Intelligent Agents. Instructor: Tsung-Che Chiang

Size: px
Start display at page:

Download "Intelligent Agents. Instructor: Tsung-Che Chiang"

Transcription

1 Intelligent Agents Instructor: Tsung-Che Chiang Department of Computer Science and Information Engineering National Taiwan Normal University Artificial Intelligence, Spring, 2010 Outline Agents & Environments Rationality Task Environments Agent Structures Summary 2 1

2 What is AI Thinking humanly: The cognitive modeling approach Acting humanly: The Turing Test approach Thinking rationally: The laws of thought (logical) approach Acting rationally: The rational agent approach A rational agent is one that acts so as to achieve the best outcome or, when there is uncertainty, the best expected outcome. It is more general than laws of thought approach. It is more amenable than approaches based on human behavior. 3 Agents & Environments An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment thorough actuators. examples: robot agent perceives through cameras, infrared, etc. acts through arms, legs, etc. software agent perceives through keyboard, mouse, etc. acts through monitors, speakers, etc. 4 2

3 Agents & Environments The percept sequence is the complete history of everything the agent has ever perceived. An agent s behavior is described by the agent function that maps any given percept sequence to an action. It is an abstract mathematical description. The agent function is an abstract mathematical description; the agent program is a concrete implementation. 5 Agents & Environments Vacuum-cleaner world What is the right way to fill out the table? Tabulation of a simple agent function for the vacuum-cleaner world. Artificial Intelligence: A Modern Approach, 2nd ed., Figure 2.2 &

4 Rationality A rational agent is one that does the right thing. The right action is the one that will cause the agent to be the most successful. We need some way to measure success. 7 Rationality A performance measure embodies the criterion for success of an agent s behavior. The amount of dirt cleaned up in a single 8-hour shift? The number of clean square at each time step? The selection of a performance measure is not always easy. Maximum? Average? Multiobjective decision making/optimization 8 4

5 Rationality What is rational depends on four things: Performance measure Agent s prior knowledge of the environment The actions that the agent can perform The agent s percept sequence to date 9 Rationality Definition of a rational agent: For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has. 10 5

6 Rationality Is this a rational agent? (Dirty then suck; otherwise, move to the other square.) It depends! Artificial Intelligence: A Modern Approach, 2nd ed., Figure 2.2 & Rationality Under the following assumptions, it is. The performance measure awards 1 point for each clean square at each time step over a lifetime of 1000 time steps. The geography of the environment is known a priori. Clean squares stay clean. (knowledge) The only available actions are Left, Right, Suck, and NoOp. The agent correctly perceives its location and whether that location contains dirt. 12 6

7 Rationality In the following situations, it is not. The performance measure includes a penalty of 1 point for each movement. What if the clean squares become dirty again? The geography is unknown. 13 Omniscience, Learning, & Autonomy We need to distinguish between rationality and omniscience. e.g. Final Destination series The rational choice depends only on the percept sequence to date. Doing actions to modify future percepts (information gathering) is an important part of rationality. Rationality maximizes expected performance, while perfection maximizes actual performance. 14 7

8 Omniscience, Learning, & Autonomy The rational agent needs not only to gather information but also to learn from what it perceives. Successful agents split the task of computing the agent function into three periods: Design phase Acting phase Learning phase 15 Omniscience, Learning, & Autonomy A rational agent should be autonomous it should learn what it can do to compensate for partial or incorrect prior knowledge. Just as evolution provides animals with enough built-in reflexes, it would be reasonable to provide an agent with some initial knowledge and the learning ability. 16 8

9 Task Environments Task environments are essentially the problems to which rational agents are solutions. In designing an agent, the first step must always be to specify the task environment as fully as possible. PEAS: Performance, Environment, Actuators, and Sensors. 17 Task Environments Example: Automated taxi driver Agent Type Performance Measure Environment Actuators Sensors Taxi driver Safe, fast, legal, comfortable, profits, etc. Roads, pedestrians, animals, customers, etc. Steering, accelerator, brake, signal, horn, display Cameras, sonar, speedometer, GPS, odometer, accelerometer, engine sensors, keyboard 18 9

10 Task Environments Some other examples Agent Type Performance Measure Environment Actuators Sensors Part-picking robot Percentage of parts in correct bins Conveyor belt with parts; bins Jointed arm and hand Camera, joint angle sensors Interactive English tutor Maximize student s score on test Set of students, testing agency Display exercises, suggestions, corrections Keyboard entry 19 Properties of Environments Fully observable vs. partially observable Fully observable: the sensors detect all aspects that are relevant to the choice of action. The agent doesn t need internal states in fully observable environments. An environment might be partially observable due to missing data noise & inaccuracy 20 10

11 Properties of Environments Deterministic vs. stochastic Deterministic: the next state of the environment is completely determined by the current state and the action executed The aforementioned vacuum world is deterministic, whereas taxi driving is stochastic. Strategic: the environment is deterministic except for the actions of other agents 21 Properties of Environments Episodic vs. sequential Each episode consists of the agent perceiving and then performing an action. In episodic environments, the choice of action in each episode depends only on the episode itself. E.g. agent spotting defective parts on an assembly line Episodic environments are much simpler because the agent does not need to look ahead

12 Properties of Environments Dynamic vs. static Dynamic: the environment changes while an agent is deliberating. Semidynamic: the environment itself does not change but the performance score does. Static environments are easy to deal with because the agent need not keep looking at the world nor need it worry about the passage of time. 23 Properties of Environments Discrete vs. continuous The discrete/continuous distinction can be applied to the state of the environment, the way time is handled, and the percepts and actions of the agent. Chess has discrete states, percepts, and actions. Taxi driving has continuous state, time, and actions

