Clarifying questions about risk factors : predictors versus explanation

Size: px
Start display at page:

Download "Clarifying questions about risk factors : predictors versus explanation"

Transcription

1 Schooling and Jones Emerg Themes Epidemiol (2018) 15:10 Emerging Themes in Epidemiology ANALYTIC PERSPECTIVE Open Access Clarifying questions about risk factors : predictors versus explanation C. Mary Schooling 1,2* and Heidi E. Jones 1 Abstract Background: In biomedical research much effort is thought to be wasted. Recommendations for improvement have largely focused on processes and procedures. Here, we additionally suggest less ambiguity concerning the questions addressed. Methods: We clarify the distinction between two conflated concepts, prediction and explanation, both encompassed by the term risk factor, and give methods and presentation appropriate for each. Results: Risk prediction studies use statistical techniques to generate contextually specific data-driven models requiring a representative sample that identify people at risk of health conditions efficiently (target populations for interventions). Risk prediction studies do not necessarily include causes (targets of intervention), but may include cheap and easy to measure surrogates or biomarkers of causes. Explanatory studies, ideally embedded within an informative model of reality, assess the role of causal factors which if targeted for interventions, are likely to improve outcomes. Predictive models allow identification of people or populations at elevated disease risk enabling targeting of proven interventions acting on causal factors. Explanatory models allow identification of causal factors to target across populations to prevent disease. Conclusion: Ensuring a clear match of question to methods and interpretation will reduce research waste due to misinterpretation. Keywords: Risk factor, Predictor, Cause, Statistical inference, Scientific inference, Confounding, Selection bias Introduction Biomedical research has reached a crisis where much research effort is thought to be wasted [1]. Recommendations to improve the situation have largely focused on processes and procedures, such as addressing high impact questions, starting from what is already known, registration of protocols, and making data available [1]. Here we additionally suggest that ensuring the conceptual approach matches the question would avoid conflating different questions and mistaking the answer to one question for the answer to a different question. Much observational biomedical research concerns the role of risk factors in disease, which is conducted for two main reasons, (1) risk stratification or prediction and *Correspondence: mary.schooling@sph.cuny.edu; cms1@hku.hk 1 Graduate School of Public Health and Health Policy, City University of New York, 55 West 125th St, New York, NY 10027, USA Full list of author information is available at the end of the article (2) assessing causality. These are two fundamentally different questions, concerning two different concepts, i.e., prediction versus explanation, which require different approaches and have substantively different interpretations. However, the use of the term risk factor as something which may predict and/or explain means that these two concepts may be conflated so that a study may not fulfill either objective, i.e., neither predicts nor explains. For example, major predictors of cardiovascular disease have long been assumed to be targets of intervention [2]. After extensive and expensive research investment over more than 35 years, including the development, testing and failure of an entire new class of drugs (CETP inhibitors) [3], high density lipoprotein cholesterol has recently been identified to be a non-causal risk factor (i.e. predictor) for cardiovascular disease [4, 5]. Equally, factors that do not predict risk are very rarely identified as causal factors (such as factors that are ubiquitous in a The Author(s) This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( iveco mmons.org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( iveco mmons.org/ publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

2 Page 2 of 6 given community and thus are not caught as increasing risk) [6], which suggests interventions are being missed. Given, the importance of avoiding low priority questions [1], here, we clarify the difference between these two concepts and their use in observational studies. Prediction models Risk stratification, prediction models or weather forecasting models identify people or groups at high or elevated risk of a particular health condition, ideally so that they can be offered proven interventions, or other mitigation can be implemented. A very successful example of a risk stratification model is the Framingham score which predicts 10-year risk of heart disease in healthy people [7], to inform prevention, such as use of lipid modulators. Other examples include prognostic models for identifying the best cancer treatment [8], or models for predicting disease trends, such as Google Flu Trends [9]. These predictive models typically rely on statistical projections of previous patterns, and to be feasible usually rely on easily captured information. For example, the Framingham score can be applied in daily clinical practice, even in resource poor settings, because it only requires assessment of age, sex, smoking, blood pressure, lipids and diabetes, which are relatively cheap and quick to measure. Google flu trends was based on internet search terms for particular symptoms [9]. Prediction models are usually developed based on statistical criteria to fit the distribution of the data well, using techniques such as stepwise selection, or more recently machine learning techniques. Prediction models often include several risk factors to obtain a model that fits the data well and can explain the greatest amount of variance in the outcome health condition. The contribution of each risk factor is presented so that the reader can see the independent contribution of each one to the overall prediction, as well as measures of model fit. Prediction models are usually validated in similar populations. As with all statistical models they cannot be expected to predict well in novel circumstances [9], and are best developed using a representative sample of the population in which they will be applied. Consistently poor measurement will impair precision, because it adds noise. Inconsistently poor measurement will impair predictive power, because it may change the relation between risk factor and outcome. Prediction models may not be generalizable to populations that differ from the one in which they were developed because in a new population the correlation between predictive and true causal factors may be different. For example, the Framingham model often has to be calibrated to predict absolute risk of heart disease correctly in new populations [10]. While Google Flu trends is no longer providing estimates; it became inaccurate, possibly because the model needed dynamic recalibration of the relation between search terms and influenza to stay on track [9]. Tried and tested prediction models are immensely valuable for identifying target populations, i.e. people or groups in need of prevention or treatment, but the risk factors that predict a health condition are not necessarily targets of intervention. For example flu symptoms do not cause influenza, and are not targets of intervention to prevent the occurrence of flu. Whether the risk factors that predict health conditions in risk stratification models are also targets of intervention has to be established from different studies designed to assess effects of interventions. As such, it is not appropriate to calculate a population attributable risk or proportion for risk factors from a risk prediction model, because removal of these risk factors might or might not affect population health. Similarly, the purpose of predictive models is to explain the greatest amount of the variance in the outcome, so only factors that contribute to explaining the variance need to be included. The concepts of confounding, mediation and effect measure modification are not applicable to predictive models. Interaction terms can be added to predictive models to improve model fit, but these interactions should not be interpreted as indicating different effects by subgroup. Explanatory models Explanatory models can be thought of as simplified, abstract, propositional models for some particular aspect of how the world works, which provide a guide as to how to manipulate items of interest. As such, explanatory models are based on potentially causal factors i.e., factors whose manipulation changes the outcome [11]. Studies assessing causality are explanatory rather than predictive. Explanatory models are designed to assess whether a particular risk factor explains the occurrence, or course, of disease and as such is a valid target of intervention. Risk factors selected as potential causal factors might be based on risk factors from predictive models, might be theoretically based or might be hypothesized from other sources. For example, the Framingham score includes factors, such as smoking and blood pressure, which undoubtedly cause heart disease, but also other risk factors, such as age, sex and high-density lipoprotein, whose causal role in heart disease is less clear [12]. In contrast, factors that do not predict disease might be identified as possible causal factors based on physiology or well-established theories. For example, observationally telomere length does not appear to predict renal cell cancer, but people with genetically longer telomeres are at greater risk [13], suggesting a causal role in renal cell cancer, as in other cancers [14].

