Regulation of Floral Organ Identity. Dr. Chloe Diamond Mara

Size: px
Start display at page:

Download "Regulation of Floral Organ Identity. Dr. Chloe Diamond Mara"

Transcription

1 Regulation of Floral Organ Identity Dr. Chloe Diamond Mara

2 Flower Development Angiosperms (flowering plants) are the most widespread group of land plants Flowers are the reproductive organs that consist of variations of the same fundamental pattern Genetic analysis in model plant species has identified many of the genes responsible for patterning

3 Arabidopsis thaliana Arabidopsis is a small flowering plant that is widely used as a model organism in plant biology. Arabidopsis is a member of the mustard (Brassicaceae) family, which includes cultivated species such as cabbage and radish. Arabidopsis is not of major agronomic significance, but it offers important advantages for basic research in genetics and molecular biology.

4 Why Arabidopsis? Small genome (114.5 Mb/125 Mb total) has been sequenced in the year Extensive genetic and physical maps of all 5 chromosomes. A rapid life cycle (about 6 weeks from germination to mature seed). Prolific seed production (10,000-40,000/plant) and easy cultivation in restricted space. Self fertilization Efficient transformation methods utilizing Agrobacterium tumefaciens. A large number of mutant lines and genomic resources many of which are available from Stock Centers. Such advantages have made Arabidopsis a model organism for studies of the cellular and molecular biology of flowering plants.

5 Arabidopsis Genome

6 Arabidopsis thaliana genome sequence Nature 408, 796 (2000)

7 Genetic Nomenclature in Arabidopsis

8 Fig. B.5

9 Inflorescence 4 2 IM shoots 3 Inflorescence Meristem (IM) Rosette leaf Arabidopsis plant

10 Pattern Formation: How to make a flower? Flower organs form in concentric rings, called whorls. Sepals form first, followed by petals, and then by stamen, and finally by carpels. (

11 Sepal Morphology Enclose developing reproductive organs Green chloroplasts Trichomes

12 Petal Morphology Simple, laminar structure Two distinct regions: Blade and Claw with distinct cell types

13 Stamen Morphology Simple filament Anther composed of more than 10 cell types involved in pollen production and dispersal

14 Carpel Morphology Many distinct cell types and tissues involved in fertilization, seed development and seed dispersal Figure 1. Diagram of a gynoecium structure including a cross section view (right ) (Dinneny & Yanofsky, 2004)

15 Molecular Basis of Differentiation Different transcription factors are required to turn on the correct genetic pathways to specify each distinct floral organ Downstream target genes function to coordinate cell division, cell expansion and cell signaling required to promote differentiation

16 How do the proper flower parts form the proper arrangement? Scientists identified homeotic mutations that resulted in misplacement of floral organs Three classes of mutations were identified

17 The ABC Model Each class of genes is required in two adjacent whorls. Class A genes are required in whorls 1 and 2 Class B genes are required in whorls 2 and 3 Class C genes are required in whorls 3 and 4 Class A and C genes act antagonistically B A C Whorl: Sepals Petals Stamens Carpels

18 ABC Class genes APETALA1-2 APETALA1, 2 APETALA3 PISTILLATA AGAMOUS A class genes alone sepals A + B class genes petals B + C class genes stamens C class alone carpels

19 ag-1 C class: AGAMOUS (AG) MADS box transcription factor Specifies stamen and carpel identity Represses sepal and petal identities Controls floral meristem determinacy Expressed in whorls 3 and 4 B A SEPAL PETAL PETAL NEW FLOWER whorl 1 whorl 2 whorl 3 whorl 4

20 B class: PISTILL!ATA (PI) APETALA3 (AP3) MADS box transcription factors Specifies petal and stamen Expressed in whorls 2 and 3 Heterodimerize with each other in vitro ap3-3 A C SEPAL SEPAL CARPEL CARPEL whorl 1 whorl 2 whorl 3 whorl 4

21 B class: APETALA3 (AP3) and DNA binding PISTILLATA (PI) MADS I K C CArG Box CC(A/T) 6 GG Dimerization Loss-of-function Loss of function Ectopic co-expression (Weigel world and Jack et al., 2003)

22 Ectopic B B A C Whorl: Petals Petals Stamens Stamens

23 A class: APETALA1 (AP1) MADS box protein Meristem identity specification: activate floral homeotic gene expression Organ identity specification: specifies sepal and petal identity ap1-1 Early expression: in the entire floral meristem Later expression: in whorls 1 and 2 B C Bract (fl) STAMEN CARPEL whorl 1 whorl 2 whorl 3 whorl 4

24 A class: APETALA2 (AP2) AP2 encodes a novel type transcription factor with two 68 aa. AP2 domains Specifies sepal and petal development AP2 negatively regulates AG ap2-2 B C CARPEL STAMEN STAMEN CARPEL whorl 1 whorl 2 whorl 3 whorl 4

25 ac bc Leaf-like organs in 1, 4, mosaic petal/stamen in 2, 3 abc Endless whorls of sepals Leaf-like organs in all whorls

26 A, B, C gene mrna expression pattern revealed by in situ hybridization AP1 AP3 AG

27 35S::PI 35S::AP3 35S::B c mutant 35S::B a mutant Petal, petal, stamen, stamen All petals B A Mosaic stamen/petal, stamen, stamen, stamen B C