13 Properties of Environments Single agent vs. multiagent When does an agent A treat an object B as an agent? when B s behavior is to maximize a performance measure whose value depends on A s behavior Chess is a competitive multiagent environment. Taxi driving is partially competitive and partially cooperative. 25 Properties of Environments 可見度掌握度關聯性變動度 Task Environment Observable Determin -istic Episodic Static Discrete Agents Crossword puzzle Fully D Static Discrete Single Chess with a clock Fully Strategic Semi Discrete Poker Static Discrete Taxi driving Part-picking robot Episodic Single 26 13

14 Properties of Environments In the table on previous slide, the answers are not always fixed. e.g. Exceptions to observability of chess Some other answers depend on how the task environment is defined. e.g. Each game can be viewed as an episode, but decision making within a single game is certainly sequential. 27 Agent Structure Agent = architecture + program The job of AI is to design the agent program that implements the agent function mapping percepts to actions. The architecture 硬體 軟體 makes the percepts from the sensors available to the program, runs the program, and feeds the program s action choices to the actuators

15 Agent Structure Agent program vs. agent function Agent program takes the current percept as input, and agent function takes the entire percept history. If the agent s actions depend on the entire percept sequence, the agent will have to remember the percepts. 29 Agent Structure A trivial agent program that keeps track of the percept sequence, and then uses it to index into a table of actions Artificial Intelligence: A Modern Approach, 2nd ed., Figure

16 Agent Structure Why is the table-driven approach doomed to failure? There will be P + P 2 + P P T entries, where P is the number of possible percepts and T is the lifetime of the agent. e.g. The table of chess has at least entires. The daunting size of these tables means no space to store the table no time to create the table no agent could ever learn the table from experience no guidance about how to fill in the table entries 31 Agent Structure The TABLE-DRIVEN-AGENT does implement the desired agent function. However, the key challenge of AI is to find out how to write programs that produce rational behavior from a small amount of code rather than from a large number of table entries

17 Agent Structure Four basic kinds of agent programs Simple reflex agents Model-based reflex agents Goal-based agents Utility-based agents After introducing the above four kinds of agent programs, we then explain how to convert all these into learning agents. 33 Simple Reflex Agents They select actions based only on the current percept, ignoring the rest of the percept history. Example: Artificial Intelligence: A Modern Approach, 2nd ed., Figure

18 Simple Reflex Agents The simple reflex vacuum agent program is very small compared to the table-driven agent. Reduction1: Ignoring the percept history. Reduction2: Ignoring the location when it is dirty. Artificial Intelligence: A Modern Approach, 2nd ed., Figure 2.3 & Simple Reflex Agents Condition-action rules (if-then rules) if car-in-front-is-braking then initiate-braking Human have many such connections, some of which are learned responses (driving) some of which are innate reflexes (blinking when something approaches the eye) 36 18

19 Simple Reflex Agents Schematic diagram Artificial Intelligence: A Modern Approach, 2nd ed., Figure Simple Reflex Agents Agent program Artificial Intelligence: A Modern Approach, 2nd ed., Figure

20 Simple Reflex Agents They are simple but of very limited intelligence. 看到黑影就開槍 They will work only if the environment is fully observable. Infinite loops are often unavoidable for them in partially observable environments. e.g. the vacuum agent without a location sensor Artificial Intelligence: A Modern Approach, 2nd ed., Figure Simple Reflex Agents Escape from infinite loop is possible if the agent can randomize its actions. A randomized simple reflex agent might outperform a deterministic simple reflex agent. The randomized behavior can be rational in some multi-agent environment. But in most single-agent cases we can do much better with more sophisticated deterministic agents

21 Model-based Reflex Agents The most effective way to handle partial observability is for the agent to keep track of the part of the world it can t see now maintain some sort of internal state that depends on the percept history. 41 Model-based Reflex Agents Updating the internal state requires the knowledge about how the world evolves independently of the agent how the agent s own actions affect the world This knowledge about how the world works is called a model of the world

22 Model-based Reflex Agents Schematic diagram Artificial Intelligence: A Modern Approach, 2nd ed., Figure Model-based Reflex Agents Agent program Artificial Intelligence: A Modern Approach, 2nd ed., Figure

23 Goal-based Agents Knowing about the current state is not always enough to decide what to do. The agent needs some sort of goal information that describes situations that are desirable. 45 Goal-based Agents Schema diagram Artificial Intelligence: A Modern Approach, 2nd ed., Figure

24 Goal-based Agents The goal-based decision making is different from the condition-action rules in that the future is considered. What will happen if I do that? Will that make me satisfied? 47 Goal-based Agents Reflex vs. goal-based The reflex agent brakes when it sees brake lights. A goal-based agent could reason that if the car in front has its brake lights on, it will slow down. Given the way the world usually evolves, the only action that will achieve the goal of not hitting other cars is to brake

25 Goal-based Agents Although the goal-based agent appears less efficient, it is more flexible because the knowledge that supports its decisions is represented explicitly and can be modified. The goal-based agent s behavior can easily be changed to go to a different location, but the reflex agent s rules work only for a single destination. 49 Goal-based Agents Sometimes goal-based selection is not trivial when the agent has to find a long sequence of actions to achieve the goal. Search and planning are devoted to this

26 Utility-based Agents Goals alone are not really enough to generate high-quality behavior in most environments. Goals just roughly distinguish between happy and unhappy. A performance measure should reflect the degree of happiness. Utility functions tradeoff between conflicting objectives likelihood of success 51 Utility-based Agents Schema diagram Artificial Intelligence: A Modern Approach, 2nd ed., Figure

27 Learning Agents Learning is now the preferred method for creating state-of-the-art systems. Manual programming is too slow and tiring. Learning allows the agent to operate in initially unknown environments and to become more competent. 53 Learning Agents Four conceptual components learning element: making improvement performance element: aforementioned agent critic: evaluating how the agent is doing problem generator: suggesting actions that will lead to new and informative experiences 54 27