3 Page 3 of 6 Studies assessing the role of causal factors need to avoid the major sources of bias in observational studies designed to assess causality, which can be most simply thought of as confounding and selection bias [15, 16]. In addition, measurement error is often thought of as an additional source of bias, although non-differential measurement error usually biases towards the null and differential measurement error can be thought of as a form of selection bias. Confounding occurs when extraneous common causes of the putative cause and health condition are omitted so that a spurious relation is observed. For example, smoking causes both yellow fingers and lung cancer, so any assessment of the causal effect of yellow fingers on lung cancer would need to take smoking into account. Confounding is difficult to avoid unless all the common causes of the putative cause and disease are known. One of the simplest options, when experimental studies (randomized controlled trials) are not possible, is to use methods, such as Mendelian randomization, that are less open to confounding [17]. No method is assumption free, and Mendelian randomization has stringent assumptions, nevertheless it has clarified some controversies over the causes of cardiovascular disease, such as the role of high density lipoprotein-cholesterol [18]. A sufficient set of confounders needs to be identified from external knowledge of causality, measured accurately in the study and included in the analytic model, so that any residual confounding does not cause incorrect causal inference. Given, the difficulty of assessing both known and unknown confounders, demonstrating that estimates for other associations subject to the same confounding are coherent with known causal effects gives greater credence to any new estimates from the same study [19, 20]. For example, observational studies of hormone replacement therapy (HRT) in women found apparent benefits for accidents as well as for cardiovascular disease [21], which suggests residual confounding for cardiovascular disease because HRT would not be expected physiologically to protect against accidents. The apparently protective findings were also not coherent with estrogen having no benefit for men in the Coronary Drug project trial [22] and possibly causing myocardial infarction in young women [23]. Nevertheless, confounding can, potentially, be addressed in an observational study by collecting sufficient relevant information about the study participants, so that all confounding is accounted for by adjustment, inverse probability of treatment weighting or standardization. Confounding is a causal concept and not relevant for predictive models [24]. Confounding cannot reliably be assessed from observational data; meaning that testing confounders for inclusion in an analytic model based on statistical correlations or changes in estimates is not valid. Conversely, factors that are not confounders should not be included in the analytic model because they may prevent assessment of the full effect of the hypothesized cause in question. For example, an observational study designed to assess the effect of alcohol on stroke should not include blood pressure in the model as a confounder. Blood pressure may cause stroke but is more likely a consequence of alcohol use than a cause of alcohol use, making blood pressure likely a mediator not a confounder. As such, adjusting the model for blood pressure would not give the full effect of alcohol on stroke. Studies designed to assess the role of potential causal factors should only present the effect estimate for the hypothesized cause in question, because estimates for other factors in the model are unlikely to be correctly controlled for confounding (sometimes referred to as the Table 2 fallacy ) [25]. However, it may be helpful to present models adjusting for different sets of confounders because of the difficulty of unambiguously identifying confounders. Further, presenting both the crude and adjusted estimates for the hypothesized cause may elucidate the extent to which the effect estimate is influenced by the hypothesized confounders. Selection bias occurs when the sample is inadvertently constructed in such a way as to generate a spurious relation, most often inadvertent selection on common effects of hypothesized cause and outcome [24], hence sometimes described as collider bias. For example a study assessing the relation of smoking with lung cancer in very old people might find no relation because the sample is by definition only those who have survived their smoking habit i.e., is dependent on smoking and not getting lung cancer [26]. Selection bias is difficult to detect because it may require conceptualizing the relation of hypothesized causal exposure with disease in the sample absent from the study. For example, a study assessing the relation of obesity with death in people with diabetes [27] will not give a valid causal estimate unless it takes into account the relation of obesity with death in the people with diabetes who are absent from the study because of illness or previous death. Similarly, a spurious link between potential cause and disease may arise from measurement dependent on potential cause and disease. Recovering from selection bias is only possible in certain circumstances, for example when external data is available, but cannot be guaranteed [16]. Biomedical risk factors in explanatory models are potentially causal, i.e., manipulating the risk factor changes the outcome, and like all causal factors, in everyday experience, would be expected to be consistent within their particular area of application, and hence generalizable (or more precisely transportable [11, 24]) to other situations. However, this consistency

4 Page 4 of 6 Table 1 Attributes of predictive versus causal models Attribute Type of model Predictive Causal Purpose Risk stratification, risk prediction or weather forecasting To test whether a factor or set of factors are causal Type of model Data-driven Explanatory Type of analysis Data-driven selection procedure Test of specific causal model Role of risk factors Jointly fit the distribution of the data Potential targets of intervention Attributes of typical risk factors Cheap and easy to measure Part of a causal model Role of confounding Confounding is a causal concept [24] so it is not relevant Confounders, typically common causes of risk factor and health condition [24] need to be identified from external knowledge and their effect on the estimate removed, via adjustment or other means Type of sample Representative of the population in which the model will be applied Free from selection bias for the association(s) of interest Role of measurement error Consistently poor measurement will impair precision. Inconsistently poor measurement will impair predictive power Non-differential misclassification of the exposure or the outcome usually biases towards the null, differential will bias the estimates, measurement error for confounders impacts ability to appropriately adjust, measurement error for predictors of missingness impacts ability to approrpriately adjust for selection bias caused by loss to follow-up Validation technique Replication in a similar sample Use of control exposures and outcomes [19] Coherence with high-quality estimates [20] Presentation Show the association of each risk factor with the outcome health condition Only show the association of the risk factor(s) tested for causality with the outcome [25] Measures of model fit Effect estimates and 95% confidence interval Interpretation Identification of those at risk of a specific outcome, ideally for preventive action Identification of a potential cause of the outcome, whose modification might change the risk of the outcome Predictors of risk Effects on risk Risk predictors should not be used to calculate population attributable fractions or risks because attribution implies causality when predictive models are not necessarily based on causal factors Causal factors can be used to calculate population attributable fractions or risks because explanatory models are based on causal factors Generalizability/transportability Model may need to be recalibrated for use in a new population May need to consider distribution of causal factors in a new population to get an estimate of the effect the causal risk factors on the population

