Module 28 - Estimating a Population Mean (1 of 3)

Size: px
Start display at page:

Download "Module 28 - Estimating a Population Mean (1 of 3)"

Transcription

1 Module 28 - Estimating a Population Mean (1 of 3) In "Estimating a Population Mean," we focus on how to use a sample mean to estimate a population mean. This is the type of thinking we did in Modules 7 and 8 when we used a sample proportion to estimate a population proportion. Let s take a moment to review what we learned in the modules Linking Probability to Statistical Inference and Inference for One Proportion, and then we ll see how it relates to the current module. In Linking Probability to Statistical Inference, we noted that random samples vary, so we expect to see variability in sample proportions. In the section "Distribution of Sample Means" in that module, we made the same observations about sample means. In both cases, a normal model is a good fit for the sampling distribution when appropriate conditions are met. We also noted in that module that a sample proportion is an estimate for the population proportion. We do not expect the sample proportion to equal the population proportion, so there is some error. The error is due to random chance. Likewise, a sample mean is an estimate for the population mean, but there will be some error due to random chance.

2 Comment The following material comes from Concepts in Statistics written by the Open Learning Initiative (OLI) Recall that, in Inference for One Proportion, we adjusted the standard error by replacing p with the sample proportion. Doing so made sense because the goal of the confidence interval is to estimate p. So the margin of error in the confidence interval formula changed. Here is the adjusted formula. We will eventually have to adjust the standard error for the sampling distribution of sample means, too. It makes sense because in many situations we will not know the population standard deviation, σ. This adjustment is more complicated than the adjustment to standard error for sample proportions, so before we do it, let s practice finding the confidence interval for µ assuming we know σ.this adjustment changed the normality conditions. We use this adjusted confidence interval to estimate pwhen the successes and failures in the actual sample are at least 10. Assuming we know σ is realistic when a lot of previous research has been done. For example, when we are estimating height, weight, or scores on a standardized test, previous research gives us reliable values for σ. EXAMPLE Estimating Mean SAT Math Score The SAT is the most widely used college admission exam. (Most community colleges do not require students to take this exam.) The mean SAT math score varies by state and by year, so the value of µ depends on the state and the year. But let s assume that the shape and spread of the distribution of individual SAT math scores in each state is the same each year. More specifically, assume that individual SAT math scores consistently have a normal distribution with a standard deviation of 100. An educational researcher wants to estimate the mean SAT math score (μ) for his state this year. The researcher chooses a random sample of 650 exams in his state. The average score is 475 (so x x = 475). Estimate the mean SAT math score in this state for this year. We answer this question by computing and interpreting a confidence interval.

3 Checking conditions: From our work in "Distribution of Sample Means," we know that a normal model is a good fit for the distribution of sample means from random samples if one of two conditions is met: The population of individual values is normal (in which case the sample size is not important). If we do not know if the population of individual values is normal, then we must have a large sample size (more than 30). Because we assume that the distribution of individual SAT math scores is normal in this example, a normal model is also a good fit for the distribution of sample means. Even if the population distribution had not been normal, the sample size is large enough that the normal distribution would still apply to the sample means. So we can use the confidence interval formula given above. Finding the margin of error: Keep in mind that the sample mean, x x, is only a single-value estimate for the population mean, μ. Because it comes from a random sample, we expect there to be some error in the estimate. But how much error should we expect? We know that the sample distribution of means is approximately normal because conditions are met. Recall that in a normal model, 95% of the values fall within 2 standard deviations of the mean, so we use 2 standard errors for our margin of error. This was part of the empirical rule from the module Probability and Probability Distribution.

4 Conclusion: The following material comes from Concepts in Statistics written by the Open Learning Initiative (OLI) We are 95% confident that the mean SAT math score in this state this year is between and Recall from our previous work that being 95% confident means this method, in the long run, captures the true population mean (μ) about 95% of the time. Summary If we want to estimate µ, a population mean, we want to calculate a confidence interval. The 95% confidence interval is: We say we are 95% confident that this interval contains µ, which means that in the long run, 95% of these confidence intervals contain µ.we can use this formula only if a normal model is a good fit for the sampling distribution of sample means. If the sample size is large (n > 30), we can use a normal model. If the sample size is not greater than 30, then we can use a normal model only if the variable is normally distributed in the population. As always, we must have a random sample. If the sample is not random, we cannot use it to estimate µ. What Does 95% Confident Really Mean? The following activity revisits the concept of 95% confident, a probability statement that is often misinterpreted. Comment In our work with confidence intervals for estimating a population mean, µ, we require the population standard deviation, σ, to be known. In practice, σ usually is unknown. However, in some situations, especially when a lot of research has been done on the quantitative variable whose mean we are estimating (such as IQ, height, weight, scores on standardized tests), it is reasonable to assume that σ is known. On the next page, we learn how to proceed when σ is unknown. Content by the Open Learning Initiative and licensed under CC BY.

5 Module 28 - Estimating a Population Mean (2 of 3) Introduction to the T-Model Here is the formula for the T-score. We also include the z-score for comparison. The formulas are very similar. The distribution of z-scores is the standard normal curve, with mean of 0 and standard deviation of 1. The distribution of T-scores depends on the sample size, n. There is a different T-model for every n. So the T-model is a family of curves. Instead of referring to n to specify which T-model to use, we refer to the degrees of freedom, or df for short. For Topics 10.2 and 10.3, the number of degrees of freedom is 1 less than the sample size. That is, df = n 1.

