CHELONIAN BLOOD OSMOLARITY AND IMPLICATIONS FOR FLUID THERAPY. Kevin Eatwell, BVSc (hons) Dipl. ZooMed (Reptilian) DECZM (Herp) MRCVS

Size: px
Start display at page:

Download "CHELONIAN BLOOD OSMOLARITY AND IMPLICATIONS FOR FLUID THERAPY. Kevin Eatwell, BVSc (hons) Dipl. ZooMed (Reptilian) DECZM (Herp) MRCVS"

Transcription

1 CHELONIAN BLOOD OSMOLARITY AND IMPLICATIONS FOR FLUID THERAPY Kevin Eatwell, BVSc (hons) Dipl. ZooMed (Reptilian) DECZM (Herp) MRCVS Exotic Animal and Wildlife Service, Division of Clinical Veterinary Services, Hospital for Small Animals, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG ABSTRACT: In order to maintain water in the circulations tortoises must maintain an osmotic gradient. They achieve this by altering blood osmolality. Elevations above normal can suggest subclinical dehydration, before there are changes in blood PCV, proteins or uric acid levels, which are commonly used to determine the hydration status of a tortoise. Plasma Urea and Sodium have an influence on osmolality. Sick chelonians do not appear to have elevated sodium levels compared to healthy individuals and therefore fluids designed for mammalian use are appropriate. KEY WORDS: tortoises, blood osmolarity, osmolality, sodium, urea, fluid therapy INTRODUCTION Sick chelonians often have bloodwork as part of their clinical evaluation. However evaluating dehydration can be difficult until cases are severe. Lymph dilution can also be present and alter a wide variety of parameters, further complicating interpretation (Wilkinson, 2004; Lopez-Olvera et al., 2003; Walters et al., 2001). Water is essential for life and the tortoises have a number of unique physiologic adaptations to survive harsh environments and hibernation. Protein breakdown and excretion of nitrogenous waste is one of the major factors influencing the amount of water lost and tortoises are able to modify the protein breakdown products they utilise. Species where fresh water is limited (such as terrestrial species) use uric acid. This forms insoluble urate salts in the bladder which exert no osmotic effect. As a tortoise dehydrates it uses water from the bladder to maintain its circulatory volume. The effects of this were observed by Darwin noting the bladder contents of the giant tortoises on their voyages (used as a water source for sailors) became less pure as they continued on their journey. The specific gravity of the urine, its ph and its rate of production also allow an assessment of the tortoise s water balance and is easy to check in a consultation. Body weight is also a good guide to the hydration status given the sheer size of a full bladder versus and empty one. In order to draw water into the circulation the tortoise must maintain an osmotic gradient and this is achieved by altering their blood osmolality, based on the availability of water. 109

2 Blood osmolality can suggest subclinical dehydration, before there are changes in blood PCV, proteins or uric acid levels, which are commonly used to determine the hydration status of a tortoise (Wilkinson, 2004). However measuring blood osmolality is unpractical for the clinician due to the need for an osmometer, which cost at least $1,500. However calculating blood osmolarity is possible. Plasma urea and sodium have an influence on osmolality. Chelonia selectively produce urea to elevate plasma osmolality. This enables more water to be retained in the circulation. Urea is a rapidly diffusible solute that can be excreted when water is available again. Retaining plasma sodium also allows for water to be kept in the circulation. Sodium also appears to be at similar levels in good quality and lymph diluted blood samples and so is a useful parameter to measure whichever venepuncture site is utilized (Eatwell, 2005). Sodium levels in stored blood is statistically significantly elevated from fresh blood, but this is minor and unlikely to be of any clinical significance (Eatwell, 2007). Other electrolytes such as chloride, potassium, and glucose influence osmolality. Thus a simple equation can be used to estimate blood osmolality, which is essentially calculating blood osmolarity. Under most conditions osmolarity is identical to osmolality. 2(Na + + K + ) + glucose + urea = osmolarity (Wilkinson, 2004). It is only when the plasma and the urine has reached an equilibrium and the capacity for increasing osmolality has been exceeded that clinical dehydration follows. Thus the classical signs noted in mammals do not apply to chelonia. Instead monitoring bodyweight, urine ph, urine specific gravity, and plasma urea, and sodium is utilized by tortoise clinicians. In practical terms a guide can be obtained by evaluating blood sodium, and urea. If elevated above the levels expected for a healthy tortoise (in a comparable physiologic state), appropriate fluid therapy is indicated. These parameters can help guide appropriate quantities and type of fluid therapy required by the tortoise. The purpose of this review was to identify the levels of sodium, and urea which are appropriate for a well hydrated tortoise, and compare this to commercially available fluids to allow for a more appropriate selection of fluid therapy for tortoises. PLASMA OSMOLARITY, SODIUM AND UREA LEVELS IN HEALTHY CHELONIANS There has been little work looking at blood osmolarity in tortoises. A detailed data set has been published, which showed a wide variation in blood osmolarity based on the season in hibernated spur thighed (Testudo graeca) and Hermann s (Testudo hermanii) tortoises (Gilles-Baillien and Schoffeniels, 1965; Table 1). In this paper there was marked seasonal variation in osmolarity, sodium and urea values. The mean plasma osmolarity of these tortoises ranged between 258 to 467 mosm/l. Mean sodium 110