28 Revisionist ABC Model B sepal A E C petall stamen carpel

29 SEP1, SEP2, SEP3, SEP4!= E class MADS box proteins (most similar to AP1) Have redundant function Single mutants show subtle phenotype Triple mutant show flower phenotype similar to bc double mutant SEP1,2,3, SEP4 :expressed in whorls 2-3 (SEP 1,2 also in whorl1 in young flowers) Interact with B and C proteins based on yeast two-hybrid assay Pelaz et al., Nature 405, , 2000

30 A+B+E: B+C+E: C+E: A+E: Petal Stamen Carpel Sepal

31 Questions?

Testing the ABC floral-organ identity model: expression of A and C function genes

Testing the ABC floral-organ identity model: expression of A and C function genes Objectives: Testing the ABC floral-organ identity model: expression of A and C function genes To test the validity of the ABC model for floral organ identity we will: 1. Use the model to make predictions

More information

Arabidopsis: Flower Development and Patterning

Arabidopsis: Flower Development and Patterning Arabidopsis: Flower Development and Patterning John L Bowman, University of California, Davis, California, USA The development of flowers and floral organs is directed by genetic programmes likely to be

More information

Floral Organ Mutants and the Study of Organ Morphogenesis

Floral Organ Mutants and the Study of Organ Morphogenesis Floral Organ Mutants and the Study of Organ Morphogenesis Objectives: 1. How does one use mutants to understand floral organ morphogenesis? 2. What are the phenotypes of some floral organ mutants? 3. What

More information

The Role of Lipids in Flowering Development of Arabidopsis Enhanced pah1pah2 Plants. Toshiro Ito 1 & Lee Lishi 2

The Role of Lipids in Flowering Development of Arabidopsis Enhanced pah1pah2 Plants. Toshiro Ito 1 & Lee Lishi 2 The Role of Lipids in Flowering Development of Arabidopsis Enhanced pah1pah2 Plants Toshiro Ito 1 & Lee Lishi 2 Department of Biological Sciences, Faculty of Science, National University of Singapore,

More information

UFO and LEAFY in Arabidopsis

UFO and LEAFY in Arabidopsis Development 128, 2735-2746 (2001) Printed in Great Britain The Company of Biologists Limited 2001 DEV0360 2735 The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis

More information

FILAMENTOUS FLOWER Controls the Formation and Development of Arabidopsis Inflorescences and Floral Meristems

FILAMENTOUS FLOWER Controls the Formation and Development of Arabidopsis Inflorescences and Floral Meristems The Plant Cell, Vol. 11, 69 86, January 1999, www.plantcell.org 1999 American Society of Plant Physiologists FILAMENTOUS FLOWER Controls the Formation and Development of Arabidopsis Inflorescences and

More information

Regulation of Floral-Organ- Type by SUPERMAN

Regulation of Floral-Organ- Type by SUPERMAN Regulation of Floral-Organ- Type by SUPERMAN 1. Need for regulators of the organ-identity genes. 2. The Superman mutant phenotype-predicting the role of SUPERMAN. 3. Testing our hypothesis of the role

More information

Genetic Specification of floral organ identity. Initiating floral development. Deciding when to initiate flowering - induced mutations -in Nature

Genetic Specification of floral organ identity. Initiating floral development. Deciding when to initiate flowering - induced mutations -in Nature Genetic Specification of floral organ identity Initiating floral development Deciding when to initiate flowering - induced mutations -in Nature Flower structure of rabidopsis Stamens arpels Petals Sepals

More information

The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function

The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function University of South Carolina Scholar Commons Faculty Publications Biological Sciences, Department of 1-1-1996 The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class

More information

Activation of the Arabidopsis B Class Homeotic Genes by APETALA1

Activation of the Arabidopsis B Class Homeotic Genes by APETALA1 The Plant Cell, Vol. 13, 739 753, April 2001, www.plantcell.org 2001 American Society of Plant Physiologists RESEARCH ARTICLE Activation of the Arabidopsis B Class Homeotic Genes by APETALA1 Medard Ng

More information

The SEP4 Gene of Arabidopsis thaliana Functions in Floral Organ and Meristem Identity

The SEP4 Gene of Arabidopsis thaliana Functions in Floral Organ and Meristem Identity Current Biology, Vol. 14, 1935 1940, November 9, 2004, 2004 Elsevier Ltd. All rights reserved. DOI 10.1016/j.cub.2004.10.028 The SEP4 Gene of Arabidopsis thaliana Functions in Floral Organ and Meristem

More information

A genetic and molecular model for flower development in Arabidopsis thaliana

A genetic and molecular model for flower development in Arabidopsis thaliana Development Supplement I, 1991, 157-167 Printed in Great Britain The Company of Biologists Limited 1991 157 A genetic and molecular model for flower development in Arabidopsis thaliana ELLIOT M. MEYEROWITZ*,

More information

CLAVATA1, a regulator of meristem and flower development in Arabidopsis

CLAVATA1, a regulator of meristem and flower development in Arabidopsis Development 119, 397-418 (1993) Printed in Great Britain The Company of Biologists Limited 1993 397 CLAVATA1, a regulator of meristem and flower development in Arabidopsis Steven E. Clark, Mark P. Running

