Hemorrhagic Shock in the Pediatric Patient: New Therapies and Practices

Size: px
Start display at page:

Download "Hemorrhagic Shock in the Pediatric Patient: New Therapies and Practices"

Transcription

1 Hemorrhagic Shock in the Pediatric Patient: New Therapies and Practices Richard P. Dutton, M.D., M.B.A. In trauma, as in other subspecialties, randomized controlled trials focused on pediatric patients are few and far between. This is especially so in emergency research, where issues of consent make a difficult challenge even harder. Nonetheless, resuscitation from hemorrhagic shock in adult trauma patients has seen a remarkable evolution in care over the past decade, and many of the lessons learned will be equally applicable or more so in children. Introduction: Why we like fluids. The concept of giving fluids as a treatment for hemorrhage is obvious, especially when blood loss is readily visible. If the body loses fluid it makes sense to replace it. Classic war movies portray the wounded soldier as thirsty, with the compassionate medic giving water to ease the distress. Modern TV shows emphasize 1 liter of normal saline, STAT. And indeed, few therapies are so immediately gratifying. In a fluid depleted, vasoconstricted patient, administration of an intravenous fluid bolus predictably increases myocardial wall tension, resulting (through Starling s law) in increased contractility and thus increased blood pressure. The thing we measure (blood pressure) responds immediately to the thing we do (give fluids). This makes us feel better, and in control. This physiology is even more compelling in children, with fewer chronic diseases to obscure the normal relationship of fluid to volume to pressure. Further, there is a wealth of research demonstrating the value of fluid therapy when the body is hypovolemic. The modern era of resuscitation science began with development of the Wiggers model of controlled hypotension in the 1950s, 1 followed by the work of Shires a decade later. 2 Bleeding was found to produce consistent organ system hypoperfusion, which led to a variety of bad outcomes, including mortality. Ischemic animals benefitted from fluid therapy: tissue perfusion improved, and morbidity and mortality were reduced. Even within the past few years, this concept has been further hammered home. Blow et al demonstrated worse outcomes in the ICU if occult hypoperfusion in trauma patients was not recognized and addressed, 3 while Rivers and colleagues showed the benefit of Early Goal Directed Therapy a thinly veiled excuse for greater fluid administration in patients presenting to the Emergency Department in septic shock. 4 Within anesthesia the concept of treating hypoperfusion with fluids is a cornerstone of residency training. We know how much anesthesia the patient needs 1 MAC, right? so if they re hypotensive it must be because they re hypovolemic. Failure to give fluids will lead to postoperative visual loss (maybe), acute renal failure (maybe) and the twin boogeymen called stroke and MI. Yet the data does not support these fears. Deliberate hypotension during anesthesia has been studied many, many times and generally found to be safe. 5 And all of us have seen adult patients with mean arterial pressure as low as 40 mmhg who woke up just fine. In fact, absent patients who need CPR, ischemic injury caused by hypotension is vanishingly rare. In children, these boundaries can likely be pushed even further.

2 Risks of Fluid Administration But why not give the fluid? Where s the harm in it? Not surprisingly, there are risks as well as benefits to fluid administration. The first is increased bleeding. Any elevation of blood pressure will increase bleeding from open vessels and will tend to wash away clots that have already formed. In the vasoconstricted shock patient even small boluses of fluid can produce sharp increases in pressure and subsequent rebleeding. And in the case of new tissue injury (i.e. surgery), the higher the blood pressure, the more blood will be lost and the harder the bleeding will be to control. 6 Further is the issue of blood dilution. Crystalloid or colloid fluids will dilute native clotting factors and red cell mass. While red cell dilution will not decrease oxygen delivery, it will increase the rate of tissue bleeding through a decrease in viscosity and a loss of red cell facilitation of clotting. It is well established (although little known) that clotting occurs more rapidly at a higher hematocrit. 7 Plasma dilution also lowers the concentration of soluble clotting factors and platelets at the site of bleeding, leading to slower and less solid clot formation. While the body has some capacity to respond by releasing stored factors, this capacity is limited and rapidly overwhelmed by trauma or major surgery. Then there is the potential for volume overload. Previously healthy adults can generally compensate for excessive fluid administration by rapid renal excretion, but in children, especially infants, this is not always true. Excessive administration of fluid can result in myocardial distention and dysfunction, with resultant pulmonary edema. Depending on the fluid administered, there is also a risk of electrolyte abnormalities and hypo- or hyper-glycemia. Finally, it is clear that the fluids themselves are not as benign as we would like. Both crystalloid and colloid fluids have immune-mediating effects, usually suppressive. 8 Fluid therapy by itself can damage vascular endothelium and lead to increased permeability. 9 Unless carefully managed, fluid administration will also make the patient colder, further contributing to both coagulopathy and immune suppression, and this is even more true in the pediatric population. Animal Studies of Fluid Restriction Although identified repeatedly during wartime surgery (all the way back to World War I), the concept of deliberate hypotension during active bleeding has been slow to sink in. In 1964 Shaftan published a study of coagulation in dogs, demonstrating that it is formation of a soft extraluminal clot that limits bleeding following arterial trauma. 10 This study compared blood loss from a standard arterial injury under various conditions. The least blood loss occurred in hypotensive animals (whether hypotensive from hemorrhage or from vasodilator administration), followed by controls, followed by vasoconstricted animals. Greatest blood loss occurred in animals that received vigorous fluid reinfusion during hemorrhage.

3 A series of reports in swine, rats, sheep and dogs established that, while some resuscitation was needed to prevent early death from exsanguination, the optimal target systolic pressure for best survival was in the range of mmhg Attempts to normalize systolic pressure prior to anatomic control of hemorrhage lead to rebleeding, increased requirement for resuscitation, increased blood loss, and increased mortality. In the most sophisticated models, direct assessment of cardiac output and regional perfusion show no difference between moderate or large volume resuscitation in cardiac output, blood pressure, or regional perfusion of the heart, kidneys, and intestines. Burris studied both conventional resuscitation fluids and various combinations of hypertonic saline and dextran, finding that rebleeding was correlated with higher mean arterial pressure (MAP), and survival was best in groups resuscitated to lower than normal MAP. 16 A 1994 consensus panel on resuscitation from hemorrhagic shock noted that mammalian species are capable of sustaining MAP as low as 40 mmhg for periods as long as 2 hours without deleterious effects. 17 The panel concluded that spontaneous hemostasis and long-term survival were maximized by reduced administration of resuscitation fluids during the period of active bleeding, seeking to keep perfusion only just above the threshold for ischemia. This same principle is likely true in children (although poorly studied), when adjusting for the age-normal blood pressure. Human Trials of Deliberate Hypotensive Resuscitation Two large trials of deliberate hypotensive resuscitation have been conducted in adult trauma patients. The first, in Houston in the early 1990s, randomized hypotensive victims of penetrating torso trauma to conventional management or to no intravenous fluid during prehospital and ED care. 18 This trial demonstrated a significant improvement in outcome (62% vs. 70% survival) with fluid restriction, but was controversial because of its focus on penetrating trauma only, its failure to continue fluid restriction into the early operative period, and its all or none methodology. Following this, a retrospective review of resuscitation strategy in a large population of hemorrhagic shock patients demonstrated increased mortality when a rapid infusion system was used. 19 A second prospective trial enrolled both blunt and penetrating trauma patients at the time of hospital arrival, and randomized fluid therapy to target a systolic pressure of either 80 mmhg or 100+ mmhg. 20 There was no difference in mortality between groups, although the overall mortality (8%) was much lower than in the earlier trial due to the exclusion of moribund patients. Although not of themselves perfect evidence, these trials were convincing enough regarding the safety and potential benefit of deliberate hypotension that this approach has become the recommended policy in most major trauma centers. 21 Even so, fluid restriction requires very close attention to detail in the ED and OR, and a willingness to tolerate systolic blood pressures that would demand action in most other settings. This kind of discipline is rare, and it is likely that most bleeding patients, in most settings, still receive too much crystalloid fluid.