3 levels reported were from 105 meql/l to 167 (105 to 167 mmol/l), in apparently healthy individuals. Mean urea values varied between 11.2 and mg/dl (3.1 and 103 mmol/l). These values are likely to reflect a poorly managed hibernation in these tortoises and more recent data is available on the sodium and urea values in healthy tortoises. Urea reference ranges quoted for terrestrial chelonians are generally below 5.9 mg/dl (2.1mmol/L). However this does not account for the huge influence of seasonality. More recent studies in hibernated Tortoises of the genus Testudo produced mean sodium values of 144 meq/l (144 mmol/l) in March (n = 38), 143 meq/l (143 mmol/l) in April (n = 38) and 136 meq/l (136 mmol/l) in August (n = 65), where hibernation was better managed with bathing before and after a hibernation period of 3 months. 4 Mean urea values recorded were 20.2 mg/dl (7.2 mmol/l) in March (n = 38) and, 6.7 mg/dl (2.4 mmol/l) in April (n = 38) (Eatwell, 2005). The August values correlate well with Gills-Baillien and Schoffeniels (1965) as their mean sodium value in August was 136 meq/l (136 mmol/l). PLASMA SODIUM AND UREA LEVELS IN SICK CHELONIANS Evaluating fluid balance in a sick chelonian is important and sodium and urea levels can give a guide to the osmolarity of a chelonian and guide fluid therapy. It is often assumed that sick tortoises after hibernation would have elevations in these values. One report suggests that sick chelonians have blood sodium levels between ( mmol/l), blood urea levels between mg/dl ( mmol/l), and blood osmolarities of mosm (Wilkinson, 2004). Analysis of our recent laboratory reports for ill Testudo tortoises (n = 16) presenting for treatment produced mean sodium levels of 135 (135 mmol/l). Individuals varied between 108 and 147 ( mmol/l). Mean urea levels found (n = 21) were 6.2 mg/dl (2.2mmol/l) and ranged between 1.1 to 29.4 mg/dl (0.4 to 10.5 mmol/l). It would appear that many clinically ill tortoises are not suffering from elevated blood sodium levels and increased blood osmolarity. OSMOLARITY AND SODIUM LEVELS IN PARENTERAL FLUIDS Fluid therapy for reptiles has been a subject for debate over the years. Initially debate has centred on the relatively larger size of the intercellular fluid compartment relevant to the extracellular fluid compartment relative to mammals (Thorson, 1968). Many authors have suggested that the osmolarity of replacement fluids should be lower than mammals and using mammalian fluids with the addition of 10% sterile water for injection is recommended. However the bladder acts as a large extracellular store which was not accounted for in the initial work. In addition sick chelonia have blood osmolarities and sodium levels similar to 111

4 commercially available mammalian fluids. Hypotonic fluids may only really benefit those suffering from hypertonic dehydration. Ideally fluid replacement should be geared to return the osmolality to that expected for the species at the particular time of year. This information is not fully known and so a general approach is adopted. Most commercially available fluids for rehydration therapy in mammals have values of mOsm (Table 2). Given the lack of current data on the osmolality of tortoises the sodium values in the plasma can be compared to the sodium content of the fluids and used as a guide. More detailed evaluation of fluids can be found from numerous sources (Mader and Rudloff, 2006). Given what is known about plasma osmolality and sodium concentrations it would follow that products such as lactated ringers or hartmanns solution are suitable for rehydration (replacement therapy) in sick tortoises without the need for dilution. REFERENCES Eatwell K Plasma total calcium, ionised calcium and 25-hydroxycholecalciferol levels in captive tortoises (Testudo spp.) maintained under natural light in the United Kingdom. RCVS Diploma dissertation. Eatwell K Effects of storage and sample type on ionized calcium, sodium and potassium levels in captive tortoises, Testudo spp. J Herpetol Med Surg, 17(3): Gilles-Baillien M, Schoffeniels E Variations saisonnieres dans la composition du sang de la torte greque Testudo hermanni. Ann Soc R Zool Belg, 95: Lopez-Olvera JR, Montane J, Marco I, Martinez-Silvestre A, Soler J, Lavin S Effect of venipuncture site on hematologic and biochemical parameters in marginated tortoise (Testudo marginata). J Wildl Dis, (39)4: Mader DR, Rudloff E Emergency and Critical Care. In Mader DR ed. Reptile Medicine and Surgery. Saunders Elsevier, MO, Thorson TB Body fluid partitioning in reptiles. Copeia, 3: Walters M., Lopez J., Brewer B., Steeves E Subcarapacial sampling in tortoises. Proc Brit Vet Zool Soc, pp 45. Wilkinson R Clinical pathology. In: McCarthur S, Wilkinson R, Meyer J, Innis JC, Hernandez-Divers S, eds. Medicine and Surgery of Tortoises and Turtles. Blackwell Publishing LTD, Oxford,

5 Table 1. Mean blood electrolyte and osmolarity values from healthy spur thighed and Hermann s tortoises (data from Gilles-Baillien and Schoffeniels, 1965). Month Na+ K+ Ca2+ Cl Urea mg/dl Osmolarity (mosm/l) Jan 156 (156) 3.7 (3.7) 2.4 (1.2) 124 (124) 86.8 (31) 349 Feb 161 (161) 3.0 (3.0) 5.4 (2.7) 123 (123) (38) 449 March 157 (157) 3.8 (3.8) 5.4 (2.7) 125 (125) 95.2 (34) 443 April 167 (167) 4.6 (4.6) 4.6 (2.3) 134 (134) (103) 467 May 129 (129) 4.9 (4.9) 5.0 (2.5) 86 (86) (37) 340 June 105 (105) 4.3 (4.3) 4.8 (2.4) 66 (66) 72.8 (26) 258 July 115 (115) 4.5 (4.5) 4.6 (2.4) 94 (94) 11.2 (4) 290 Aug 136 (136) 5.5 (5.5) 5.4 (2.7) 108 (108) 33.6 (12) 322 Sept 136 (136) 4.9 (4.9) 5.0 (2.5) 99 (99) 30.8 (11) 338 Oct 138 (138) 4.8 (4.8) 4.8 (2.4) 110 (110) 61.6 (22) 343 Nov 141 (141) 5.2 (5.2) 5.2 (2.6) 99 (99) 58.8 (21) 349 Dec 155 (155) 6.3 (6.3) 6.2 (3.1) 124 (124) 86.8 (31) 404 Table 2. Sodium concentrations and osmolality of commercially available parenteral fluids. Fluid type Sodium Osmolarity Sodium chloride 0.9% 154 mmol/l 308 mosm Lactated ringers 130 mmol/l 273 mosm Hartmanns 131 mmol/l 279 mosm Sodium chloride 0.9% and glucose 5% 154 mmol/l 560 mosm 113