More information

Supplemental Data. Müller-Xing et al. (2014). Plant Cell /tpc

Supplemental Data. Müller-Xing et al. (2014). Plant Cell /tpc Supplemental Figure 1. Phenotypes of iclf (clf-28 swn-7 CLF pro :CLF-GR) plants. A, Late rescue of iclf plants by renewed DEX treatment; senescent inflorescence with elongated siliques (arrow; 90 DAG,

More information

Genetics of Floral Development An Evo-Devo Approach

Genetics of Floral Development An Evo-Devo Approach Genetics of Floral Development An Evo-Devo Approach Biology 317 Kelsey Galimba 8.5.2013 Why are flowering plants so diverse? Why are flowering plants so diverse? http://www.botanicalgarden.ubc.ca/potd/

More information

Genes Directing Flower Development in Arabidopsis

Genes Directing Flower Development in Arabidopsis The Plant Cell, Vol. 1,37-52, January 1989, 1989 American Society of Plant Physiologists Genes Directing Flower Development in Arabidopsis John L. Bowman, David R. Smyth, 1 and Elliot M. Meyerowitz 2 Division

More information

The Flower - what is it? 1/31/18. Magnoliophyta - Flowering Plants. Magnoliophyta - Flowering Plants. Magnoliophyta - Flowering Plants

The Flower - what is it? 1/31/18. Magnoliophyta - Flowering Plants. Magnoliophyta - Flowering Plants. Magnoliophyta - Flowering Plants - what is it? Floral structure will be examined in lab next Mon/Tues save space in your notes! Introduction to Angiosperms "angio-" = vessel; so "angiosperm" means "vessel for the seed [seed encased in

More information

Involvement of CUP-SHAPED COTYLEDON Genes in Gynoecium and Ovule Development in Arabidopsis thaliana

Involvement of CUP-SHAPED COTYLEDON Genes in Gynoecium and Ovule Development in Arabidopsis thaliana Plant CellPhysiol. 41(1): 60-67 (2000) JSPP 2000 Involvement of CUP-SHAPED COTYLEDON Genes in Gynoecium and Ovule Development in Arabidopsis thaliana Tetsuya Ishida ', Mitsuhiro Aida 2, Shinobu Takada

More information

From model plants to crops: the MADS box family of gene controlling flower development in Crocus (Crocus sativus L.)

From model plants to crops: the MADS box family of gene controlling flower development in Crocus (Crocus sativus L.) From model plants to crops: the MADS box family of gene controlling flower development in Crocus (Crocus sativus L.) A. Tsaftaris 1, 2, K. Pasentsis 1, A. Kalivas 2, A. Polidoros 1 1 Institute of Agobiotechnology

More information

Teaching A2 Biology Practical Skills Appendix 2

Teaching A2 Biology Practical Skills Appendix 2 Practical 10 - T(a)(d) The structure of wind pollinated flowers and fruit. This practical focuses on recording accurately Biological drawings. You will be developing other assessed skills throughout the

More information

Functional Diversification of the Two C-Class MADS Box Genes OSMADS3 and OSMADS58 in Oryza sativa W OA

Functional Diversification of the Two C-Class MADS Box Genes OSMADS3 and OSMADS58 in Oryza sativa W OA The Plant Cell, Vol. 18, 15 28, January 2006, www.plantcell.org ª 2005 American Society of Plant Biologists RESEARCH ARTICLES Functional Diversification of the Two C-Class MADS Box Genes OSMADS3 and OSMADS58

More information

Turning floral organs into leaves, leaves into floral organs Koji Goto*, Junko Kyozuka and John L Bowman

Turning floral organs into leaves, leaves into floral organs Koji Goto*, Junko Kyozuka and John L Bowman 449 Turning floral organs into leaves, leaves into floral organs Koji Goto*, Junko Kyozuka and John L Bowman The development of the floral organs is specified by the combinations of three classes of gene

More information

The potential role of B-function gene involved in floral development for double flowers formation in Camellia changii Ye

The potential role of B-function gene involved in floral development for double flowers formation in Camellia changii Ye African Journal of Biotechnology Vol. 10(73), pp. 16757-16762, 23 November, 2011 Available online at http://www.academicjournals.org/ajb DOI: 10.5897/AJB10.2690 ISSN 1684 5315 2011 Academic Journals Full

More information

Determination of Arabidopsis Floral Meristem ldentity by AGA MOUS

Determination of Arabidopsis Floral Meristem ldentity by AGA MOUS The Plant Cell, Vol. 9, 393-408, March 1997 O 1997 American Society of Plant Physiologists Determination of Arabidopsis loral Meristem ldentity by AGA MOUS Yukiko Mizukamil and Hong Ma2 Cold Spring Harbor

More information

How To Make A Seed EMBRYONIC DEVELOPMENT AND THE LIFE CYCLE OF ANGIOSPERMS NORA COOPER JAZMIN SAMANO DOMINIC SAADI

How To Make A Seed EMBRYONIC DEVELOPMENT AND THE LIFE CYCLE OF ANGIOSPERMS NORA COOPER JAZMIN SAMANO DOMINIC SAADI How To Make A Seed EMBRYONIC DEVELOPMENT AND THE LIFE CYCLE OF ANGIOSPERMS NORA COOPER JAZMIN SAMANO DOMINIC SAADI Why Study Seeds? o Within the next fi*y years we will need to produce more food than in