6 In summary, a normal model is defined by its mean and standard deviation. A T-model is a family of curves defined by the degrees of freedom. Let s take a look at a few T-model curves (for various df) to see how they compare to the normal model. We can see from the picture that as df grows, the T-model gets closer to the standard normal model. Similarities between T-model and standard normal model: Symmetric with a central peak, bell-shaped. Centered at 0. The larger the degrees of freedom, the closer the T-model is to the standard normal model. Difference between T-model and standard normal model: The T-model has more spread than the standard normal model. The T-model has more probability in the tails and less in the center than the standard normal model. We can see this in the fatter tails and lower central peak of the T-model.

7 When is a T-model a good fit for the sampling distribution of sample means? Check these conditions before using the T-model: Use the T-model if σ (the population standard deviation) is unknown. If σ is known, then use the normal model instead of the T-model. Use the T-model if variable values are normally distributed in the population. If this is not true, then make sure the sample size is large (more than 30). EXAMPLE Cable Strength A group of engineers developed a new design for a steel cable. They need to estimate the amount of weight the cable can hold. The weight limit will be reported on cable packaging. The engineers take a random sample of 45 cables and apply weights to each of them until they break. The mean breaking weight for the 45 cables is the breaking weight for the sample is s = 15.1 lb. = lb. The standard deviation of What should the engineers report as the mean amount of weight held by this type of cable? Let s use these sample statistics to construct a 95% confidence interval for the mean breaking weight of this type of cable. Checking conditions: Since we do not know the standard deviation of breaking weights of all of the cables (the population parameter σ), we use the sample standard deviation (s) as an approximation for σ. Since we don t know σ, we must use the T-distribution to model the sampling distribution of means. Is the T-model a good fit for the sampling distribution? Yes, because the conditions are met: σ is unknown. The sample size is large enough.

8 Finding the margin of error: To find the margin of error, we need to find the critical T-value that corresponds to a 95% confidence level. This is just like the critical Z-value when we built confidence intervals for proportions, except that it comes from the T-model instead of the standard normal model. We will use technology to find the critical T-value. There are a number of tools for doing this. Some books will also give you the option to use printed tables of values. Here we will use an applet that gives the T-model based on degrees of freedom. We want the T-values that cut off the central 95% of the area under the curve. It will look as follows. Using the applet, we see that the critical T-value for a 95% confidence interval with 44 degrees of freedom is T c = 2.015, which means our margin of error for this confidence interval is Note: For 95% confidence, the empirical rule approximates the critical Z-value as 2. The empirical rule is based on the normal model. Using the T-model for df = 44, the critical T-value (2.015) is very close to 2. This makes sense because for larger df, the T-model is very close to the standard normal model. We will see that the critical T-value differs more from the critical Z- value when the sample sizes are small.

9 Finding the confidence interval: We have all the pieces to build the confidence interval. In our example, the confidence interval is Conclusion: We are 95% confident that the mean breaking weight for all cables of this type is between lb and lb. Confidence intervals at the 95% confidence level are common in practice. But 95% is not the only confidence level we use. Particularly in situations that involve safety issues, such as the previous example, people often prefer to estimate population means with 99% confidence intervals. In the following quiz we'll do some exploration with technology to see how changes in the confidence level affect the confidence interval. Content by the Open Learning Initiative and licensed under CC BY.

10 Module 28 - Estimating a Population Mean (3 of 3) Structure of a Confidence Interval Let s take a closer look at the parts of the confidence interval. Remember that this is a confidence interval for a population mean. We use this formula when the population standard deviation is unknown. Let s remind ourselves how the confidence interval formula relates to the graph of the confidence interval on a number line.

11 Note: The sample mean (9 in this example) is at the center of the interval. The margin of error (labeled ME and equal to 1.24 in this example) is the distance that the interval extends to the left and right of the sample mean. The interval width is the length of the entire interval on the number line. The interval width is always twice the margin of error. Let s quickly review how the precision of a confidence interval relates to the margin of error: An interval gives a more precise estimate when the interval is narrower. In other words, the margin of error is smaller. An interval gives a less precise estimate when the interval is wider. In other words, the margin of error is larger. We know that a higher confidence level gives a larger margin of error, so confidence level is also related to precision. Increasing the confidence in our estimate makes the confidence interval wider and therefore less precise.

12 Decreasing the confidence in our estimate makes the confidence interval narrower, and therefore more precise. Confidence interval estimates are useful when they have the right balance of confidence and precision. Typical confidence levels used in practice are 90%, 95%, and 99%. When we need to be really sure about our estimates, such as in life-and-death situations, we choose a 99% confidence level. So if nothing else changes, we settle for less precise estimates when we need a high level of confidence. In our discussion about the structure of confidence intervals, we said choosing a higher level of confidence means that we sacrifice some precision. This is true only if nothing else changes. But there is one way to keep a high level of confidence without sacrificing precision: Increase the sample size. We investigate the impact of sample size on the confidence interval next. EXAMPLE Cable Strength Revisited

13 Recall the engineers who are trying to determine the breaking weight of a cable. In that example, we had a random sample of 45 cables with a mean breaking weight of lb and a standard deviation of 15.1 lb. From that sample we computed a 95% confidence interval for the mean breaking weight of all such cables. Here are the important numbers we found from that calculation on the previous page: Now let s increase the sample size and investigate the impact on the confidence interval. We calculate the confidence interval for a larger sample of 101 cables (n = 101). Sample size affects our calculations in two ways: The sample size (n) appears in our formula for standard error. The critical T-value depends on degrees of freedom, and df = n - 1. Finding the standard error: We approximate the standard error of all sample means as follows: Note: The standard error is smaller when the sample size is larger. We were expecting this because we know there is less variability in sample means when the samples are larger. Finding the critical T-value:Note: The standard error is smaller when the sample size is larger. We were expecting this because we know there is less variability in sample means when the samples are larger. To find the critical T-value, we use the applet. We set the df to 100 and the central probability to We see that the critical T-value is