4 New Thinking about Fluid Resuscitation In the new millennium thinking about resuscitation has evolved even further, in an effort to reduce the long-term harms from hypoperfusion while maintaining the hemostatic benefits of keeping the blood pressure low. With the recognition that the coagulopathy of trauma is caused not just by dilution, hypothermia and acidosis (the so-called lethal triad ) but also by an acute inflammatory response to tissue injury, 22 there has been increasing focus on early support of the coagulation system. Several large retrospective series in both military and civilian trauma have demonstrated improved outcomes when plasma and platelets are given earlier, and in greater quantities Although not yet demonstrated in a prospective trial, these observations have led to the recommendation of empiric 1:1:1 RBC:plasma:platelet administration (instead of crystalloids or colloids) as the indicated fluid therapy for hemodynamically unstable patients with ongoing bleeding. Uncrossmatched type-o RBC have been used by major trauma centers for many years, and have a superior safety record. 28,29 In the past few years large centers have also begun using prethawed or liquid universal donor (type AB) plasma early in resuscitation. Using a whole blood mix as the resuscitation fluid for hemorrhaging patients largely avoids the issue of dilution, but what about concern for hypoperfusion? Postulated as beneficial, but not yet studied even retrospectively, is the aggressive use of anesthetic agents early in resuscitation. In theory, this approach would reverse vasoconstriction and improve perfusion while maintaining low blood pressure during the period of active hemorrhage. Rather than maintaining hypotension by fluid restriction, this approach accomplishes it by vasodilatation. The downside to this approach the risk of complete circulatory failure caused by administering anesthetics to a patient in shock requires careful management. In the early going, titration of small doses of anesthesia (usually fentanyl) are balanced by small boluses of fluid (1:1:1 blood products) until an adequate anesthetic state is achieved. In the face of the dynamic changes produced by injury and surgery, this requires excellent intravenous access, an efficient rapid infusion system, close monitoring of blood pressure, and an experienced provider. When successful, the result is a stable, vasodilated physiology that keeps blood pressure low, blood composition close to normal, and the circulation largely intact. Validation of these theories is lacking, even in adults, but will hopefully be accomplished by the next generation of resuscitation researchers. Summary and Recommendations Based on the evidence presented, the following is this author s recommended approach to early resuscitation while the patient is still actively bleeding following traumatic injury or major surgical misadventure: Maintain systolic blood pressure mmhg Maintain functional blood composition, using empriric 1:1:1 transfusion therapy Maintain normal serum ionized calcium Maintain core temperature > 35 degrees C Follow base deficit and serum lactate as markers for hypoperfusion

5 Transition the patient to deep anesthesia References 1. Runciman WB, Skowronski GA: Pathophysiology of haemorrhagic shock. Anaesth Intensive Care 12: , Shires GT, Cunningham JN, Backer CR, et al: Alterations in cellular membrane function during hemorrhagic shock in primates. Ann Surg 176: , Blow O, Magliore L, Claridge JA, et al: The golden hour and the silver day: detection and correction of occult hypoperfusion within 24 hours improves outcome from major trauma. J Trauma 47: , Rivers E, Nguyen B, Havstad S, et al: Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: , Enderby GEH: Hypotensive Anaesthesia. Edinburgh, Churhill Livingstone, Dutton RP. Pathophysiology and Treatment of Traumatic Shock, in Smith C (ed.) Trauma Anesthesia: Basic and Clinical Aspects, Cambridge: Cambridge University Press, Dutton RP. Initial resuscitation of the hemorrhaging patient in Speiss B, Shander A (eds) Perioperative transfusion medicine. Philadelphia: Lippincott, Williams & Wilkins pp , Rhee P, Burris D, Kaufmann C, et al: Lactated Ringer's solution resuscitation causes neutrophil activation after hemorrhagic shock. J Trauma 44: , Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management. Anesthesiology 109: , Shaftan GW, Chiu CJ, Dennis C, et al: Fundamentals of physiologic control of arterial hemorrhage. Surgery 58: , Kowalenko T, Stern S, Dronen S, et al. Improved outcome with hypotensive resuscitation of uncontrolled hemorrhagic shock in a swine model. J Trauma 1992;33: Capone AC, Safar P, Stezoski W, et al. Improved outcome with fluid restriction in treatment of uncontrolled hemorrhagic shock. J Am Coll Surg 1995;180: Owens TM, Watson WC, Prough DS, et al. Limiting initial resuscitation of uncontrolled hemorrhage reduces internal bleeding and subsequent volume requirements. J Trauma 1995;39: Riddez L, Johnson L, Hahn RG. Central and regional hemodynamics during crystalloid fluid therapy after uncontrolled intra-abdominal bleeding. J Trauma 1998;44: Mapstone J, Roberts I, Evans P. Fluid resuscitation strategies: a systematic review of animal trials. J Trauma 2003;55: Burris D, Rhee P, Kaufmann C, et al: Controlled resuscitation for uncontrolled hemorrhagic shock. J Trauma 46: , Shoemaker WC, Peitzman AB, Bellamy R, et al: Resuscitation from severe hemorrhage. Crit Care Med 24:S12-S23, Bickell WH, Wall MJ, Jr., Pepe PE, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med 1994;331: Hambly PR, Dutton RP: Excess mortality associated with the use of a rapid infusion system at a level 1 trauma center. Resuscitation 31: , Dutton RP, Mackenzie CF, Scalea TM. Hypotensive resuscitation during active

6 hemorrhage: impact on in-hospital mortality. J Trauma 2002;52: ATLS for Doctors Student Manual, 9th Edition. Chicago, IL, American College of Surgeons, Brohi K, Cohen MJ, Ganter MT, et al. Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma 2008;64: Borgman, M.A., et al., The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma, (4): p Gunter, O.L., Jr., et al., Optimizing outcomes in damage control resuscitation: identifying blood product ratios associated with improved survival. J Trauma, (3): p Stinger, H.K., et al., The ratio of fibrinogen to red cells transfused affects survival in casualties receiving massive transfusions at an army combat support hospital. J Trauma, (2 Suppl): p. S Sperry, J.L., et al., An FFP:PRBC transfusion ratio >/=1:1.5 is associated with a lower risk of mortality after massive transfusion. J Trauma, (5): p Holcomb, J.B., et al., Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients. Ann Surg, (3): p Dutton RP, Shih D, Edelman BB, et al: Safety of uncrossmatched type-o red cells for resuscitation from hemorrhagic shock. J Trauma 59: , Camp FR, Conte NF, Brewer JR: Military blood banking, : Lessons learned applicable to civil disasters and other considerations; a monograph. Fort Knox, KY, U.S. Army Medical Research Laboratory, 1973

