and Kazutaka Aonuma, MD, PhD. Cardiovascular

More information

Acta Cardiol Sin 2018;34: doi: /ACS _34(2) A

Acta Cardiol Sin 2018;34: doi: /ACS _34(2) A Original Article Acta Cardiol Sin 2018;34:124 129 doi: 10.6515/ACS.201803_34(2).20171115A Coronary Artery Disease Vascular Healing Response after Everolimus-Eluting Stent Implantation in Acute Coronary

More information

Usefulness of OCT during coronary intervention

Usefulness of OCT during coronary intervention Usefulness of OCT during coronary intervention Takashi Akasaka, M.D. Department of Cardiovascular Medicine Wakayama, Japan Predictors at 12 Months of Stent Thrombosis and Target Lesion Revascularization

More information

IVUS Virtual Histology. Listening through Walls D. Geoffrey Vince, PhD The Cleveland Clinic Foundation

IVUS Virtual Histology. Listening through Walls D. Geoffrey Vince, PhD The Cleveland Clinic Foundation IVUS Virtual Histology Listening through Walls D. Geoffrey Vince, PhD Disclosure VH is licenced to Volcano Therapeutics Grant funding from Pfizer, Inc. Grant funding from Boston-Scientific Most Myocardial

More information

Cottrell Memorial Lecture. Has Reversing Atherosclerosis Become the New Gold Standard in the Treatment of Cardiovascular Disease?

Cottrell Memorial Lecture. Has Reversing Atherosclerosis Become the New Gold Standard in the Treatment of Cardiovascular Disease? Cottrell Memorial Lecture Has Reversing Atherosclerosis Become the New Gold Standard in the Treatment of Cardiovascular Disease? Stephen Nicholls MBBS PhD @SAHMRI_Heart Disclosures Research support: AstraZeneca,

More information

Pathology of the Vulnerable Plaque

Pathology of the Vulnerable Plaque Journal of the American College of Cardiology Vol. 47, No. 8 Suppl C 2006 by the American College of Cardiology Foundation ISSN 0735-1097/06/$32.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2005.10.065

More information

Analysis of neointimal coverage after silolimus-eluting stent implantation using optical coherence tomography.

Analysis of neointimal coverage after silolimus-eluting stent implantation using optical coherence tomography. Analysis of neointimal coverage after silolimus-eluting stent implantation using optical coherence tomography. Division of Cardiology, Department of Internal Medicine, Fasculty of Medicine, Kinki University,

More information

Optical Coherence Tomography

Optical Coherence Tomography Optical Coherence Tomography Disclosure Information Demetrius Lopes MD The following relationships exist related to this presentation: University Grant/Research Support: Rush University Industry Grant

More information

04RC2. The biology of vulnerable plaques. Jozef L. Van Herck 1, Christiaan J. Vrints 1, Arnold G. Herman 2

04RC2. The biology of vulnerable plaques. Jozef L. Van Herck 1, Christiaan J. Vrints 1, Arnold G. Herman 2 04RC2 The biology of vulnerable plaques Jozef L. Van Herck 1, Christiaan J. Vrints 1, Arnold G. Herman 2 1 Department of Cardiology, Antwerp University Hospital, Edegem, Belgium 2 Department of Pharmacology,

More information

CPIS So-Yeon Choi, MD., PhD. Department of Cardiology Ajou University School of MedicineSuwon, Korea

CPIS So-Yeon Choi, MD., PhD. Department of Cardiology Ajou University School of MedicineSuwon, Korea So-Yeon Choi, MD., PhD. Department of Cardiology Ajou University School of MedicineSuwon, Korea Coronary Artery Imaging The ideal coronary imaging technology would be capable of identifying not only vessel

More information

actually rupture! Challenges to the vulnerable plaque concept

actually rupture! Challenges to the vulnerable plaque concept An Update on the Pathogenesis of the Acute Coronary Syndromes Peter Libby Brigham & Women s Hospital Harvard Medical School ADVANCES IN HEART DISEASE University of California San Francisco December 20,

More information

OCT in the Evaluation of Vascular Healing Following DES Implantation: Will It Be a Helpful Tool to Reduce Stent Thrombosis?