28 Learning Agents Schema diagram Artificial Intelligence: A Modern Approach, 2nd ed., Figure Learning Agents The design of the learning element depends very much on the design of the performance element. Given an agent design, learning mechanism can be constructed to improve every part of the agent. how the world evolves what my actions do if-then rules etc

29 Learning Agents The critic is necessary because the percepts themselves provide no indication of the agent s success. The performance standard distinguishes part of the incoming percept as a reward (or penalty). The problem generator is responsible for suggesting actions that will lead to new and informative experiences. 57 Learning Agents Example: the automated driver Shocking language Bad action Try out the brakes on different road surfaces Make a quick left turn across three lanes 58 29

30 Learning Agents Learning is a process of modification of each component to bring them into closer agreement with the available feedback information. The simplest case is to learn from the percept sequence. Observation of pairs of successive states of the environment can allow the agent to learn How the world evolves. 59 Summary An agent is something that perceives and acts in an environment. The agent function specifies the action in response to any percept sequence. A rational agent acts to maximize the expected value of the performance measure given the percept sequence and candidate actions

31 Summary A task environment specifies the performance measure, environment, actuators, and sensors. Task environments vary along several dimensions. The agent program implements the agent function. 61 Summary There exists a variety of agent-program designs. simple reflex agents model-based agents goal-based agents utility-based agents All agents can improve their performance through learning

Intelligent Agents. Instructor: Tsung-Che Chiang

Intelligent Agents. Instructor: Tsung-Che Chiang Intelligent Agents Instructor: Tsung-Che Chiang tcchiang@ieee.org Department of Computer Science and Information Engineering National Taiwan Normal University Artificial Intelligence, Spring, 2010 Outline

More information

Intelligent Agents. Soleymani. Artificial Intelligence: A Modern Approach, Chapter 2

Intelligent Agents. Soleymani. Artificial Intelligence: A Modern Approach, Chapter 2 Intelligent Agents CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Soleymani Artificial Intelligence: A Modern Approach, Chapter 2 Outline Agents and environments

More information

Chapter 2: Intelligent Agents

Chapter 2: Intelligent Agents Chapter 2: Intelligent Agents Outline Last class, introduced AI and rational agent Today s class, focus on intelligent agents Agent and environments Nature of environments influences agent design Basic

More information

Agents and Environments

Agents and Environments Agents and Environments Berlin Chen 2004 Reference: 1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Chapter 2 AI 2004 Berlin Chen 1 What is an Agent An agent interacts with its

More information

CS 331: Artificial Intelligence Intelligent Agents

CS 331: Artificial Intelligence Intelligent Agents CS 331: Artificial Intelligence Intelligent Agents 1 General Properties of AI Systems Sensors Reasoning Actuators Percepts Actions Environment This part is called an agent. Agent: anything that perceives

More information

CS 331: Artificial Intelligence Intelligent Agents

CS 331: Artificial Intelligence Intelligent Agents CS 331: Artificial Intelligence Intelligent Agents 1 General Properties of AI Systems Sensors Reasoning Actuators Percepts Actions Environment This part is called an agent. Agent: anything that perceives

More information

Intelligent Agents. Outline. Agents. Agents and environments

Intelligent Agents. Outline. Agents. Agents and environments Outline Intelligent Agents Chapter 2 Source: AI: A Modern Approach, 2 nd Ed Stuart Russell and Peter Norvig Agents and environments Rationality (Performance measure, Environment, Actuators, Sensors) Environment

More information

Intelligent Agents. Chapter 2 ICS 171, Fall 2009

Intelligent Agents. Chapter 2 ICS 171, Fall 2009 Intelligent Agents Chapter 2 ICS 171, Fall 2009 Discussion \\Why is the Chinese room argument impractical and how would we have to change the Turing test so that it is not subject to this criticism? Godel

More information

CS 331: Artificial Intelligence Intelligent Agents. Agent-Related Terms. Question du Jour. Rationality. General Properties of AI Systems

CS 331: Artificial Intelligence Intelligent Agents. Agent-Related Terms. Question du Jour. Rationality. General Properties of AI Systems General Properties of AI Systems CS 331: Artificial Intelligence Intelligent Agents Sensors Reasoning Actuators Percepts Actions Environmen nt This part is called an agent. Agent: anything that perceives

More information

Artificial Intelligence. Intelligent Agents

Artificial Intelligence. Intelligent Agents Artificial Intelligence Intelligent Agents Agent Agent is anything that perceives its environment through sensors and acts upon that environment through effectors. Another definition later (Minsky) Humans

More information

Intelligent Agents. BBM 405 Fundamentals of Artificial Intelligence Pinar Duygulu Hacettepe University. Slides are mostly adapted from AIMA

Intelligent Agents. BBM 405 Fundamentals of Artificial Intelligence Pinar Duygulu Hacettepe University. Slides are mostly adapted from AIMA 1 Intelligent Agents BBM 405 Fundamentals of Artificial Intelligence Pinar Duygulu Hacettepe University Slides are mostly adapted from AIMA Outline 2 Agents and environments Rationality PEAS (Performance

More information

Dr. Mustafa Jarrar. Chapter 2 Intelligent Agents. Sina Institute, University of Birzeit

Dr. Mustafa Jarrar. Chapter 2 Intelligent Agents. Sina Institute, University of Birzeit Lecture Notes, Advanced Artificial Intelligence (SCOM7341) Sina Institute, University of Birzeit 2 nd Semester, 2012 Advanced Artificial Intelligence (SCOM7341) Chapter 2 Intelligent Agents Dr. Mustafa

More information

CS 771 Artificial Intelligence. Intelligent Agents

CS 771 Artificial Intelligence. Intelligent Agents CS 771 Artificial Intelligence Intelligent Agents What is AI? Views of AI fall into four categories 1. Thinking humanly 2. Acting humanly 3. Thinking rationally 4. Acting rationally Acting/Thinking Humanly/Rationally