The Journal of TRAUMA Injury, Infection, and Critical Care

The Journal of TRAUMA Injury, Infection, and Critical Care Hypotensive Resuscitation during Active Hemorrhage: Impact on In-Hospital Mortality Richard P. Dutton, MD, MBA, Colin F. Mackenzie, MD, and Thomas M. Scalea, MD Background: Traditional fluid resuscitation

More information

Kristan Staudenmayer, MD Stanford University, Stanford, CA

Kristan Staudenmayer, MD Stanford University, Stanford, CA Kristan Staudenmayer, MD Stanford University, Stanford, CA Fluid resuscitation Variety of fluids How to administer What you do DOES matter WWII 1942 North Africa high mortality from hemorrhaghic shock

More information

Hypotensive Resuscitation

Hypotensive Resuscitation Curr Anesthesiol Rep (2014) 4:209 215 DOI 10.1007/s40140-014-0064-7 ANESTHESIA FOR TRAUMA (J-F PITTET, SECTION EDITOR) Hypotensive Resuscitation Jeremy B. Smith Jean-Francois Pittet Albert Pierce Published

More information

12/29/2014. IV/IO Therapy & Fluid Administration. Objectives. Cleansing of the soul

12/29/2014. IV/IO Therapy & Fluid Administration. Objectives. Cleansing of the soul IV/IO Therapy & Fluid Administration Gary Hoertz, EMT-P Spokane County EMS Indications for IV Access Types of Intravenous Access IV fluids Flow Rates Fluid resuscitation Objectives Cleansing of the soul

More information

TRAUMA RESUSCITATION. Dr. Carlos Palisi Dr. Nicholas Smith Liverpool Hospital

TRAUMA RESUSCITATION. Dr. Carlos Palisi Dr. Nicholas Smith Liverpool Hospital TRAUMA RESUSCITATION Dr. Carlos Palisi Dr. Nicholas Smith Liverpool Hospital First Principles.ATLS/EMST A- Airway and C-spine B- Breathing C- Circulation and Access D- Neurological deficit E- adequate

More information

Remote Damage Control Resuscitation: An Overview for Medical Directors and Supervisors. THOR Collaboration

Remote Damage Control Resuscitation: An Overview for Medical Directors and Supervisors. THOR Collaboration Remote Damage Control Resuscitation: An Overview for Medical Directors and Supervisors THOR Collaboration Agenda What is Remote Damage Control Resuscitation? Putting RDCR into Practice Control Hemorrhage

More information

Adult Trauma Advances in Pediatrics. (sometimes they are little adults) FAST examination. Who is bleeding? How much and what kind of TXA volume?

Adult Trauma Advances in Pediatrics. (sometimes they are little adults) FAST examination. Who is bleeding? How much and what kind of TXA volume? Adult Trauma Advances in Pediatrics (sometimes they are little adults) Alisa McQueen MD, FAAP, FACEP Associate Professor of Pediatrics The University of Chicago Alisa McQueen MD, FAAP, FACEP Associate

More information

3/16/15. Management of the Bleeding Trauma Patient: Concepts in Damage Control Resuscitation. Obligatory Traumatologist Slide

3/16/15. Management of the Bleeding Trauma Patient: Concepts in Damage Control Resuscitation. Obligatory Traumatologist Slide Management of the Bleeding Trauma Patient: Concepts in Damage Control Resuscitation Courtney Sommer, MD MPH Duke Trauma Symposium March 12, 2015 Obligatory Traumatologist Slide In 2010 trauma was leading

More information

Hypotensive Resuscitation in Patients with Ruptured Abdominal Aortic Aneurysm

Hypotensive Resuscitation in Patients with Ruptured Abdominal Aortic Aneurysm Eur J Vasc Endovasc Surg 31, 339 344 (2006) doi:10.1016/j.ejvs.2005.11.003, available online at http://www.sciencedirect.com on REVIEW Hypotensive Resuscitation in Patients with Ruptured Abdominal Aortic

More information

Massive transfusion: Recent advances, guidelines & strategies. Dr.A.Surekha Devi Head, Dept. of Transfusion Medicine Global Hospital Hyderabad

Massive transfusion: Recent advances, guidelines & strategies. Dr.A.Surekha Devi Head, Dept. of Transfusion Medicine Global Hospital Hyderabad Massive transfusion: Recent advances, guidelines & strategies Dr.A.Surekha Devi Head, Dept. of Transfusion Medicine Global Hospital Hyderabad Massive Hemorrhage Introduction Hemorrhage is a major cause

More information

Damage Control Resuscitation

Damage Control Resuscitation Damage Control Resuscitation H M Cassimjee Critical Care Specialist Department of Critical Care & Level 1 Trauma Unit Inkosi Albert Luthuli Central Hospital Damage Control Resuscitation only for DAMAGED

More information

Epidemiology. Case. Pre-Hospital SI and Massive Transfusion

Epidemiology. Case. Pre-Hospital SI and Massive Transfusion Epidemiology Preston Maxim, MD Assoc. Professor of Emergency Medicine San Francisco General Hospital ~180,000 deaths 2007 due to trauma 25% trauma patients require 1 unit of PRBC and only 25% of those

More information

Fluids in Sepsis: How much and what type? John Fowler, MD, FACEP Kent Hospital, İzmir Eisenhower Medical Center, USA American Hospital Dubai, UAE

Fluids in Sepsis: How much and what type? John Fowler, MD, FACEP Kent Hospital, İzmir Eisenhower Medical Center, USA American Hospital Dubai, UAE Fluids in Sepsis: How much and what type? John Fowler, MD, FACEP Kent Hospital, İzmir Eisenhower Medical Center, USA American Hospital Dubai, UAE In critically ill patients: too little fluid Low preload,

More information

Shock. William Schecter, MD

Shock. William Schecter, MD Shock William Schecter, MD The Cell as a furnace O 2 1 mole Glucose Cell C0 2 ATP 38 moles H 2 0 Shock = Inadequate Delivery of 02 and Glucose to the Cell 0 2 Cell ATP 2 moles Lactic Acid Treatment of

More information

HYPOTHERMIA IN TRAUMA. Kevin Palmer EMT-P, DiMM

HYPOTHERMIA IN TRAUMA. Kevin Palmer EMT-P, DiMM HYPOTHERMIA IN TRAUMA Kevin Palmer EMT-P, DiMM DISCLOSURE No Financial conflicts of interest Member of the Wilderness Medical Society Diploma in Mountain Medicine Fellowship in the Academy of Wilderness

More information

Surgical Resuscitation Management in Poly-Trauma Patients

Surgical Resuscitation Management in Poly-Trauma Patients Surgical Resuscitation Management in Poly-Trauma Patients Andrew Bernard, MD FACS Paul Kearney MD Chair of Trauma Surgery Associate Professor Medical Director of Trauma and Acute Care Surgery UK Healthcare

More information

Does a Controlled Fluid Resuscitation Strategy Decrease Mortality in Trauma Patients?