5 Page 5 of 6 may not always be apparent or relevant, because not all parts of an explanatory model may be applicable in all situations. For example, an explanatory model for lung cancer could include smoking and asbestos, among other factors, but attempting to reduce lung cancer by manipulating smoking would not be effective in a nonsmoking population. As such, consideration needs to be given as to how to apply the explanatory model so as to act on relevant causal factors in any given population [24]. It is appropriate to calculate population attributable risks or proportions for explanatory factors, because these are causal factors whose manipulation could impact population health. However, attributable risks or proportions tells us what proportion of the outcome would not have occurred had the exposure been absent, but does not guarantee that will be the effect of removing the exposure. Summary Predicting and explaining risk of health conditions are answering two fundamentally different questions with completely different approaches and implications. In this context, researchers need to identify the intent or purpose of their study, as identifying who is at risk (risk stratification) or what would be an effective intervention (explanation), so as to ensure research questions are addressed appropriately and effectively. Some risk factors can be both predictors and explanatory factors, at the same, which may lead to conflation of these terms in the research community. For example, blood pressure is both a predictor and a cause of cardiovascular disease. However, studies where blood pressure was considered as a risk predictor would have a different purpose, research question and approach from studies where blood pressure was considered as an explanatory factor. Prediction and explanation typically require different approaches in terms of conceptualization, modelling, analysis, validation, presentation, interpretation, generalizability and risk attribution as summarized in Table 1. Risk prediction studies are using statistical techniques to generate contextually specific data-driven models requiring a representative sample that identifies people at risk of disease efficiently, but do not necessarily identify targets of intervention. Explanatory studies, ideally embedded within an explanatory model of reality, test causal factors that might be targets of intervention. Predictive models allow public health practitioners to identify populations at elevated risk of disease to enable targeting of proven interventions on causal factors. Explanatory models allow public health professionals to identify causal factors to target across populations to prevent disease. Conclusion Explicitly distinguishing between the different purposes of observational biomedical studies and explicitly matching the approach, interpretation and wording to the researcher s intent will enable more focused and productive use of research resources. Avoiding the imprecise term risk factor and using a word, such as predictor, in risk stratification studies and explanatory factor in causal studies might bring clarity of thought and thereby reduce unwarranted assumptions in biomedical research. Authors contributions CMS and HEJ worked together on the idea. CMS drafted the manuscript, HEJ reviewed it. Both authors read and approved the final manuscript. Author details 1 Graduate School of Public Health and Health Policy, City University of New York, 55 West 125th St, New York, NY 10027, USA. 2 School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong Special Administrative Region, China. Competing interests The authors declare that they have no competing interests. Ethics approval Not applicable. Publisher s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Received: 28 February 2018 Accepted: 31 July 2018 References 1. Moher D, et al. Increasing value and reducing waste in biomedical research: who s listening? Lancet. 2016;387(10027): Anderson KM, et al. Cardiovascular disease risk profiles. Am Heart J. 1991;121(1 Pt 2): Nicholls SJ. CETP-inhibition and HDL-cholesterol: a story of CV risk or CV benefit, or both. Clin Pharmacol Ther https ://doi.org/ / cpt Keene D, et al. Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: metaanalysis of randomised controlled trials including patients. BMJ. 2014;349:g Voight BF, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380(9841): Ioannidis JP, Tarone R, McLaughlin JK. The false-positive to false-negative ratio in epidemiologic studies. Epidemiology. 2011;22(4): Wilson PW, et al. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97(18): Turnbull AK, et al. Accurate prediction and validation of response to endocrine therapy in breast cancer. J Clin Oncol. 2015;33(20): Lazer D, et al. Big data. The parable of Google Flu: traps in big data analysis. Science. 2014;343(6176): Liu J, et al. Predictive value for the Chinese population of the Framingham CHD risk assessment tool compared with the Chinese Multi-Provincial Cohort Study. JAMA. 2004;291(21):

6 Page 6 of Pearl J. Causality: models, reasoning, and inference. 2nd ed. Cambridge: Cambridge University Press; Musunuru K, Kathiresan S. Surprises from genetic analyses of lipid risk factors for atherosclerosis. Circ Res. 2016;118(4): Machiela MJ, et al. Genetic variants related to longer telomere length are associated with increased risk of renal cell carcinoma. Eur Urol. 2017;72(5): Haycock PC, et al. Association between telomere length and risk of cancer and non-neoplastic diseases: a Mendelian randomization study. JAMA Oncol. 2017;3(5): Hernan MA, Hernandez-Diaz S, Robins JM. A structural approach to selection bias. Epidemiology. 2004;15(5): Bareinboim BT, Pearl J. Recovering from selection bias in causal and statistical inference. In: Proceedings of the twenty-eighth AAAI conference on artificial intelligence; R Smith GD, Ebrahim S. Mendelian randomization : can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1): Holmes MV, Ala-Korpela M, Smith GD. Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. Nat Rev Cardiol. 2017;14(10): Lipsitch M, Tchetgen E, Cohen T. Negative controls: a tool for detecting confounding and bias in observational studies. Epidemiology. 2010;21(3): Schooling CM. Concordance with known causal effects is a potential validity measure for observational studies. J Clin Epidemiol. 2016;74: Petitti DP, Sidney S. Postmenopausal estrogen use and heart disease. NEJM. 1986;315(131 2). 22. The Coronary Drug Project. Findings leading to discontinuation of the 2.5-mg day estrogen group. The coronary Drug Project Research Group. JAMA. 1973;226(6): Petitti D. Commentary: hormone replacement therapy and coronary heart disease: four lessons. Int J Epidemiol. 2004;33(3): Bareinboim E, Pearl J. Causal inference and the data-fusion problem. Proc Natl Acad Sci USA. 2016;113(27): Westreich D, Greenland S. The table 2 fallacy: presenting and interpreting confounder and modifier coefficients. Am J Epidemiol. 2013;177(4): Hernan MA, Alonso A, Logroscino G. Cigarette smoking and dementia: potential selection bias in the elderly. Epidemiology. 2008;19(3): Tobias DK, et al. Body-mass index and mortality among adults with incident type 2 diabetes. N Engl J Med. 2014;370(3): Ready to submit your research? Choose BMC and benefit from: fast, convenient online submission thorough peer review by experienced researchers in your field rapid publication on acceptance support for research data, including large and complex data types gold Open Access which fosters wider collaboration and increased citations maximum visibility for your research: over 100M website views per year At BMC, research is always in progress. Learn more biomedcentral.com/submissions

Biases in clinical research. Seungho Ryu, MD, PhD Kanguk Samsung Hospital, Sungkyunkwan University

Biases in clinical research. Seungho Ryu, MD, PhD Kanguk Samsung Hospital, Sungkyunkwan University Biases in clinical research Seungho Ryu, MD, PhD Kanguk Samsung Hospital, Sungkyunkwan University Learning objectives Describe the threats to causal inferences in clinical studies Understand the role of

More information

Biases in clinical research. Seungho Ryu, MD, PhD Kanguk Samsung Hospital, Sungkyunkwan University

Biases in clinical research. Seungho Ryu, MD, PhD Kanguk Samsung Hospital, Sungkyunkwan University Biases in clinical research Seungho Ryu, MD, PhD Kanguk Samsung Hospital, Sungkyunkwan University Learning objectives Describe the threats to causal inferences in clinical studies Understand the role of

More information

Biases in clinical research. Seungho Ryu, MD, PhD Kanguk Samsung Hospital, Sungkyunkwan University

Biases in clinical research. Seungho Ryu, MD, PhD Kanguk Samsung Hospital, Sungkyunkwan University Biases in clinical research Seungho Ryu, MD, PhD Kanguk Samsung Hospital, Sungkyunkwan University Learning objectives Understand goal of measurement and definition of accuracy Describe the threats to causal

More information

Generalizing the right question, which is?