More information

Intelligent Autonomous Agents. Ralf Möller, Rainer Marrone Hamburg University of Technology

Intelligent Autonomous Agents. Ralf Möller, Rainer Marrone Hamburg University of Technology Intelligent Autonomous Agents Ralf Möller, Rainer Marrone Hamburg University of Technology Lab class Tutor: Rainer Marrone Time: Monday 12:15-13:00 Locaton: SBS93 A0.13.1/2 w Starting in Week 3 Literature

More information

AI: Intelligent Agents. Chapter 2

AI: Intelligent Agents. Chapter 2 AI: Intelligent Agents Chapter 2 Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types Agents An agent is anything

More information

Web-Mining Agents Cooperating Agents for Information Retrieval

Web-Mining Agents Cooperating Agents for Information Retrieval Web-Mining Agents Cooperating Agents for Information Retrieval Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Karsten Martiny (Übungen) Literature Chapters 2, 6, 13, 15-17

More information

Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) Computer Science Department

Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) Computer Science Department Princess Nora University Faculty of Computer & Information Systems 1 ARTIFICIAL INTELLIGENCE (CS 370D) Computer Science Department (CHAPTER-3) INTELLIGENT AGENTS (Course coordinator) CHAPTER OUTLINE What

More information

Artificial Intelligence Agents and Environments 1

Artificial Intelligence Agents and Environments 1 Artificial Intelligence and Environments 1 Instructor: Dr. B. John Oommen Chancellor s Professor Fellow: IEEE; Fellow: IAPR School of Computer Science, Carleton University, Canada. 1 The primary source

More information

Introduction to Artificial Intelligence 2 nd semester 2016/2017. Chapter 2: Intelligent Agents

Introduction to Artificial Intelligence 2 nd semester 2016/2017. Chapter 2: Intelligent Agents Introduction to Artificial Intelligence 2 nd semester 2016/2017 Chapter 2: Intelligent Agents Mohamed B. Abubaker Palestine Technical College Deir El-Balah 1 Agents and Environments An agent is anything

More information

Agents & Environments Chapter 2. Mausam (Based on slides of Dan Weld, Dieter Fox, Stuart Russell)

Agents & Environments Chapter 2. Mausam (Based on slides of Dan Weld, Dieter Fox, Stuart Russell) Agents & Environments Chapter 2 Mausam (Based on slides of Dan Weld, Dieter Fox, Stuart Russell) Outline Agents and environments Rationality PEAS specification Environment types Agent types D. Weld, D.

More information

Artificial Intelligence CS 6364

Artificial Intelligence CS 6364 Artificial Intelligence CS 6364 Professor Dan Moldovan Section 2 Intelligent Agents Intelligent Agents An agent is a thing (e.g. program, or system) that can be viewed as perceiving its environment and

More information

Web-Mining Agents Cooperating Agents for Information Retrieval

Web-Mining Agents Cooperating Agents for Information Retrieval Web-Mining Agents Cooperating Agents for Information Retrieval Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Tanya Braun (Übungen) Organizational Issues: Assignments Start:

More information

Agents. This course is about designing intelligent agents Agents and environments. Rationality. The vacuum-cleaner world

Agents. This course is about designing intelligent agents Agents and environments. Rationality. The vacuum-cleaner world This course is about designing intelligent agents and environments Rationality The vacuum-cleaner world The concept of rational behavior. Environment types Agent types 1 An agent is an entity that perceives

More information

Agents & Environments Chapter 2. Mausam (Based on slides of Dan Weld, Dieter Fox, Stuart Russell)

Agents & Environments Chapter 2. Mausam (Based on slides of Dan Weld, Dieter Fox, Stuart Russell) Agents & Environments Chapter 2 Mausam (Based on slides of Dan Weld, Dieter Fox, Stuart Russell) Outline Agents and environments Rationality PEAS specification Environment types Agent types 2 Agents An

More information

Intelligent Agents. CmpE 540 Principles of Artificial Intelligence

Intelligent Agents. CmpE 540 Principles of Artificial Intelligence CmpE 540 Principles of Artificial Intelligence Intelligent Agents Pınar Yolum pinar.yolum@boun.edu.tr Department of Computer Engineering Boğaziçi University 1 Chapter 2 (Based mostly on the course slides

More information

22c:145 Artificial Intelligence

22c:145 Artificial Intelligence 22c:145 Artificial Intelligence Fall 2005 Intelligent Agents Cesare Tinelli The University of Iowa Copyright 2001-05 Cesare Tinelli and Hantao Zhang. a a These notes are copyrighted material and may not

More information

Artificial Intelligence Lecture 7

Artificial Intelligence Lecture 7 Artificial Intelligence Lecture 7 Lecture plan AI in general (ch. 1) Search based AI (ch. 4) search, games, planning, optimization Agents (ch. 8) applied AI techniques in robots, software agents,... Knowledge

More information

Outline. Chapter 2 Agents & Environments. Agents. Types of Agents: Immobots

Outline. Chapter 2 Agents & Environments. Agents. Types of Agents: Immobots Outline Chapter 2 Agents & Environments Agents and environments Rationality PEAS specification Environment types Agent types 2 Agents An agent is anything that can be viewed as perceiving its environment

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Intelligent Agents Chapter 2 & 27 What is an Agent? An intelligent agent perceives its environment with sensors and acts upon that environment through actuators 2 Examples of Agents

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 2. Rational Agents Nature and Structure of Rational Agents and Their Environments Wolfram Burgard, Bernhard Nebel and Martin Riedmiller Albert-Ludwigs-Universität

More information

Outline for Chapter 2. Agents. Agents. Agents and environments. Vacuum- cleaner world. A vacuum- cleaner agent 8/27/15