14 Note: Increasing the sample size decreased the critical T-value (the T-value went from to when we increased the sample size). You might also notice that both of the critical T- values for 95% confidence are larger than the critical Z-value for 95% confidence, which is approximately This makes sense because the T-models are wider than the the standard normal curve. Finding the margin of error. Here is the margin of error calculation: Finding the confidence interval. Here is the confidence interval calculation:

15 Side-by-side comparison: Let s take a look at these two intervals to study the effects of changing the sample size. Increasing the sample size had the following effects on the confidence interval estimate: Decreased standard error Decreased critical T-value Decreased margin of error and hence decreased the interval width Improved interval precision Comment In the real world, increasing the sample size is not always possible. Sometimes collecting a sample is very expensive. If the study has budgetary constraints, which is usually the case, selecting a larger sample may be too expensive. Content by the Open Learning Initiative and licensed under CC BY.

16 Module 28 - Wrap Up "Estimating a Population Mean" Content by the Open Learning Initiative and licensed under CC BY.

Chapter 23. Inference About Means. Copyright 2010 Pearson Education, Inc.

Chapter 23. Inference About Means. Copyright 2010 Pearson Education, Inc. Chapter 23 Inference About Means Copyright 2010 Pearson Education, Inc. Getting Started Now that we know how to create confidence intervals and test hypotheses about proportions, it d be nice to be able

More information

Chapter 19. Confidence Intervals for Proportions. Copyright 2010, 2007, 2004 Pearson Education, Inc.

Chapter 19. Confidence Intervals for Proportions. Copyright 2010, 2007, 2004 Pearson Education, Inc. Chapter 19 Confidence Intervals for Proportions Copyright 2010, 2007, 2004 Pearson Education, Inc. Standard Error Both of the sampling distributions we ve looked at are Normal. For proportions For means

More information

Chapter 8: Estimating with Confidence

Chapter 8: Estimating with Confidence Chapter 8: Estimating with Confidence Key Vocabulary: point estimator point estimate confidence interval margin of error interval confidence level random normal independent four step process level C confidence

More information

Chapter 19. Confidence Intervals for Proportions. Copyright 2010 Pearson Education, Inc.

Chapter 19. Confidence Intervals for Proportions. Copyright 2010 Pearson Education, Inc. Chapter 19 Confidence Intervals for Proportions Copyright 2010 Pearson Education, Inc. Standard Error Both of the sampling distributions we ve looked at are Normal. For proportions For means SD pˆ pq n

More information

Chapter 8 Estimating with Confidence

Chapter 8 Estimating with Confidence Chapter 8 Estimating with Confidence Introduction Our goal in many statistical settings is to use a sample statistic to estimate a population parameter. In Chapter 4, we learned if we randomly select the

More information

10.1 Estimating with Confidence. Chapter 10 Introduction to Inference

10.1 Estimating with Confidence. Chapter 10 Introduction to Inference 10.1 Estimating with Confidence Chapter 10 Introduction to Inference Statistical Inference Statistical inference provides methods for drawing conclusions about a population from sample data. Two most common

More information

Chapter 8 Estimating with Confidence. Lesson 2: Estimating a Population Proportion

Chapter 8 Estimating with Confidence. Lesson 2: Estimating a Population Proportion Chapter 8 Estimating with Confidence Lesson 2: Estimating a Population Proportion What proportion of the beads are yellow? In your groups, you will find a 95% confidence interval for the true proportion

More information

CHAPTER 8 Estimating with Confidence

CHAPTER 8 Estimating with Confidence CHAPTER 8 Estimating with Confidence 8.1b Confidence Intervals: The Basics The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Confidence Intervals: The

More information

Applied Statistical Analysis EDUC 6050 Week 4

Applied Statistical Analysis EDUC 6050 Week 4 Applied Statistical Analysis EDUC 6050 Week 4 Finding clarity using data Today 1. Hypothesis Testing with Z Scores (continued) 2. Chapters 6 and 7 in Book 2 Review! = $ & '! = $ & ' * ) 1. Which formula

More information

Statistics: Interpreting Data and Making Predictions. Interpreting Data 1/50

Statistics: Interpreting Data and Making Predictions. Interpreting Data 1/50 Statistics: Interpreting Data and Making Predictions Interpreting Data 1/50 Last Time Last time we discussed central tendency; that is, notions of the middle of data. More specifically we discussed the

More information

Chapter 8: Estimating with Confidence

Chapter 8: Estimating with Confidence Chapter 8: Estimating with Confidence Section 8.1 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Introduction Our goal in many statistical settings is to use a sample statistic

More information

9. Interpret a Confidence level: "To say that we are 95% confident is shorthand for..

9. Interpret a Confidence level: To say that we are 95% confident is shorthand for.. Mrs. Daniel AP Stats Chapter 8 Guided Reading 8.1 Confidence Intervals: The Basics 1. A point estimator is a statistic that 2. The value of the point estimator statistic is called a and it is our "best

More information

Chapter 8 Estimating with Confidence. Lesson 2: Estimating a Population Proportion

Chapter 8 Estimating with Confidence. Lesson 2: Estimating a Population Proportion Chapter 8 Estimating with Confidence Lesson 2: Estimating a Population Proportion Conditions for Estimating p These are the conditions you are expected to check before calculating a confidence interval

More information

If you could interview anyone in the world, who. Polling. Do you think that grades in your school are inflated? would it be?