Does a Controlled Fluid Resuscitation Strategy Decrease Mortality in Trauma Patients? Does a Controlled Fluid Resuscitation Strategy Decrease Mortality in Trauma Patients? death Haemorrhage remains the biggest killer of major trauma patients Expected deaths will increase to 8 million/year

More information

the bleeding won t stop? Liane Manz RN, BScN, CNCC(c) Royal Alexandra Hospital

the bleeding won t stop? Liane Manz RN, BScN, CNCC(c) Royal Alexandra Hospital What do you do when the bleeding won t stop? Teddie Tanguay RN, MN, NP, CNCC(c) Teddie Tanguay RN, MN, NP, CNCC(c) Liane Manz RN, BScN, CNCC(c) Royal Alexandra Hospital Outline Case study Normal coagulation

More information

How and why I give IV fluid Disclosures SCA Fluids and public health 4/1/15. Andrew Shaw MB FRCA FCCM FFICM

How and why I give IV fluid Disclosures SCA Fluids and public health 4/1/15. Andrew Shaw MB FRCA FCCM FFICM How and why I give IV fluid Andrew Shaw MB FRCA FCCM FFICM Professor and Chief Cardiothoracic Anesthesiology Vanderbilt University Medical Center 2015 Disclosures Consultant for Grifols manufacturer of

More information

Coagulopathy: Measuring and Management. Nina A. Guzzetta, M.D. Children s Healthcare of Atlanta Emory University School of Medicine

Coagulopathy: Measuring and Management. Nina A. Guzzetta, M.D. Children s Healthcare of Atlanta Emory University School of Medicine Coagulopathy: Measuring and Management Nina A. Guzzetta, M.D. Children s Healthcare of Atlanta Emory University School of Medicine No Financial Disclosures Objectives Define coagulopathy of trauma Define

More information

Thicker than Water. Alisa McQueen MD, FAAP, FACEP Associate Professor of Pediatrics The University of Chicago

Thicker than Water. Alisa McQueen MD, FAAP, FACEP Associate Professor of Pediatrics The University of Chicago Thicker than Water Alisa McQueen MD, FAAP, FACEP Associate Professor of Pediatrics The University of Chicago I have no relevant financial relationships to disclose. Who is bleeding? How much and what kind

More information

-Cardiogenic: shock state resulting from impairment or failure of myocardium

-Cardiogenic: shock state resulting from impairment or failure of myocardium Shock chapter Shock -Condition in which tissue perfusion is inadequate to deliver oxygen, nutrients to support vital organs, cellular function -Affects all body systems -Classic signs of early shock: Tachycardia,tachypnea,restlessness,anxiety,

More information

Shock and Resuscitation: Part II. Patrick M Reilly MD FACS Professor of Surgery

Shock and Resuscitation: Part II. Patrick M Reilly MD FACS Professor of Surgery Shock and Resuscitation: Part II Patrick M Reilly MD FACS Professor of Surgery Trauma Patient 1823 / 18 Police Dropoff Torso GSW Lower Midline / Right Buttock Shock This Monday Trauma Patient 1823 / 18

More information

Pre-hospital Administration of Blood Products (PHBP) and Tranexamic acid (TXA): Is the Jury Still Out?

Pre-hospital Administration of Blood Products (PHBP) and Tranexamic acid (TXA): Is the Jury Still Out? Pre-hospital Administration of Blood Products (PHBP) and Tranexamic acid (TXA): Is the Jury Still Out? Jessica K. Reynolds, MD Assistant Professor of Surgery University of Kentucky, Department of Trauma

More information

Permissive Hypotension Strategies for the Far-Forward Fluid Resuscitation of Significant Hemorrhage 1

Permissive Hypotension Strategies for the Far-Forward Fluid Resuscitation of Significant Hemorrhage 1 Far-Forward Fluid Resuscitation of Significant Hemorrhage 1 Michael A. Dubick, Ph.D and COL James L. Atkins, MD, Ph.D. 2 U.S. Army Institute of Surgical Research, San Antonio, TX 78234 2 Walter Reed Army

More information

RESUSCITATION IN TRAUMA. Important things I have learnt

RESUSCITATION IN TRAUMA. Important things I have learnt RESUSCITATION IN TRAUMA Important things I have learnt Trauma resuscitation through the decades What was hot and now is not 1970s 1980s 1990s 2000s Now 1977 Fluids Summary Dogs subjected to arterial hemorrhage

More information

Fluid Balance in an Enhanced Recovery Pathway. Edwin Itenberg, DO, FACS, FASCRS St. Joseph Mercy Oakland MSQC/ASPIRE Meeting April 28, 2017

Fluid Balance in an Enhanced Recovery Pathway. Edwin Itenberg, DO, FACS, FASCRS St. Joseph Mercy Oakland MSQC/ASPIRE Meeting April 28, 2017 Fluid Balance in an Enhanced Recovery Pathway Edwin Itenberg, DO, FACS, FASCRS St. Joseph Mercy Oakland MSQC/ASPIRE Meeting April 28, 2017 No Disclosures 2 Introduction The optimal intravenous fluid regimen

More information

Michael Avant, M.D. The Children s Hospital of GHS

Michael Avant, M.D. The Children s Hospital of GHS Michael Avant, M.D. The Children s Hospital of GHS OVERVIEW ER to ICU Transition Early Management Priorities the First 48 hours Organ System Support Complications THE FIRST 48 HOURS Communication Damage

More information

SHOCK. Emergency pediatric PICU division Pediatric Department Medical Faculty, University of Sumatera Utara H. Adam Malik Hospital

SHOCK. Emergency pediatric PICU division Pediatric Department Medical Faculty, University of Sumatera Utara H. Adam Malik Hospital SHOCK Emergency pediatric PICU division Pediatric Department Medical Faculty, University of Sumatera Utara H. Adam Malik Hospital 1 Definition Shock is an acute, complex state of circulatory dysfunction

More information

Define Shock, mostly as it relates to bleeding Options and evidence for tools of resuscitation Understand a little about coagulation and coagulopathy

Define Shock, mostly as it relates to bleeding Options and evidence for tools of resuscitation Understand a little about coagulation and coagulopathy Define Shock, mostly as it relates to bleeding Options and evidence for tools of resuscitation Understand a little about coagulation and coagulopathy 1:1:1 New advances Reduced perfusion of vital organs

More information

FLUID MANAGEMENT AND BLOOD COMPONENT THERAPY

FLUID MANAGEMENT AND BLOOD COMPONENT THERAPY Manual: Section: Protocol #: Approval Date: Effective Date: Revision Due Date: 10/2019 LifeLine Patient Care Protocols Adult/Pediatrics AP1-011 10/2018 10/2018 FLUID MANAGEMENT AND BLOOD COMPONENT THERAPY

More information

Emergency Blood and Massive Transfusion: The Surgeon s Perspective. Transfusion Medicine Update September 16 17, 2009

Emergency Blood and Massive Transfusion: The Surgeon s Perspective. Transfusion Medicine Update September 16 17, 2009 Transfusion Medicine Update September 16 17, 2009 Mandip S. Atwal, D.O. FACOS Carl M. Pesta, D.O. FACOS Agenda History Hemorrhagic shock Transfusion is Bad Transfusion Prevention Transfusion The Red Chest