Generalizing the right question, which is? Generalizing RCT results to broader populations IOM Workshop Washington, DC, April 25, 2013 Generalizing the right question, which is? Miguel A. Hernán Harvard School of Public Health Observational studies

More information

Beyond the intention-to treat effect: Per-protocol effects in randomized trials

Beyond the intention-to treat effect: Per-protocol effects in randomized trials Beyond the intention-to treat effect: Per-protocol effects in randomized trials Miguel Hernán DEPARTMENTS OF EPIDEMIOLOGY AND BIOSTATISTICS Intention-to-treat analysis (estimator) estimates intention-to-treat

More information

Supplement 2. Use of Directed Acyclic Graphs (DAGs)

Supplement 2. Use of Directed Acyclic Graphs (DAGs) Supplement 2. Use of Directed Acyclic Graphs (DAGs) Abstract This supplement describes how counterfactual theory is used to define causal effects and the conditions in which observed data can be used to

More information

Real-world data in pragmatic trials

Real-world data in pragmatic trials Real-world data in pragmatic trials Harold C. Sox,MD The Patient-Centered Outcomes Research Institute Washington, DC Presenter Disclosure Information In compliance with the accrediting board policies,

More information

INTERNAL VALIDITY, BIAS AND CONFOUNDING

INTERNAL VALIDITY, BIAS AND CONFOUNDING OCW Epidemiology and Biostatistics, 2010 J. Forrester, PhD Tufts University School of Medicine October 6, 2010 INTERNAL VALIDITY, BIAS AND CONFOUNDING Learning objectives for this session: 1) Understand

More information

COMMENTARY: DATA ANALYSIS METHODS AND THE RELIABILITY OF ANALYTIC EPIDEMIOLOGIC RESEARCH. Ross L. Prentice. Fred Hutchinson Cancer Research Center

COMMENTARY: DATA ANALYSIS METHODS AND THE RELIABILITY OF ANALYTIC EPIDEMIOLOGIC RESEARCH. Ross L. Prentice. Fred Hutchinson Cancer Research Center COMMENTARY: DATA ANALYSIS METHODS AND THE RELIABILITY OF ANALYTIC EPIDEMIOLOGIC RESEARCH Ross L. Prentice Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North, M3-A410, POB 19024, Seattle,

More information

Experimental Design. Terminology. Chusak Okascharoen, MD, PhD September 19 th, Experimental study Clinical trial Randomized controlled trial

Experimental Design. Terminology. Chusak Okascharoen, MD, PhD September 19 th, Experimental study Clinical trial Randomized controlled trial Experimental Design Chusak Okascharoen, MD, PhD September 19 th, 2016 Terminology Experimental study Clinical trial Randomized controlled trial 1 PHASES OF CLINICAL TRIALS Phase I: First-time-in-man studies

More information

DRAFT (Final) Concept Paper On choosing appropriate estimands and defining sensitivity analyses in confirmatory clinical trials

DRAFT (Final) Concept Paper On choosing appropriate estimands and defining sensitivity analyses in confirmatory clinical trials DRAFT (Final) Concept Paper On choosing appropriate estimands and defining sensitivity analyses in confirmatory clinical trials EFSPI Comments Page General Priority (H/M/L) Comment The concept to develop

More information

PLS 506 Mark T. Imperial, Ph.D. Lecture Notes: Reliability & Validity

PLS 506 Mark T. Imperial, Ph.D. Lecture Notes: Reliability & Validity PLS 506 Mark T. Imperial, Ph.D. Lecture Notes: Reliability & Validity Measurement & Variables - Initial step is to conceptualize and clarify the concepts embedded in a hypothesis or research question with

More information

04/12/2014. Research Methods in Psychology. Chapter 6: Independent Groups Designs. What is your ideas? Testing

04/12/2014. Research Methods in Psychology. Chapter 6: Independent Groups Designs. What is your ideas? Testing Research Methods in Psychology Chapter 6: Independent Groups Designs 1 Why Psychologists Conduct Experiments? What is your ideas? 2 Why Psychologists Conduct Experiments? Testing Hypotheses derived from

More information

Improving Medical Statistics and Interpretation of Clinical Trials

Improving Medical Statistics and Interpretation of Clinical Trials Improving Medical Statistics and Interpretation of Clinical Trials 1 ALLHAT Trial & ALLHAT Meta-Analysis Critique Table of Contents ALLHAT Trial Critique- Overview p 2-4 Critique Of The Flawed Meta-Analysis

More information

Advanced IPD meta-analysis methods for observational studies

Advanced IPD meta-analysis methods for observational studies Advanced IPD meta-analysis methods for observational studies Simon Thompson University of Cambridge, UK Part 4 IBC Victoria, July 2016 1 Outline of talk Usual measures of association (e.g. hazard ratios)

More information

Chapter 17 Sensitivity Analysis and Model Validation

Chapter 17 Sensitivity Analysis and Model Validation Chapter 17 Sensitivity Analysis and Model Validation Justin D. Salciccioli, Yves Crutain, Matthieu Komorowski and Dominic C. Marshall Learning Objectives Appreciate that all models possess inherent limitations

More information

Studying the effect of change on change : a different viewpoint

Studying the effect of change on change : a different viewpoint Studying the effect of change on change : a different viewpoint Eyal Shahar Professor, Division of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona

More information

How Does Analysis of Competing Hypotheses (ACH) Improve Intelligence Analysis?

How Does Analysis of Competing Hypotheses (ACH) Improve Intelligence Analysis? How Does Analysis of Competing Hypotheses (ACH) Improve Intelligence Analysis? Richards J. Heuer, Jr. Version 1.2, October 16, 2005 This document is from a collection of works by Richards J. Heuer, Jr.

More information

Two-stage Methods to Implement and Analyze the Biomarker-guided Clinical Trail Designs in the Presence of Biomarker Misclassification

Two-stage Methods to Implement and Analyze the Biomarker-guided Clinical Trail Designs in the Presence of Biomarker Misclassification RESEARCH HIGHLIGHT Two-stage Methods to Implement and Analyze the Biomarker-guided Clinical Trail Designs in the Presence of Biomarker Misclassification Yong Zang 1, Beibei Guo 2 1 Department of Mathematical

More information

Beyond Controlling for Confounding: Design Strategies to Avoid Selection Bias and Improve Efficiency in Observational Studies

Beyond Controlling for Confounding: Design Strategies to Avoid Selection Bias and Improve Efficiency in Observational Studies September 27, 2018 Beyond Controlling for Confounding: Design Strategies to Avoid Selection Bias and Improve Efficiency in Observational Studies A Case Study of Screening Colonoscopy Our Team Xabier Garcia

More information

Dichotomizing partial compliance and increased participant burden in factorial designs: the performance of four noncompliance methods

Dichotomizing partial compliance and increased participant burden in factorial designs: the performance of four noncompliance methods Merrill and McClure Trials (2015) 16:523 DOI 1186/s13063-015-1044-z TRIALS RESEARCH Open Access Dichotomizing partial compliance and increased participant burden in factorial designs: the performance of

More information

Epidemiologic Study Designs. (RCTs)