More information

Flower Morphology. Flower Structure

Flower Morphology. Flower Structure wrong 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 right 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 score 100 98.8 97.6 96.4 95.2 94.0 92.9 91.7 90.5 89.3 88.1 86.9 85.7 84.5

More information

The Ff.010 Gene Product Regulates the Expression Domain of Homeotic Genes AP3 and PI in Arabidopsis Flowers

The Ff.010 Gene Product Regulates the Expression Domain of Homeotic Genes AP3 and PI in Arabidopsis Flowers The Plant Cell, Vol. 3, 1221-1237, November 1991 1991 American Society of Plant Physiologists The Ff.010 Gene Product Regulates the Expression Domain of Homeotic Genes AP3 and PI in Arabidopsis Flowers

More information

The Homeotic Protein AGAMOUS Controls Late Stamen Development by Regulating a Jasmonate Biosynthetic Gene in Arabidopsis W

The Homeotic Protein AGAMOUS Controls Late Stamen Development by Regulating a Jasmonate Biosynthetic Gene in Arabidopsis W The Plant Cell, Vol. 19: 3516 3529, November 2007, www.plantcell.org ª 2007 American Society of Plant Biologists The Homeotic Protein AGAMOUS Controls Late Stamen Development by Regulating a Jasmonate

More information

Bract reduction in Cruciferae: possible genetic mechanisms and evolution

Bract reduction in Cruciferae: possible genetic mechanisms and evolution Wulfenia 15 (2008): 63 73 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Bract reduction in Cruciferae: possible genetic mechanisms and evolution Aleksey A. Penin Summary: This review is an attempt

More information

Flowers, Fruit and Seeds Notes Flower Structure and Reproduction Taken from

Flowers, Fruit and Seeds Notes Flower Structure and Reproduction Taken from Flowers, Fruit and Seeds Notes Flower Structure and Reproduction Taken from http://www.biologycorner.com/worksheets/flower_coloring.html Flowers are the plant's reproductive structures. Angiosperms are

More information

Botany Physiology. Due Date Code Period Earned Points

Botany Physiology. Due Date Code Period Earned Points Name Botany Physiology C/By Due Date Code Period Earned Points Bot Phys 4W1 Flowers (divide by 6.5) Completion Complete each sentence or statement. 1. (4 points) The female reproductive organs are the

More information

Chapter 31: Plant Reproduction

Chapter 31: Plant Reproduction Chapter 31: Plant Reproduction Plants and Pollinators Pollen had evolved by 390 million years ago Sperm packed inside a nutritious package Transferred first by wind currents Later transferred by insects

More information

Chapter 38. Plant Reproduction. AP Biology

Chapter 38. Plant Reproduction. AP Biology Chapter 38. Plant Reproduction 1 Animal vs. Plant life cycle Animal multicellular 2n Plant multicellular sporophyte 2n gametes 1n spores 1n unicellular gametes 1n multicellular gametophyte 1n 2 Alternation

More information

Chapter 38. Plant Reproduction. AP Biology

Chapter 38. Plant Reproduction. AP Biology Chapter 38. Plant Reproduction 1 Animal vs. Plant life cycle Animal multicellular 2n Plant multicellular sporophyte 2n gametes 1n spores 1n unicellular gametes 1n multicellular gametophyte 1n 2 Alternation

More information

Specification of Arabidopsis floral meristem identity by repression of flowering time genes

Specification of Arabidopsis floral meristem identity by repression of flowering time genes RESEARCH ARTICLE 1901 Development 134, 1901-1910 (2007) doi:10.1242/dev.003103 Specification of Arabidopsis floral meristem identity by repression of flowering time genes Chang Liu 1, *, Jing Zhou 1, *,

More information

Lab sect. (TA name/time): BIOLOGY 317 Spring First Hourly Exam 4/22/10

Lab sect. (TA name/time): BIOLOGY 317 Spring First Hourly Exam 4/22/10 Name: Lab sect. (TA name/time): BIOLOGY 317 Spring 2011 First Hourly Exam 4/22/10 1) (24 pts) Match the letter of the family given on the right with the characteristics for a plant described on the left.

More information

Genetic Separation of Third and Fourth Whorl Functions of AGAMOUS

Genetic Separation of Third and Fourth Whorl Functions of AGAMOUS The Plant Cell, Vol. 7, 1249-1258, August 1995 O 1995 American Society of Plant Physiologists Genetic Separation of Third and Fourth Whorl Functions of AGAMOUS Leslie E. Sieburth, Mark P. Running, and

More information

RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers

RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers The Plant Journal (2006) 45, 369 383 doi: 10.1111/j.1365-313X.2005.02633.x RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers Beth A. Krizek 1,*,

More information

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings Introduction It has been said that an oak is an acorn s way of making more acorns. In a Darwinian view of life, the fitness of an organism is measured only by its ability to replace itself with healthy,

More information

A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS Ilha Lee, Diana S. Wolfe, Ove Nilsson and Detlef Weigel

A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS Ilha Lee, Diana S. Wolfe, Ove Nilsson and Detlef Weigel Research Paper 95 A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS Ilha Lee, Diana S. Wolfe, Ove Nilsson and Detlef Weigel Background: Development of petals and stamens in Arabidopsis flowers requires