If you could interview anyone in the world, who. Polling. Do you think that grades in your school are inflated? would it be? Do you think that grades in your school are inflated? Polling If you could interview anyone in the world, who would it be? Wh ic h is be s t Snapchat or Instagram? Which is your favorite sports team? Have

More information

STA Module 9 Confidence Intervals for One Population Mean

STA Module 9 Confidence Intervals for One Population Mean STA 2023 Module 9 Confidence Intervals for One Population Mean Learning Objectives Upon completing this module, you should be able to: 1. Obtain a point estimate for a population mean. 2. Find and interpret

More information

Lecture 12: Normal Probability Distribution or Normal Curve

Lecture 12: Normal Probability Distribution or Normal Curve 12_normalcurve.pdf Michael Hallstone, Ph.D. hallston@hawaii.edu Lecture 12: Normal Probability Distribution or Normal Curve The real importance of this lecture is to show you what a normal curve looks

More information

The following command was executed on their calculator: mean(randnorm(m,20,16))

The following command was executed on their calculator: mean(randnorm(m,20,16)) 8.1- Confidence Intervals: The Basics Introduction How long does a new model of laptop battery last? What proportion of college undergraduates have engaged in binge drinking? How much does the weight of

More information

Objectives. Quantifying the quality of hypothesis tests. Type I and II errors. Power of a test. Cautions about significance tests

Objectives. Quantifying the quality of hypothesis tests. Type I and II errors. Power of a test. Cautions about significance tests Objectives Quantifying the quality of hypothesis tests Type I and II errors Power of a test Cautions about significance tests Designing Experiments based on power Evaluating a testing procedure The testing

More information

Name AP Statistics UNIT 1 Summer Work Section II: Notes Analyzing Categorical Data

Name AP Statistics UNIT 1 Summer Work Section II: Notes Analyzing Categorical Data Name AP Statistics UNIT 1 Summer Work Date Section II: Notes 1.1 - Analyzing Categorical Data Essential Understanding: How can I represent the data when it is treated as a categorical variable? I. Distribution

More information

3 CONCEPTUAL FOUNDATIONS OF STATISTICS

3 CONCEPTUAL FOUNDATIONS OF STATISTICS 3 CONCEPTUAL FOUNDATIONS OF STATISTICS In this chapter, we examine the conceptual foundations of statistics. The goal is to give you an appreciation and conceptual understanding of some basic statistical

More information

Standard Deviation and Standard Error Tutorial. This is significantly important. Get your AP Equations and Formulas sheet

Standard Deviation and Standard Error Tutorial. This is significantly important. Get your AP Equations and Formulas sheet Standard Deviation and Standard Error Tutorial This is significantly important. Get your AP Equations and Formulas sheet The Basics Let s start with a review of the basics of statistics. Mean: What most

More information

USING STATCRUNCH TO CONSTRUCT CONFIDENCE INTERVALS and CALCULATE SAMPLE SIZE

USING STATCRUNCH TO CONSTRUCT CONFIDENCE INTERVALS and CALCULATE SAMPLE SIZE USING STATCRUNCH TO CONSTRUCT CONFIDENCE INTERVALS and CALCULATE SAMPLE SIZE Using StatCrunch for confidence intervals (CI s) is super easy. As you can see in the assignments, I cover 9.2 before 9.1 because

More information

Part III Taking Chances for Fun and Profit

Part III Taking Chances for Fun and Profit Part III Taking Chances for Fun and Profit Chapter 8 Are Your Curves Normal? Probability and Why it Counts What You Will Learn in Chapter 8 How probability relates to statistics Characteristics of the

More information

Previously, when making inferences about the population mean,, we were assuming the following simple conditions:

Previously, when making inferences about the population mean,, we were assuming the following simple conditions: Chapter 17 Inference about a Population Mean Conditions for inference Previously, when making inferences about the population mean,, we were assuming the following simple conditions: (1) Our data (observations)

More information

Normal Distribution Foldable

Normal Distribution Foldable Normal Distribution Foldable Thank you for buying my game! Foresta Math Please stop back to my store and let me know how the game went. http://www.teacherspayteachers.com/store/foresta- Math Facebook:

More information

***SECTION 10.1*** Confidence Intervals: The Basics

***SECTION 10.1*** Confidence Intervals: The Basics SECTION 10.1 Confidence Intervals: The Basics CHAPTER 10 ~ Estimating with Confidence How long can you expect a AA battery to last? What proportion of college undergraduates have engaged in binge drinking?

More information

AP Statistics TOPIC A - Unit 2 MULTIPLE CHOICE

AP Statistics TOPIC A - Unit 2 MULTIPLE CHOICE AP Statistics TOPIC A - Unit 2 MULTIPLE CHOICE Name Date 1) True or False: In a normal distribution, the mean, median and mode all have the same value and the graph of the distribution is symmetric. 2)

More information

Never P alone: The value of estimates and confidence intervals

Never P alone: The value of estimates and confidence intervals Never P alone: The value of estimates and confidence Tom Lang Tom Lang Communications and Training International, Kirkland, WA, USA Correspondence to: Tom Lang 10003 NE 115th Lane Kirkland, WA 98933 USA

More information

12.1 Inference for Linear Regression. Introduction

12.1 Inference for Linear Regression. Introduction 12.1 Inference for Linear Regression vocab examples Introduction Many people believe that students learn better if they sit closer to the front of the classroom. Does sitting closer cause higher achievement,

More information

Part 1. For each of the following questions fill-in the blanks. Each question is worth 2 points.