OCT in the Evaluation of Vascular Healing Following DES Implantation: Will It Be a Helpful Tool to Reduce Stent Thrombosis? OCT in the Evaluation of Vascular Healing Following DES Implantation: Will It Be a Helpful Tool to Reduce Stent Thrombosis? Juan F. Granada, MD Medical Director, Skirball Center for Cardiovascular Research

More information

IVUS Analysis. Myeong-Ki. Hong, MD, PhD. Cardiac Center, Asan Medical Center University of Ulsan College of Medicine, Seoul, Korea

IVUS Analysis. Myeong-Ki. Hong, MD, PhD. Cardiac Center, Asan Medical Center University of Ulsan College of Medicine, Seoul, Korea IVUS Analysis Myeong-Ki Hong, MD, PhD Cardiac Center, Asan Medical Center University of Ulsan College of Medicine, Seoul, Korea Intimal disease (plaque) is dense and will appear white Media is made of

More information

Index. B Bare metal stents (BMS) vs. DES, 172 OCT findings, 170, 172

Index. B Bare metal stents (BMS) vs. DES, 172 OCT findings, 170, 172 Index A Absorbable metal stent (AMS), 189 Absorb BVS, 184 187 Acquired malapposition in DES, stent thrombosis. See also Incomplete stent apposition (ISA) coronary angiography, 155, 156 DAPT therapy, 155

More information

Intravascular Ultrasound

Intravascular Ultrasound May 2008 Beth Israel Deaconess Medical Center Harvard Medical School Intravascular Ultrasound Matthew Altman, HMS III Gillian Lieberman, MD BIDMC Department of Radiology Presentation Overview 1. Patient

More information

Medical sciences 1 (2017) 1 9

Medical sciences 1 (2017) 1 9 Medical sciences 1 (2017) 1 9 TISSUE CHARACTERISTICS OF CULPRIT CORONARY LESIONS IN ACUTE CORONARY SYNDROME AND TARGET CORONARY LESIONS IN STABLE ANGINA PECTORIS: VIRTUAL HISTOLOGY AND INTRAVASCULAR ULTRASOUND

More information

Multimodality Imaging Atlas of Coronary Atherosclerosis

Multimodality Imaging Atlas of Coronary Atherosclerosis JCC: CRDIOVSCUR IMGING VO. 3, NO. 8, 2010 2010 BY THE MERICN COEGE OF CRDIOOGY FOUNDTION ISSN 0735-1097/$36.00 PUBISHED BY ESEVIER INC. DOI:10.1016/j.jcmg.2010.06.006 IMGING VIGNETTE Multimodality Imaging

More information

Yukio Ozaki, M Okumura, TF Ismail 2, S Motoyama, H. Naruse, K. Hattori, H. Kawai, M. Sarai, J. Ishii, Jagat Narula 3

Yukio Ozaki, M Okumura, TF Ismail 2, S Motoyama, H. Naruse, K. Hattori, H. Kawai, M. Sarai, J. Ishii, Jagat Narula 3 Culprit Lesion Characteristics in Acute Coronary Syndrome and Stable Angina Assessed by Optical Coherence Tomography (OCT), Angioscopy, IVUS and Multidetector Computed Tomography (MDCT) Yukio Ozaki, M

More information

From the Vulnerable Atherosclerotic Plaque to CAD Management

From the Vulnerable Atherosclerotic Plaque to CAD Management 33 rd Panhellenic Congress of Cardiology Athens, November 1-3, 2012 From the Vulnerable Atherosclerotic Plaque to CAD Management Filippos Triposkiadis, MD, FESC, FACC Professor of Cardiology Director,