More information

A genetic framework for fruit patterning in Arabidopsis thaliana

A genetic framework for fruit patterning in Arabidopsis thaliana Research article 4687 A genetic framework for fruit patterning in Arabidopsis thaliana José R. Dinneny 1,2, Detlef Weigel 2,3 and Martin F. Yanofsky 1, * 1 Division of Biological Sciences, University of

More information

PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development

PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development The EMBO Journal Vol.18 No.14 pp.4023 4034, 1999 PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development Brendan Davies 1, Patrick

More information

BIOLOGY 460/560 PLANT PHYSIOLOGY LABORATORY #12

BIOLOGY 460/560 PLANT PHYSIOLOGY LABORATORY #12 BIOLOGY 460/560 PLANT PHYSIOLOGY LABORATORY #12 ! ANGIOSPERM MORPHOLOGY & ANATOMY !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ATTENTION STUDENTS ^!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! REQUIRED MATERIAL LAB EXAM

More information

Nyla Phillips-Martin 2013 mscraftynyla.blogspot.com

Nyla Phillips-Martin 2013 mscraftynyla.blogspot.com 1 Here are exciting ways to teach your students about the parts of a flower and the function of each part. It includes: A DIY craft activity for assembling the flower parts together to make a complete

More information

Redundantly in the Temporal Regulation of Floral Meristem Termination in Arabidopsis thaliana W

Redundantly in the Temporal Regulation of Floral Meristem Termination in Arabidopsis thaliana W The Plant Cell, Vol. 20: 901 919, April 2008, www.plantcell.org ª 2008 American Society of Plant Biologists REBELOTE, SQUINT, andultrapetala1 Function Redundantly in the Temporal Regulation of Floral Meristem

More information

Reproductive Development and Structure

Reproductive Development and Structure Reproductive Development and Structure Bởi: OpenStaxCollege Sexual reproduction takes place with slight variations in different groups of plants. Plants have two distinct stages in their lifecycle: the

More information

CLAVATA3 is a specific regulator of shoot and floral meristem development

CLAVATA3 is a specific regulator of shoot and floral meristem development Development 2, 20572067 (995) Printed in Great Britain The Company of Biologists Limited 995 2057 CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes

More information

POLYGONUM EMBRYO SAC CHALAZAL END ANTIPODAL CELL EMBRYO SAC OVULE L.S.

POLYGONUM EMBRYO SAC CHALAZAL END ANTIPODAL CELL EMBRYO SAC OVULE L.S. POLYGONUM EMBRYO SAC? CHALAZAL END ANTIPODAL CELL EMBRYO SAC OVULE L.S. POLYGONUM EMBRYO SAC C CHALAZAL END ANTIPODAL CELL? EMBRYO SAC OVULE L.S. POLYGONUM EMBRYO SAC? CHALAZAL END ANTIPODAL CELL CENTRAL

More information

2014 Pearson Education, Inc. 1

2014 Pearson Education, Inc. 1 1 Stamen Anther Filament Stigma Carpel Style Ovary Petal Sepal Ovule 2 A B Sepals Petals Stamens Carpels C A + B gene activity B + C gene activity C gene activity Carpel Petal (a) A schematic diagram of

More information

Beth A. Krizek & Marcie Eaddy

Beth A. Krizek & Marcie Eaddy AINTEGUMENTA-LIKE6 regulates cellular differentiation in flowers Beth A. Krizek & Marcie Eaddy Plant Molecular Biology An International Journal on Molecular Biology, Molecular Genetics and Biochemistry

More information

BIOLOGY 363 VASCULAR PLANTS LABORATORY #12

BIOLOGY 363 VASCULAR PLANTS LABORATORY #12 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ATTENTION STUDENTS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! BIOLOGY 363 VASCULAR PLANTS LABORATORY #12 ! ANGIOSPERM FLOWER MORPHOLOGY & ANATOMY !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

plant reproduction Alternation of Generations chapter 38

plant reproduction Alternation of Generations chapter 38 Alternation of Generations Haploid (n) plant reproduction chapter 38 Diploid (2n) Sporangium Spore dispersal Spore (n) Young Mature (n) ARCHEGONIUM ANTHERIDIUM Sperm Mature Sorus Sporangium sporophyte

More information

Flowering Plant Reproduction

Flowering Plant Reproduction Lab Exercise Flowering Plant Reproduction Objectives - To be able to identify the parts of a flower - Be able to distinguish between dicots and monocots based on flower morphology - Become familiar with

More information

Supplemental Data. Wu et al. (2010). Plant Cell /tpc

Supplemental Data. Wu et al. (2010). Plant Cell /tpc Supplemental Figure 1. FIM5 is preferentially expressed in stamen and mature pollen. The expression data of FIM5 was extracted from Arabidopsis efp browser (http://www.bar.utoronto.ca/efp/development/),

More information

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings Introduction It has been said that an oak is an acorn s way of making more acorns. In a Darwinian view of life, the fitness of an organism is measured only by its ability to replace itself with healthy,

More information

Plant Reproduction. In a nutshell

Plant Reproduction. In a nutshell Plant Reproduction In a nutshell 2007-2008 Plant Diversity mosses ferns conifers flowering plants Bryophytes non-vascular land plants Pteridophytes seedless vascular plants Gymnosperm pollen & naked seeds