Epidemiologic Study Designs. (RCTs) Epidemiologic Study Designs Epidemiologic Study Designs Experimental (RCTs) Observational Analytical Descriptive Case-Control Cohort + cross-sectional & ecologic Epidemiologic Study Designs Descriptive

More information

well-targeted primary prevention of cardiovascular disease: an underused high-value intervention?

well-targeted primary prevention of cardiovascular disease: an underused high-value intervention? well-targeted primary prevention of cardiovascular disease: an underused high-value intervention? Rod Jackson University of Auckland, New Zealand October 2015 Lancet 1999; 353: 1547-57 Findings: Contribution

More information

Chapter 02 Developing and Evaluating Theories of Behavior

Chapter 02 Developing and Evaluating Theories of Behavior Chapter 02 Developing and Evaluating Theories of Behavior Multiple Choice Questions 1. A theory is a(n): A. plausible or scientifically acceptable, well-substantiated explanation of some aspect of the

More information

Penelitian IKM/Epidemiologi. Contact: Blog: suyatno.blog.undip.ac.id Hp/Telp: /

Penelitian IKM/Epidemiologi. Contact:   Blog: suyatno.blog.undip.ac.id Hp/Telp: / Penelitian IKM/Epidemiologi Oleh : Suyatno, Ir. MKes Contact: E-mail: suyatnofkmundip@gmail.com Blog: suyatno.blog.undip.ac.id Hp/Telp: 08122815730 / 024-70251915 Epidemiologic Study Designs I. Experimental

More information

From single studies to an EBM based assessment some central issues

From single studies to an EBM based assessment some central issues From single studies to an EBM based assessment some central issues Doug Altman Centre for Statistics in Medicine, Oxford, UK Prognosis Prognosis commonly relates to the probability or risk of an individual

More information

Reviewer s report. Version: 0 Date: 17 Dec Reviewer: Julia Marcus. Reviewer's report:

Reviewer s report. Version: 0 Date: 17 Dec Reviewer: Julia Marcus. Reviewer's report: Reviewer s report Title: Is there continued evidence for an association between abacavir usage and myocardial infarction risk in individuals with human immunodeficiency virus (HIV)?: a cohort collaboration

More information

The Framingham Coronary Heart Disease Risk Score

The Framingham Coronary Heart Disease Risk Score Plasma Concentration of C-Reactive Protein and the Calculated Framingham Coronary Heart Disease Risk Score Michelle A. Albert, MD, MPH; Robert J. Glynn, PhD; Paul M Ridker, MD, MPH Background Although

More information

Torsion bottle, a very simple, reliable, and cheap tool for a basic scoliosis screening

Torsion bottle, a very simple, reliable, and cheap tool for a basic scoliosis screening Romano and Mastrantonio Scoliosis and Spinal Disorders (2018) 13:4 DOI 10.1186/s13013-018-0150-6 RESEARCH Open Access Torsion bottle, a very simple, reliable, and cheap tool for a basic scoliosis screening

More information

Discrimination and Reclassification in Statistics and Study Design AACC/ASN 30 th Beckman Conference

Discrimination and Reclassification in Statistics and Study Design AACC/ASN 30 th Beckman Conference Discrimination and Reclassification in Statistics and Study Design AACC/ASN 30 th Beckman Conference Michael J. Pencina, PhD Duke Clinical Research Institute Duke University Department of Biostatistics

More information

ADENIYI MOFOLUWAKE MPH APPLIED EPIDEMIOLOGY WEEK 5 CASE STUDY ASSIGNMENT APRIL

ADENIYI MOFOLUWAKE MPH APPLIED EPIDEMIOLOGY WEEK 5 CASE STUDY ASSIGNMENT APRIL ADENIYI MOFOLUWAKE MPH 510 - APPLIED EPIDEMIOLOGY WEEK 5 CASE STUDY ASSIGNMENT APRIL 4 2013 Question 1: What makes the first study a case-control study? The first case study is a case-control study because

More information

School of Population and Public Health SPPH 503 Epidemiologic methods II January to April 2019

School of Population and Public Health SPPH 503 Epidemiologic methods II January to April 2019 School of Population and Public Health SPPH 503 Epidemiologic methods II January to April 2019 Time: Tuesday, 1330 1630 Location: School of Population and Public Health, UBC Course description Students

More information

In this chapter we discuss validity issues for quantitative research and for qualitative research.

In this chapter we discuss validity issues for quantitative research and for qualitative research. Chapter 8 Validity of Research Results (Reminder: Don t forget to utilize the concept maps and study questions as you study this and the other chapters.) In this chapter we discuss validity issues for

More information

Rapid appraisal of the literature: Identifying study biases

Rapid appraisal of the literature: Identifying study biases Rapid appraisal of the literature: Identifying study biases Rita Popat, PhD Clinical Assistant Professor Division of Epidemiology Stanford University School of Medicine August 7, 2007 What is critical

More information

Source:

Source: ! I am Dr. Carl C. Seltzer, Honorary Research Associate at the Feabody Museum, Harvard University and Professor of Nutrition, Tufts University. I was formerly Senior Research Associate at the Harvard University

More information

Is There An Association?

Is There An Association? Is There An Association? Exposure (Risk Factor) Outcome Exposures Risk factors Preventive measures Management strategy Independent variables Outcomes Dependent variable Disease occurrence Lack of exercise

More information

HIGH LDL CHOLESTEROL IS NOT AN INDEPENDENT RISK FACTOR FOR HEART ATTACKS AND STROKES

HIGH LDL CHOLESTEROL IS NOT AN INDEPENDENT RISK FACTOR FOR HEART ATTACKS AND STROKES HIGH LDL CHOLESTEROL IS NOT AN INDEPENDENT RISK FACTOR FOR HEART ATTACKS AND STROKES A study published in the British Medical Journal shows that not only is high LDL cholesterol not a risk factor for all-caused

More information

VALIDITY OF QUANTITATIVE RESEARCH

VALIDITY OF QUANTITATIVE RESEARCH Validity 1 VALIDITY OF QUANTITATIVE RESEARCH Recall the basic aim of science is to explain natural phenomena. Such explanations are called theories (Kerlinger, 1986, p. 8). Theories have varying degrees

More information

Chapter 1 Introduction to Educational Research

Chapter 1 Introduction to Educational Research Chapter 1 Introduction to Educational Research The purpose of Chapter One is to provide an overview of educational research and introduce you to some important terms and concepts. My discussion in this

More information

Confounding Bias: Stratification

Confounding Bias: Stratification OUTLINE: Confounding- cont. Generalizability Reproducibility Effect modification Confounding Bias: Stratification Example 1: Association between place of residence & Chronic bronchitis Residence Chronic

More information

Reflection paper on assessment of cardiovascular safety profile of medicinal products

Reflection paper on assessment of cardiovascular safety profile of medicinal products 25 February 2016 EMA/CHMP/50549/2015 Committee for Medicinal Products for Human Use (CHMP) Reflection paper on assessment of cardiovascular safety profile of medicinal products Draft agreed by Cardiovascular