More information

Drug eluting stents (DES) have decreased

Drug eluting stents (DES) have decreased JACC: CARDIOVASCULAR IMAGING VOL. 5, NO. 11, 1 1 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION ISSN 1936-878X/$36. PUBLISHED BY ELSEVIER INC. http://dx.doi.org/1.116/j.jcmg.1.. BRIEF REPORT OCT-Verified

More information

Noninvasive Coronary Imaging: Plaque Imaging by MDCT

Noninvasive Coronary Imaging: Plaque Imaging by MDCT Coronary Physiology & Imaging Summit 2007 Noninvasive Coronary Imaging: Plaque Imaging by MDCT Byoung Wook Choi Department of Radiology Yonsei University, Seoul, Korea Stary, H. C. et al. Circulation

More information

Assessment of Vulnerable Plaque by IVUS and VH-IVUS

Assessment of Vulnerable Plaque by IVUS and VH-IVUS Assessment of Vulnerable Plaque by IVUS and VH-IVUS Akiko Maehara, MD Director of Intravascular Imaging & Physiology Core Laboratories Associate Director of MRI/MDCT Core Laboratory Cardiovascular Research

More information

CT Imaging of Atherosclerotic Plaque. William Stanford MD Professor-Emeritus Radiology University of Iowa College of Medicine Iowa City, IA

CT Imaging of Atherosclerotic Plaque. William Stanford MD Professor-Emeritus Radiology University of Iowa College of Medicine Iowa City, IA CT Imaging of Atherosclerotic Plaque William Stanford MD Professor-Emeritus Radiology University of Iowa College of Medicine Iowa City, IA PREVALENCE OF CARDIOVASCULAR DISEASE In 2006 there were 80 million

More information

Role of Intravascular Ultrasound in Patients with Acute Myocardial Infarction

Role of Intravascular Ultrasound in Patients with Acute Myocardial Infarction Review Article Print ISSN 1738-5520 On-line ISSN 1738-5555 Korean Circulation Journal Role of Intravascular Ultrasound in Patients with Acute Myocardial Infarction Young Joon Hong, MD, Youngkeun Ahn, MD,

More information

Assessment of vulnerable plaque by OCT

Assessment of vulnerable plaque by OCT Assessment of vulnerable plaque by OCT Comparison with histology and possible clinical applications Takashi Akasaka, M.D. Department of Cardiovascular Medicine Wakayama, Japan Identification of vulnerable

More information

malapposition assessed by OCT

malapposition assessed by OCT Stent t coverage and malapposition assessed by OCT Myeong-Ki Hong, M.D. Ph D Professor of Medicine Division of Cardiology, Severance Cardiovascular Hospital Yonsei University College of Medicine, Seoul,

More information

The Dynamic Nature of Coronary Artery Lesion Morphology Assessed by Serial Virtual Histology Intravascular Ultrasound Tissue Characterization

The Dynamic Nature of Coronary Artery Lesion Morphology Assessed by Serial Virtual Histology Intravascular Ultrasound Tissue Characterization Journal of the American College of Cardiology Vol. 55, No. 15, 2010 2010 by the American College of Cardiology Foundation ISSN 0735-1097/10/$36.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2009.07.078

More information

The Site of Plaque Rupture in Native Coronary Arteries

The Site of Plaque Rupture in Native Coronary Arteries Journal of the American College of Cardiology Vol. 46, No. 2, 2005 2005 by the American College of Cardiology Foundation ISSN 0735-1097/05/$30.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2005.03.067

More information

Pathology of percutaneous interventions (PCI) in coronary arteries. Allard van der Wal, MD.PhD; Pathologie AMC, Amsterdam, NL

Pathology of percutaneous interventions (PCI) in coronary arteries. Allard van der Wal, MD.PhD; Pathologie AMC, Amsterdam, NL Pathology of percutaneous interventions (PCI) in coronary arteries Allard van der Wal, MD.PhD; Pathologie AMC, Amsterdam, NL Percutaneous Coronary Intervention (PCI) Definition: transcatheter opening of

