kcat, but isozyme M (in muscle) has a Km of 5 um and isozyme L (in liver) has a Km of 20 um. Answer the following questions about this situation.

Size: px
Start display at page:

Download "kcat, but isozyme M (in muscle) has a Km of 5 um and isozyme L (in liver) has a Km of 20 um. Answer the following questions about this situation."

Transcription

1 ENZYMES and KINETICS (10 points this page) A substrate S is converted into product P. When an enzyme is added to the reaction, the activation energy is lowered. Use single sentence answers for the following: 1) What is the effect of addition of enzyme on the forward reaction (S to P) and the reverse reaction (P to S)? The rate of each reaction is increased to the same extent. That is because the activation energy of each reaction is lowered to the same extent 2) What is the effect of adding the enzyme on the equilibrium constant for S conversion into P? The equilibrium constant for an enzyme catalyzed reaction is precisely the same as that for the uncatalyzed reaction. 3) Suppose that the enzyme lowers the activation energy by 5kJ per mole. What letter best describes the change in rate of the S to P reaction compared to when no enzyme is present? your choice: A (all you really needed to know was that its an expoenential relationship and that lowering the activation energy hastens the reaction ) A) it is faster by a factor of e (5,000/RT) B) it is faster by a factor of (5,000/RT) C) it is slower by a factor of e (5,000/RT) D) the change depends on the original Eact Two versions (isozymes) of the same enzyme convert substrate S into product P. They each have the same kcat, but isozyme M (in muscle) has a Km of 5 um and isozyme L (in liver) has a Km of 20 um. Answer the following questions about this situation. 4) At what substrate concentration will M be half-saturated? M is half saturated when S equals the value of Km 5 um 5) What fraction (between 0 and 1) of saturation will enzyme M have at 20 um substrate? S/(S + Km) = 20/25. So 0.8, or 4/5, or even 80% are acceptable 6) What fraction of saturation will enzyme L have at 20 um substrate? L is half saturated when S equals the value of Km 20 um 7) What is the ratio of maximal rates, Lmax/Mmax, for the two enzymes? (Think first ) The ratio is 1. Since the kcats are the same, the maximal rates (for a given amount of enzyme) are the same. page 1

2 8) (3 points) Write the general reaction for phosphorylation of an enzyme E. Use OH to represent the R group that actually receives the phosphate. Make sure to include all necessary substrates and products, and include the general name of the type of enzyme that catalyzes this reaction kinase E-OH + ATP E-OPO ADP ENZYMES and KINETICS cont (10 points this page) The graph is a picture of a Lineweaver-Burk plot,, with data from two different enzymes, I and II, plotted. 9) (2 points) In this sort of plot, each axis is a function of either substrate concentration or rate. Indicate what each axis represent in the space below The X (horzontal) axis is : 1/[S] The Y (vertical) axis is: 1/[V o ] we also accept 1/[V] II I 10) Which of the two enzymes, I and/or II, follows Michaelis-Menten kinetics? _I_ But I spelled Menten wrong, and in deference to Dr. Menten s memory, here is a web site extolling her under-appreciated accomplishments (and spelling her name right) 11) (2 points) Why do you say the answer in 10)? (One sentence please) The Lineweaver-Burk plot converts the Michaelis-Menten equation into a linear function of the two variables, 1/S and 1/V o 12) Where on this plot does one find the saturated rate for an enzyme? Write below please. rate A E I Allosteric enzymes are often encountered in the study of metabolic regulation. Below is a simple rate plot, in rate plotted against substrate concentration S. Sketch in three curves, making sure to indicate which is which with labels. 13) Draw a curve for a typical allosteric enzyme, label it E [substrate] 14) Draw a new curve for E when an allosteric activator is added, and label it A 15) Draw a third curve for E when an allosteric inhibitor is added and label it I 16) What protein structural feature is nearly always associated with kinetic behavior of this sort? This enzyme almost certainly has multiple subunits and hence, quaternary structure page 2

3 OXIDATION REDUCTION (10 points this page) 17 (4 points) Glyoxylate can be oxidized to the two carbon, dicarboxylic acid oxalate. This is one source of the material in kidney stones. Starting with the structure of glyoxylate below, write a reaction for the oxidation of glyoxyate by NAD. Include any water or H + you need to balance the reaction O H C CO 2 H CO - 2 CO2-2 O NADH 2H + NAD + (Hey! These are the reactions from last year s midterm! ) The following four half-reactions have the standard reduction potentials listed. A) αkg + CO 2 + 2H + +2e isocitrate E o = B) ΝΟ 3 + 2Η+ + 2e NO H 2 0 E o = C) crotonyl-coa + 2Η + 2e butryl-coa E o = D) Pyruvate + 2H+ 2e lactate E o = There are 4 acceptors and 4 donors in this collection of reactions. Answer the following questions 18) Which molecule in this collection of 8 (donors and acceptors) is the best oxidizing agent? NO 3 - is most prone to get reduced, so it is the best oxidizing agent 19) Which molecule in this collection of 8 is the best reducing agent? isocitrate is the most prone to give up its electrons (get oxidized), so it is the best reducing agent 20) List the letters for the reaction or reactions that would spontaneously reduce H + ion at standard conditions Those reactions that would spontaneously run backwards (as written) when connected to an H2/H+ cell are the negative values A, C, D 21) (3 points) For reaction D, show the relationship between E o and the equilibrium concentrations for this half reaction. Use letters for any constants (eg A for avogadro's number) E o = E o = -(RT/nF) ln [pyruvate]/[lactate]) page 3