Outline for Chapter 2. Agents. Agents. Agents and environments. Vacuum- cleaner world. A vacuum- cleaner agent 8/27/15 Outline for Chapter 2 Agents Dr. Melanie Mar/n CS 4480 Agents and environments Ra/onality (Performance measure, Environment, Actuators, Sensors) Agent types Agents Agents and environments An agent is anything

More information

Contents. Foundations of Artificial Intelligence. Agents. Rational Agents

Contents. Foundations of Artificial Intelligence. Agents. Rational Agents Contents Foundations of Artificial Intelligence 2. Rational s Nature and Structure of Rational s and Their s Wolfram Burgard, Bernhard Nebel, and Martin Riedmiller Albert-Ludwigs-Universität Freiburg May

More information

Intelligent Agents. Chapter 2

Intelligent Agents. Chapter 2 Intelligent Agents Chapter 2 Outline Agents and environments Rationality Task environment: PEAS: Performance measure Environment Actuators Sensors Environment types Agent types Agents and Environments

More information

Artificial Intelligence Intelligent agents

Artificial Intelligence Intelligent agents Artificial Intelligence Intelligent agents Peter Antal antal@mit.bme.hu A.I. September 11, 2015 1 Agents and environments. The concept of rational behavior. Environment properties. Agent structures. Decision

More information

Intelligent Agents. Russell and Norvig: Chapter 2

Intelligent Agents. Russell and Norvig: Chapter 2 Intelligent Agents Russell and Norvig: Chapter 2 Intelligent Agent? sensors agent actuators percepts actions environment Definition: An intelligent agent perceives its environment via sensors and acts

More information

Lecture 2 Agents & Environments (Chap. 2) Outline

Lecture 2 Agents & Environments (Chap. 2) Outline Lecture 2 Agents & Environments (Chap. 2) Based on slides by UW CSE AI faculty, Dan Klein, Stuart Russell, Andrew Moore Outline Agents and environments Rationality PEAS specification Environment types

More information

Agents. Environments Multi-agent systems. January 18th, Agents

Agents. Environments Multi-agent systems. January 18th, Agents Plan for the 2nd hour What is an agent? EDA132: Applied Artificial Intelligence (Chapter 2 of AIMA) PEAS (Performance measure, Environment, Actuators, Sensors) Agent architectures. Jacek Malec Dept. of

More information

Agents and State Spaces. CSCI 446: Artificial Intelligence

Agents and State Spaces. CSCI 446: Artificial Intelligence Agents and State Spaces CSCI 446: Artificial Intelligence Overview Agents and environments Rationality Agent types Specifying the task environment Performance measure Environment Actuators Sensors Search

More information

Rational Agents (Chapter 2)

Rational Agents (Chapter 2) Rational Agents (Chapter 2) Agents An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators Example: Vacuum-Agent Percepts:

More information

KECERDASAN BUATAN 3. By Sirait. Hasanuddin Sirait, MT

KECERDASAN BUATAN 3. By Sirait. Hasanuddin Sirait, MT KECERDASAN BUATAN 3 By @Ir.Hasanuddin@ Sirait Why study AI Cognitive Science: As a way to understand how natural minds and mental phenomena work e.g., visual perception, memory, learning, language, etc.

More information

How do you design an intelligent agent?

How do you design an intelligent agent? Intelligent Agents How do you design an intelligent agent? Definition: An intelligent agent perceives its environment via sensors and acts rationally upon that environment with its effectors. A discrete

More information

Intelligent Agents. Philipp Koehn. 16 February 2017

Intelligent Agents. Philipp Koehn. 16 February 2017 Intelligent Agents Philipp Koehn 16 February 2017 Agents and Environments 1 Agents include humans, robots, softbots, thermostats, etc. The agent function maps from percept histories to actions: f : P A

More information

Agents. Formalizing Task Environments. What s an agent? The agent and the environment. Environments. Example: the automated taxi driver (PEAS)

Agents. Formalizing Task Environments. What s an agent? The agent and the environment. Environments. Example: the automated taxi driver (PEAS) What s an agent? Russell and Norvig: An agent is anything that can be viewed as perceiving its environment through sensors and acting on that environment through actuators. (p. 32) Examples: The agent

More information

CS324-Artificial Intelligence

CS324-Artificial Intelligence CS324-Artificial Intelligence Lecture 3: Intelligent Agents Waheed Noor Computer Science and Information Technology, University of Balochistan, Quetta, Pakistan Waheed Noor (CS&IT, UoB, Quetta) CS324-Artificial

More information

Agents and Environments. Stephen G. Ware CSCI 4525 / 5525

Agents and Environments. Stephen G. Ware CSCI 4525 / 5525 Agents and Environments Stephen G. Ware CSCI 4525 / 5525 Agents An agent (software or hardware) has: Sensors that perceive its environment Actuators that change its environment Environment Sensors Actuators

More information

Vorlesung Grundlagen der Künstlichen Intelligenz

Vorlesung Grundlagen der Künstlichen Intelligenz Vorlesung Grundlagen der Künstlichen Intelligenz Reinhard Lafrenz / Prof. A. Knoll Robotics and Embedded Systems Department of Informatics I6 Technische Universität München www6.in.tum.de lafrenz@in.tum.de

More information

What is AI? The science of making machines that: Think rationally. Think like people. Act like people. Act rationally

What is AI? The science of making machines that: Think rationally. Think like people. Act like people. Act rationally What is AI? The science of making machines that: Think like people Think rationally Act like people Act rationally Fundamental question for this lecture (and really this whole AI field!): How do you turn

More information

Agents and Environments

Agents and Environments Artificial Intelligence Programming s and s Chris Brooks 3-2: Overview What makes an agent? Defining an environment Types of agent programs 3-3: Overview What makes an agent? Defining an environment Types

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence COMP-241, Level-6 Mohammad Fahim Akhtar, Dr. Mohammad Hasan Department of Computer Science Jazan University, KSA Chapter 2: Intelligent Agents In which we discuss the nature of

More information

Overview. What is an agent?