More information

The PROSPECT Trial. A Natural History Study of Atherosclerosis Using Multimodality Intracoronary Imaging to Prospectively Identify Vulnerable Plaque

The PROSPECT Trial. A Natural History Study of Atherosclerosis Using Multimodality Intracoronary Imaging to Prospectively Identify Vulnerable Plaque The PROSPECT Trial Providing Regional Observations to Study Predictors of Events in the Coronary Tree A Natural History Study of Atherosclerosis Using Multimodality Intracoronary Imaging to Prospectively

More information

Cover Page. Author: Wang, Ancong Title: Automatic quantification of intravascular optical coherence tomography Issue Date:

Cover Page. Author: Wang, Ancong Title: Automatic quantification of intravascular optical coherence tomography Issue Date: Cover Page The handle http://hdl.handle.net/1887/29690 holds various files of this Leiden University dissertation Author: Wang, Ancong Title: Automatic quantification of intravascular optical coherence

More information

Analysis of macrophage accumulation using optical coherence tomography one year after sirolimus, paclitaxel and zotarolimus-eluting stent

Analysis of macrophage accumulation using optical coherence tomography one year after sirolimus, paclitaxel and zotarolimus-eluting stent Analysis of macrophage accumulation using optical coherence tomography one year after sirolimus, paclitaxel and zotarolimus-eluting stent implantation. Department of Cardiology, Ehime Prefectural Imabari

More information

Detection of carotid plaque neovascularization with Superb Micro-Vascular Imaging

Detection of carotid plaque neovascularization with Superb Micro-Vascular Imaging Detection of carotid plaque neovascularization with Superb Micro-Vascular Imaging Yong Qiang Professor Ultrasonic Department, Beijing An-Zhen Hospital, Capital Medical University, China 1. Background Conventional

More information

JACC: CARDIOVASCULAR INTERVENTIONS VOL. 2, NO. 5, PUBLISHED BY ELSEVIER INC. DOI: /j.jcin

JACC: CARDIOVASCULAR INTERVENTIONS VOL. 2, NO. 5, PUBLISHED BY ELSEVIER INC. DOI: /j.jcin JACC: CARDIOVASCULAR INTERVENTIONS VOL. 2, NO. 5, 2009 2009 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION ISSN 1936-8798/09/$36.00 PUBLISHED BY ELSEVIER INC. DOI: 10.1016/j.jcin.2009.01.012 Incomplete

More information

Muzina Akhtar, Wei Liu. History of ISR visualization. Introduction

Muzina Akhtar, Wei Liu. History of ISR visualization. Introduction Perspective Use of intravascular ultrasound vs. optical coherence tomography for mechanism and patterns of in-stent restenosis among bare metal stents and drug eluting stents Muzina Akhtar, Wei Liu Cardiology

More information

TVA_C02.qxd 8/8/06 10:27 AM Page 19 PART 2. Pathology

TVA_C02.qxd 8/8/06 10:27 AM Page 19 PART 2. Pathology TVA_C2.qxd 8/8/6 :27 AM Page 19 2 PART 2 Pathology TVA_C2.qxd 8/8/6 :27 AM Page TVA_C2.qxd 8/8/6 :27 AM Page 21 2 CHAPTER 2 The pathology of vulnerable plaque Renu Virmani, Allen P Burke, James T Willerson,

More information

The Role of Optical Coherence Tomography in Coronary Intervention

The Role of Optical Coherence Tomography in Coronary Intervention review korean j intern med 2012;27:1-12 pissn 1226-3303 eissn 2005-6648 The Role of Optical Coherence Tomography in Coronary Intervention Mitsuyasu Terashima 1, Hideaki Kaneda 2, and Takahiko Suzuki 1

More information

A Novel Low Pressure Self Expanding Nitinol Coronary Stent (vprotect): Device Design and FIH Experience

A Novel Low Pressure Self Expanding Nitinol Coronary Stent (vprotect): Device Design and FIH Experience A Novel Low Pressure Self Expanding Nitinol Coronary Stent (vprotect): Device Design and FIH Experience Juan F. Granada, MD Medical Director, Skirball Center for Cardiovascular Research The Cardiovascular

More information

What Does the Yellow Color of Angioscopy Mean? Why Yellow Plaque Is Always Vulnerable?