ISOSMOTIC REGULATION IN VARIOUS TISSUES OF THE DIAMONDBACK TERRAPIN MALACLEMYS CENTRATA CENTRATA (LATREILLE)*

ISOSMOTIC REGULATION IN VARIOUS TISSUES OF THE DIAMONDBACK TERRAPIN MALACLEMYS CENTRATA CENTRATA (LATREILLE)* J. Exp. Biol. (1973), 59, 39-43 29 Printed in Great Britain ISOSMOTIC REGULATION IN VARIOUS TISSUES OF THE DIAMONDBACK TERRAPIN MALACLEMYS CENTRATA CENTRATA (LATREILLE)* BY M. GILLES-BAILLIENf Laboratory

More information

Osmoregulation and Osmotic Balance

Osmoregulation and Osmotic Balance OpenStax-CNX module: m44808 1 Osmoregulation and Osmotic Balance OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this

More information

Osmoregulation regulates solute concentrations and balances the gain and loss of water

Osmoregulation regulates solute concentrations and balances the gain and loss of water Ch 44 Osmoregulation & Excretion Osmoregulation regulates solute concentrations and balances the gain and loss of water Freshwater animals show adaptations that reduce water uptake and conserve solutes

More information

EXCRETION QUESTIONS. Use the following information to answer the next two questions.

EXCRETION QUESTIONS. Use the following information to answer the next two questions. EXCRETION QUESTIONS Use the following information to answer the next two questions. 1. Filtration occurs at the area labeled A. V B. X C. Y D. Z 2. The antidiuretic hormone (vasopressin) acts on the area

More information

EFFECT OF VENIPUNCTURE SITE ON HEMATOLOGIC AND SERUM BIOCHEMICAL PARAMETERS IN MARGINATED TORTOISE (TESTUDO MARGINATA)

EFFECT OF VENIPUNCTURE SITE ON HEMATOLOGIC AND SERUM BIOCHEMICAL PARAMETERS IN MARGINATED TORTOISE (TESTUDO MARGINATA) EFFECT OF VENIPUNCTURE SITE ON HEMATOLOGIC AND SERUM BIOCHEMICAL PARAMETERS IN MARGINATED TORTOISE (TESTUDO MARGINATA) Author(s): Jorge Ramón López-Olvera, Jordi Montané, Ignasi Marco, Albert Martínez-Silvestre,

More information

AP Biology. Homeostasis. Chapter 44. Regulating the Internal Environment. Homeostasis

AP Biology. Homeostasis. Chapter 44. Regulating the Internal Environment. Homeostasis Chapter 44. Regulating the Internal Environment omeostasis Living in the world organisms had a choice: regulate their internal environment maintain relatively constant internal conditions conform to the

More information

Osmotic Regulation and the Urinary System. Chapter 50

Osmotic Regulation and the Urinary System. Chapter 50 Osmotic Regulation and the Urinary System Chapter 50 Challenge Questions Indicate the areas of the nephron that the following hormones target, and describe when and how the hormones elicit their actions.

More information

Chapter 44. Regulating the Internal Environment. AP Biology

Chapter 44. Regulating the Internal Environment. AP Biology Chapter 44. Regulating the Internal Environment Homeostasis Living in the world organisms had a choice: regulate their internal environment maintain relatively constant internal conditions conform to the

More information

Keywords (reading p ) Ammonia toxicity Urea Uric acid Osmoconformer Osmoregulator Passive transport Facilitated diffusion Active transport

Keywords (reading p ) Ammonia toxicity Urea Uric acid Osmoconformer Osmoregulator Passive transport Facilitated diffusion Active transport Controlling the Internal Environment II: Salt and water balance Keywords (reading p. 936-949) Ammonia toxicity Urea Uric acid Osmoconformer Osmoregulator Passive transport Facilitated diffusion Active

More information

Electrolytes Solution

Electrolytes Solution Electrolytes Solution Substances that are not dissociated in solution are called nonelectrolytes, and those with varying degrees of dissociation are called electrolytes. Urea and dextrose are examples

More information

Body Water Content Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are

Body Water Content Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are Fluid, Electrolyte, and Acid-Base Balance Body Water Content Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are about 60%

More information

Title: Oct 12 3:37 PM (1 of 39) Ch 44 Osmoregulation and Excretion

Title: Oct 12 3:37 PM (1 of 39) Ch 44 Osmoregulation and Excretion Title: Oct 12 3:37 PM (1 of 39) Ch 44 Osmoregulation and Excretion Water Balance and Waste Disposal osmoregulation managing water content and solute composition based on movements of solutes excretion

More information

Chapter 44. Osmoregulation and Excretion

Chapter 44. Osmoregulation and Excretion Chapter 44 Osmoregulation and Excretion Overview: A Balancing Act Physiological systems of animals operate in a fluid environment Relative concentrations of water and solutes must be maintained within

More information

Functions of Proximal Convoluted Tubules

Functions of Proximal Convoluted Tubules 1. Proximal tubule Solute reabsorption in the proximal tubule is isosmotic (water follows solute osmotically and tubular fluid osmolality remains similar to that of plasma) 60-70% of water and solute reabsorption

More information

Salt and Water Balance and Nitrogen Excretion

Salt and Water Balance and Nitrogen Excretion Announcements Exam is in class on WEDNESDAY. Bring a #2 pencil and your UFID. You must come to your registered class section (except those with DRC accommodations). Office hours Mon 1-3 pm. Teaching evals:

More information

Osmoregulation_and_Excretion_p2.notebook June 01, 2017

Osmoregulation_and_Excretion_p2.notebook June 01, 2017 What water balance problems face organisms? Animals balance water gain and loss in one of two ways: 1. Osmoconformers are isotonic to their surroundings so they do not lose or gain water they usually live

More information

Regulating the Internal Environment. AP Biology

Regulating the Internal Environment. AP Biology Regulating the Internal Environment 2006-2007 Conformers vs. Regulators Two evolutionary paths for organisms regulate internal environment maintain relatively constant internal conditions conform to external