Overview. What is an agent? Artificial Intelligence Programming s and s Chris Brooks Overview What makes an agent? Defining an environment Overview What makes an agent? Defining an environment Department of Computer Science University

More information

Solutions for Chapter 2 Intelligent Agents

Solutions for Chapter 2 Intelligent Agents Solutions for Chapter 2 Intelligent Agents 2.1 This question tests the student s understanding of environments, rational actions, and performance measures. Any sequential environment in which rewards may

More information

Ar#ficial Intelligence

Ar#ficial Intelligence Ar#ficial Intelligence Lecture 2 Vibhav Gogate The University of Texas at Dallas Some material courtesy of Luke Zettlemoyer, Dan Klein, Dan Weld, Alex Ihler and Stuart Russell Announcements Project 0 is

More information

AI Programming CS F-04 Agent Oriented Programming

AI Programming CS F-04 Agent Oriented Programming AI Programming CS662-2008F-04 Agent Oriented Programming David Galles Department of Computer Science University of San Francisco 04-0: Agents & Environments What is an Agent What is an Environment Types

More information

Module 1. Introduction. Version 1 CSE IIT, Kharagpur

Module 1. Introduction. Version 1 CSE IIT, Kharagpur Module 1 Introduction Lesson 2 Introduction to Agent 1.3.1 Introduction to Agents An agent acts in an environment. Percepts Agent Environment Actions An agent perceives its environment through sensors.

More information

Agents and State Spaces. CSCI 446: Ar*ficial Intelligence Keith Vertanen

Agents and State Spaces. CSCI 446: Ar*ficial Intelligence Keith Vertanen Agents and State Spaces CSCI 446: Ar*ficial Intelligence Keith Vertanen Overview Agents and environments Ra*onality Agent types Specifying the task environment Performance measure Environment Actuators

More information

Rational Agents (Ch. 2)

Rational Agents (Ch. 2) Rational Agents (Ch. 2) Extra credit! Occasionally we will have in-class activities for extra credit (+3%) You do not need to have a full or correct answer to get credit, but you do need to attempt the

More information

CS343: Artificial Intelligence

CS343: Artificial Intelligence CS343: Artificial Intelligence Introduction: Part 2 Prof. Scott Niekum University of Texas at Austin [Based on slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All materials

More information

Agents. Robert Platt Northeastern University. Some material used from: 1. Russell/Norvig, AIMA 2. Stacy Marsella, CS Seif El-Nasr, CS4100

Agents. Robert Platt Northeastern University. Some material used from: 1. Russell/Norvig, AIMA 2. Stacy Marsella, CS Seif El-Nasr, CS4100 Agents Robert Platt Northeastern University Some material used from: 1. Russell/Norvig, AIMA 2. Stacy Marsella, CS4100 3. Seif El-Nasr, CS4100 What is an Agent? Sense Agent Environment Act What is an Agent?

More information

Rational Agents (Ch. 2)

Rational Agents (Ch. 2) Rational Agents (Ch. 2) Rational agent An agent/robot must be able to perceive and interact with the environment A rational agent is one that always takes the best action (possibly expected best) Agent

More information

COMP329 Robotics and Autonomous Systems Lecture 15: Agents and Intentions. Dr Terry R. Payne Department of Computer Science

COMP329 Robotics and Autonomous Systems Lecture 15: Agents and Intentions. Dr Terry R. Payne Department of Computer Science COMP329 Robotics and Autonomous Systems Lecture 15: Agents and Intentions Dr Terry R. Payne Department of Computer Science General control architecture Localisation Environment Model Local Map Position

More information

AGENT-BASED SYSTEMS. What is an agent? ROBOTICS AND AUTONOMOUS SYSTEMS. Today. that environment in order to meet its delegated objectives.

AGENT-BASED SYSTEMS. What is an agent? ROBOTICS AND AUTONOMOUS SYSTEMS. Today. that environment in order to meet its delegated objectives. ROBOTICS AND AUTONOMOUS SYSTEMS Simon Parsons Department of Computer Science University of Liverpool LECTURE 16 comp329-2013-parsons-lect16 2/44 Today We will start on the second part of the course Autonomous

More information

PART - A 1. Define Artificial Intelligence formulated by Haugeland. The exciting new effort to make computers think machines with minds in the full and literal sense. 2. Define Artificial Intelligence

More information

Definitions. The science of making machines that: This slide deck courtesy of Dan Klein at UC Berkeley

Definitions. The science of making machines that: This slide deck courtesy of Dan Klein at UC Berkeley Definitions The science of making machines that: Think like humans Think rationally Act like humans Act rationally This slide deck courtesy of Dan Klein at UC Berkeley Acting Like Humans? Turing (1950)

More information

What is AI? The science of making machines that:

What is AI? The science of making machines that: What is AI? The science of making machines that: Think like humans Think rationally Act like humans Act rationally Thinking Like Humans? The cognitive science approach: 1960s ``cognitive revolution'':

More information

1 What is an Agent? CHAPTER 2: INTELLIGENT AGENTS

1 What is an Agent? CHAPTER 2: INTELLIGENT AGENTS 1 What is an Agent? CHAPTER 2: INTELLIGENT AGENTS http://www.csc.liv.ac.uk/ mjw/pubs/imas/ The main point about agents is they are autonomous: capable of acting independently, exhibiting control over their

More information

Silvia Rossi. Agent as Intentional Systems. Lezione n. Corso di Laurea: Informatica. Insegnamento: Sistemi multi-agente.