More information

ANGIOSPERM L.S. POLLEN GRAIN

ANGIOSPERM L.S. POLLEN GRAIN ANGIOSPERM 2 L.S. POLLEN GRAIN ANGIOSPERM T 2 CELLS L.S. POLLEN GRAIN ANGIOSPERM TUBE CELL G L.S. POLLEN GRAIN ANGIOSPERM TUBE CELL > L.S. GENERATIVE CELL POLLEN GRAIN ANGIOSPERM TUBE CELL GENERATIVE CELL

More information

CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel

CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel Development 126, 2377-2386 (1999) Printed in Great Britain The Company of Biologists Limited 1999 DEV0225 2377 CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel

More information

Plant Terminology. Floral Symmetry

Plant Terminology. Floral Symmetry Plant Terminology Parts of a Flower Pedicel--the stalk of an individual flower Calyx--outermost whorl of a flower Sepal--one member of the calyx Corolla--second whorl of a flower Petal--one member of the

More information

Safety Dissection tools are very sharp. Use appropriately and do not leave unattended in the presence of children.

Safety Dissection tools are very sharp. Use appropriately and do not leave unattended in the presence of children. Plant Dissection Consider the lilies, how they grow: they labour not, neither do they spin. But I say to you, not even Solomon in all his glory was clothed like one of these. Luke 12:27 Introduction In

More information

Plant Life Cycles. Plant life cycles alternate between. producing gametes. Life cycle phases look different among various

Plant Life Cycles. Plant life cycles alternate between. producing gametes. Life cycle phases look different among various Plant Life Cycles Plant life cycles alternate between two cycles: Producing spores and producing gametes A two phase life cycle is called alternation of generations Diploid phase Haploid phase Alternates

More information

3/18/2012. Chapter 36. Flower Parts. Flower Parts. Reproduction in Angiosperms

3/18/2012. Chapter 36. Flower Parts. Flower Parts. Reproduction in Angiosperms Chapter 36 Reproduction in Angiosperms Bryophytes >450mya 360 mya Fig. 27-4, p. 584 Lily Flower Flower Parts Sepals cover and protect flower parts in bud Collectively calyx Petals Can attract animal pollinators

More information

Chapter 38 Angiosperm Reproduction and Biotechnology

Chapter 38 Angiosperm Reproduction and Biotechnology Chapter 38 Angiosperm Reproduction and Biotechnology Concept 38.1 Pollination enables gametes to come together within a flower Diploid (2n) sporophytes produce spores by meiosis; these grow into haploid

More information

Plant Reproduction fertilization

Plant Reproduction fertilization Plant Reproduction In the plant kingdom, both sexual and asexual reproduction occur. Recall from Chapter 3 that plants reproduce sexually by sporic reproduction, which is also called alternation of generations.

More information

Plants Provision for Life. Chapter 2 7 th Grade

Plants Provision for Life. Chapter 2 7 th Grade Plants Provision for Life Chapter 2 7 th Grade Lesson 2.1- Structure of Flowers Pistil- female reproductive structure Stigma- sticky top part. Traps pollen. Style- slender tube connecting stigma and ovary.

More information

AINTEGUMENTA Contributes to Organ Polarity and Regulates Growth of Lateral Organs in Combination with YABBY Genes 1

AINTEGUMENTA Contributes to Organ Polarity and Regulates Growth of Lateral Organs in Combination with YABBY Genes 1 AINTEGUMENTA Contributes to Organ Polarity and Regulates Growth of Lateral Organs in Combination with YABBY Genes 1 Staci Nole-Wilson 2 and Beth A. Krizek* Department of Biological Sciences, University

More information

plant reproduction chapter 40 Alternation of Generations

plant reproduction chapter 40 Alternation of Generations Alternation of Generations plant reproduction chapter 40 Haploid (n) Diploid (2n) Sporangium Spore dispersal Spore (n) Young Mature (n) Archegonium Antheridium Sperm Sporangium Mature sporophyte (2n) New

More information

The Flower, Pollination, and Seeds

The Flower, Pollination, and Seeds The Flower, Pollination, and Seeds Class 9 th Chapters 6,7,8 1 The Flower A complete or a perfect flower, has all the four Whorls. If, even one whorl is missing, it is an Incomplete Flower. The fourth

More information

Flowering plants can be pollinated by wind or animals.

Flowering plants can be pollinated by wind or animals. Wed 4/5 Activities Learning Target Class Activities *attached below (scroll down)* Website: my.hrw.com Username: bio678 Password:a4s5s Describe the reproductive organs and fertilization of flowering plants.