More information

Renal physiology D.HAMMOUDI.MD

Renal physiology D.HAMMOUDI.MD Renal physiology D.HAMMOUDI.MD Functions Regulating blood ionic composition Regulating blood ph Regulating blood volume Regulating blood pressure Produce calcitrol and erythropoietin Regulating blood glucose

More information

Basic mechanisms of Kidney function

Basic mechanisms of Kidney function Excretion Basic mechanisms of Kidney function Urine formation in Amphibians Urine formation in Mammals Urine formation in Insects Nitrogen balance Kidneys The most fundamental function of kidneys) is to

More information

I. Metabolic Wastes Metabolic Waste:

I. Metabolic Wastes Metabolic Waste: I. Metabolic Wastes Metabolic Waste: a) Carbon Dioxide: by-product of cellular respiration. b) Water: by-product of cellular respiration & dehydration synthesis reactions. c) Inorganic Salts: by-product

More information

Osmoregulation & Excretion, Part 1 Lecture 16 Winter 2014

Osmoregulation & Excretion, Part 1 Lecture 16 Winter 2014 Osmoregulation & Excretion, Part 1 Lecture 16 Winter 2014 Homeostasis & Osmoregulation 1 Homeostasis The maintenance of a relatively constant chemical and physical environment within an organism Osmoregulation

More information

Cellular Physiology. Body Fluids: 1) Water: (universal solvent) Body water varies based on of age, sex, mass, and body composition

Cellular Physiology. Body Fluids: 1) Water: (universal solvent) Body water varies based on of age, sex, mass, and body composition Membrane Physiology Body Fluids: 1) Water: (universal solvent) Body water varies based on of age, sex, mass, and body composition H 2 O ~ 73% body weight Low body fat; Low bone mass H 2 O ( ) ~ 60% body

More information

Osmoregulation and Renal Function

Osmoregulation and Renal Function 1 Bio 236 Lab: Osmoregulation and Renal Function Fig. 1: Kidney Anatomy Fig. 2: Renal Nephron The kidneys are paired structures that lie within the posterior abdominal cavity close to the spine. Each kidney

More information

Ch. 44 Regulating the Internal Environment

Ch. 44 Regulating the Internal Environment Ch. 44 Regulating the Internal Environment 2006-2007 Conformers vs. Regulators Two evolutionary paths for organisms regulate internal environment maintain relatively constant internal conditions conform

More information

Body Fluid Compartments

Body Fluid Compartments Yıldırım Beyazıt University Faculty of Medicine Department of Physiology Body Fluid Compartments Dr. Sinan Canan Body fluid balance 1 Body fluid compartments 2 Water distribution Tissue % Water Blood 83,0

More information

Water (Dysnatremia) & Sodium (Dysvolemia) Disorders Ahmad Raed Tarakji, MD, MSPH, PGCertMedEd, FRCPC, FACP, FASN, FNKF, FISQua

Water (Dysnatremia) & Sodium (Dysvolemia) Disorders Ahmad Raed Tarakji, MD, MSPH, PGCertMedEd, FRCPC, FACP, FASN, FNKF, FISQua Water (Dysnatremia) & Sodium (Dysvolemia) Disorders Ahmad Raed Tarakji, MD, MSPH, PGCertMedEd, FRCPC, FACP, FASN, FNKF, FISQua Assistant Professor Nephrology Unit, Department of Medicine College of Medicine,

More information

Osmoregulation by Birds. Eldon J. Braun Department of Physiology University of Arizona

Osmoregulation by Birds. Eldon J. Braun Department of Physiology University of Arizona Osmoregulation by Birds Eldon J. Braun Department of Physiology University of Arizona Maintenance of the Internal Environment Osmoregulation means the maintenance of the homeostasis of internal environment.

More information

IV Fluids. I.V. Fluid Osmolarity Composition 0.9% NaCL (Normal Saline Solution, NSS) Uses/Clinical Considerations

IV Fluids. I.V. Fluid Osmolarity Composition 0.9% NaCL (Normal Saline Solution, NSS) Uses/Clinical Considerations IV Fluids When administering IV fluids, the type and amount of fluid may influence patient outcomes. Make sure to understand the differences between fluid products and their effects. Crystalloids Crystalloid

More information

Lecture 22, 03 November 2005 Wrap up Carbon Dioxide Transport Begin Osmoregulation (Chapter 25-27)

Lecture 22, 03 November 2005 Wrap up Carbon Dioxide Transport Begin Osmoregulation (Chapter 25-27) Lecture 22, 03 November 2005 Wrap up Carbon Dioxide Transport Begin Osmoregulation (Chapter 25-27) Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 instr: Kevin

More information

Osmoregulation means the maintenance of the homeostasis of internal environment.

Osmoregulation means the maintenance of the homeostasis of internal environment. Osmoregulation by Birds Eldon J. Braun Department of Physiology University of Arizona Bill Schmoker Maintenance of the Internal Environment Osmoregulation means the maintenance of the homeostasis of internal

More information

OSMOREGULATION AND EXCRETION

OSMOREGULATION AND EXCRETION 1 2 3 4 5 6 OSMOREGULATION AND EXCRETION OSMOREGULATION Process by which animals control their solute concentrations and balance water gain and loss Freshwater animals show adaptations that reduce water

More information

Principles of Fluid Balance

Principles of Fluid Balance Principles of Fluid Balance I. The Cellular Environment: Fluids and Electrolytes A. Water 1. Total body water (TBW) = 60% of total body weight 2. Fluid Compartments in the Body a. Intracellular Compartment

More information

Osmotic Balance. What Happens and Why?

Osmotic Balance. What Happens and Why? Osmotic Balance What Happens and Why? Definitions Osmolarity: moles of solute/liter of solvent Isosmotic: two solutions with the same concentration of particles Hypo-osmotic: solution that exerts less

More information

Pediatric Sodium Disorders

Pediatric Sodium Disorders Pediatric Sodium Disorders Guideline developed by Ron Sanders, Jr., MD, MS, in collaboration with the ANGELS team. Last reviewed by Ron Sanders, Jr., MD, MS on May 20, 2016. Definitions, Physiology, Assessment,

More information

Membrane Transport II (Osmosis) Linda S. Costanzo, Ph.D.