What Does the Yellow Color of Angioscopy Mean? Why Yellow Plaque Is Always Vulnerable? Review Angioscopy 2017; 3: 9 18 What Does the Yellow Color of Angioscopy Mean? Why Yellow Plaque Is Always Vulnerable? Kyoichi Mizuno, MD, PhD, *1 and Masamichi Takano, MD, PhD 2 1 Mitsukoshi Health and

More information

Characterization of coronary plaques with combined use of intravascular ultrasound, virtual histology and optical coherence tomography

Characterization of coronary plaques with combined use of intravascular ultrasound, virtual histology and optical coherence tomography Heart International 2010; volume 5:e12 Characterization of coronary plaques with combined use of intravascular ultrasound, virtual histology and optical coherence tomography Guillermo Sánchez-Elvira, 1

More information

Κλινική Χρήση IVUS και OCT PERIKLIS A. DAVLOUROS ASSOCIATE PROFESSOR OF CARDIOLOGY INVASIVE CARDIOLOGY & CONGENITAL HEART DISEASE

Κλινική Χρήση IVUS και OCT PERIKLIS A. DAVLOUROS ASSOCIATE PROFESSOR OF CARDIOLOGY INVASIVE CARDIOLOGY & CONGENITAL HEART DISEASE Κλινική Χρήση IVUS και OCT PERIKLIS A. DAVLOUROS ASSOCIATE PROFESSOR OF CARDIOLOGY INVASIVE CARDIOLOGY & CONGENITAL HEART DISEASE Conflict of interest None to declare While IVUS is the most used intravascular

More information

CHAPTER (2) THE VULNERABLE PLAQUE

CHAPTER (2) THE VULNERABLE PLAQUE CHAPTER (2) THE VULNERABLE PLAQUE UNSTABLE OR HIGH RISK ATHEROSCLEROTIC PLAQUE - Definition and Composition - Plaque Destabilization and Disruption - Fate of Disrupted Plaque - Clinical Presentation -

More information

Intracoronary Optical Diagnostics

Intracoronary Optical Diagnostics The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Lowe, Harry C., Jagat Narula, James G. Fujimoto, and

More information

The PROSPECT Trial. A Natural History Study of Atherosclerosis Using Multimodality Intracoronary Imaging to Prospectively Identify Vulnerable Plaque

The PROSPECT Trial. A Natural History Study of Atherosclerosis Using Multimodality Intracoronary Imaging to Prospectively Identify Vulnerable Plaque The PROSPECT Trial Providing Regional Observations to Study Predictors of Events in the Coronary Tree A Natural History Study of Atherosclerosis Using Multimodality Intracoronary Imaging to Prospectively

More information

Carotid Intravascular Imaging Technique and Indication

Carotid Intravascular Imaging Technique and Indication Nurse and Technician Forum Carotid Intravascular Imaging Technique and Indication Gianmarco de Donato Assistant Professor Vascular and Endovascular Surgery University of Siena - Italy Disclosure Speaker

More information

Coronary Plaque Neovascularization and Hemorrhage: A Potential Target for Plaque Stabilization?