More information

4 Diagnostic Tests and Measures of Agreement

4 Diagnostic Tests and Measures of Agreement 4 Diagnostic Tests and Measures of Agreement Diagnostic tests may be used for diagnosis of disease or for screening purposes. Some tests are more effective than others, so we need to be able to measure

More information

Political Science 15, Winter 2014 Final Review

Political Science 15, Winter 2014 Final Review Political Science 15, Winter 2014 Final Review The major topics covered in class are listed below. You should also take a look at the readings listed on the class website. Studying Politics Scientifically

More information

Real World Evidence in the Treatment of Ovarian Cancer. Elizabeth Eisenhauer MD FRCPC Queen s University

Real World Evidence in the Treatment of Ovarian Cancer. Elizabeth Eisenhauer MD FRCPC Queen s University Real World Evidence in the Treatment of Ovarian Cancer Elizabeth Eisenhauer MD FRCPC Queen s University Outline What is real world evidence (RWE) and how can it shape policy and practice? In ovarian cancer,

More information

Statistical Literacy in the Introductory Psychology Course

Statistical Literacy in the Introductory Psychology Course Statistical Literacy Taskforce 2012, Undergraduate Learning Goals 1 Statistical Literacy in the Introductory Psychology Course Society for the Teaching of Psychology Statistical Literacy Taskforce 2012

More information

Propensity scores: what, why and why not?

Propensity scores: what, why and why not? Propensity scores: what, why and why not? Rhian Daniel, Cardiff University @statnav Joint workshop S3RI & Wessex Institute University of Southampton, 22nd March 2018 Rhian Daniel @statnav/propensity scores:

More information

An Introduction to Epidemiology

An Introduction to Epidemiology An Introduction to Epidemiology Wei Liu, MPH Biostatistics Core Pennington Biomedical Research Center Baton Rouge, LA Last edited: January, 14 th, 2014 TABLE OF CONTENTS Introduction.................................................................

More information

Lecture 9 Internal Validity

Lecture 9 Internal Validity Lecture 9 Internal Validity Objectives Internal Validity Threats to Internal Validity Causality Bayesian Networks Internal validity The extent to which the hypothesized relationship between 2 or more variables

More information

DEFINING THE CASE STUDY Yin, Ch. 1

DEFINING THE CASE STUDY Yin, Ch. 1 Case Study Research DEFINING THE CASE STUDY Yin, Ch. 1 Goals for today are to understand: 1. What is a case study 2. When is it useful 3. Guidelines for designing a case study 4. Identifying key methodological

More information

Dyslipidemia: Lots of Good Evidence, Less Good Interpretation.

Dyslipidemia: Lots of Good Evidence, Less Good Interpretation. Dyslipidemia: Lots of Good Evidence, Less Good Interpretation. G Michael Allan Evidence & CPD Program, ACFP Associate Professor, Dept of Family, U of A. CFPC CoI Templates: Slide 1 Faculty/Presenter Disclosure

More information

Validity and Quantitative Research. What is Validity? What is Validity Cont. RCS /16/04

Validity and Quantitative Research. What is Validity? What is Validity Cont. RCS /16/04 Validity and Quantitative Research RCS 6740 6/16/04 What is Validity? Valid Definition (Dictionary.com): Well grounded; just: a valid objection. Producing the desired results; efficacious: valid methods.

More information

The Research Roadmap Checklist

The Research Roadmap Checklist 1/5 The Research Roadmap Checklist Version: December 1, 2007 All enquires to bwhitworth@acm.org This checklist is at http://brianwhitworth.com/researchchecklist.pdf The element details are explained at

More information

PEER REVIEW HISTORY ARTICLE DETAILS TITLE (PROVISIONAL)

PEER REVIEW HISTORY ARTICLE DETAILS TITLE (PROVISIONAL) PEER REVIEW HISTORY BMJ Open publishes all reviews undertaken for accepted manuscripts. Reviewers are asked to complete a checklist review form (http://bmjopen.bmj.com/site/about/resources/checklist.pdf)

More information

Current Directions in Mediation Analysis David P. MacKinnon 1 and Amanda J. Fairchild 2

Current Directions in Mediation Analysis David P. MacKinnon 1 and Amanda J. Fairchild 2 CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE Current Directions in Mediation Analysis David P. MacKinnon 1 and Amanda J. Fairchild 2 1 Arizona State University and 2 University of South Carolina ABSTRACT

More information

Lecture 4: Research Approaches

Lecture 4: Research Approaches Lecture 4: Research Approaches Lecture Objectives Theories in research Research design approaches ú Experimental vs. non-experimental ú Cross-sectional and longitudinal ú Descriptive approaches How to

More information

Evaluating the Causal Role of Unobserved Variables

Evaluating the Causal Role of Unobserved Variables Evaluating the Causal Role of Unobserved Variables Christian C. Luhmann (christian.luhmann@vanderbilt.edu) Department of Psychology, Vanderbilt University 301 Wilson Hall, Nashville, TN 37203 USA Woo-kyoung

More information

Levine, B. (2007). What does the population attributable fraction mean? Preventing Chronic Disease, 4(1): A14.

Levine, B. (2007). What does the population attributable fraction mean? Preventing Chronic Disease, 4(1): A14. What Does the Population Attributable Fraction Mean? By: Beverly Levine Levine, B. (2007). What does the population attributable fraction mean? Preventing Chronic Disease, 4(1): A14. ***Note: This version

More information

Low-density lipoproteins cause atherosclerotic cardiovascular disease (ASCVD) 1. Evidence from genetic, epidemiologic and clinical studies

Low-density lipoproteins cause atherosclerotic cardiovascular disease (ASCVD) 1. Evidence from genetic, epidemiologic and clinical studies Low-density lipoproteins cause atherosclerotic cardiovascular disease (ASCVD) 1. Evidence from genetic, epidemiologic and clinical studies A Consensus Statement from the European Atherosclerosis Society

More information

95% 2.5% 2.5% +2SD 95% of data will 95% be within of data will 1.96 be within standard deviations 1.96 of sample mean

95% 2.5% 2.5% +2SD 95% of data will 95% be within of data will 1.96 be within standard deviations 1.96 of sample mean Efficient Clinical Trials John H. Powers, MD Senior Medical Scientist SAIC in support of Clinical Collaborative Research Branch NIAID/NIH Introduction Definitions what is a small clinical trial? Review

More information

Confounding and Bias

Confounding and Bias 28 th International Conference on Pharmacoepidemiology and Therapeutic Risk Management Barcelona, Spain August 22, 2012 Confounding and Bias Tobias Gerhard, PhD Assistant Professor, Ernest Mario School

More information

European Federation of Statisticians in the Pharmaceutical Industry (EFSPI)

European Federation of Statisticians in the Pharmaceutical Industry (EFSPI) Page 1 of 14 European Federation of Statisticians in the Pharmaceutical Industry (EFSPI) COMMENTS ON DRAFT FDA Guidance for Industry - Non-Inferiority Clinical Trials Rapporteur: Bernhard Huitfeldt (bernhard.huitfeldt@astrazeneca.com)

More information

To evaluate a single epidemiological article we need to know and discuss the methods used in the underlying study.