Membrane Transport II (Osmosis) Linda S. Costanzo, Ph.D. Membrane Transport II (Osmosis) Linda S. Costanzo, Ph.D. OBJECTIVES: 1. Be able to define and calculate osmolarity 2. Describe osmosis across a semipermeable membrane and the volume changes that will occur

More information

water balance water nitrogen chapter 42

water balance water nitrogen chapter 42 water balance chapter 42 water osmoregulation water and dissolved solutes adjusting the composition of internal body fluids in arthropods -- hemolymph in vertebrates -- interstitial fluid transport epithelia

More information

SAT24 Supersaturation Profile, 24 Hour, Urine

SAT24 Supersaturation Profile, 24 Hour, Urine 1-800-533-1710 SAT24 Supersaturation Profile, 24 Hour, Urine Patient ID Patient Name SAMPLEREPORT, SAT24 NORMAL Birth Date 1976-05-13 Gender M Age 40 Order Number Client Order Number Ordering Physician

More information

PASSIVE TRANSPORT. Diffusion Facilitative Diffusion diffusion with the help of transport proteins Osmosis diffusion of water

PASSIVE TRANSPORT. Diffusion Facilitative Diffusion diffusion with the help of transport proteins Osmosis diffusion of water PASSIVE TRANSPORT cell uses no energy molecules move randomly Molecules spread out from an area of high concentration to an area of low concentration. (High Low) Three types: Diffusion Facilitative Diffusion

More information

The Excretory System. Biology 20

The Excretory System. Biology 20 The Excretory System Biology 20 Introduction Follow along on page 376 What dangers exist if your body is unable to regulate the fluid balance of your tissues? What challenged would the body have to respond

More information

Ions are loss in the urine and by diffusion in the gills

Ions are loss in the urine and by diffusion in the gills Water and Salt Physiology ADAPTATIONS: Active ion transport uptake across gill epithelium of a freshwater fish Ions are loss in the urine and by diffusion in the gills Na and CL are gain by two independent

More information

Exemplar for Internal Achievement Standard. Biology Level 3

Exemplar for Internal Achievement Standard. Biology Level 3 Exemplar for Internal Achievement Standard Biology Level 3 This exemplar supports assessment against: Achievement Standard 91604 Demonstrate understanding of how an animal maintains a stable internal environment

More information

The antihypertensive and diuretic effects of amiloride and. of its combination with hydrochlorothiazide

The antihypertensive and diuretic effects of amiloride and. of its combination with hydrochlorothiazide The antihypertensive and diuretic effects of amiloride and of its combination with hydrochlorothiazide The hypotensive effect as well as changes in serum electrolytes and uric acid of amiloride (AM) and

More information

Osmoregulation and Excretion

Osmoregulation and Excretion Osmoregulation and Excretion 1. There are two basic solutions to the problem of balancing water gain with water loss. a. The first, available only to marine animals, is to be an osmoconformer. The concentration

More information

Applications of Freezing Point Osmometry

Applications of Freezing Point Osmometry Applications of Freezing Point Osmometry Table of Contents Chapter 1 Introduction and Basic Principles 1 Chapter 2 Biological Applications 3 2.1 Range of, and reason for, abnormal serum values 5 2.2 Osmolality

More information

Resuscitation of the Critically ill Foal

Resuscitation of the Critically ill Foal Resuscitation of the Critically ill Foal Sick Cell Syndrome Foal: Wishful Warm Blood filly DOB: March 25 1 AM Admission Date: March 25 11:25 AM 10 hours old Wishful History Born at 1 AM on March 25 Foal

More information

Potassium secretion. E k = -61 log ([k] inside / [k] outside).

Potassium secretion. E k = -61 log ([k] inside / [k] outside). 1 Potassium secretion In this sheet, we will continue talking about ultrafiltration in kidney but with different substance which is K+. Here are some informations that you should know about potassium;

More information

Professional Diploma in Sports Nutrition

Professional Diploma in Sports Nutrition Professional Diploma in Sports Nutrition Module 1 Lesson 4: Hydration for Optimal Athletic Performance EQF Level 5 Professional Diploma Body Water & Electrolytes Largest component in body Approx. 45-70%

More information

Module 8: Practice Problems

Module 8: Practice Problems Module 8: Practice Problems 1. Convert a blood plasma level range of 5 to 20 µg/ml of tobramycin (Z = 467.52) to µmol/l. 5 µg/ml = 10.7 µmol/l 20 µg/ml = 42.8 µmol/l 2. A preparation contains in each milliliter,

More information

SUMMARY OF PRODUCT CHARACTERISTICS

SUMMARY OF PRODUCT CHARACTERISTICS SUMMARY OF PRODUCT CHARACTERISTICS 1. NAME OF THE VETERINARY MEDICINAL PRODUCT Aqupharm 3 Solution for Infusion 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Active ingredients Sodium Chloride Glucose Anhydrous

More information

Biology 110 Organisms & Environment Desertification Unit Page 1 of 7

Biology 110 Organisms & Environment Desertification Unit Page 1 of 7 Biology 110 rganisms & Environment Desertification Unit Page 1 of 7 Based on Mader, Sylvia S. 1996. Biology - 5th Ed.. WCB and Cox, G.W. 1997. Conservation Biology - 2nd ed. WCB [Chapter 8] and Levine,

More information

Chapter 4 Cell Membrane Transport

Chapter 4 Cell Membrane Transport Chapter 4 Cell Membrane Transport Plasma Membrane Review o Functions Separate ICF / ECF Allow exchange of materials between ICF / ECF such as obtaining O2 and nutrients and getting rid of waste products

More information

Renal Functions: Renal Functions: Renal Function: Produce Urine

Renal Functions: Renal Functions: Renal Function: Produce Urine Renal Functions: Excrete metabolic waste products Reabsorb vital nutrients Regulate osmolarity: Maintain ion balance Regulate extracellular fluid volume (and thus blood pressure) Renal Functions: Regulate