Part 1. For each of the following questions fill-in the blanks. Each question is worth 2 points. Part 1. For each of the following questions fill-in the blanks. Each question is worth 2 points. 1. The bell-shaped frequency curve is so common that if a population has this shape, the measurements are

More information

Unit 2: Probability and distributions Lecture 3: Normal distribution

Unit 2: Probability and distributions Lecture 3: Normal distribution Unit 2: Probability and distributions Lecture 3: Normal distribution Statistics 101 Thomas Leininger May 23, 2013 Announcements 1 Announcements 2 Normal distribution Normal distribution model 68-95-99.7

More information

111, section 8.6 Applications of the Normal Distribution

111, section 8.6 Applications of the Normal Distribution 111, section 8.6 Applications of the Normal Distribution notes by Tim Pilachowski A probability density function f(x) for a continuous random variable has two necessary characteristics. 1. f(x) 0 for all

More information

CHAPTER 8 Estimating with Confidence

CHAPTER 8 Estimating with Confidence CHAPTER 8 Estimating with Confidence 8.1 Confidence Intervals: The Basics The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Confidence Intervals: The

More information

Normal Distribution. Many variables are nearly normal, but none are exactly normal Not perfect, but still useful for a variety of problems.

Normal Distribution. Many variables are nearly normal, but none are exactly normal Not perfect, but still useful for a variety of problems. Review Probability: likelihood of an event Each possible outcome can be assigned a probability If we plotted the probabilities they would follow some type a distribution Modeling the distribution is important

More information

STAT 113: PAIRED SAMPLES (MEAN OF DIFFERENCES)

STAT 113: PAIRED SAMPLES (MEAN OF DIFFERENCES) STAT 113: PAIRED SAMPLES (MEAN OF DIFFERENCES) In baseball after a player gets a hit, they need to decide whether to stop at first base, or try to stretch their hit from a single to a double. Does the

More information

Chapter 12. The One- Sample

Chapter 12. The One- Sample Chapter 12 The One- Sample z-test Objective We are going to learn to make decisions about a population parameter based on sample information. Lesson 12.1. Testing a Two- Tailed Hypothesis Example 1: Let's

More information

OCW Epidemiology and Biostatistics, 2010 David Tybor, MS, MPH and Kenneth Chui, PhD Tufts University School of Medicine October 27, 2010

OCW Epidemiology and Biostatistics, 2010 David Tybor, MS, MPH and Kenneth Chui, PhD Tufts University School of Medicine October 27, 2010 OCW Epidemiology and Biostatistics, 2010 David Tybor, MS, MPH and Kenneth Chui, PhD Tufts University School of Medicine October 27, 2010 SAMPLING AND CONFIDENCE INTERVALS Learning objectives for this session:

More information

THIS PROBLEM HAS BEEN SOLVED BY USING THE CALCULATOR. A 90% CONFIDENCE INTERVAL IS ALSO SHOWN. ALL QUESTIONS ARE LISTED BELOW THE RESULTS.

THIS PROBLEM HAS BEEN SOLVED BY USING THE CALCULATOR. A 90% CONFIDENCE INTERVAL IS ALSO SHOWN. ALL QUESTIONS ARE LISTED BELOW THE RESULTS. Math 117 Confidence Intervals and Hypothesis Testing Interpreting Results SOLUTIONS The results are given. Interpret the results and write the conclusion within context. Clearly indicate what leads to

More information

Statistics for Psychology

Statistics for Psychology Statistics for Psychology SIXTH EDITION CHAPTER 3 Some Key Ingredients for Inferential Statistics Some Key Ingredients for Inferential Statistics Psychologists conduct research to test a theoretical principle

More information

Students will understand the definition of mean, median, mode and standard deviation and be able to calculate these functions with given set of

Students will understand the definition of mean, median, mode and standard deviation and be able to calculate these functions with given set of Students will understand the definition of mean, median, mode and standard deviation and be able to calculate these functions with given set of numbers. Also, students will understand why some measures

More information

Statistical Inference

Statistical Inference Statistical Inference Chapter 10: Intro to Inference Section 10.1 Estimating with Confidence "How good is your best guess?" "How confident are you in your method?" provides methods for about a from the.

More information

Chapter 7: Descriptive Statistics

Chapter 7: Descriptive Statistics Chapter Overview Chapter 7 provides an introduction to basic strategies for describing groups statistically. Statistical concepts around normal distributions are discussed. The statistical procedures of

More information

CHAPTER ONE CORRELATION

CHAPTER ONE CORRELATION CHAPTER ONE CORRELATION 1.0 Introduction The first chapter focuses on the nature of statistical data of correlation. The aim of the series of exercises is to ensure the students are able to use SPSS to

More information

Quantitative Literacy: Thinking Between the Lines

Quantitative Literacy: Thinking Between the Lines Quantitative Literacy: Thinking Between the Lines Crauder, Noell, Evans, Johnson Chapter 6: Statistics 2013 W. H. Freeman and Company 1 Chapter 6: Statistics Lesson Plan Data summary and presentation:

More information

The Confidence Interval. Finally, we can start making decisions!

The Confidence Interval. Finally, we can start making decisions! The Confidence Interval Finally, we can start making decisions! Reminder The Central Limit Theorem (CLT) The mean of a random sample is a random variable whose sampling distribution can be approximated

More information

Welcome to OSA Training Statistics Part II

Welcome to OSA Training Statistics Part II Welcome to OSA Training Statistics Part II Course Summary Using data about a population to draw graphs Frequency distribution and variability within populations Bell Curves: What are they and where do

More information

APPENDIX N. Summary Statistics: The "Big 5" Statistical Tools for School Counselors

APPENDIX N. Summary Statistics: The Big 5 Statistical Tools for School Counselors APPENDIX N Summary Statistics: The "Big 5" Statistical Tools for School Counselors This appendix describes five basic statistical tools school counselors may use in conducting results based evaluation.

More information

Clever Hans the horse could do simple math and spell out the answers to simple questions. He wasn t always correct, but he was most of the time.