4 An inborn error of glycolysis (10 points this page) One of the most powerful tools in the study of metabolism is use of radioactive atoms. The next questions will use a labeled molecule to understand glycolysis in the cells of normal individuals, and those with an inherited disease. 22) (2 points) 1-[ 14 C]-fructose-6P is added to a cellular lysate with a fully functional glycolytic pathway. Draw a molecule of labeled pyruvate that would result from the labeled molecule ending up in that product. Just the pyruvate please H 3 14 C 23) (2 points) Does every molecule of pyruvate derived from a labeled fructose have a labeled carbon? Yes or no, and explain your answer No, half of the pyruvate molecules produced come from the unlabled 4,5, 6 carbons of the fructose that are originally produced as glyceraldehyde 3 P C O CO 2-14 CH 2 C CH CH CH CH 2 O OH OH OH 14 CH 2 C CH 2 O OH HC O CH OH CH 2 There is a severe inherited disease caused by a null allele of the triose phosphate isomerase (TPI) gene. You know, the 5 th enzyme of the glycolytic pathway. Homozygotes produce NO TPI enzyme activity. 24) (4 points)write the reaction that TPI catalyzes, including structures of reactant(s) and product(s) 14 CH 2 C CH 2 O OH HC O C OH C 14 H 2 I included the labeled one carbon, for ease of identification. You didn t need to do this 25) (2 points) 1-[ 14 C]-fructose-6P is added to a cell lysate completely deficient in TPI, and glycolysis is allowed to proceed. Is there still label found in pyruvate? Why or why not? No label is found in the pyruvate, because the resulting labeled molecule, 14 C-DHAP can not be converted into G3P, so this lableled product can not continue down the glycolytic pathway. (See picture above) page 4

5 An inborn error of glycolysis (cont ) (10 points this page) 26) (3 points) 1-[ 14 C]-fructose-6P is added to a cell lysate deficient in TPI, what would you predict the main molecule with labeled 14C to be? Justify your answers with a picture and/or a sentence. 14 CH 2 C CH CH CH CH 2 O OH OH OH 14 CH 2 C CH 2 O OH The label will ALL be found in DHAP, which is shown above. The inability of the lysates to then convert the DHAP into G3P will freeze the label at this step. HC O CH OH CH 2 When a molecule of glucose undergoes glycolysis in one of these cells that is completely TPI deficient, the bookkeeping or ATP profit changes in understandable ways. Let s figure this out (so that you don t have to memorize it ). 27) How many ATP are consumed for each glucose that goes down this mutant pathway? 2 28) How many ATP are produced from each glucose that goes down this mutant pathway 2 29) How many reduced carrier molecules are made per glucose by the TPI-deficient pathway? 1 30) What is this reduced carrier molecule called NADH 31) How many molecules of pyruvate are formed per glucose by the TPI-deficient pathway 1 32) (2 points) Explain the number you gave in 31) below with one sentence: Only one pyruvate can be formed, that from the G3P formed in the original cleavage of Fr1,6 bisphosphate. The other three carbon skeleton can not enter the pathway. So one pyruvate. page 5

6 Glucose coming and going (10 points this page) Nature s Sugar Bowl Glycogen is a key glucose storage molecule in mammals. 33) (4 points) Using the picture below of a single non-reducing end of glycogen, write the glycogen phosphyorylase reaction, showing any substrates and products, but don t worry about drawing the remaining glycogen molecule. etc. + PO 4-3 PO ) (2 points) How is the molecule produced by glycogen phosphorylase then put into the glycolytic pathway? Write the relevant reaction, no structure required. (Hint: a mutase is required) Glu-1P phosphogluco mutase Glu-6P 35) (2 points) Glucose regulates glycogen phosphorylase allosterically, by making glycogen phosphorylase more susceptible to the action of another regulatory enzyme. What kind of enzyme is this? Glucose makes the glycogen phosphorylase more susceptible to the action of a protein phosphatase that catalyzes dephosphorylation (and hence deactivation) of the GP. 36) (2 points) Write the general reaction catalyzed by the enzyme involved in glucose regulation of glycogen phosphorylase. You can use P to indicate the protein substrate. P was not a great choice but anyway (the protein is the green P): P-O-PO H 2 O P-OH + HPO 4-2 page 6

7 Glucose coming and going (cont ) (8 points this page) One of the fates of glucose distinct from glycolysis is for the production of ribose. 37) (2 points) What is the name of this pathway? : pentose phosphate pathway, or pentose phophate shunt 38)(4 points) Write the first reaction including the names of products, reactants and cofactor Glu-6P + NADP + 6-phospho-gluconolactone + NADPH 39) (2 points) The second part of this pathway, after ribose production, involves a remarkable collection of interconversions of 4, 5, 7 and 3 carbon sugars. Two types of enzymes are involved in all of those fancy conversions. The enzyme that transfers 2 carbon units is called: transketolase The enzyme that transfers 3 carbon units is called: transaldolase (this is just a little dead space.) page 7

8 Krebsian philosophy (10 points this page) One of ways that Krebs cycle molecules are replenished is by a small group of so-called anaplerotic reactions. One of these mentioned in class that is very important to mammals is catalyzed by phosphoenolpyruvate carboxykinase, called PEP-CK for good reason. 40) (2 points)write the PEP-CK reaction, including all substrates and products. No structures needed. OAA + GTP PEP + GDP + CO 2 41) We have said numerous times in class that you can t use the Krebs cycles for net conversion of acetate into glucose Why is this the case? (One sentence) Every two carbon skeleton that enters the Krebs cycle as acetate is offset by the production of two molecules of C0 2, disallowing net synthesis with acetate. 42) Most of the energy-rich molecules derived from the Krebs cycles are involved in carrying electrons. However, an energy-rich molecule that is not ATP is directly produced by substrate-level phosphoylation. What is this molecule? GTP 43) (2 points) Write the Krebs cycle reaction that is responsible for this substrate level phosphorylation. Include the name of the synthetase (he hinted) that catalyzes it. Names are fine no need for structures, beautiful as the may be. succinyl-coa + GDP succinate + GTP + CoA-SH 44)When an organism does want to use acetate for net synthesis of sugars, an alternate cycle is used. In class we referred to this process as an end run around the Krebs cycle What is the name of this metabolic process? The glyoxalate cycle 45) (2 points) What is the first reaction of this alternate route for acetate carbons? Write the reaction and the name of the enzyme that catalyzes it. Just names, but include all substrates and products. isocitrate lyase isocitrate succinate + glyoxalate 46) Why does this alternate pathway allow net synthesis of things like glucose from acetate? Because there is no release of carbon as CO2, all acetate that enters the pathway can contribute to the net synthesis of molecules such as glucose page 8