More information

Unrestricted. Dr ppooransari fellowship of perenatalogy

Unrestricted. Dr ppooransari fellowship of perenatalogy Unrestricted Dr ppooransari fellowship of perenatalogy Assessment of severity of hemorrhage Significant drops in blood pressure are generally not manifested until substantial bleeding has occurred, and

More information

Damage control resuscitation from major haemorrhage in polytrauma

Damage control resuscitation from major haemorrhage in polytrauma Eur J Orthop Surg Traumatol (2014) 24:137 141 DOI 10.1007/s00590-013-1172-7 GENERAL REVIEW Damage control resuscitation from major haemorrhage in polytrauma William Carlino Received: 27 November 2012 /

More information

Transfusion Pitfalls. Objectives. Packed Red Blood Cells. TRICC trial (subgroups): Is transfusion always good? Components

Transfusion Pitfalls. Objectives. Packed Red Blood Cells. TRICC trial (subgroups): Is transfusion always good? Components Objectives Transfusion Pitfalls Gregory W. Hendey, MD, FACEP Professor and Chief UCSF Fresno, Emergency Medicine To list risks and benefits of various blood products To discuss controversy over liberal

More information

Fluid management. Dr. Timothy Miller Assistant Professor of Anesthesiology Duke University Medical Center

Fluid management. Dr. Timothy Miller Assistant Professor of Anesthesiology Duke University Medical Center Fluid management Dr. Timothy Miller Assistant Professor of Anesthesiology Duke University Medical Center Disclosure Consultant and research funding Edwards Lifesciences Goals of fluid therapy 1. Maintain

More information

HYPOVOLEMIA AND HEMORRHAGE UPDATE ON VOLUME RESUSCITATION HEMORRHAGE AND HYPOVOLEMIA DISTRIBUTION OF BODY FLUIDS 11/7/2015

HYPOVOLEMIA AND HEMORRHAGE UPDATE ON VOLUME RESUSCITATION HEMORRHAGE AND HYPOVOLEMIA DISTRIBUTION OF BODY FLUIDS 11/7/2015 UPDATE ON VOLUME RESUSCITATION HYPOVOLEMIA AND HEMORRHAGE HUMAN CIRCULATORY SYSTEM OPERATES WITH A SMALL VOLUME AND A VERY EFFICIENT VOLUME RESPONSIVE PUMP. HOWEVER THIS PUMP FAILS QUICKLY WITH VOLUME

More information

Albumina nel paziente critico. Savona 18 aprile 2007

Albumina nel paziente critico. Savona 18 aprile 2007 Albumina nel paziente critico Savona 18 aprile 2007 What Is Unique About Critical Care RCTs patients eligibility is primarily defined by location of care in the ICU rather than by the presence of a specific

More information

MANAGEMENT OF COAGULOPATHY AFTER TRAUMA OR MAJOR SURGERY

MANAGEMENT OF COAGULOPATHY AFTER TRAUMA OR MAJOR SURGERY MANAGEMENT OF COAGULOPATHY AFTER TRAUMA OR MAJOR SURGERY 19th ANNUAL CONTROVERSIES AND PROBLEMS IN SURGERY Thabo Mothabeng General Surgery: 1 Military Hospital HH Stone et al. Ann Surg. May 1983; 197(5):

More information

Groupe d Intérêt en Hémostase Périopératoire

Groupe d Intérêt en Hémostase Périopératoire How do I treat massive bleeding? Red blood cell / plasma / platelet ratio and massive transfusion protocols Anne GODIER Service d Anesthésie-Réanimation Hopital Cochin Paris Groupe d Intérêt en Hémostase

More information

12/1/2009. Chapter 19: Hemorrhage. Hemorrhage and Shock Occurs when there is a disruption or leak in the vascular system Internal hemorrhage

12/1/2009. Chapter 19: Hemorrhage. Hemorrhage and Shock Occurs when there is a disruption or leak in the vascular system Internal hemorrhage Chapter 19: Hemorrhage Hemorrhage and Shock Occurs when there is a disruption or leak in the vascular system External hemorrhage Internal hemorrhage Associated with higher morbidity and mortality than

More information

PEDIATRIC MASSIVE TRANSFUSION

PEDIATRIC MASSIVE TRANSFUSION PEDIATRIC MASSIVE TRANSFUSION CHELSEA RUNKLE RN, BSN, CCRN, SRNA CROZER-CHESTER MEDICAL CENTER/VILLANOVA UNIVERSITY NURSE ANESTHESIA PROGRAM LEADING CAUSE OF DEATH Trauma Motor vehicle accidents, nonaccidental

More information

Transfusion Requirements and Management in Trauma RACHEL JACK

Transfusion Requirements and Management in Trauma RACHEL JACK Transfusion Requirements and Management in Trauma RACHEL JACK Overview Haemostatic resuscitation Massive Transfusion Protocol Overview of NBA research guidelines Haemostatic resuscitation Permissive hypotension

More information

ICU treatment of the trauma patient. Intensive Care Training Program Radboud University Medical Centre Nijmegen

ICU treatment of the trauma patient. Intensive Care Training Program Radboud University Medical Centre Nijmegen ICU treatment of the trauma patient Intensive Care Training Program Radboud University Medical Centre Nijmegen Christian Kleber Surgical Intensive Care Unit - The trauma surgery Perspective Langenbecks

More information

2 Liters. Goal: Basic Algorithm Volume Resuscitation in Trauma. Initial Fluids. Blood. Where do Blood Products Come From?

2 Liters. Goal: Basic Algorithm Volume Resuscitation in Trauma. Initial Fluids. Blood. Where do Blood Products Come From? Goal: Basic Algorithm Volume Resuscitation in Trauma Sanjay Arora MD Associate Professor of Emergency Medicine Keck School of Medicine at USC Los Angeles County + USC Medical Center May 23, 2012 Initial

More information

GUIDANCE DOCUMENT FOR MASSIVE HEMORRHAGE MANAGEMENT IN ADULTS

GUIDANCE DOCUMENT FOR MASSIVE HEMORRHAGE MANAGEMENT IN ADULTS GUIDANCE DOCUMENT FOR MASSIVE HEMORRHAGE MANAGEMENT IN ADULTS 1.0 Definitions & Acronyms 1.1 Massive Hemorrhage Event (MHE): Transfusion of a volume of blood components equivalent to a patient s estimated

More information

Implementation and execution of civilian RDCR programs Minnesota RDCR

Implementation and execution of civilian RDCR programs Minnesota RDCR Implementation and execution of civilian RDCR programs Minnesota RDCR Donald H Jenkins, MD FACS Associate Professor of Surgery and Director of Trauma Division of Trauma, Critical Care and Emergency General

More information

Clinical Overview of Coagulation Testing Issues

Clinical Overview of Coagulation Testing Issues Clinical Overview of Coagulation Testing Issues Adam M. Vogel, MD Assistant Professor, Division of Pediatric Surgery Washington University in St. Louis School of Medicine September 19, 2014 Disclosure