More information

Fluids and electrolytes

Fluids and electrolytes Body Water Content Fluids and electrolytes Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are about 60% water; healthy females

More information

Fluid and electrolyte balance, imbalance

Fluid and electrolyte balance, imbalance Fluid and electrolyte balance, imbalance Body fluid The fluids are distributed throughout the body in various compartments. Body fluid is composed primarily of water Water is the solvent in which all solutes

More information

Other Factors Affecting GFR. Chapter 25. After Filtration. Reabsorption and Secretion. 5 Functions of the PCT

Other Factors Affecting GFR. Chapter 25. After Filtration. Reabsorption and Secretion. 5 Functions of the PCT Other Factors Affecting GFR Chapter 25 Part 2. Renal Physiology Nitric oxide vasodilator produced by the vascular endothelium Adenosine vasoconstrictor of renal vasculature Endothelin a powerful vasoconstrictor

More information

Chapter 23. Composition and Properties of Urine

Chapter 23. Composition and Properties of Urine Chapter 23 Composition and Properties of Urine Composition and Properties of Urine (1 of 2) urinalysis the examination of the physical and chemical properties of urine appearance - clear, almost colorless

More information

LIVE.108 Desk Top Study of Electrolyte Products

LIVE.108 Desk Top Study of Electrolyte Products LIVE.108 Desk Top Study of Electrolyte Products Final Report prepared for MLA and Livecorp by: R.J.Rose DVSc PhD DipVetAn, FRCVS and D.L. Evans BVSc PhD Faculty of Veterinary Science University of Sydney

More information

Hypertonic intravenous fluid therapy administration in acutely sick cattle

Hypertonic intravenous fluid therapy administration in acutely sick cattle Vet Times The website for the veterinary profession https://www.vettimes.co.uk Hypertonic intravenous fluid therapy administration in acutely sick cattle Author : ADAM MARTIN Categories : Vets Date : April

More information

Excretion and Water Balance

Excretion and Water Balance Excretion and Water Balance In the body, water is found in three areas, or compartments: Plasma, the liquid portion of the blood without the blood cells, makes up about 7 percent of body fluid. The intercellular

More information

WHY DO WE NEED AN EXCRETORY SYSTEM? Function: To eliminate waste To maintain water and salt balance To maintain blood pressure

WHY DO WE NEED AN EXCRETORY SYSTEM? Function: To eliminate waste To maintain water and salt balance To maintain blood pressure EXCRETORY SYSTEM WHY DO WE NEED AN EXCRETORY SYSTEM? Function: To eliminate waste To maintain water and salt balance To maintain blood pressure These wastes include: Carbon dioxide Mostly through breathing

More information

Isotonic, Hypertonic, Hypotonic or Water

Isotonic, Hypertonic, Hypotonic or Water 24 Isotonic, Hypertonic, Hypotonic or Water Which sports drink is the best for athletes? Fluid Facts for Winners Why is fluid intake so important for runners? Fluid is a vital part of any athlete s diet

More information

- process by which waste products are eliminated from an organism. 1. The maintenance of internal temperature within narrow limits is called

- process by which waste products are eliminated from an organism. 1. The maintenance of internal temperature within narrow limits is called Ch. 10: Excretion 1. Excretion means the - disposal of nitrogen-containing wastes - process by which waste products are eliminated from an organism 1. The disposal of nitrogen-containing wastes is called

More information

Normal Renal Function

Normal Renal Function Normal Renal Function Functions of the Kidney: balances solute and water transport excretes metabolic waste products conserves nutrient regulates acid-base balance secretes hormones that help regulate

More information

INTRAVENOUS FLUIDS PRINCIPLES

INTRAVENOUS FLUIDS PRINCIPLES INTRAVENOUS FLUIDS PRINCIPLES Postnatal physiological weight loss is approximately 5-10% Postnatal diuresis is delayed in Respiratory Distress Syndrome (RDS) Preterm babies have limited capacity to excrete

More information

PRODUCT LIST. Basic Solutions. Multiple Electrolyte Solutions. Plasma Volume Expanders. Premix Solutions. Irrigation Solutions

PRODUCT LIST. Basic Solutions. Multiple Electrolyte Solutions. Plasma Volume Expanders. Premix Solutions. Irrigation Solutions PRODUCT LIST Basic Solutions Multiple Electrolyte Solutions Plasma Volume Expanders Premix Solutions Irrigation Solutions Since established in 198, POLIFARMA has continued I.V. Solution production process

More information

Homeostasis. Thermoregulation. Osmoregulation. Excretion. how organisms regulate their body temperature

Homeostasis. Thermoregulation. Osmoregulation. Excretion. how organisms regulate their body temperature Homeostasis the steady-state physiological condition of the body Ability to regulate the internal environment important for proper functioning of cells Thermoregulation Homeostasis how organisms regulate

More information

Kidney Physiology. Mechanisms of Urine Formation TUBULAR SECRETION Eunise A. Foster Shalonda Reed

Kidney Physiology. Mechanisms of Urine Formation TUBULAR SECRETION Eunise A. Foster Shalonda Reed Kidney Physiology Mechanisms of Urine Formation TUBULAR SECRETION Eunise A. Foster Shalonda Reed The purpose of tubular secrection To dispose of certain substances that are bound to plasma proteins. To

More information

Terminology. Terminology. Terminology. Molarity number of moles of solute / Liter of solution. a) Terminology b) Body Fluid Compartments

Terminology. Terminology. Terminology. Molarity number of moles of solute / Liter of solution. a) Terminology b) Body Fluid Compartments Integrative Sciences: Biological Systems A Fall 2011 Body Fluids Compartments, Renal Clearance and Renal Excretion of Drugs Monday, November 21, 2011 Lisa M. Harrison-Bernard, Ph.D. Department of Physiology;