9 Cofactor coop (10 points this page) Fill in the blanks Write the cofactor or carrier that best goes with the brief description: 47) Metal ion needed for practically every enzyme that uses ATP or ADP Mg +2 48) Carrier for sugar molecules, used in the conversion of galactose into glucose UDP 49) Undergoes disulfide oxidation/reduction cycle in order to convert pyruvate into acetyl-coa. It acts as a rocker arm in the enzyme we studied lipoic acid or lipoate 50) Used in the carboxylation of many molecules by allowing activation of CO 2 _ biotin 51) (2 pts) Reduced form of the carrier that picks up most of the electrons from Krebs cycle _ NADH _ Molecules at and Exhibition For the structures below, select the letter that corresponds best to the structure. A) NAD B) TPP C) CoA D) biotin E) FAD F) ADP G) PEP H) none 52) D (biotin) 53) A (NAD) page 9 54) E (FAD) 55) B (TPP)

10 Veracity or Fallaciousness (T or F) (12 points this page) 56) F The inner membrane of the mitochondrion is freely permeable to ions 57) T Competitive enzyme inhibitors do not affect the Vmax of a reaction 58) F Krebs cycle occurs in the cytoplasm of mammalian cells. 59) F A positive E' o means a non-spontaneous reaction 60) F An increase in activation energy will change an equilibrium 61) T Regulated metabolic reactions are often far from equilibrium. 62) F All spontaneous reactions give off heat, that is, have a negative delta H 63) F The Krebs cycle only functions in catabolism 64) F ATP is oxidized to ADP and phosphate by water 65) T There are mammalian cells that are almost totally dependent on glycosysis for their energy 66) F Muscles convert pyruvate into ethanol to regenerate NAD + 67) W (word) Nelly is a big fan of glycogen page 10

kcat, but isozyme M (in muscle) has a Km of 5 um and isozyme L (in liver) has a Km of 20 um. Answer

kcat, but isozyme M (in muscle) has a Km of 5 um and isozyme L (in liver) has a Km of 20 um. Answer Name ENZYMES and KINETICS (10 points this page) A substrate S is converted into product P. When an enzyme is added to the reaction, the activation energy is lowered. Use single sentence answers for the

More information

page1 (of9) BIBC102 Midterm 1 Sp 2009

page1 (of9) BIBC102 Midterm 1 Sp 2009 page1 (of9) 1) (2 pts) Define catabolism and anabolism. One sentence each should be fine. Catabolism- group of metabolic pathways that break down molecules to gain energy and precursors for biosynthesis

More information

Page 2 (out of 15) Page 3 (out of 13) Page 4 (out of 11) Page 5 (out of 13) Page 6 (out of 14) Page 7 (out of 14) Page 8 (out of 10)

Page 2 (out of 15) Page 3 (out of 13) Page 4 (out of 11) Page 5 (out of 13) Page 6 (out of 14) Page 7 (out of 14) Page 8 (out of 10) Metabolic Biochemistry Midterm Thursday April 29, 2010; 5-6:20 Good afternoon. This is the midterm and like we discussed, it has two purposes. The first is to solidify your knowledge of the basic and oft-used

More information

2) At physiological ph (7.0), what is the net charge of this peptide? (note this only requires knowing the R groups on each amino acid)

2) At physiological ph (7.0), what is the net charge of this peptide? (note this only requires knowing the R groups on each amino acid) page1 (of10) Proteins and peptides (9 points) Behold, a license plate! It is from a custom classic car (ca. 1940) on display at Simpson s Nursery in Jamul, which has many plants and a remarkable collection

More information

It s Enzyme Time (12 points)

It s Enzyme Time (12 points) page 1 Student ID It s Enzyme Time (12 points) You overhear a student say the following quote: it s the kcat that s important! If you know the kcat of an enzyme, you can predict what the maximum rate of

More information

Spring 2012 BIBC 102 midterm Hampton et al. Metabolic Biochemistry Midterm Tuesday May 8, 2012; 3:30-5:50

Spring 2012 BIBC 102 midterm Hampton et al. Metabolic Biochemistry Midterm Tuesday May 8, 2012; 3:30-5:50 Metabolic Biochemistry Midterm Tuesday May 8, 2012; 3:30-5:50 Good afternoon and goooood evening. This midterm has two purposes. One is to solidify your knowledge of the frequently-used ideas and information

More information

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM 1 2018/19 BY: MOHAMAD FAHRURRAZI TOMPANG Chapter Outline (19-1) The central role of the citric acid cycle in metabolism (19-2) The overall pathway of the citric

More information

Review of Carbohydrate Digestion

Review of Carbohydrate Digestion Review of Carbohydrate Digestion Glycolysis Glycolysis is a nine step biochemical pathway that oxidizes glucose into two molecules of pyruvic acid. During this process, energy is released and some of it

More information

GLYCOLYSIS Generation of ATP from Metabolic Fuels

GLYCOLYSIS Generation of ATP from Metabolic Fuels GLYCOLYSIS Generation of ATP from Metabolic Fuels - Catabolic process degradative pathway - Energy stored in sugars (carbohydrates) released to perform biological work - Transforms GLUCOSE to PYRUVATE