Coronary Plaque Neovascularization and Hemorrhage: A Potential Target for Plaque Stabilization? Coronary Plaque Neovascularization and Hemorrhage: A Potential Target for Plaque Stabilization? Aloke V Finn, Emory University Rakesh K. Jain, Massachusetts General Hospital Journal Title: JACC: Cardiovascular

More information

Dynamic Nature of Nonculprit Coronary Artery Lesion Morphology in STEMI

Dynamic Nature of Nonculprit Coronary Artery Lesion Morphology in STEMI JACC: CARDIOVASCULAR IMAGING VOL. 6, NO. 1, 2013 2013 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION ISSN 1936-878X/$36.00 PUBLISHED BY ELSEVIER INC. http://dx.doi.org/10.1016/j.jcmg.2012.08.010 Dynamic

More information

Subclinical hypothyroidism is associated with lipid-rich plaques in patients with coronary artery disease as assessed by optical coherence tomography

Subclinical hypothyroidism is associated with lipid-rich plaques in patients with coronary artery disease as assessed by optical coherence tomography Journal of Geriatric Cardiology (2018) 15: 534 539 2018 JGC All rights reserved; www.jgc301.com Research Article Open Access Subclinical hypothyroidism is associated with lipid-rich plaques in patients

More information

Review Article Pathologic Etiologies of Late and Very Late Stent Thrombosis following First-Generation Drug-Eluting Stent Placement

Review Article Pathologic Etiologies of Late and Very Late Stent Thrombosis following First-Generation Drug-Eluting Stent Placement ombosis Volume 2012, Article ID 608593, 16 pages doi:10.1155/2012/608593 Review Article Pathologic Etiologies of Late and Very Late Stent ombosis following First-Generation Drug-Eluting Stent Placement

More information

Que nos puede aportar el OCT intracoronario

Que nos puede aportar el OCT intracoronario XXXI Jornadas SOLACI. 10ª Región CONOSUR LIIIº Congreso Chileno de Cardiología y Cirugía Cardiovascular Hotel Patagónico. Puerto Varas. Chile (30 Nov 1 Dic 2016) Que nos puede aportar el OCT intracoronario

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,500 108,000 1.7 M Open access books available International authors and editors Downloads Our

More information

Page: 1 of 17. Optical Coherence Tomography for Imaging of Coronary Arteries

Page: 1 of 17. Optical Coherence Tomography for Imaging of Coronary Arteries Section: Medicine Effective Date: July 15, 2015 Subject: Optical Coherence Tomography for Page: 1 of 17 Last Review Status/Date: June 2015 Optical Coherence Tomography for Description Optical coherence

More information

Inflammation, plaque progression and vulnerability: evidence from intravascular ultrasound imaging

Inflammation, plaque progression and vulnerability: evidence from intravascular ultrasound imaging Review Article Inflammation, plaque progression and vulnerability: evidence from intravascular ultrasound imaging Yu Kataoka, Rishi Puri, Stephen J. Nicholls South Australian Health & Medical Research

More information

OCT-Based Diagnosis and Management of STEMI Associated With Intact Fibrous Cap

OCT-Based Diagnosis and Management of STEMI Associated With Intact Fibrous Cap JACC: CARDIOVASCULAR IMAGING VOL. 6, NO. 3, 2013 2013 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION ISSN 1936-878X/$36.00 PUBLISHED BY ELSEVIER INC. http://dx.doi.org/10.1016/j.jcmg.2012.12.007 CONCEPTS

More information

OCT Analysis in Patients With Very Late Stent Thrombosis

OCT Analysis in Patients With Very Late Stent Thrombosis JACC: CARDIOVASCULAR IMAGING VOL. 6, NO. 6, 2013 ª 2013 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION ISSN 1936-878X/$36.00 PUBLISHED BY ELSEVIER INC. http://dx.doi.org/10.1016/j.jcmg.2013.02.006 OCT

More information

Clinical Characteristics of In-stent Neoatherosclerosis Causing Late Stent Failure