More information

Damage Control in Abdominal and Pelvic Injuries

Damage Control in Abdominal and Pelvic Injuries Damage Control in Abdominal and Pelvic Injuries Raul Coimbra, MD, PhD, FACS The Monroe E. Trout Professor of Surgery Surgeon-in Chief UCSD Medical Center Hillcrest Campus Executive Vice-Chairman Department

More information

MASSIVE TRANSFUSION DR.K.HITESH KUMAR FINAL YEAR PG DEPT. OF TRANSFUSION MEDICINE

MASSIVE TRANSFUSION DR.K.HITESH KUMAR FINAL YEAR PG DEPT. OF TRANSFUSION MEDICINE MASSIVE TRANSFUSION DR.K.HITESH KUMAR FINAL YEAR PG DEPT. OF TRANSFUSION MEDICINE CONTENTS Definition Indications Transfusion trigger Massive transfusion protocol Complications DEFINITION Massive transfusion:

More information

Review Article Hypotensive Resuscitation among Trauma Patients

Review Article Hypotensive Resuscitation among Trauma Patients BioMed Research International Volume 2016, Article ID 8901938, 8 pages http://dx.doi.org/10.1155/2016/8901938 Review Article Hypotensive Resuscitation among Trauma Patients Matthew M. Carrick, 1 Jan Leonard,

More information

Kay Barrera MD. Surgery Grand Rounds June 19, 2014 SUNY Downstate

Kay Barrera MD. Surgery Grand Rounds June 19, 2014 SUNY Downstate Kay Barrera MD Surgery Grand Rounds June 19, 2014 SUNY Downstate Kay Barrera MD Surgery Grand Rounds June 19, 2014 SUNY Downstate Outline Why are we talking about this SCORE expectations When do we use

More information

Damage Control Resuscitation. VGH Trauma Rounds 2018 Harvey Hawes

Damage Control Resuscitation. VGH Trauma Rounds 2018 Harvey Hawes Damage Control Resuscitation VGH Trauma Rounds 2018 Harvey Hawes Example Case 25yo F in motor vehicle collision at high speed Picked up at scene by Helicopter EMS unit Initial vital signs: HR 134 BP 88/42

More information

Shock and hemodynamic monitorization. Nilüfer Yalındağ Öztürk Marmara University Pendik Research and Training Hospital

Shock and hemodynamic monitorization. Nilüfer Yalındağ Öztürk Marmara University Pendik Research and Training Hospital Shock and hemodynamic monitorization Nilüfer Yalındağ Öztürk Marmara University Pendik Research and Training Hospital Shock Leading cause of morbidity and mortality Worldwide: dehydration and hypovolemic

More information

Actualités sur le remplissage peropératoire. Philippe Van der Linden MD, PhD

Actualités sur le remplissage peropératoire. Philippe Van der Linden MD, PhD Actualités sur le remplissage peropératoire Philippe Van der Linden MD, PhD Fees for lectures, advisory board and consultancy: Fresenius Kabi GmbH B Braun Medical SA Perioperative Fluid Volume Administration

More information

Neue Wirkungsmechanismen von Transfusionsplasma

Neue Wirkungsmechanismen von Transfusionsplasma Neue Wirkungsmechanismen von Transfusionsplasma Lorenzo ALBERIO Médecin chef Hématologie générale et Hémostase Service et Laboratoire centrale d Hématologie CHUV, Lausanne Trauma patient Bleeding Thrombosis

More information

Factors Contributing to Fatal Outcome of Traumatic Brain Injury: A Pilot Case Control Study

Factors Contributing to Fatal Outcome of Traumatic Brain Injury: A Pilot Case Control Study Factors Contributing to Fatal Outcome of Traumatic Brain Injury: A Pilot Case Control Study D. HENZLER, D. J. COOPER, K. MASON Intensive Care Department, The Alfred Hospital, Melbourne, VICTORIA ABSTRACT

More information

Pediatric massive transfusion protocols

Pediatric massive transfusion protocols University of New Mexico UNM Digital Repository Emergency Medicine Research and Scholarship Emergency Medicine 2014 Pediatric massive transfusion protocols Ramsey Tate Follow this and additional works

More information

Hemostatic Resuscitation in Trauma. Joanna Davidson, MD 6/6/2012

Hemostatic Resuscitation in Trauma. Joanna Davidson, MD 6/6/2012 Hemostatic Resuscitation in Trauma { Joanna Davidson, MD 6/6/2012 Case of HM 28 yo M arrives CCH trauma bay 5/27/12 at 241 AM Restrained driver in low speed MVC after getting shot in the chest Arrived

More information

Damage Control Resuscitation:

Damage Control Resuscitation: American Journal of Clinical Medicine Fall 2011 Volume Eight, Number Three 129 Damage Control Resuscitation: The Case For Early Use of Blood Products and Hypertonic Saline in Exsanguinating Trauma Victims

More information

EMSS17: Bleeding patients course material

EMSS17: Bleeding patients course material EMSS17: Bleeding patients course material Introduction During the bleeding patients workshop at the Emergency Medicine Summer School 2017 (EMSS17) you will learn how to assess and treat bleeding patients

More information

Financial Disclosure. Objectives 9/24/2018

Financial Disclosure. Objectives 9/24/2018 Hemorrhage and Transfusion Adjuncts in the Setting of Damage Control Joseph Cuschieri, MD FACS Professor of Surgery, University of Washington Adjunct Professor of Orthopedics and Neurosurgery, University

More information

Management of the Trauma Patient. Elizabeth R Benjamin MD PhD Trauma and Surgical Critical Care Critical Care Symposium April 20, 2015

Management of the Trauma Patient. Elizabeth R Benjamin MD PhD Trauma and Surgical Critical Care Critical Care Symposium April 20, 2015 Management of the Trauma Patient Elizabeth R Benjamin MD PhD Trauma and Surgical Critical Care Critical Care Symposium April 20, 2015 Saturday Night 25 yo M s/p high speed MVC Hypotensive in the ED, altered

More information

Nurse Driven Fluid Optimization Using Dynamic Assessments

Nurse Driven Fluid Optimization Using Dynamic Assessments Nurse Driven Fluid Optimization Using Dynamic Assessments 2016 1 WHAT WE BELIEVE We believe that clinicians make vital fluid and drug decisions every day with limited and inconclusive information Cheetah

More information

Goal-Directed Fluid Therapy: A New Way of Thinking. Ji Su Jenny Kim & Logan D. MacLean SRNA, BSN, CCRN DNP Candidates

Goal-Directed Fluid Therapy: A New Way of Thinking. Ji Su Jenny Kim & Logan D. MacLean SRNA, BSN, CCRN DNP Candidates Goal-Directed Fluid Therapy: A New Way of Thinking Ji Su Jenny Kim & Logan D. MacLean SRNA, BSN, CCRN DNP Candidates Goal-Directed Fluid Therapy Map History of Fluid Management Significance of Fluid Management

More information

Mechanisms of Trauma Coagulopathy. Dr B M Schyma Changi General Hospital Singapore

Mechanisms of Trauma Coagulopathy. Dr B M Schyma Changi General Hospital Singapore Mechanisms of Trauma Coagulopathy Dr B M Schyma Changi General Hospital Singapore HAEMORRHAGE A continued cause of PREVENTABLE death. 24% of trauma patients are coagulopathic on arrival 1 56% of severe

More information

Major Haemorrhage in the Remote and Retrieval Environment. Stuart Gillon Royal Flying Doctor Service (Western Operations)

Major Haemorrhage in the Remote and Retrieval Environment. Stuart Gillon Royal Flying Doctor Service (Western Operations) Major Haemorrhage in the Remote and Retrieval Environment Stuart Gillon Royal Flying Doctor Service (Western Operations) Aims Audit approach to major haemorrhage within RFDS (WO) Ascertain current major

More information

SHOCK and the Trauma Victim. JP Pretorius Department of Surgery & SICU Steve Biko Academic Hospital.