More information

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh 8 Marah Bitar Faisal Nimri... Nafeth Abu Tarboosh Summary of the 8 steps of citric acid cycle Step 1. Acetyl CoA joins with a four-carbon molecule, oxaloacetate, releasing the CoA group and forming a six-carbon

More information

Metabolic Biochemistry / BIBC 102 Midterm Exam / Spring 2005

Metabolic Biochemistry / BIBC 102 Midterm Exam / Spring 2005 Metabolic Biochemistry / BIBC 102 Midterm Exam / Spring 2005 I. (20 points) Fill in all of the enzyme catalyzed reactions which convert glycogen to lactate. Draw the correct structure for each intermediate

More information

Tricarboxylic Acid Cycle. TCA Cycle; Krebs Cycle; Citric Acid Cycle

Tricarboxylic Acid Cycle. TCA Cycle; Krebs Cycle; Citric Acid Cycle Tricarboxylic Acid ycle TA ycle; Krebs ycle; itric Acid ycle The Bridging Step: Pyruvate D hase O H 3 - - pyruvate O O - NAD + oash O 2 NADH O H 3 - - S - oa acetyl oa Pyruvate D hase omplex Multienzyme

More information

Metabolic Biochemistry / BIBC 102 Midterm Exam / Spring 2011

Metabolic Biochemistry / BIBC 102 Midterm Exam / Spring 2011 Metabolic Biochemistry / BIBC 102 Midterm Exam / Spring 2011 I. (25 points) Fill in all of the enzyme catalyzed reactions which convert glycogen to lactate. Draw the correct structure for each intermediate

More information

Glycolysis Part 2. BCH 340 lecture 4

Glycolysis Part 2. BCH 340 lecture 4 Glycolysis Part 2 BCH 340 lecture 4 Regulation of Glycolysis There are three steps in glycolysis that have enzymes which regulate the flux of glycolysis These enzymes catalyzes irreversible reactions of

More information

(de novo synthesis of glucose)

(de novo synthesis of glucose) Gluconeogenesis (de novo synthesis of glucose) Gluconeogenesis Gluconeogenesis is the biosynthesis of new glucose. The main purpose of gluconeogenesis is to maintain the constant blood Glc concentration.

More information

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lecture 16. Based on Profs. Kevin Gardner & Reza Khayat

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lecture 16. Based on Profs. Kevin Gardner & Reza Khayat Biochemistry - I Mondays and Wednesdays 9:30-10:45 AM (MR-1307) SPRING 2017 Lecture 16 Based on Profs. Kevin Gardner & Reza Khayat 1 Catabolism of Di- and Polysaccharides Catabolism (digestion) begins

More information

Metabolic Pathways and Energy Metabolism

Metabolic Pathways and Energy Metabolism Metabolic Pathways and Energy Metabolism Last Week Energy Metabolism - The first thing a living organism has got to be able to do is harness energy from the environment - Plants do it by absorbing sunlight

More information

Vocabulary. Chapter 19: The Citric Acid Cycle

Vocabulary. Chapter 19: The Citric Acid Cycle Vocabulary Amphibolic: able to be a part of both anabolism and catabolism Anaplerotic: referring to a reaction that ensures an adequate supply of an important metabolite Citrate Synthase: the enzyme that

More information

Respiration. Organisms can be classified based on how they obtain energy: Autotrophs

Respiration. Organisms can be classified based on how they obtain energy: Autotrophs Respiration rganisms can be classified based on how they obtain energy: Autotrophs Able to produce their own organic molecules through photosynthesis Heterotrophs Live on organic compounds produced by

More information

Transport. Oxidation. Electron. which the en the ETC and. of NADH an. nd FADH 2 by ation. Both, Phosphorylation. Glycolysis Glucose.

Transport. Oxidation. Electron. which the en the ETC and. of NADH an. nd FADH 2 by ation. Both, Phosphorylation. Glycolysis Glucose. Electron Transport Chain and Oxidation Phosphorylation When one glucose molecule is oxidized to six CO 2 molecules by way of glycolysiss and TCA cycle, considerable amount of energy (ATP) is generated.

More information

Page 2 (out of 12) Page 3 (out of 22) Page 4 (out of 20) Page 5 (out of 13) Page 6 (out of 21) Page 7 (out of 24) Page 8 (out of 17)

Page 2 (out of 12) Page 3 (out of 22) Page 4 (out of 20) Page 5 (out of 13) Page 6 (out of 21) Page 7 (out of 24) Page 8 (out of 17) Sp12 BIBC102 final, page 1 Hello Young Metabolites! This is the Metabolic Biochemistry final. I am hoping you will agree that you have learned a lot of new things about some of the core processes of life

More information

Glucose is the only source of energy in red blood cells. Under starvation conditions ketone bodies become a source of energy for the brain

Glucose is the only source of energy in red blood cells. Under starvation conditions ketone bodies become a source of energy for the brain Glycolysis 4 / The Text :- Some Points About Glucose Glucose is very soluble source of quick and ready energy. It is a relatively stable and easily transported. In mammals, the brain uses only glucose

More information

2. (12 pts) Given the following metabolic pathway (as it occurs in the cell):

2. (12 pts) Given the following metabolic pathway (as it occurs in the cell): Answer Sheet 1 (Gold) 1. (1 pt) Write your exam ID (A) in the blank at the upper right of your answer sheet. 2. (12 pts) Given the following metabolic pathway (as it occurs in the cell): a. Would you expect

More information

Chapter 13 Carbohydrate Metabolism

Chapter 13 Carbohydrate Metabolism Chapter 13 Carbohydrate Metabolism Metabolism of Foods Food is broken down into carbohydrates, lipids, and proteins and sent through catabolic pathways to produce energy. Glycolysis glucose 2 P i 2 ADP