Clever Hans the horse could do simple math and spell out the answers to simple questions. He wasn t always correct, but he was most of the time. Clever Hans the horse could do simple math and spell out the answers to simple questions. He wasn t always correct, but he was most of the time. While a team of scientists, veterinarians, zoologists and

More information

Lesson 9 Presentation and Display of Quantitative Data

Lesson 9 Presentation and Display of Quantitative Data Lesson 9 Presentation and Display of Quantitative Data Learning Objectives All students will identify and present data using appropriate graphs, charts and tables. All students should be able to justify

More information

9 research designs likely for PSYC 2100

9 research designs likely for PSYC 2100 9 research designs likely for PSYC 2100 1) 1 factor, 2 levels, 1 group (one group gets both treatment levels) related samples t-test (compare means of 2 levels only) 2) 1 factor, 2 levels, 2 groups (one

More information

Lecture Notes Module 2

Lecture Notes Module 2 Lecture Notes Module 2 Two-group Experimental Designs The goal of most research is to assess a possible causal relation between the response variable and another variable called the independent variable.

More information

Gage R&R. Variation. Allow us to explain with a simple diagram.

Gage R&R. Variation. Allow us to explain with a simple diagram. Gage R&R Variation We ve learned how to graph variation with histograms while also learning how to determine if the variation in our process is greater than customer specifications by leveraging Process

More information

Study Guide for the Final Exam

Study Guide for the Final Exam Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

More information

Objectives, Procedures, Client Handouts, Pregroup Planning, and Sample Round-Robin Discussions Group Session 4

Objectives, Procedures, Client Handouts, Pregroup Planning, and Sample Round-Robin Discussions Group Session 4 THERAPIST HANDOUT 5.4 Objectives, Procedures, Client Handouts, Pregroup Planning, and Sample Round-Robin Discussions Group Session 4 SESSION OBJECTIVES Review members progress. Revisit and review members

More information

Unraveling Recent Cervical Cancer Screening Updates and the Impact on Your Practice

Unraveling Recent Cervical Cancer Screening Updates and the Impact on Your Practice Transcript Details This is a transcript of a continuing medical education (CME) activity accessible on the ReachMD network. Additional media formats for the activity and full activity details (including

More information

Psychology Research Process

Psychology Research Process Psychology Research Process Logical Processes Induction Observation/Association/Using Correlation Trying to assess, through observation of a large group/sample, what is associated with what? Examples:

More information

AP Stats Chap 27 Inferences for Regression

AP Stats Chap 27 Inferences for Regression AP Stats Chap 27 Inferences for Regression Finally, we re interested in examining how slopes of regression lines vary from sample to sample. Each sample will have it s own slope, b 1. These are all estimates

More information

Estimation. Preliminary: the Normal distribution

Estimation. Preliminary: the Normal distribution Estimation Preliminary: the Normal distribution Many statistical methods are only valid if we can assume that our data follow a distribution of a particular type, called the Normal distribution. Many naturally

More information

Statistical Methods Exam I Review

Statistical Methods Exam I Review Statistical Methods Exam I Review Professor: Dr. Kathleen Suchora SI Leader: Camila M. DISCLAIMER: I have created this review sheet to supplement your studies for your first exam. I am a student here at

More information

How to Motivate Clients to Push Through Self-Imposed Boundaries

How to Motivate Clients to Push Through Self-Imposed Boundaries How to Help Clients Overcome Their Most Limiting Fears, Part 2 McGonigal, PhD - Transcript - pg. 1 How to Help Clients Overcome Their Most Limiting Fears, Part 2: Kelly McGonigal, PhD How to Motivate Clients

More information

Population. Sample. AP Statistics Notes for Chapter 1 Section 1.0 Making Sense of Data. Statistics: Data Analysis:

Population. Sample. AP Statistics Notes for Chapter 1 Section 1.0 Making Sense of Data. Statistics: Data Analysis: Section 1.0 Making Sense of Data Statistics: Data Analysis: Individuals objects described by a set of data Variable any characteristic of an individual Categorical Variable places an individual into one

More information

Two-Way Independent ANOVA

Two-Way Independent ANOVA Two-Way Independent ANOVA Analysis of Variance (ANOVA) a common and robust statistical test that you can use to compare the mean scores collected from different conditions or groups in an experiment. There

More information

One-Way ANOVAs t-test two statistically significant Type I error alpha null hypothesis dependant variable Independent variable three levels;

One-Way ANOVAs t-test two statistically significant Type I error alpha null hypothesis dependant variable Independent variable three levels; 1 One-Way ANOVAs We have already discussed the t-test. The t-test is used for comparing the means of two groups to determine if there is a statistically significant difference between them. The t-test

More information

(a) 50% of the shows have a rating greater than: impossible to tell

(a) 50% of the shows have a rating greater than: impossible to tell KEY 1. Here is a histogram of the Distribution of grades on a quiz. How many students took the quiz? 15 What percentage of students scored below a 60 on the quiz? (Assume left-hand endpoints are included

More information

Usually we answer these questions by talking about the talent of top performers.

Usually we answer these questions by talking about the talent of top performers. Have you ever wondered what makes someone a good athlete? Or a good leader? Or a good student? Why do some people accomplish their goals while others fail? What makes the difference? Usually we answer

More information

Chapter 3: Examining Relationships

Chapter 3: Examining Relationships Name Date Per Key Vocabulary: response variable explanatory variable independent variable dependent variable scatterplot positive association negative association linear correlation r-value regression

More information

ELEPHANT IN THE OFFICE!