More information

Gwyneth C. Ingram,a Justin Goodrich,a Mark D. Wilkinson,b Rüdiger Simon,a George W. Haughn,b and Enrico S. Coena,

Gwyneth C. Ingram,a Justin Goodrich,a Mark D. Wilkinson,b Rüdiger Simon,a George W. Haughn,b and Enrico S. Coena, The Plant Cell, Vol. 7, 1501-1510, September 1995 O 1995 American Society of Plant Physiologists Parallels between UNUSUAL FLORAL ORGANS and FMBRATA, Genes Controlling Flower Development in Arabidopsis

More information

HANABA TARANU Is a GATA Transcription Factor That Regulates Shoot Apical Meristem and Flower Development in Arabidopsis W

HANABA TARANU Is a GATA Transcription Factor That Regulates Shoot Apical Meristem and Flower Development in Arabidopsis W The Plant Cell, Vol. 16, 2586 2600, October 2004, www.plantcell.org ª 2004 American Society of Plant Biologists HANABA TARANU Is a GATA Transcription Factor That Regulates Shoot Apical Meristem and Flower

More information

NOTES: CH 38 Plant Reproduction

NOTES: CH 38 Plant Reproduction NOTES: CH 38 Plant Reproduction *Modifications in reproduction were key adaptations enabling plants to spread into a variety of terrestrial habitats. * Water has been replaced by wind and animals as a

More information

Peony Flower Anatomy I

Peony Flower Anatomy I Peony Flower Anatomy I Don Hollingsworth, APS Director Maryville, Missouri What Makes a Peony Flower Luxurious? Rich luxury of the flowers explains why peonies are wanted, why loved and why known in history

More information

Angiosperms. The most diverse group of plants, with about 14,000 genera and 257,000 species.

Angiosperms. The most diverse group of plants, with about 14,000 genera and 257,000 species. Angiosperms The most diverse group of plants, with about 14,000 genera and 257,000 species. Angiosperms How do angiosperms differ from gymnosperms? Angiosperms How do angiosperms differ from gymnosperms?

More information

Flower Shapes and their function. Describing Flower Shapes

Flower Shapes and their function. Describing Flower Shapes Flower Shapes and their function Describing Flower Shapes Flower Shapes As with leaf shapes and the arrangement of flowers, these descriptions can only give you a general idea of the shapes of flowers.

More information

The vegetative and reproductive architecture of flowering

The vegetative and reproductive architecture of flowering Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene Anne Uimari*, Mika Kotilainen*, Paula Elomaa*, Deyue Yu*, Victor A. Albert, and Teemu H. Teeri* ** *Institute of Biotechnology,

More information

Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa)

Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa) The Plant Journal (2010) 61, 767 781 doi: 10.1111/j.1365-313X.2009.04101.x Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa) Rongfeng Cui 1,2,, Jiakun

More information

Floral Genetics of African Nightshade (Solanum section Solanum)

Floral Genetics of African Nightshade (Solanum section Solanum) International Journal of Plant Developmental Biology 2007 Global Science Books Floral Genetics of African Nightshade (Solanum section Solanum) Christopher Ochieng Ojiewo 1* Kenji Murakami 1 Peter Wafula

More information

Reproduction in plants

Reproduction in plants Reproduction in plants No individual organism can live forever, but reproduction makes sure that organisms do not become extinct. Organisms reproduce sexually or asexually and some organisms, such as angiosperms

More information

Flower Morphology. Flower Structure. Name

Flower Morphology. Flower Structure. Name right 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 score 100 98.8 97.6 96.4 95.2 94.0 92.9 91.7 90.5 89.3 88.1 86.9 85.7 84.5 83.3 82.1 81.0 79.8 Flower Morphology Name You are already familiar

More information

NO APICAL MERISTEM (MtNAM) regulates floral organ identity and lateral organ separation in Medicago truncatula

NO APICAL MERISTEM (MtNAM) regulates floral organ identity and lateral organ separation in Medicago truncatula Research NO APICAL MERISTEM (MtNAM) regulates floral organ identity and lateral organ separation in Medicago truncatula Xiaofei Cheng, Jianling Peng, Junying Ma, Yuhong Tang, Rujin Chen, Kirankumar S.

More information

Past Questions on Plant Reproduction

Past Questions on Plant Reproduction Past Questions on Plant Reproduction Name the parts labelled A, B, C, D in figure 1 State one function for each A and B. Figure 1 Name the parts labelled A, B, C, D,E and F in figure 2 What is the function

More information

Supplemental Figure S1. The number of hydathodes is reduced in the as2-1 rev-1

Supplemental Figure S1. The number of hydathodes is reduced in the as2-1 rev-1 Supplemental Data Supplemental Figure S1. The number of hydathodes is reduced in the as2-1 rev-1 and kan1-11 kan2-5 double mutants. A, The numbers of hydathodes in different leaves of Col-0, as2-1 rev-1,

More information

Lab 9: Take-Home Exercise on Flowers and Fruits

Lab 9: Take-Home Exercise on Flowers and Fruits BIOL 153L General Biology II Lab Black Hills State University Lab 9: Take-Home Exercise on Flowers and Fruits In this take-home lab, you will use information from your textbook, a Supplement PDF (Suppl.)