More information

CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete loss of electrons Reduction: partial or complete gain of electrons

More information

Glycolysis. Degradation of Glucose to yield pyruvate

Glycolysis. Degradation of Glucose to yield pyruvate Glycolysis Degradation of Glucose to yield pyruvate After this Lecture you will be able to answer: For each step of glycolysis: How does it occur? Why does it occur? Is it Regulated? How? What are the

More information

Quiz 4 Review Guide Fall 2018

Quiz 4 Review Guide Fall 2018 Quiz 4 Review Guide Fall 2018 Major Topics: Enzyme Kinetics: o reaction rates and catalysis; transition state binding theory o Michaelis-Menten equation and interpretation o Inhibitors types and explanations

More information

Dr. Abir Alghanouchi Biochemistry department Sciences college

Dr. Abir Alghanouchi Biochemistry department Sciences college Dr. Abir Alghanouchi Biochemistry department Sciences college Under aerobic conditions, pyruvate(the product of glycolysis) passes by special pyruvatetransporter into mitochondria which proceeds as follows:

More information

Cellular Respiration: Harvesting Chemical Energy Chapter 9

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Chapter 9 Assemble polymers, pump substances across membranes, move and reproduce The giant panda Obtains energy for its cells by eating plants which get

More information

Biochemistry Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology Kharagpur. Lecture - 27 Metabolism III

Biochemistry Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology Kharagpur. Lecture - 27 Metabolism III Biochemistry Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology Kharagpur Lecture - 27 Metabolism III In the last step of our metabolism of carbohydrates we are going to consider

More information

Chapter 9. Cellular Respiration and Fermentation

Chapter 9. Cellular Respiration and Fermentation Chapter 9 Cellular Respiration and Fermentation Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration

More information

CHAPTER 16. Glycolysis

CHAPTER 16. Glycolysis CHAPTER 16 Glycolysis Net reaction of Glycolysis Converts: 1 Glucose Hexose stage 2 pyruvate - Two molecules of ATP are produced - Two molecules of NAD + are reduced to NADH Triose stage Glucose + 2 ADP

More information

Chapter 16. The Citric Acid Cycle: CAC Kreb s Cycle Tricarboxylic Acid Cycle: TCA

Chapter 16. The Citric Acid Cycle: CAC Kreb s Cycle Tricarboxylic Acid Cycle: TCA Chapter 16 The Citric Acid Cycle: CAC Kreb s Cycle Tricarboxylic Acid Cycle: TCA The Citric Acid Cycle Key topics: To Know Also called Tricarboxylic Acid Cycle (TCA) or Krebs Cycle. Three names for the

More information

INTRODUCTORY BIOCHEMISTRY. BI 28 Second Midterm Examination April 3, 2007

INTRODUCTORY BIOCHEMISTRY. BI 28 Second Midterm Examination April 3, 2007 INTRODUCTORY BIOCHEMISTRY BI 28 Second Midterm Examination April 3, 2007 Name SIS # Make sure that your name or SIS # is on every page. This is the only way we have of matching you with your exam after

More information

BY: RASAQ NURUDEEN OLAJIDE

BY: RASAQ NURUDEEN OLAJIDE BY: RASAQ NURUDEEN OLAJIDE LECTURE CONTENT INTRODUCTION CITRIC ACID CYCLE (T.C.A) PRODUCTION OF ACETYL CoA REACTIONS OF THE CITIRC ACID CYCLE THE AMPHIBOLIC NATURE OF THE T.C.A CYCLE THE GLYOXYLATE CYCLE

More information

Yield of energy from glucose

Yield of energy from glucose Paper : Module : 05 Yield of Energy from Glucose Principal Investigator, Paper Coordinator and Content Writer Prof. Ramesh Kothari, Professor Dept. of Biosciences, Saurashtra University, Rajkot - 360005

More information

Answer three from questions 5, 6, 7, 8, and 9.

Answer three from questions 5, 6, 7, 8, and 9. BCH 4053 May 1, 2003 FINAL EXAM NAME There are 9 pages and 9 questions on the exam. nly five are to be answered, each worth 20 points. Answer two from questions 1, 2, 3, and 4 Answer three from questions

More information

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #2 Notes NAME DATE HOUR SUMMARY EQUATION CELLULAR RESPIRATION C 6 H 12 O 6 + O 2 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete

More information

NAME KEY ID # EXAM 3a BIOC 460. Wednesday April 10, Please include your name and ID# on each page. Limit your answers to the space provided!

NAME KEY ID # EXAM 3a BIOC 460. Wednesday April 10, Please include your name and ID# on each page. Limit your answers to the space provided! EXAM 3a BIOC 460 Wednesday April 10, 2002 Please include your name and ID# on each page. Limit your answers to the space provided! 1 1. (5 pts.) Define the term energy charge: Energy charge refers to the

More information

Metabolic engineering some basic considerations. Lecture 9

Metabolic engineering some basic considerations. Lecture 9 Metabolic engineering some basic considerations Lecture 9 The 90ties: From fermentation to metabolic engineering Recruiting heterologous activities to perform directed genetic modifications of cell factories

More information

MBioS 303 Recitation Introductory Biochemistry, Summer 2008 Practice Problem Set #7: General Metabolism Concepts, Glycolysis and the TCA Cycle

MBioS 303 Recitation Introductory Biochemistry, Summer 2008 Practice Problem Set #7: General Metabolism Concepts, Glycolysis and the TCA Cycle MBioS 303 Recitation Introductory Biochemistry, Summer 2008 Practice Problem Set #7: General Metabolism Concepts, Glycolysis and the TCA Cycle (1) Glucose 1-pohsphate is converted to fructose 6-phosphate

More information

Multiple choice: Circle the best answer on this exam. There are 12 multiple choice questions, each question is worth 3 points.