To evaluate a single epidemiological article we need to know and discuss the methods used in the underlying study. Critical reading 45 6 Critical reading As already mentioned in previous chapters, there are always effects that occur by chance, as well as systematic biases that can falsify the results in population

More information

Meta-analysis of safety thoughts from CIOMS X

Meta-analysis of safety thoughts from CIOMS X CIOMS Working Group X Meta-analysis of safety thoughts from CIOMS X Stephen.Evans@Lshtm.ac.uk Improving health worldwide www.lshtm.ac.uk Evans: ENCePP CIOMS Meta Analysis 1 Acknowledgements, conflicts,

More information

Module 4 Introduction

Module 4 Introduction Module 4 Introduction Recall the Big Picture: We begin a statistical investigation with a research question. The investigation proceeds with the following steps: Produce Data: Determine what to measure,

More information

Reflection paper on assessment of cardiovascular risk of medicinal products for the treatment of cardiovascular and metabolic diseases Draft

Reflection paper on assessment of cardiovascular risk of medicinal products for the treatment of cardiovascular and metabolic diseases Draft 1 2 3 21 May 2015 EMA/CHMP/50549/2015 Committee for Medicinal Products for Human Use (CHMP) 4 5 6 7 Reflection paper on assessment of cardiovascular risk of medicinal products for the treatment of cardiovascular

More information

Placebo-Controlled Statin Trials

Placebo-Controlled Statin Trials PREVENTION OF CHD WITH LIPID MANAGEMENT AND ASPIRIN: MATCHING TREATMENT TO RISK Robert B. Baron MD MS Professor and Associate Dean UCSF School of Medicine Declaration of full disclosure: No conflict of

More information

University of Wollongong. Research Online. Australian Health Services Research Institute

University of Wollongong. Research Online. Australian Health Services Research Institute University of Wollongong Research Online Australian Health Services Research Institute Faculty of Business 2011 Measurement of error Janet E. Sansoni University of Wollongong, jans@uow.edu.au Publication

More information

Brief introduction to instrumental variables. IV Workshop, Bristol, Miguel A. Hernán Department of Epidemiology Harvard School of Public Health

Brief introduction to instrumental variables. IV Workshop, Bristol, Miguel A. Hernán Department of Epidemiology Harvard School of Public Health Brief introduction to instrumental variables IV Workshop, Bristol, 2008 Miguel A. Hernán Department of Epidemiology Harvard School of Public Health Goal: To consistently estimate the average causal effect

More information

Using negative control outcomes to identify biased study design: A self-controlled case series example. James Weaver 1,2.

Using negative control outcomes to identify biased study design: A self-controlled case series example. James Weaver 1,2. Using negative control outcomes to identify biased study design: A self-controlled case series example James Weaver 1,2 1Janssen Research & Development, LLC, Raritan, NJ, USA 2 Observational Health Data

More information

Summary HTA. HTA-Report Summary

Summary HTA. HTA-Report Summary Summary HTA HTA-Report Summary Prognostic value, clinical effectiveness and cost-effectiveness of high sensitivity C-reactive protein as a marker in primary prevention of major cardiac events Schnell-Inderst

More information

Cardiovascular Disease Prevention: Current Knowledge, Future Directions

Cardiovascular Disease Prevention: Current Knowledge, Future Directions Cardiovascular Disease Prevention: Current Knowledge, Future Directions Daniel Levy, MD Director, Framingham Heart Study Professor of Medicine, Boston University School of Medicine Editor-in-Chief, Journal

More information

UNIT 5 - Association Causation, Effect Modification and Validity

UNIT 5 - Association Causation, Effect Modification and Validity 5 UNIT 5 - Association Causation, Effect Modification and Validity Introduction In Unit 1 we introduced the concept of causality in epidemiology and presented different ways in which causes can be understood

More information

Main objective of Epidemiology. Statistical Inference. Statistical Inference: Example. Statistical Inference: Example

Main objective of Epidemiology. Statistical Inference. Statistical Inference: Example. Statistical Inference: Example Main objective of Epidemiology Inference to a population Example: Treatment of hypertension: Research question (hypothesis): Is treatment A better than treatment B for patients with hypertension? Study

More information

American Medical Women s Association Position Paper on Principals of Women & Coronary Heart Disease

American Medical Women s Association Position Paper on Principals of Women & Coronary Heart Disease American Medical Women s Association Position Paper on Principals of Women & Coronary Heart Disease AMWA is a leader in its dedication to educating all physicians and their patients about heart disease,

More information

Confounding and Interaction

Confounding and Interaction Confounding and Interaction Why did you do clinical research? To find a better diagnosis tool To determine risk factor of disease To identify prognosis factor To evaluate effectiveness of therapy To decide

More information

American Journal of Internal Medicine

American Journal of Internal Medicine American Journal of Internal Medicine 2016; 4(3): 49-59 http://www.sciencepublishinggroup.com/j/ajim doi: 10.11648/j.ajim.20160403.12 ISSN: 2330-4316 (Print); ISSN: 2330-4324 (Online) The Effect of Dose-Reduced

More information

Running head: INDIVIDUAL DIFFERENCES 1. Why to treat subjects as fixed effects. James S. Adelman. University of Warwick.

Running head: INDIVIDUAL DIFFERENCES 1. Why to treat subjects as fixed effects. James S. Adelman. University of Warwick. Running head: INDIVIDUAL DIFFERENCES 1 Why to treat subjects as fixed effects James S. Adelman University of Warwick Zachary Estes Bocconi University Corresponding Author: James S. Adelman Department of

More information

(CORRELATIONAL DESIGN AND COMPARATIVE DESIGN)

(CORRELATIONAL DESIGN AND COMPARATIVE DESIGN) UNIT 4 OTHER DESIGNS (CORRELATIONAL DESIGN AND COMPARATIVE DESIGN) Quasi Experimental Design Structure 4.0 Introduction 4.1 Objectives 4.2 Definition of Correlational Research Design 4.3 Types of Correlational

More information

6. A theory that has been substantially verified is sometimes called a a. law. b. model.

6. A theory that has been substantially verified is sometimes called a a. law. b. model. Chapter 2 Multiple Choice Questions 1. A theory is a(n) a. a plausible or scientifically acceptable, well-substantiated explanation of some aspect of the natural world. b. a well-substantiated explanation

More information

Mendelian Randomization

Mendelian Randomization Mendelian Randomization Drawback with observational studies Risk factor X Y Outcome Risk factor X? Y Outcome C (Unobserved) Confounders The power of genetics Intermediate phenotype (risk factor) Genetic

More information

Epidemiologic Methods and Counting Infections: The Basics of Surveillance

Epidemiologic Methods and Counting Infections: The Basics of Surveillance Epidemiologic Methods and Counting Infections: The Basics of Surveillance Ebbing Lautenbach, MD, MPH, MSCE University of Pennsylvania School of Medicine Nothing to disclose PENN Outline Definitions / Historical