More information

The Maize PI/GLO Ortholog Zmm16/sterile tassel silky ear1 Interacts with the Zygomorphy and Sex Determination Pathways in Flower Development OPEN

The Maize PI/GLO Ortholog Zmm16/sterile tassel silky ear1 Interacts with the Zygomorphy and Sex Determination Pathways in Flower Development OPEN This article is a Plant Cell Advance Online Publication. The date of its first appearance online is the official date of publication. The article has been edited and the authors have corrected proofs,

More information

Termination of Stem Cell Maintenance in Arabidopsis Floral Meristems by Interactions

Termination of Stem Cell Maintenance in Arabidopsis Floral Meristems by Interactions Cell, Vol. 105, 805 814, June 15, 2001, Copyright 2001 by Cell Press Termination of Stem Cell Maintenance in Arabidopsis Floral Meristems by Interactions between WUSCHEL and AGAMOUS Michael Lenhard, 2

More information

Operation Flower Dissection

Operation Flower Dissection Operation Flower Dissection Classroom Activity: K-4 Time: One to two 50-minute class periods Overview: In this activity, students will observe the similarities and differences between flowers of different

More information

The early inflorescence of Arabidopsis thaliana demonstrates positional effects in floral organ growth and meristem patterning

The early inflorescence of Arabidopsis thaliana demonstrates positional effects in floral organ growth and meristem patterning Plant Reproduction (2018) 31:171 191 https://doi.org/10.1007/s00497-017-0320-3 ORIGINAL ARTICLE The early inflorescence of Arabidopsis thaliana demonstrates positional effects in floral organ growth and

More information

Arabidopsis PRC1 core component AtRING1 regulates stem cell-determining carpel development mainly through repression of class I KNOX genes

Arabidopsis PRC1 core component AtRING1 regulates stem cell-determining carpel development mainly through repression of class I KNOX genes Chen et al. BMC Biology (2016) 14:112 DOI 10.1186/s12915-016-0336-4 RESEARCH ARTICLE Open Access Arabidopsis PRC1 core component AtRING1 regulates stem cell-determining carpel development mainly through

More information

We will learn to label the parts of a plant and flower.

We will learn to label the parts of a plant and flower. 5 th level CS We will learn to label the parts of a plant and flower. We will learn that plants produce flowers which have male and female organs. We will learn that seeds are formed when pollen from the

More information

SEXUAL REPRODUCTION IN PLANTS WITH SEEDS

SEXUAL REPRODUCTION IN PLANTS WITH SEEDS There are several stages in the process of sexual reproduction in plants with seeds (spermatophytes): gamete formation, pollintation, fertilisation, seed and fruit formation, seed disemination and seed

More information

Arabidopsis thaliana. Initiation patterns of flower and floral organ development in. Gerd Bossinger* and David R. Smyth SUMMARY

Arabidopsis thaliana. Initiation patterns of flower and floral organ development in. Gerd Bossinger* and David R. Smyth SUMMARY Development 122, 1093-1102 (1996) Printed in Great Britain The Company of Biologists Limited 1996 DEV0061 1093 Initiation patterns of flower and floral organ development in Arabidopsis thaliana Gerd Bossinger*

More information

Sex Determination in the Monoecious Species Cucumber Is Confined to Specific Floral Whorls

Sex Determination in the Monoecious Species Cucumber Is Confined to Specific Floral Whorls The Plant Cell, Vol. 13, 481 493, March 2001, www.plantcell.org 2001 American Society of Plant Physiologists Sex Determination in the Monoecious Species Cucumber Is Confined to Specific Floral Whorls Martin

More information

Morphogenesis, Anatomical Observation and Primary Genetic Analysis of a Multi-glume Floral Organ Mutant in Rice

Morphogenesis, Anatomical Observation and Primary Genetic Analysis of a Multi-glume Floral Organ Mutant in Rice Rice Science, 2006, 13(4): 227-233 227 http://www.ricesci.cn; http://www.ricescience.org Morphogenesis, Anatomical Observation and Primary Genetic Analysis of a Multi-glume Floral Organ Mutant in Rice

More information

LABORATORY 2: Flowers

LABORATORY 2: Flowers LABORATORY 2: Flowers INTRODUCTION The goal of this laboratory exercise is to familiarize you with flowers, their structure, variation, and importance to the plant. By the end of today s laboratory exercise

More information

Seed Plants Lab. Learning Objectives. Procedure and Questions

Seed Plants Lab. Learning Objectives. Procedure and Questions Seed Plants Lab Learning Objectives Define the terms (meanings of the names) angiosperm and gymnosperm State what type of cells create eggs and what type of cells create sperm in gymnosperms and angiosperms

More information

ARGONAUTE10 and ARGONAUTE1 Regulate the Termination of Floral Stem Cells Through Two MicroRNAs in Arabidopsis

ARGONAUTE10 and ARGONAUTE1 Regulate the Termination of Floral Stem Cells Through Two MicroRNAs in Arabidopsis University of Kentucky UKnowledge Plant and Soil Sciences Faculty Publications Plant and Soil Sciences 3-31-2011 ARGONAUTE10 and ARGONAUTE1 Regulate the Termination of Floral Stem Cells Through Two MicroRNAs

More information

W.4.1 Write opinion pieces on topics or texts, supporting a point of view with reasons and information.

W.4.1 Write opinion pieces on topics or texts, supporting a point of view with reasons and information. Flower Dissection Lesson Overview Flowers use pollination as a mechanism for reproduction and survival. Students will learn about pollination and how each structure plays a role in this process. They will

More information

Anatomy of a New Sepaloid Mutant Flower in Sugarbeet 1

Anatomy of a New Sepaloid Mutant Flower in Sugarbeet 1 January-June, 1991 Anatomy of a New SepaJoid Mutant Flower in Sugarbeet 23 Anatomy of a New Sepaloid Mutant Flower in Sugarbeet 1 J. C. Theurer, S. A. Owens 3, and F. W. Ewers 4 2Sugarbeet, Bean and Cereal

More information