Multiple choice: Circle the best answer on this exam. There are 12 multiple choice questions, each question is worth 3 points. CHEM 4420 Exam 4 Spring 2015 Dr. Stone Page 1 of 6 Name Use complete sentences when requested. There are 120 possible points on this exam. Therefore there are 20 bonus points. Multiple choice: Circle the

More information

Comparison of catabolic and anabolic pathways

Comparison of catabolic and anabolic pathways Comparison of catabolic and anabolic pathways Three stages of catabolism Glucose Synthesis of compounds e.g. lactose glycolipids Glucose-6-P Pentosephosphate Pathway Glycolysis Glycogenesis Acetyl-CoA

More information

Link download full of Test Bank for Fundamentals of Biochemistry 4th Edition by Voet

Link download full of Test Bank for Fundamentals of Biochemistry 4th Edition by Voet Link download full of Test Bank for Fundamentals of Biochemistry 4th Edition by Voet http://testbankair.com/download/test-bank-for-fundamentals-ofbiochemistry-4th-edition-by-voet/ Chapter 16: Glycogen

More information

BCH 4054 Chapter 19 Lecture Notes

BCH 4054 Chapter 19 Lecture Notes BCH 4054 Chapter 19 Lecture Notes 1 Chapter 19 Glycolysis 2 aka = also known as verview of Glycolysis aka The Embden-Meyerhoff Pathway First pathway discovered Common to almost all living cells ccurs in

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 9 Cellular Respiration and Fermentation Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 9.2 Light energy

More information

Chemical Energy. Valencia College

Chemical Energy. Valencia College 9 Pathways that Harvest Chemical Energy Valencia College 9 Pathways that Harvest Chemical Energy Chapter objectives: How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O 9 Cellular Respiration and Fermentation CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 9.1 Figure 9.2

More information

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #2 Notes NAME DATE HOUR SUMMARY EQUATION CELLULAR RESPIRATION C 6 H 12 O 6 + O 2 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete

More information

0.40. Biochemistry of Carbohydrates

0.40. Biochemistry of Carbohydrates 0.40 Biochemistry of Carbohydrates Biochemistry of Carbohydrates ATP ADP Glycolysis The Breakdown of Glucose Primary Energy Source of Cells Central Metabolic Pathway All Reactions Occur in Cytoplasm Two

More information

BIO 311C Spring Lecture 27 Monday 5 Apr. 1

BIO 311C Spring Lecture 27 Monday 5 Apr. 1 BIO 311C Spring 2010 Lecture 27 Monday 5 Apr. 1 Review Metabolic Pathways and Processes that Participate in Respiration - Glycolysis Occurs in the cytoplasmic matrix - Pyruvate dehydrogenase - Krebs Cycle

More information

Biochemistry of carbohydrates

Biochemistry of carbohydrates Biochemistry of carbohydrates الفريق الطبي األكاديمي Done By: - Hanan Jamal لكية الطب البرشي البلقاء التطبيقية / املركز 6166 6102/ In the last lecture we talked about Pyruvate, pyruvate is a central intermediate;

More information

Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016

Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016 5//016 Metabolism Metabolism All the biochemical reactions occurring in the body Generating, storing and expending energy ATP Supports body activities Assists in constructing new tissue Metabolism Two

More information

Biological oxidation II. The Cytric acid cycle

Biological oxidation II. The Cytric acid cycle Biological oxidation II The Cytric acid cycle Outline The Cytric acid cycle (TCA tricarboxylic acid) Central role of Acetyl-CoA Regulation of the TCA cycle Anaplerotic reactions The Glyoxylate cycle Localization

More information

Both pathways start with Glucose as a substrate but they differ in the product.

Both pathways start with Glucose as a substrate but they differ in the product. Glycosis:may occur either with the presence or absence of -Glucose-.So with oxygen we have Aerobic glycolysis-, without the participation of oxygen Anaerobic glycolysis-(it occur in certain places) where

More information

BIOCHEMISTRY #12 BY: AMMAR AL-HABAHBEH فيصل الخطيب. October 11, 2012

BIOCHEMISTRY #12 BY: AMMAR AL-HABAHBEH فيصل الخطيب. October 11, 2012 BIOCHEMISTRY #12 د. فيصل الخطيب October 11, 2012 BY: AMMAR AL-HABAHBEH The Beginning Degradation and synthesis does not occur in a single step but in several steps where sequence of steps converts starting

More information

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 Name Write your name on the back of the exam Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 This examination consists of forty-four questions, each having 2 points. The remaining

More information

III. Metabolism Glucose Catabolism Part II

III. Metabolism Glucose Catabolism Part II Department of Chemistry and Biochemistry University of Lethbridge III. Metabolism Glucose Catabolism Part II Slide 1 Metabolic Fates of NADH and Pyruvate Cartoon: Fate of pyruvate, the product of glycolysis.