Silvia Rossi. Agent as Intentional Systems. Lezione n. Corso di Laurea: Informatica. Insegnamento: Sistemi multi-agente. Silvia Rossi Agent as Intentional Systems 2 Lezione n. Corso di Laurea: Informatica Insegnamento: Sistemi multi-agente Email: silrossi@unina.it A.A. 2014-2015 Agenti e Ambienti (RN, WS) 2 Environments

More information

GRUNDZÜGER DER ARTIFICIAL INTELLIGENCE

GRUNDZÜGER DER ARTIFICIAL INTELLIGENCE GRUNDZÜGER DER ARTIFICIAL INTELLIGENCE 1. Chapter 1 (Introduction) 1.1. What is AI? The definition of Artificial Intelligence can be grouped in two dimensions: Thinking and Acting. In Figure 1.1 we see

More information

Robotics Summary. Made by: Iskaj Janssen

Robotics Summary. Made by: Iskaj Janssen Robotics Summary Made by: Iskaj Janssen Multiagent system: System composed of multiple agents. Five global computing trends: 1. Ubiquity (computers and intelligence are everywhere) 2. Interconnection (networked

More information

CS148 - Building Intelligent Robots Lecture 5: Autonomus Control Architectures. Instructor: Chad Jenkins (cjenkins)

CS148 - Building Intelligent Robots Lecture 5: Autonomus Control Architectures. Instructor: Chad Jenkins (cjenkins) Lecture 5 Control Architectures Slide 1 CS148 - Building Intelligent Robots Lecture 5: Autonomus Control Architectures Instructor: Chad Jenkins (cjenkins) Lecture 5 Control Architectures Slide 2 Administrivia

More information

Artificial Intelligence. Outline

Artificial Intelligence. Outline Artificial Intelligence Embodied Intelligence (R. Brooks, MIT) Outline Key perspectives for thinking about how an intelligent system interacts with world Compare mainstream AI to early artificial creature

More information

Unmanned autonomous vehicles in air land and sea

Unmanned autonomous vehicles in air land and sea based on Gianni A. Di Caro lecture on ROBOT CONTROL RCHITECTURES SINGLE AND MULTI-ROBOT SYSTEMS: A CASE STUDY IN SWARM ROBOTICS Unmanned autonomous vehicles in air land and sea Robots and Unmanned Vehicles

More information

Introduction to Deep Reinforcement Learning and Control

Introduction to Deep Reinforcement Learning and Control Carnegie Mellon School of Computer Science Deep Reinforcement Learning and Control Introduction to Deep Reinforcement Learning and Control Lecture 1, CMU 10703 Katerina Fragkiadaki Logistics 3 assignments

More information

Behavior Architectures

Behavior Architectures Behavior Architectures 5 min reflection You ve read about two very different behavior architectures. What are the most significant functional/design differences between the two approaches? Are they compatible

More information

Discover Simple Neuroscience Body Hacks that Easily Increase Personal Performance, Accelerate Physical Results and Relieve Pain

Discover Simple Neuroscience Body Hacks that Easily Increase Personal Performance, Accelerate Physical Results and Relieve Pain Discover Simple Neuroscience Body Hacks that Easily Increase Personal Performance, Accelerate Physical Results and Relieve Pain Welcome to the Z-Health Neuroscience Body Hacks Webinar! Because our webinar

More information

The Power of Feedback

The Power of Feedback The Power of Feedback 35 Principles for Turning Feedback from Others into Personal and Professional Change By Joseph R. Folkman The Big Idea The process of review and feedback is common in most organizations.

More information

Introduction to Machine Learning. Katherine Heller Deep Learning Summer School 2018

Introduction to Machine Learning. Katherine Heller Deep Learning Summer School 2018 Introduction to Machine Learning Katherine Heller Deep Learning Summer School 2018 Outline Kinds of machine learning Linear regression Regularization Bayesian methods Logistic Regression Why we do this

More information

Sequential Decision Making

Sequential Decision Making Sequential Decision Making Sequential decisions Many (most) real world problems cannot be solved with a single action. Need a longer horizon Ex: Sequential decision problems We start at START and want

More information

Artificial Intelligence. Admin.

Artificial Intelligence. Admin. 15-381 Artificial Intelligence Admin. Instructor: Martial Hebert, NSH 4101, x8-2585 Textbook: Recommended (optional) textbook: Russell and Norvig's "Artificial Intelligence: A Modern Approach (2 nd edition)

More information

What is Artificial Intelligence? A definition of Artificial Intelligence. Systems that act like humans. Notes

What is Artificial Intelligence? A definition of Artificial Intelligence. Systems that act like humans. Notes What is? It is a young area of science (1956) Its goals are what we consider Intelligent behaviour There are many approaches from different points of view It has received influence from very diverse areas

More information

Paul Figueroa. Washington Municipal Clerks Association ANNUAL CONFERENCE. Workplace Bullying: Solutions and Prevention. for

Paul Figueroa. Washington Municipal Clerks Association ANNUAL CONFERENCE. Workplace Bullying: Solutions and Prevention. for Workplace Bullying: Solutions and Prevention for Washington Municipal Clerks Association ANNUAL CONFERENCE Paul@PeaceEnforcement.com 206-650-5364 Peace Enforcement LLC Bullying described: Why people do

More information

A Theory of Complexity and its Relevance to Better Decision Making

A Theory of Complexity and its Relevance to Better Decision Making A Theory of Complexity and its Relevance to Better Decision Making Author Denis Hicks 1, Glocomnet, European Institute for Industrial Leadership, Brussels, Belgium Published 1 st September 2017 The idea

More information

Artificial Intelligence

Artificial Intelligence Politecnico di Milano Artificial Intelligence Artificial Intelligence From intelligence to rationality? Viola Schiaffonati viola.schiaffonati@polimi.it Can machine think? 2 The birth of Artificial Intelligence

More information

Robot Behavior Genghis, MIT Callisto, GATech

Robot Behavior Genghis, MIT Callisto, GATech Robot Behavior Genghis, MIT Callisto, GATech Today s Objectives To learn what robotic behaviors are To obtain a basic understanding of the design approaches related to behavior-based robotic systems To