SHOCK and the Trauma Victim. JP Pretorius Department of Surgery & SICU Steve Biko Academic Hospital. SHOCK and the Trauma Victim JP Pretorius Department of Surgery & SICU Steve Biko Academic Hospital. Classification of Shock Cardiogenic - Myopathic Arrythmic Mechanical Hypovolaemic - Haemorrhagic Non-haemorrhagic

More information

Department of Intensive Care Medicine UNDERSTANDING CIRCULATORY FAILURE IN SEPSIS

Department of Intensive Care Medicine UNDERSTANDING CIRCULATORY FAILURE IN SEPSIS Department of Intensive Care Medicine UNDERSTANDING CIRCULATORY FAILURE IN SEPSIS UNDERSTANDING CIRCULATORY FAILURE IN SEPSIS a mismatch between tissue perfusion and metabolic demands the heart, the vasculature

More information

Haemostatic resuscitation

Haemostatic resuscitation British Journal of Anaesthesia 109 (S1): i39 i46 (2012) doi:10.1093/bja/aes389 CRITICAL CARE Haemostatic resuscitation R. P. Dutton* Department of Anesthesia and Critical Care, University of Chicago, Anesthesia

More information

Case year old female nursing home resident with a hx CAD, PUD, recent hip fracture Transferred to ED with decreased mental status BP in ED 80/50

Case year old female nursing home resident with a hx CAD, PUD, recent hip fracture Transferred to ED with decreased mental status BP in ED 80/50 Case 1 65 year old female nursing home resident with a hx CAD, PUD, recent hip fracture Transferred to ED with decreased mental status BP in ED 80/50 Case 1 65 year old female nursing home resident with

More information

CEDR 2018 QCDR Measures for CMS 2018 MIPS Performance Year Reporting

CEDR 2018 QCDR Measures for CMS 2018 MIPS Performance Year Reporting ACEP19 Emergency Department Utilization of CT for Minor Blunt Head Trauma for Aged 18 Years and Older Percentage of visits for aged 18 years and older who presented with a minor blunt head trauma who had

More information

"Small Volume" Resuscitation for Trauma Cases : PRO Aspects

Small Volume Resuscitation for Trauma Cases : PRO Aspects "Small Volume" Resuscitation for Trauma Cases : PRO Aspects Jim Holliman, M.D., F.A.C.E.P. Program Manager, Afghanistan Health Care Sector Reconstruction Project Center for Disaster and Humanitarian Assistance

More information

SHOCK Susanna Hilda Hutajulu, MD, PhD

SHOCK Susanna Hilda Hutajulu, MD, PhD SHOCK Susanna Hilda Hutajulu, MD, PhD Div Hematology and Medical Oncology Department of Internal Medicine Universitas Gadjah Mada Yogyakarta Outline Definition Epidemiology Physiology Classes of Shock

More information

Emergency Preservation and Resuscitation

Emergency Preservation and Resuscitation Emergency Preservation and Resuscitation Samuel A. Tisherman, MD, FACS, FCCM Director, Center for Critical Care and Trauma Education Director, SICU RA Cowley Shock Trauma Center Disclosures Co-author of

More information

PUZZLE. EARLY IMPACT ALS Jamie Syrett, MD Director of Prehospital Care Rochester General Health System PUZZLE THINKING OUTSIDE THE BOX! EARLY IMPACT?

PUZZLE. EARLY IMPACT ALS Jamie Syrett, MD Director of Prehospital Care Rochester General Health System PUZZLE THINKING OUTSIDE THE BOX! EARLY IMPACT? PUZZLE EARLY IMPACT ALS Jamie Syrett, MD Director of Prehospital Care Rochester General Health System PUZZLE THINKING OUTSIDE THE BOX! EARLY IMPACT? IV ACCESS? What things do we do that make a difference?

More information

Decreasing Killed in Action and Died of Wounds Rates in Combat Wounded

Decreasing Killed in Action and Died of Wounds Rates in Combat Wounded SPECIAL COMMENTARY Decreasing Killed in Action and Died of Wounds Rates in Combat Wounded Lorne H. Blackbourne, MD, James Czarnik, MD, Robert Mabry, MD, Brian Eastridge, MD, David Baer, PhD, Frank Butler,

More information

10/4/2018. Nothing to Disclose. Liz Robertson, MD FACS October 5, 2018 Steven R. Hall Trauma Symposium Big Cedar Lodge, MO

10/4/2018. Nothing to Disclose. Liz Robertson, MD FACS October 5, 2018 Steven R. Hall Trauma Symposium Big Cedar Lodge, MO Nothing to Disclose Liz Robertson, MD FACS October 5, 2018 Steven R. Hall Trauma Symposium Big Cedar Lodge, MO History of IV Resuscitation Review of Data for Fluid Strategies Historical Examples of IV

More information

DAMAGE CONTROL RESUSCITATION

DAMAGE CONTROL RESUSCITATION DAMAGE CONTROL RESUSCITATION Chapter 4 Contributing Authors Jeremy G. Perkins, MD, FACP, LTC, MC, US Army Alec C. Beekley, MD, FACS, LTC, MC, US Army All figures and tables included in this chapter have

More information

What would be the response of the sympathetic system to this patient s decrease in arterial pressure?

What would be the response of the sympathetic system to this patient s decrease in arterial pressure? CASE 51 A 62-year-old man undergoes surgery to correct a herniated disc in his spine. The patient is thought to have an uncomplicated surgery until he complains of extreme abdominal distention and pain

More information

ORIGINAL PAPERS. Fluid Resuscitation in Pre-Hospital Trauma Care: a consensus view

ORIGINAL PAPERS. Fluid Resuscitation in Pre-Hospital Trauma Care: a consensus view J R Army Med Corps 2001; 147: 147-152 ORIGINAL PAPERS Consensus Working Group on Pre-hospital fluids representing: Faculty of Pre-Hospital Care Royal College of Surgeons of Edinburgh Faculty of Accident

More information

KASHVET VETERINARIAN RESOURCES FLUID THERAPY AND SELECTION OF FLUIDS

KASHVET VETERINARIAN RESOURCES FLUID THERAPY AND SELECTION OF FLUIDS KASHVET VETERINARIAN RESOURCES FLUID THERAPY AND SELECTION OF FLUIDS INTRODUCTION Formulating a fluid therapy plan for the critical small animal patient requires careful determination of the current volume

More information

Maria B. ALBUJA-CRUZ, MD ALBUMIN: OVERRATED. Surgical Grand Rounds

Maria B. ALBUJA-CRUZ, MD ALBUMIN: OVERRATED. Surgical Grand Rounds Maria B. ALBUJA-CRUZ, MD ALBUMIN: OVERRATED Surgical Grand Rounds ALBUMIN Most abundant plasma protein 1/3 intravascular 50% of interstitial SKIN Synthesized in hepatocytes Transcapillary escape rate COP

More information

Medical APMLE. Podiatry and Medical.