More information

Module No. # 01 Lecture No. # 19 TCA Cycle

Module No. # 01 Lecture No. # 19 TCA Cycle Biochemical Engineering Prof. Dr. Rintu Banerjee Department of Agricultural and Food Engineering Asst. Prof. Dr. Saikat Chakraborty Department of Chemical Engineering Indian Institute of Technology, Kharagpur

More information

Derived copy of Bis2A 07.1 Glycolysis *

Derived copy of Bis2A 07.1 Glycolysis * OpenStax-CNX module: m56968 1 Derived copy of Bis2A 07.1 Glycolysis * Erin Easlon Based on Bis2A 07.1 Glycolysis by OpenStax Mitch Singer This work is produced by OpenStax-CNX and licensed under the Creative

More information

III. Metabolism - Gluconeogenesis

III. Metabolism - Gluconeogenesis Department of Chemistry and Biochemistry University of Lethbridge III. Metabolism - Gluconeogenesis Carl & Gertrude Cori Slide 1 Carbohydrate Synthesis Lactate, pyruvate and glycerol are the important

More information

METABOLISM Biosynthetic Pathways

METABOLISM Biosynthetic Pathways METABOLISM Biosynthetic Pathways Metabolism Metabolism involves : Catabolic reactions that break down large, complex molecules to provide energy and smaller molecules. Anabolic reactions that use ATP energy

More information

How Cells Release Chemical Energy. Chapter 7

How Cells Release Chemical Energy. Chapter 7 How Cells Release Chemical Energy Chapter 7 7.1 Overview of Carbohydrate Breakdown Pathways All organisms (including photoautotrophs) convert chemical energy of organic compounds to chemical energy of

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Carbohydrate. Metabolism

Carbohydrate. Metabolism Carbohydrate Metabolism Dietary carbohydrates (starch, glycogen, sucrose, lactose Mouth salivary amylase Summary of Carbohydrate Utilization Utilization for energy (glycolysis) ligosaccharides and disaccharides

More information

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work Light energy ECOSYSTEM CO + H O Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O powers most cellular work Heat energy 1 becomes oxidized (loses electron) becomes

More information

BIOLOGY. Cellular Respiration and Fermentation. Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels

BIOLOGY. Cellular Respiration and Fermentation. Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels 9 Cellular Respiration and Fermentation CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates

More information

Pathway overview. Glucose + 2NAD + + 2ADP +2Pi 2NADH + 2pyruvate + 2ATP + 2H 2 O + 4H +

Pathway overview. Glucose + 2NAD + + 2ADP +2Pi 2NADH + 2pyruvate + 2ATP + 2H 2 O + 4H + Glycolysis Glycolysis The conversion of glucose to pyruvate to yield 2ATP molecules 10 enzymatic steps Chemical interconversion steps Mechanisms of enzyme conversion and intermediates Energetics of conversions

More information

Page 2 (out of 16) Page 3 (out of 12) Page 4 (out of 12) Page 5 (out of 16) Page 6 (out of 16) Page 7 (out of 13) Page 8 (out of 13)

Page 2 (out of 16) Page 3 (out of 12) Page 4 (out of 12) Page 5 (out of 16) Page 6 (out of 16) Page 7 (out of 13) Page 8 (out of 13) Fa14%BIBC102%final,%page% 1%! Hello Non-Minion Metabolites! This test will be collected for grading. The graded exams will be available for pickup sometime next week. Stay tuned. The key will be posted

More information

CHE 242 Exam 3 Practice Questions

CHE 242 Exam 3 Practice Questions CHE 242 Exam 3 Practice Questions Glucose metabolism 1. Below is depicted glucose catabolism. Indicate on the pathways the following: A) which reaction(s) of glycolysis are irreversible B) where energy

More information

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks Chapter 9: Cellular Respiration Overview: Life Is Work Living cells Require transfusions of energy from outside sources to perform their many tasks Biology, 7 th Edition Neil Campbell and Jane Reece The

More information

CHEM 527 SECOND EXAM FALL 2006

CHEM 527 SECOND EXAM FALL 2006 CEM 527 SECD EXAM FALL 2006 YUR AME: TES: 1. Where appropriate please show work if in doubt show it anyway. 2. Pace yourself you may want to do the easier questions first. 3. Please note the point value

More information

Biochem sheet (5) done by: razan krishan corrected by: Shatha Khtoum DATE :4/10/2016

Biochem sheet (5) done by: razan krishan corrected by: Shatha Khtoum DATE :4/10/2016 Biochem sheet (5) done by: razan krishan corrected by: Shatha Khtoum DATE :4/10/2016 Note about the last lecture: you must know the classification of enzyme Sequentially. * We know that a substrate binds

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;

More information

3.2 Aerobic Respiration

3.2 Aerobic Respiration 3.2 Aerobic Respiration Aerobic Cellular Respiration Catabolic pathways Breaks down energy-rich compounds to make ATP Requires oxygen Occurs in different parts of the cell C 6 H 12 O 6 (s) + 6O 2 (g) 6CO

More information

Glycolysis. BCH 340 lecture 3 Chapter 8 in Lippincott 5 th edition

Glycolysis. BCH 340 lecture 3 Chapter 8 in Lippincott 5 th edition Glycolysis B 40 lecture hapter 8 in Lippincott 5 th edition All carbohydrates to be catabolized must enter the glycolytic pathway Glycolysis is degradation of glucose to generate energy (ATP) and to provide

More information

Plant Respiration. Exchange of Gases in Plants:

Plant Respiration. Exchange of Gases in Plants: Plant Respiration Exchange of Gases in Plants: Plants do not have great demands for gaseous exchange. The rate of respiration in plants is much lower than in animals. Large amounts of gases are exchanged

More information

Points 1. Following is the overall reaction catalyzed by the Calvin-Benson cycle:

Points 1. Following is the overall reaction catalyzed by the Calvin-Benson cycle: BCH 4054 February 22, 2002 HOUR TEST 2 NAME_ Points 1. Following is the overall reaction catalyzed by the Calvin-Benson cycle: CO 2 + 3ATP + 2NADPH 1/3 glyceraldehyde-3-p + 3ADP + 2NADP + Give the structures

More information

Aerobic Fate of Pyruvate. Chapter 16 Homework Assignment. Chapter 16 The Citric Acid Cycle

Aerobic Fate of Pyruvate. Chapter 16 Homework Assignment. Chapter 16 The Citric Acid Cycle Chapter 16 Homework Assignment The following problems will be due once we finish the chapter: 1, 3, 7, 10, 16, 19, 20 Additional Problem: Write out the eight reaction steps of the Citric Acid Cycle, using