ELEPHANT IN THE OFFICE! Ethics ELEPHANT IN THE OFFICE! Ethical Choices Learn to distinguish between right & wrong Professional groups or an employer s code of ethics can help Restrain yourself from choosing the wrong path Don

More information

Confidence Intervals. Chapter 10

Confidence Intervals. Chapter 10 Confidence Intervals Chapter 10 Confidence Intervals : provides methods of drawing conclusions about a population from sample data. In formal inference we use to express the strength of our conclusions

More information

By: Anne Stewart, M.A. Licensed Therapist

By: Anne Stewart, M.A. Licensed Therapist Danny Pettry s E-Book Series Anne Stewart s Tips for Helping 1 http:// By: Anne Stewart, M.A. Licensed Therapist Important: You have full permission to email, print, and distribute this e-book to anyone

More information

Creative Commons Attribution-NonCommercial-Share Alike License

Creative Commons Attribution-NonCommercial-Share Alike License Author: Brenda Gunderson, Ph.D., 05 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution- NonCommercial-Share Alike 3.0 Unported License:

More information

Problem Situation Form for Parents

Problem Situation Form for Parents Problem Situation Form for Parents Please complete a form for each situation you notice causes your child social anxiety. 1. WHAT WAS THE SITUATION? Please describe what happened. Provide enough information

More information

1. Bring your completed exam to class on Monday November 10, 2014, being sure that you have made a copy for safe keeping; OR

1. Bring your completed exam to class on Monday November 10, 2014, being sure that you have made a copy for safe keeping; OR PubHlth 540 Fall 2014 Exam III Choice B (Unit 5 Normal) corrected 10-28-14 Page 1 of 7 PubHlth 540 - Introductory Biostatistics Fall 2014 Examination III Choice B Unit 5 (Normal) Due Monday November 10,

More information

Psychology Research Process

Psychology Research Process Psychology Research Process Logical Processes Induction Observation/Association/Using Correlation Trying to assess, through observation of a large group/sample, what is associated with what? Examples:

More information

Lecture 12A: Chapter 9, Section 1 Inference for Categorical Variable: Confidence Intervals

Lecture 12A: Chapter 9, Section 1 Inference for Categorical Variable: Confidence Intervals Looking Back: Review Lecture 12A: Chapter 9, Section 1 Inference for Categorical Variable: Confidence Intervals! Probability vs. Confidence! Constructing Confidence Interval! Sample Size; Level of Confidence!

More information

Stat Wk 9: Hypothesis Tests and Analysis

Stat Wk 9: Hypothesis Tests and Analysis Stat 342 - Wk 9: Hypothesis Tests and Analysis Crash course on ANOVA, proc glm Stat 342 Notes. Week 9 Page 1 / 57 Crash Course: ANOVA AnOVa stands for Analysis Of Variance. Sometimes it s called ANOVA,

More information

Suppose we tried to figure out the weights of everyone on campus. How could we do this? Weigh everyone. Is this practical? Possible? Accurate?

Suppose we tried to figure out the weights of everyone on campus. How could we do this? Weigh everyone. Is this practical? Possible? Accurate? Samples, populations, and random sampling I. Samples and populations. Suppose we tried to figure out the weights of everyone on campus. How could we do this? Weigh everyone. Is this practical? Possible?

More information

Inferential Statistics

Inferential Statistics Inferential Statistics and t - tests ScWk 242 Session 9 Slides Inferential Statistics Ø Inferential statistics are used to test hypotheses about the relationship between the independent and the dependent

More information

Something to think about. What happens, however, when we have a sample with less than 30 items?

Something to think about. What happens, however, when we have a sample with less than 30 items? One-Sample t-test Remember In the last chapter, we learned to use a statistic from a large sample of data to test a hypothesis about a population parameter. In our case, using a z-test, we tested a hypothesis

More information

2.75: 84% 2.5: 80% 2.25: 78% 2: 74% 1.75: 70% 1.5: 66% 1.25: 64% 1.0: 60% 0.5: 50% 0.25: 25% 0: 0%

2.75: 84% 2.5: 80% 2.25: 78% 2: 74% 1.75: 70% 1.5: 66% 1.25: 64% 1.0: 60% 0.5: 50% 0.25: 25% 0: 0% Capstone Test (will consist of FOUR quizzes and the FINAL test grade will be an average of the four quizzes). Capstone #1: Review of Chapters 1-3 Capstone #2: Review of Chapter 4 Capstone #3: Review of

More information

MBios 478: Systems Biology and Bayesian Networks, 27 [Dr. Wyrick] Slide #1. Lecture 27: Systems Biology and Bayesian Networks

MBios 478: Systems Biology and Bayesian Networks, 27 [Dr. Wyrick] Slide #1. Lecture 27: Systems Biology and Bayesian Networks MBios 478: Systems Biology and Bayesian Networks, 27 [Dr. Wyrick] Slide #1 Lecture 27: Systems Biology and Bayesian Networks Systems Biology and Regulatory Networks o Definitions o Network motifs o Examples

More information

Focus Points 4/5/2017. Estimating 1 2 and p 1 p 2. Section 7.4. Independent Samples and Dependent Samples

Focus Points 4/5/2017. Estimating 1 2 and p 1 p 2. Section 7.4. Independent Samples and Dependent Samples Focus Points Section 7.4 Estimating 1 2 and p 1 p 2 Distinguish between independent and dependent samples. Compute confidence intervals for 1 2 when 1 and 2 are known. Compute confidence intervals for

More information

This is a large part of coaching presence as it helps create a special and strong bond between coach and client.