Clinical Characteristics of In-stent Neoatherosclerosis Causing Late Stent Failure Original Paper J Jpn Coron Assoc 2016; 22: 245-250 Clinical Characteristics of In-stent Neoatherosclerosis Causing Late Stent Failure Koji Isodono, Akiko Matsuo, Atsushi Kyodo, Yumika Tsuji, Akira Sakamoto,

More information

Evaluation of Intermediate Coronary lesions: Can You Handle the Pressure? Jeffrey A Southard, MD May 4, 2013

Evaluation of Intermediate Coronary lesions: Can You Handle the Pressure? Jeffrey A Southard, MD May 4, 2013 Evaluation of Intermediate Coronary lesions: Can You Handle the Pressure? Jeffrey A Southard, MD May 4, 2013 Disclosures Consultant- St Jude Medical Boston Scientific Speaker- Volcano Corporation Heart

More information

Chapter 36 IVUS versus OCT: Relative Merits and Drawbacks

Chapter 36 IVUS versus OCT: Relative Merits and Drawbacks Chapter 36 IVUS versus OCT: Relative Merits and Drawbacks GAGANDEEP SINGH HARI RAJ TOMAR BHAWANI SHANKAR Intracoronary imaging modalities have helped us in having better understanding of coronary artery

More information

Optical coherence tomography evaluation of zotarolimus-eluting stents at 9-month follow-up: comparison with sirolimus-eluting stents

Optical coherence tomography evaluation of zotarolimus-eluting stents at 9-month follow-up: comparison with sirolimus-eluting stents Optical coherence tomography evaluation of zotarolimus-eluting stents at 9-month follow-up: comparison with sirolimus-eluting stents J-S Kim, 1 I-K Jang, 2 J-S Kim, 1 T H Kim, 1 M Takano, 3 T Kume, 4 N

More information

Research Article Pathological Perspective of Drug-Eluting Stent Thrombosis

Research Article Pathological Perspective of Drug-Eluting Stent Thrombosis Thrombosis Volume 2012, Article ID 219389, 8 pages doi:10.1155/2012/219389 Research Article Pathological Perspective of Drug-Eluting Stent Thrombosis Katsumi Inoue Department of Laboratory Medicine, Kokura

More information

EAE Teaching Course. Magnetic Resonance Imaging. Competitive or Complementary? Sofia, Bulgaria, 5-7 April F.E. Rademakers

EAE Teaching Course. Magnetic Resonance Imaging. Competitive or Complementary? Sofia, Bulgaria, 5-7 April F.E. Rademakers EAE Teaching Course Magnetic Resonance Imaging Competitive or Complementary? Sofia, Bulgaria, 5-7 April 2012 F.E. Rademakers Complementary? Of Course N Engl J Med 2012;366:54-63 Clinical relevance Treatment

More information

Coronary Artery Calcification

Coronary Artery Calcification Coronary Artery Calcification Julianna M. Czum, MD OBJECTIVES CORONARY ARTERY CALCIFICATION Julianna M. Czum, MD Dartmouth-Hitchcock Medical Center 1. To review the clinical significance of coronary heart

More information

Optical coherence tomography patterns of in-stent restenosis: Comparison between bare-metal stent and drug-eluting stent

Optical coherence tomography patterns of in-stent restenosis: Comparison between bare-metal stent and drug-eluting stent Optical coherence tomography patterns of in-stent restenosis: Comparison between bare-metal stent and drug-eluting stent heart institute, Division of cardiology, Tokyo, Japan Yusuke Watanabe, Ryuta Asano,

More information

Ambiguity in Detection of Necrosis in IVUS Plaque Characterization Algorithms and SDH as Alternative Solution

Ambiguity in Detection of Necrosis in IVUS Plaque Characterization Algorithms and SDH as Alternative Solution Ambiguity in Detection of Necrosis in IVUS Plaque Characterization Algorithms and SDH as Alternative Solution Amin Katouzian, Ph.D., Debdoot Sheet, M.S., Abouzar Eslami, Ph.D., Athanasios Karamalis, M.Sc.,

More information