More information

3.7 CELLULAR RESPIRATION. How are these two images related?

3.7 CELLULAR RESPIRATION. How are these two images related? 3.7 CELLULAR RESPIRATION How are these two images related? CELLULAR RESPIRATION Cellular respiration is the process whereby the body converts the energy that we get from food (glucose) into an energy form

More information

Carbohydrate Metabolism

Carbohydrate Metabolism OpenStax-CNX module: m46451 1 Carbohydrate Metabolism OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5 1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced

More information

III. 6. Test. Respiració cel lular

III. 6. Test. Respiració cel lular III. 6. Test. Respiració cel lular Chapter Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex molecules? A) anabolic pathways B) catabolic pathways

More information

Dr. DerVartanian is ill and will likely not be able to give lectures this week.

Dr. DerVartanian is ill and will likely not be able to give lectures this week. Dr. DerVartanian is ill and will likely not be able to give lectures this week. Today s slides will be put on-line today, and are designed to introduce you to glycolysis. You should use these slides, along

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Chapter 13 Carbohydrate Metabolism

Chapter 13 Carbohydrate Metabolism Chapter 13 Carbohydrate Metabolism Chapter bjectives: Learn about Blood glucose. Learn about the glycolysis reaction pathways and the regulation of glycolysis. Learn about the fates of pyruvate under various

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Biology 30 Structure & Function of Cells (Part 2) Bioenergetics: Energy: Potential energy: Examples: Kinetic energy. Examples:

Biology 30 Structure & Function of Cells (Part 2) Bioenergetics: Energy: Potential energy: Examples: Kinetic energy. Examples: Biology 30 Structure & Function of Cells (Part 2) Bioenergetics: Energy: Potential energy: Examples: Kinetic energy Examples: Energy can be transformed: Thermodynamics: First law of Thermodynamics: Second

More information

I tried to put as many questions as possible, but unfortunately only answers were found without the questions.

I tried to put as many questions as possible, but unfortunately only answers were found without the questions. I tried to put as many questions as possible, but unfortunately only answers were found without the questions. These are some questions from doctor2015 med exam : 1. One of them isn t acute phase protein

More information

I tried to put as many questions as possible, but unfortunately only answers were found without the questions.

I tried to put as many questions as possible, but unfortunately only answers were found without the questions. I tried to put as many questions as possible, but unfortunately only answers were found without the questions. These are some questions from doctor2015 med exam : 1. One of them isn t acute phase protein

More information

it s a specific enzyme, the mechanism is that the intermediate which is the thioester ( aldehyde, substrate ) is covalently bound to the enzyme.

it s a specific enzyme, the mechanism is that the intermediate which is the thioester ( aldehyde, substrate ) is covalently bound to the enzyme. Oxidation of glyceraldehyde 3 phosphate : glyceraldehyde 3 phosphate on carbon1 it s an aldehyde group, which is oxidized and converted to carboxylic group ( aldehyde - becomes carboxylic acid ) this is

More information

Biochemistry 463, Summer II University of Maryland, College Park Your SID #:

Biochemistry 463, Summer II University of Maryland, College Park Your SID #: Biochemistry 463, Summer II Your Name: University of Maryland, College Park Your SID #: Biochemistry and Physiology Prof. Jason Kahn Final Exam (150 points total) August 16, 2013 You have 90 minutes for

More information

University of Palestine. Final Exam 2016/2017 Total Grade:

University of Palestine. Final Exam 2016/2017 Total Grade: Part 1 : Multiple Choice Questions (MCQs) 1)Which of the following statements about Michaelis-Menten kinetics is correct? a)k m, the Michaelis constant, is defined as the concentration of substrate required

More information

Integration of Metabolism

Integration of Metabolism Integration of Metabolism Metabolism is a continuous process. Thousands of reactions occur simultaneously in order to maintain homeostasis. It ensures a supply of fuel, to tissues at all times, in fed

More information

Chem Lecture 8 Carbohydrate Metabolism Part I: Glycolysis

Chem Lecture 8 Carbohydrate Metabolism Part I: Glycolysis Chem 352 - Lecture 8 Carbohydrate Metabolism Part I: Glycolysis Introduction Carbohydrate metabolism involves a collection of pathways. Glycolysis Hexoses 3-Carbon molecules Gluconeogenesis 3-Carbon molecules

More information

BIOLOGY 311C - Brand Spring 2010

BIOLOGY 311C - Brand Spring 2010 BIOLOGY 311C - Brand Spring 2010 NAME (printed very legibly) KEY UT-EID EXAMINATION III Before beginning, check to be sure that this exam contains 8 pages (including front and back) numbered consecutively,

More information

Microbiology AN INTRODUCTION

Microbiology AN INTRODUCTION TORTORA FUNKE CASE Microbiology AN INTRODUCTION EIGHTH EDITION B.E Pruitt & Jane J. Stein Chapter 5, part A Microbial Metabolism PowerPoint Lecture Slide Presentation prepared by Christine L. Case Microbial

More information

Sheet #13. #Citric acid cycle made by zaid al-ghnaneem corrected by amer Al-salamat date 11/8/2016. Here we go.. Record #18

Sheet #13. #Citric acid cycle made by zaid al-ghnaneem corrected by amer Al-salamat date 11/8/2016. Here we go.. Record #18 1 Sheet #13 #Citric acid cycle made by zaid al-ghnaneem corrected by amer Al-salamat date 11/8/2016 Here we go.. Record #18 2 Three processes play central role in aerobic metabolism: 1) The citric acid

More information

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle Citric Acid Cycle: Central Role in Catabolism Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylcoa In aerobic organisms, citric acid cycle makes up the final

More information