More information

Introduction to Arti Intelligence

Introduction to Arti Intelligence Introduction to Arti Intelligence cial Lecture 1: Foundations Prof. Gilles Louppe g.louppe@uliege.be 1 / 69 Today Course outline Introduction to Arti cial Intelligence Intelligent agents 2 / 69 Introduction

More information

STPA Applied to Automotive Automated Parking Assist

STPA Applied to Automotive Automated Parking Assist STPA Applied to Automotive Automated Parking Assist Massachusetts Institute of Technology John Thomas Megan France APA Collaboration with General Motors Charles A. Green Mark A. Vernacchia Padma Sundaram

More information

PCT 101. A Perceptual Control Theory Primer. Fred Nickols 8/27/2012

PCT 101. A Perceptual Control Theory Primer. Fred Nickols 8/27/2012 PCT 101 A Perceptual Control Theory Primer Fred Nickols 8/27/2012 This paper presents a simplified, plain language explanation of Perceptual Control Theory (PCT). PCT is a powerful and practical theory

More information

Appendix I Teaching outcomes of the degree programme (art. 1.3)

Appendix I Teaching outcomes of the degree programme (art. 1.3) Appendix I Teaching outcomes of the degree programme (art. 1.3) The Master graduate in Computing Science is fully acquainted with the basic terms and techniques used in Computing Science, and is familiar

More information

Deliberating on Ontologies: The Present Situation. Simon Milton Department of Information Systems, The University of Melbourne

Deliberating on Ontologies: The Present Situation. Simon Milton Department of Information Systems, The University of Melbourne Deliberating on Ontologies: The Present Situation Simon Milton Department of, The University of Melbourne 1. Helping data models better map the world 2. Finding the role of ontology where theories of agency

More information

Applying Appraisal Theories to Goal Directed Autonomy

Applying Appraisal Theories to Goal Directed Autonomy Applying Appraisal Theories to Goal Directed Autonomy Robert P. Marinier III, Michael van Lent, Randolph M. Jones Soar Technology, Inc. 3600 Green Court, Suite 600, Ann Arbor, MI 48105 {bob.marinier,vanlent,rjones}@soartech.com

More information

LAURIE PARMA, UNIVERSITY OF CAMBRIDGE ENGAGEMENT, CREATIVITY, PASSION AND FLOW

LAURIE PARMA, UNIVERSITY OF CAMBRIDGE ENGAGEMENT, CREATIVITY, PASSION AND FLOW LAURIE PARMA, UNIVERSITY OF CAMBRIDGE ENGAGEMENT, CREATIVITY, PASSION AND FLOW WHAT DOES PASSION, FLOW, CREATIVITY AND ENGAGEMENT REPRESENT IN YOUR LIFE? CAN YOU IDENTIFY CORRESPONDING ACTIVITIES? WHAT

More information

Attention and Concentration Problems Following Traumatic Brain Injury. Patient Information Booklet. Talis Consulting Limited

Attention and Concentration Problems Following Traumatic Brain Injury. Patient Information Booklet. Talis Consulting Limited Attention and Concentration Problems Following Traumatic Brain Injury Patient Information Booklet Talis Consulting Limited What are Attention and Concentration? Attention and concentration are two skills

More information

FMEA AND RPN NUMBERS. Failure Mode Severity Occurrence Detection RPN A B

FMEA AND RPN NUMBERS. Failure Mode Severity Occurrence Detection RPN A B FMEA AND RPN NUMBERS An important part of risk is to remember that risk is a vector: one aspect of risk is the severity of the effect of the event and the other aspect is the probability or frequency of

More information

Sound is the. spice of life

Sound is the. spice of life Sound is the spice of life Let sound spice up your life Safran sharpens your hearing In many ways sound is like the spice of life. It adds touches of flavour and colour, enhancing the mood of special moments.

More information

2017 Edument AB. All Rights Reserved. Stepping Back: The Big Picture

2017 Edument AB. All Rights Reserved. Stepping Back: The Big Picture 2017 Edument AB. All Rights Reserved. Stepping Back: The Big Picture Traditional views of testing In the (oft-ridiculed) waterfall model, we distinguish the following phases: Developers hand off a finished

More information

Katsunari Shibata and Tomohiko Kawano

Katsunari Shibata and Tomohiko Kawano Learning of Action Generation from Raw Camera Images in a Real-World-Like Environment by Simple Coupling of Reinforcement Learning and a Neural Network Katsunari Shibata and Tomohiko Kawano Oita University,

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Michèle Sebag ; TP : Herilalaina Rakotoarison TAO, CNRS INRIA Université Paris-Sud Nov. 9h, 28 Credit for slides: Richard Sutton, Freek Stulp, Olivier Pietquin / 44 Introduction

More information

Driving After Stroke Family/Patient Information

Driving After Stroke Family/Patient Information Driving After Stroke Family/Patient Information Will I be able to drive after my stroke? People recover at different rates after a stroke. Some people will be back driving after a month, others may take

More information

EMOTIONAL INTELLIGENCE QUESTIONNAIRE

EMOTIONAL INTELLIGENCE QUESTIONNAIRE EMOTIONAL INTELLIGENCE QUESTIONNAIRE Personal Report JOHN SMITH 2017 MySkillsProfile. All rights reserved. Introduction The EIQ16 measures aspects of your emotional intelligence by asking you questions

More information

EIQ16 questionnaire. Joe Smith. Emotional Intelligence Report. Report. myskillsprofile.com around the globe

EIQ16 questionnaire. Joe Smith. Emotional Intelligence Report. Report. myskillsprofile.com around the globe Emotional Intelligence Report EIQ16 questionnaire Joe Smith myskillsprofile.com around the globe Report The EIQ16 questionnaire is copyright MySkillsProfile.com. myskillsprofile.com developed and publish

More information