More information

CHECKLIST FOR EVALUATING A RESEARCH REPORT Provided by Dr. Blevins

CHECKLIST FOR EVALUATING A RESEARCH REPORT Provided by Dr. Blevins CHECKLIST FOR EVALUATING A RESEARCH REPORT Provided by Dr. Blevins 1. The Title a. Is it clear and concise? b. Does it promise no more than the study can provide? INTRODUCTION 2. The Problem a. It is clearly

More information

Asian Journal of Research in Biological and Pharmaceutical Sciences Journal home page:

Asian Journal of Research in Biological and Pharmaceutical Sciences Journal home page: Review Article ISSN: 2349 4492 Asian Journal of Research in Biological and Pharmaceutical Sciences Journal home page: www.ajrbps.com REVIEW ON EPIDEMIOLOGICAL STUDY DESIGNS V.J. Divya *1, A. Vikneswari

More information

1. Which one of the following patients does not need to be screened for hyperlipidemia:

1. Which one of the following patients does not need to be screened for hyperlipidemia: Questions: 1. Which one of the following patients does not need to be screened for hyperlipidemia: a) Diabetes mellitus b) Hypertension c) Family history of premature coronary disease (first degree relatives:

More information

The Evidence for Populationwide Reduction in Sodium Intake: Why All the Fuss?

The Evidence for Populationwide Reduction in Sodium Intake: Why All the Fuss? The Evidence for Populationwide Reduction in Sodium Intake: Why All the Fuss? CIA-Harvard Menus of Change National Leadership Summit June 10, 2014 Cambridge, MA General Session IV Lawrence J Appel, MD,

More information

The Practice of Statistics 1 Week 2: Relationships and Data Collection

The Practice of Statistics 1 Week 2: Relationships and Data Collection The Practice of Statistics 1 Week 2: Relationships and Data Collection Video 12: Data Collection - Experiments Experiments are the gold standard since they allow us to make causal conclusions. example,

More information

Gathering. Useful Data. Chapter 3. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc.

Gathering. Useful Data. Chapter 3. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. Gathering Chapter 3 Useful Data Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. Principal Idea: The knowledge of how the data were generated is one of the key ingredients for translating

More information

Chapter 11. Experimental Design: One-Way Independent Samples Design

Chapter 11. Experimental Design: One-Way Independent Samples Design 11-1 Chapter 11. Experimental Design: One-Way Independent Samples Design Advantages and Limitations Comparing Two Groups Comparing t Test to ANOVA Independent Samples t Test Independent Samples ANOVA Comparing

More information

CSC2130: Empirical Research Methods for Software Engineering

CSC2130: Empirical Research Methods for Software Engineering CSC2130: Empirical Research Methods for Software Engineering Steve Easterbrook sme@cs.toronto.edu www.cs.toronto.edu/~sme/csc2130/ 2004-5 Steve Easterbrook. This presentation is available free for non-commercial

More information

Dyslipidemia in women: Who should be treated and how?

Dyslipidemia in women: Who should be treated and how? Dyslipidemia in women: Who should be treated and how? Lale Tokgozoglu, MD, FACC, FESC Professor of Cardiology Hacettepe University Faculty of Medicine Ankara, Turkey. Cause of Death in Women: European

More information

Research Methods & Design Outline. Types of research design How to choose a research design Issues in research design

Research Methods & Design Outline. Types of research design How to choose a research design Issues in research design Research Methods & Design Outline Types of research design How to choose a research design Issues in research design Types of Research Design Correlational Field (survey) Experimental Qualitative Meta-analysis

More information

New Paradigms in Predicting CVD Risk

New Paradigms in Predicting CVD Risk New Paradigms in Predicting CVD Risk Imaging as an Integrator of Lifetime Risk Exposure Michael J. Blaha MD MPH Presented by: Michael J. Blaha September 24, 2014 1 Talk Outline Risk factors vs. Disease

More information

Estrogens vs Testosterone for cardiovascular health and longevity

Estrogens vs Testosterone for cardiovascular health and longevity Estrogens vs Testosterone for cardiovascular health and longevity Panagiota Pietri, MD, PhD, FESC Director of Hypertension Unit Athens Medical Center Athens, Greece Women vs Men Is there a difference in

More information

Biological Models of Anxiety

Biological Models of Anxiety The biomedical model of human health primarily considers physiological factors when attempting to understand illness. When applied to mental disorders, this model assumes that such disorders can be conceptualized

More information

Anatomy of Medical Studies: Part I. Emily D Agostino Epidemiology and Biostatistics CUNY School of Public Health at Hunter College

Anatomy of Medical Studies: Part I. Emily D Agostino Epidemiology and Biostatistics CUNY School of Public Health at Hunter College Anatomy of Medical Studies: Part I!! Emily D Agostino Epidemiology and Biostatistics CUNY School of Public Health at Hunter College I. Standard format of a Medical Study Abstract (quick overview: what

More information

Using directed acyclic graphs to guide analyses of neighbourhood health effects: an introduction

Using directed acyclic graphs to guide analyses of neighbourhood health effects: an introduction University of Michigan, Ann Arbor, Michigan, USA Correspondence to: Dr A V Diez Roux, Center for Social Epidemiology and Population Health, 3rd Floor SPH Tower, 109 Observatory St, Ann Arbor, MI 48109-2029,

More information

Basis for Conclusions: ISA 230 (Redrafted), Audit Documentation

Basis for Conclusions: ISA 230 (Redrafted), Audit Documentation Basis for Conclusions: ISA 230 (Redrafted), Audit Documentation Prepared by the Staff of the International Auditing and Assurance Standards Board December 2007 , AUDIT DOCUMENTATION This Basis for Conclusions

More information

ICH E9(R1) Technical Document. Estimands and Sensitivity Analysis in Clinical Trials STEP I TECHNICAL DOCUMENT TABLE OF CONTENTS

ICH E9(R1) Technical Document. Estimands and Sensitivity Analysis in Clinical Trials STEP I TECHNICAL DOCUMENT TABLE OF CONTENTS ICH E9(R1) Technical Document Estimands and Sensitivity Analysis in Clinical Trials STEP I TECHNICAL DOCUMENT TABLE OF CONTENTS A.1. Purpose and Scope A.2. A Framework to Align Planning, Design, Conduct,

More information

HOW STATISTICS IMPACT PHARMACY PRACTICE?

HOW STATISTICS IMPACT PHARMACY PRACTICE? HOW STATISTICS IMPACT PHARMACY PRACTICE? CPPD at NCCR 13 th June, 2013 Mohamed Izham M.I., PhD Professor in Social & Administrative Pharmacy Learning objective.. At the end of the presentation pharmacists

More information

Systematic Reviews. Simon Gates 8 March 2007

Systematic Reviews. Simon Gates 8 March 2007 Systematic Reviews Simon Gates 8 March 2007 Contents Reviewing of research Why we need reviews Traditional narrative reviews Systematic reviews Components of systematic reviews Conclusions Key reference

More information