Medical APMLE. Podiatry and Medical. Medical APMLE Podiatry and Medical http://killexams.com/exam-detail/apmle Question: 290 Signs and symptoms of hemolytic transfusion reactions include: A. Hypothermia B. Hypertension C. Polyuria D. Abnormal

More information

Sepsis Awareness and Education

Sepsis Awareness and Education Sepsis Awareness and Education Meets the updated New York State Department of Health (NYSDOH) requirements for Infection Control and Barrier Precautions coursework Element VII: Sepsis Awareness and Education

More information

Patient Safety Safe Table Webcast: Sepsis (Part III and IV) December 17, 2014

Patient Safety Safe Table Webcast: Sepsis (Part III and IV) December 17, 2014 Patient Safety Safe Table Webcast: Sepsis (Part III and IV) December 17, 2014 Presenters Mark Blaney, RN Regional Nurse Educator CHI Franciscan Health Karen Lautermilch Director, Quality & Performance

More information

Printed copies of this document may not be up to date, obtain the most recent version from

Printed copies of this document may not be up to date, obtain the most recent version from Children s Acute Transport Service Clinical Guidelines Septic Shock Document Control Information Author Claire Fraser P.Ramnarayan Author Position tanp CATS Consultant Document Owner E. Polke Document

More information

5/30/2013. I have no conflicts of interest to disclose. Alicia Privette, MD Trauma & Critical Care Fellow. Trauma = #1 cause of death persons <40 yo 1

5/30/2013. I have no conflicts of interest to disclose. Alicia Privette, MD Trauma & Critical Care Fellow. Trauma = #1 cause of death persons <40 yo 1 I have no conflicts of interest to disclose. Alicia Privette, MD Trauma & Critical Care Fellow Trauma = #1 cause of death persons

More information

Presented by: Indah Dwi Pratiwi

Presented by: Indah Dwi Pratiwi Presented by: Indah Dwi Pratiwi Normal Fluid Requirements Resuscitation Fluids Goals of Resuscitation Maintain normal body temperature In most cases, elevate the feet and legs above the level of the heart

More information

When Should I Use Tranexamic Acid for Children? Dr Andrea Kelleher Consultant Adult and Paediatric Cardiac Anaesthetist

When Should I Use Tranexamic Acid for Children? Dr Andrea Kelleher Consultant Adult and Paediatric Cardiac Anaesthetist When Should I Use Tranexamic Acid for Children? Dr Andrea Kelleher Consultant Adult and Paediatric Cardiac Anaesthetist When? When a drug is licenced for (the proposed) use When its use is supported by

More information

INTENSIVE CARE MEDICINE CPD EVENING. Dr Alastair Morgan Wednesday 13 th September 2017

INTENSIVE CARE MEDICINE CPD EVENING. Dr Alastair Morgan Wednesday 13 th September 2017 INTENSIVE CARE MEDICINE CPD EVENING Dr Alastair Morgan Wednesday 13 th September 2017 WHAT IS NEW IN ICU? (RELEVANT TO ANAESTHETISTS) Not much! SURVIVING SEPSIS How many deaths in England were thought

More information

L : Line and Tube อ นตรายป องก นได จากการให สารน า

L : Line and Tube อ นตรายป องก นได จากการให สารน า L : Line and Tube อ นตรายป องก นได จากการให สารน า รศ.นพ.กว ศ กด จ ตตว ฒนร ตน ภาคว ชาศ ลยศาสตร คณะแพทยศาสตร มหาว ทยาล ยเช ยงใหม 3 rd Mini Conference: ความปลอดภ ยในผ ป วย ร วมด วย ช วยได ท กคน ว นท 13-14

More information

Pathophysiologie und Therapie bei Massenblutung

Pathophysiologie und Therapie bei Massenblutung Swisstransfusion Bern, 7. September 2012 Pathophysiologie und Therapie bei Massenblutung Lorenzo ALBERIO Universitätsklinik für Hämatologie und Hämatologisches Zentrallabor Coagulopathy of Trauma Haemorrhage

More information

-Blood Warming- A Hot topic?

-Blood Warming- A Hot topic? -Blood Warming- A Hot topic? Blaine Kent, MD, FRCPC Associate Professor of Anesthesia Director, Peri-Operative Blood Management Chief, Cardiac Anesthesia Objectives To learn / review the deleterious systemic

More information

Sepsis Management: Past, Present, and Future

Sepsis Management: Past, Present, and Future Sepsis Management: Past, Present, and Future Benjamin Ferrell, MD Tennessee ACP Meeting October 28, 2017 Learning Objectives Identify the most updated definition and clinical criteria for sepsis Describe

More information

Heme (Bleeding and Coagulopathies) in the ICU

Heme (Bleeding and Coagulopathies) in the ICU Heme (Bleeding and Coagulopathies) in the ICU General Topics To Discuss Transfusions DIC Thrombocytopenia Liver and renal disease related bleeding Lack of evidence in managing critical illness related

More information

VanderbiltEM.com. Prehospital STEMIs. EMS Today 2018 Research That Should Be On Your Radar Screen 3/1/2018

VanderbiltEM.com. Prehospital STEMIs. EMS Today 2018 Research That Should Be On Your Radar Screen 3/1/2018 EMS Today 2018 Research That Should Be On Your Radar Screen Corey M. Slovis, M.D. Vanderbilt University Medical Center Metro Nashville Fire Department Nashville International Airport Nashville, TN VanderbiltEM.com

More information

Implementation of massive transfusion protocol (MTP) for trauma

Implementation of massive transfusion protocol (MTP) for trauma LEADING ARTICLE Implementation of massive transfusion protocol (MTP) for trauma 1,2 2 2 R.N. Ellawala, K. Gonsalkorala, I.S. Wijesiriwardena 1 Department of Surgery, Faculty of Medicine, General Sir John

More information

Evidence-Based. Management of Severe Sepsis. What is the BP Target?

Evidence-Based. Management of Severe Sepsis. What is the BP Target? Evidence-Based Management of Severe Sepsis Michael A. Gropper, MD, PhD Professor and Vice Chair of Anesthesia Director, Critical Care Medicine Chair, Quality Improvment University of California San Francisco

More information

SHOCK AETIOLOGY OF SHOCK (1) Inadequate circulating blood volume ) Loss of Autonomic control of the vasculature (3) Impaired cardiac function

SHOCK AETIOLOGY OF SHOCK (1) Inadequate circulating blood volume ) Loss of Autonomic control of the vasculature (3) Impaired cardiac function SHOCK Shock is a condition in which the metabolic needs of the body are not met because of an inadequate cardiac output. If tissue perfusion can be restored in an expeditious fashion, cellular injury may

More information