More information

Regulation of fluid and electrolytes balance

Regulation of fluid and electrolytes balance Regulation of fluid and electrolytes balance Three Compartment Fluid Compartments Intracellular = Cytoplasmic (inside cells) Extracellular compartment is subdivided into Interstitial = Intercellular +

More information

Module 8: Electrolyte Solutions

Module 8: Electrolyte Solutions PHARMACEUTICAL CALCULATIONS FALL 207 Contents General Vocab & Definitions... 2 Milliequivalent Calculations... 2 Millimole and Micromole Calculations... 5 Osmolarity... 6 Daily Water Requirement Calculations

More information

multibic potassium-free multibic 2 mmol/l potassium multibic 3 mmol/l potassium multibic 4 mmol/l potassium

multibic potassium-free multibic 2 mmol/l potassium multibic 3 mmol/l potassium multibic 4 mmol/l potassium FRESENIUS MEDICAL CARE Deutschland GmbH Name(s) of the medicinal product(s): -free 2 mmol/l 3 mmol/l 4 mmol/l Pharmaceutical form: Solution for haemodialysis/haemofiltration Procedure number(s): DE/H/0388/001-004/II/030/G

More information

Body Water ANS 215 Physiology and Anatomy of Domesticated Animals

Body Water ANS 215 Physiology and Anatomy of Domesticated Animals Body Water ANS 215 Physiology and Anatomy of Domesticated Animals I. Body Water A. Water is the most abundant constituent comprising 60% of total body weight. 1. Solvent for many chemicals of the body

More information

1. a)label the parts indicated above and give one function for structures Y and Z

1. a)label the parts indicated above and give one function for structures Y and Z Excretory System 1 1. Excretory System a)label the parts indicated above and give one function for structures Y and Z W- renal cortex - X- renal medulla Y- renal pelvis collecting center of urine and then

More information

Disclaimer. Chapter 3 Disorder of Water, Electrolyte and Acid-base Professor A. S. Alhomida. Disorder of Water and Electrolyte

Disclaimer. Chapter 3 Disorder of Water, Electrolyte and Acid-base Professor A. S. Alhomida. Disorder of Water and Electrolyte Disclaimer King Saud University College of Science Department of Biochemistry The texts, tables, figures and images contained in this course presentation (BCH 376) are not my own, they can be found on:

More information

A. Correct! Flushing acids from the system will assist in re-establishing the acid-base equilibrium in the blood.

A. Correct! Flushing acids from the system will assist in re-establishing the acid-base equilibrium in the blood. OAT Biology - Problem Drill 16: The Urinary System Question No. 1 of 10 1. Which of the following would solve a drop in blood ph? Question #01 (A) Decreased retention of acids. (B) Increased excretion

More information

Osmoregulation and Excretion

Osmoregulation and Excretion Chapter 44 Osmoregulation and Excretion PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

ELECTROLYTE DISTURBANCES IN CONGESTIVE HEART FAILURE*

ELECTROLYTE DISTURBANCES IN CONGESTIVE HEART FAILURE* ELECTROLYTE DISTURBANCES IN CONGESTIVE HEART FAILURE* DAVID P. B.AUMANN, M.D. Department of Medicine, University of Arkansas School of Medicine, Little Rock, Arkansas The retention of salt and water secondary

More information

«' Biol. (i97s). 63,

«' Biol. (i97s). 63, «' Biol. (i97s). 63, 763-773 763 4 figures Printed in Great Britain NaCl ADAPTATION IN RAN A RIDIBUNDA AND A COMPARISON WITH THE EURYHALINE TOAD BUFO VIRIDIS BY U. KATZ Department of Zoology, The Hebrew

More information

BIOLOGY - CLUTCH CH.44 - OSMOREGULATION AND EXCRETION.

BIOLOGY - CLUTCH CH.44 - OSMOREGULATION AND EXCRETION. !! www.clutchprep.com Osmoregulation regulation of solute balance and water loss to maintain homeostasis of water content Excretion process of eliminating waste from the body, like nitrogenous waste Kidney

More information

II. Active Transport (move molecules against conc. gradient - cell must expend energy) (uses carrier proteins)

II. Active Transport (move molecules against conc. gradient - cell must expend energy) (uses carrier proteins) Chapter 5 - Homeostasis and Transport I. Passive Transport (no energy from cell required) A. Diffusion 1. movement of molecules from an area of higher concentration to an area of lower concentration a.

More information

Osmoregulation. 19 th March 2012

Osmoregulation. 19 th March 2012 Osmoregulation 19 th March 2012 1 Outline Body Fluid Regulation Aquatic Animals Marine Bony Fish Freshwater Bony Fish Terrestrial Animals Nitrogenous Waste Products Organs of Excretion Urinary System in

More information

Mannitol-induced Metabolic Alkalosis

Mannitol-induced Metabolic Alkalosis Electrolyte & Blood Pressure :, 00 ) Mannitolinduced Metabolic Alkalosis Kyung Pyo Kang, M.D., Sik Lee, M.D., Kyung Hoon Lee, M.D., and Sung Kyew Kang, M.D. Department of Internal Medicine, Research Institute

More information

Effect of Salinity on the Survival, Ions and Urea Modulation in Red-eared Slider (Trachemys scripta elegans)

Effect of Salinity on the Survival, Ions and Urea Modulation in Red-eared Slider (Trachemys scripta elegans) Asian Herpetological Research 2014, 5(2): 128 136 DOI: 10.3724/SP.J.1245.2014.00128 Effect of Salinity on the Survival, Ions and Urea Modulation in Red-eared Slider (Trachemys scripta elegans) Meiling

More information

Lab 4: Osmosis and Diffusion

Lab 4: Osmosis and Diffusion Page 4.1 Lab 4: Osmosis and Diffusion Cells need to obtain water and other particles from the fluids that surround them. Water and other particles also move out of cells. Osmosis (for water) and diffusion

More information

Interactions Between Cells and the Extracellular Environment

Interactions Between Cells and the Extracellular Environment Chapter 6 Interactions Between Cells and the Extracellular Environment Et Extracellular lll environment Includes all parts of the body outside of cells Cells receive nourishment Cells release waste Cells