This is a large part of coaching presence as it helps create a special and strong bond between coach and client. Page 1 Confidence People have presence when their outer behavior and appearance conveys confidence and authenticity and is in sync with their intent. It is about being comfortable and confident with who

More information

STATISTICS 8 CHAPTERS 1 TO 6, SAMPLE MULTIPLE CHOICE QUESTIONS

STATISTICS 8 CHAPTERS 1 TO 6, SAMPLE MULTIPLE CHOICE QUESTIONS STATISTICS 8 CHAPTERS 1 TO 6, SAMPLE MULTIPLE CHOICE QUESTIONS Circle the best answer. This scenario applies to Questions 1 and 2: A study was done to compare the lung capacity of coal miners to the lung

More information

Variability. After reading this chapter, you should be able to do the following:

Variability. After reading this chapter, you should be able to do the following: LEARIG OBJECTIVES C H A P T E R 3 Variability After reading this chapter, you should be able to do the following: Explain what the standard deviation measures Compute the variance and the standard deviation

More information

Thinking about Inference

Thinking about Inference CHAPTER 15 c Jupiterimages/Age fotostock Thinking about Inference IN THIS CHAPTER WE COVER... To this point, we have met just two procedures for statistical inference. Both concern inference about the

More information

STA Learning Objectives. What is Population Proportion? Module 7 Confidence Intervals for Proportions

STA Learning Objectives. What is Population Proportion? Module 7 Confidence Intervals for Proportions STA 2023 Module 7 Confidence Intervals for Proportions Learning Objectives Upon completing this module, you should be able to: 1. Find and interpret a large-sample confidence interval for a population

More information

STA Module 7 Confidence Intervals for Proportions

STA Module 7 Confidence Intervals for Proportions STA 2023 Module 7 Confidence Intervals for Proportions Learning Objectives Upon completing this module, you should be able to: 1. Find and interpret a large-sample confidence interval for a population

More information

Reality and the brain Learning as Leadership

Reality and the brain Learning as Leadership Reality and the brain Dr. Maxie C. Maultsby, Jr., MD Founder of Rational Behavior Therapy and Rational Self-Counseling! Emeritus Professor College of Medicine, Howard University! Distinguished Life Fellow

More information

You probably don t spend a lot of time here, but if you do, you are reacting to the most basic needs a human has survival and protection.

You probably don t spend a lot of time here, but if you do, you are reacting to the most basic needs a human has survival and protection. Emotional Eating Food Diary An emotional eating food diary will take some work on your part. You can dismiss it because you don t feel like doing it or you don t think it will help. However, if you choose

More information

Module 4 Introduction

Module 4 Introduction Module 4 Introduction Recall the Big Picture: We begin a statistical investigation with a research question. The investigation proceeds with the following steps: Produce Data: Determine what to measure,

More information

Review: Conditional Probability. Using tests to improve decisions: Cutting scores & base rates

Review: Conditional Probability. Using tests to improve decisions: Cutting scores & base rates Review: Conditional Probability Using tests to improve decisions: & base rates Conditional probabilities arise when the probability of one thing [A] depends on the probability of something else [B] In

More information

(a) 50% of the shows have a rating greater than: impossible to tell

(a) 50% of the shows have a rating greater than: impossible to tell q 1. Here is a histogram of the Distribution of grades on a quiz. How many students took the quiz? What percentage of students scored below a 60 on the quiz? (Assume left-hand endpoints are included in

More information

Evaluating you relationships

Evaluating you relationships Evaluating you relationships What relationships are important to you? What are you doing today to care for them? Have you told those concerned how you feel? Most of us regularly inspect the health of our

More information

Fixed-Effect Versus Random-Effects Models

Fixed-Effect Versus Random-Effects Models PART 3 Fixed-Effect Versus Random-Effects Models Introduction to Meta-Analysis. Michael Borenstein, L. V. Hedges, J. P. T. Higgins and H. R. Rothstein 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-05724-7

More information

One-Way Independent ANOVA

One-Way Independent ANOVA One-Way Independent ANOVA Analysis of Variance (ANOVA) is a common and robust statistical test that you can use to compare the mean scores collected from different conditions or groups in an experiment.

More information

Statistics Guide. Prepared by: Amanda J. Rockinson- Szapkiw, Ed.D.

Statistics Guide. Prepared by: Amanda J. Rockinson- Szapkiw, Ed.D. This guide contains a summary of the statistical terms and procedures. This guide can be used as a reference for course work and the dissertation process. However, it is recommended that you refer to statistical

More information

LEAVING EVERYONE WITH THE IMPRESSION OF INCREASE The Number One Key to Success

LEAVING EVERYONE WITH THE IMPRESSION OF INCREASE The Number One Key to Success LESSON ELEVEN LEAVING EVERYONE WITH THE IMPRESSION OF INCREASE The Number One Key to Success 167 Lesson Eleven AREA 1 NAME AREA 2 NAME AREA 3 NAME KEY POINTS Riches, in the context of this program, refers

More information

READ THIS BEFORE YOU BEGIN.

READ THIS BEFORE YOU BEGIN. 1 2 READ THIS BEFORE YOU BEGIN. Welcome! We want to congratulate you for taking the first step towards transforming your life through the Body Design Formula. Our programs are not some Get the body of

More information

A point estimate is a single value that has been calculated from sample data to estimate the unknown population parameter. s Sample Standard Deviation

A point estimate is a single value that has been calculated from sample data to estimate the unknown population parameter. s Sample Standard Deviation 7.1 Margins of Error and Estimates What is estimation? A point estimate is a single value that has been calculated from sample data to estimate the unknown population parameter. Population Parameter Sample

More information

Review Statistics review 2: Samples and populations Elise Whitley* and Jonathan Ball

Review Statistics review 2: Samples and populations Elise Whitley* and Jonathan Ball Available online http://ccforum.com/content/6/2/143 Review Statistics review 2: Samples and populations Elise Whitley* and Jonathan Ball *Lecturer in Medical Statistics, University of Bristol, UK Lecturer

More information