More information

Package leaflet: Information for the user. multibic potassium-free solution for haemodialysis/haemofiltration

Package leaflet: Information for the user. multibic potassium-free solution for haemodialysis/haemofiltration Package leaflet: Information for the user multibic potassium-free solution for haemodialysis/haemofiltration Read all of this leaflet carefully before you start using this medicine because it contains

More information

Done By: Lulu Al-Obaid - Abdulrahman Al-Rashed Reviewed By: Mohammed Jameel Khulood Al-Raddadi

Done By: Lulu Al-Obaid - Abdulrahman Al-Rashed Reviewed By: Mohammed Jameel Khulood Al-Raddadi Done By: Lulu Al-Obaid - Abdulrahman Al-Rashed Reviewed By: Mohammed Jameel Khulood Al-Raddadi At the end of this lecture student should be able to describe: The loop of Henle is referred to as countercurrent

More information

KASHVET VETERINARIAN RESOURCES FLUID THERAPY AND SELECTION OF FLUIDS

KASHVET VETERINARIAN RESOURCES FLUID THERAPY AND SELECTION OF FLUIDS KASHVET VETERINARIAN RESOURCES FLUID THERAPY AND SELECTION OF FLUIDS INTRODUCTION Formulating a fluid therapy plan for the critical small animal patient requires careful determination of the current volume

More information

6I2.744.I5: e3. sufficiently high'. There exists in such cases a certain concentration of the. by direct analysis.

6I2.744.I5: e3. sufficiently high'. There exists in such cases a certain concentration of the. by direct analysis. 194 THE DIFFUSION OF ACTATE INTO AND FROM MUSCE. BY S. C. DEVADATTA. 6I2.744.I5:547.472e3 (From the Department of Physiology, Edinburgh University.) CERTAIN constituents of the voluntary muscles of the

More information

BIOL 305L Spring 2019 Laboratory Six

BIOL 305L Spring 2019 Laboratory Six Please print Full name clearly: BIOL 305L Spring 2019 Laboratory Six Osmosis in potato and carrot samples Introduction Osmosis is the movement of water molecules through a selectively permeable membrane

More information

Lujain Al_Adayleh. Amani Nofal. Mohammad khatatbeh

Lujain Al_Adayleh. Amani Nofal. Mohammad khatatbeh 4 Lujain Al_Adayleh Amani Nofal Mohammad khatatbeh Recap : Filtration: the movement according to the differences of pressure. **note: not all particles have the same solubility through plasma membrane.

More information

Osmoregulation and Excretion

Osmoregulation and Excretion Animal Life and Excretion Harder for multicellular organisms Internal circulation Coordination, information transfer Structural maintenance Movement Maintenance of homeostatic internal environment 15 July

More information

USER INFORMATION PAMPHLET Suero Fisiológico Vitulia 0.9% solution for perfusion Sodium chloride

USER INFORMATION PAMPHLET Suero Fisiológico Vitulia 0.9% solution for perfusion Sodium chloride USER INFORMATION PAMPHLET Suero Fisiológico Vitulia 0.9% solution for perfusion Sodium chloride Read the whole of this prospectus in detail, because it contains information that will be important to you.

More information

Chapter 16. Urinary System and Thermoregulation THERMOREGULATION. Homeostasis

Chapter 16. Urinary System and Thermoregulation THERMOREGULATION. Homeostasis Homeostasis Chapter 16 Urinary System and Thermoregulation! Homeostasis Maintenance of steady internal conditions despite fluctuations in the external environment! Examples of homeostasis Thermoregulation

More information

LAB 4: OSMOSIS AND DIFFUSION

LAB 4: OSMOSIS AND DIFFUSION Page 4.1 LAB 4: OSMOSIS AND DIFFUSION Cells need to obtain water and other particles from the fluids that surround them. Water and other particles also move out of cells. Osmosis (for water) and diffusion

More information

Your Goal. Animal s Urinary and Osmoregulatory systems. Paragraph 1: Introduction Goal introduce the paper. Paragraph 1: Introduction

Your Goal. Animal s Urinary and Osmoregulatory systems. Paragraph 1: Introduction Goal introduce the paper. Paragraph 1: Introduction Your Goal Animal s Urinary and Osmoregulatory systems l Be able to tell the story of kidney evolution as an essay. Maintenance Introduction Goal introduce the paper l Homeostasis is the of Maintenance

More information

SUMMARY OF PRODUCT CHARACTERISTICS. Synthamin 14, 8.5% Amino Acid Intravenous Infusion

SUMMARY OF PRODUCT CHARACTERISTICS. Synthamin 14, 8.5% Amino Acid Intravenous Infusion SUMMARY OF PRODUCT CHARACTERISTICS 1. NAME OF THE MEDICINAL PRODUCT Synthamin 14, 8.5% Amino Acid Intravenous Infusion 2. QUALITATIVE AND QUANTITATIVE COMPOSITION L-Leucine Ph. Eur 0.620% w/v L-Isoleucine

More information

Excretion and Water Balance

Excretion and Water Balance Excretion and Water Balance 1. Osmoregulation (water balance) a. Most marine invertebrates are osmoconformers in which the concentration of solutes in their body fluid is equal to that of their environment.

More information

DATA SHEET 2 QUALITATIVE AND QUANTITATIVE COMPOSITION

DATA SHEET 2 QUALITATIVE AND QUANTITATIVE COMPOSITION DATA SHEET 1 PRODUCT NAME 2 QUALITATIVE AND QUANTITATIVE COMPOSITION Sachet, each 5.1g sachet contains: Sodium chloride 470mg, potassium chloride 300mg, sodium acid citrate 530mg, glucose 3.56g. Tablet,

More information

Objectives Body Fluids Electrolytes The Kidney and formation of urine

Objectives Body Fluids Electrolytes The Kidney and formation of urine Objectives Body Fluids Outline the functions of water in the body. State how water content varies with age and sex. Differentiate between intracellular and extra-cellular fluid. Explain how water moves

More information