BMS 153: Neuroscience The chemical synapse + neurotransmitters- lectures Dr Pen Rashbass

Size: px
Start display at page:

Download "BMS 153: Neuroscience The chemical synapse + neurotransmitters- lectures Dr Pen Rashbass"

Transcription

1 BMS 153: Neuroscience The chemical synapse + neurotransmitters- lectures Dr Pen Rashbass (p.rashbass@shef.ac.uk) THESE NOTES ARE MEANT TO BE SUPPLEMENTAL TO YOUR LECTURES/OWN READING THEY DO NOT REPLACE THEM Nerves and neurons provide the means to communicate between regions of the brain. The synapse is the point of communication between neurons from (presynaptic) neurons to (postsynaptic) effector cells (e.g. muscle and glandular cells). Most synaptic communication is neurochemical and relies on neurotransmitters (NT). (However some rare synapses rely on electrical communication via Gap junctions) Synaptic control of neuronal activity provides the complex, elaborate, subtle and flexible mechanisms by which the brain is able to process information. When chemical synaptic transmission goes wrong, nervous system malfunction. Defective NT is the root cause of a large number of neurological and psychiatric disorders Synaptic neurotransmission is also the point at which we can modify neuronal function with drugs. Brain function has regional specificity Brain function has neurochemical (neurotransmitter) specificity. Mechanism of transmitter release- (peptides) Secretory granules are also Ca 2+ dependant and use exocytosis- but typically NOT at the active zone. Usually requires a high-frequency train of APs so that [Ca 2+ ] throughout the terminal can build up to level required. Release of peptides can take 50msec of more Mechanism of transmitter release-(amino acid/amines) AP arrives at the nerve terminal Ca 2+ influx into the terminal ( [Ca 2+ ] in local microdomain) vesicles triggered release contents by exocytosis occurs within a fraction of a millisecond of AP arriving Some neurons fire >1000x per second, releasing neurotransmitters each time. The rapid release is possible because some of the vesicles are docked to the plasma membrane and primed for fusion. Only a small proportion of vesicles fuse with plasma membrane in response to each AP For nerve terminal to respond rapidly and repeatedly, vesicles need to be replenished very quickly after discharged. Vesicles are retrieved from plasma membrane by endocytosis (see Alberts et al: Mol Biology of the Cell: 4 th ed pg )

2 THE MAJOR NEUROTRANSMITTERS AMINO ACIDS AMINES PEPTIDES Gamma- amino butyric acid (GABA) Acetylcholine (ACh) Cholecystokinin (CCK) Glutamate (Glu) Dopamine (DA) Dynorphin Glycine (Gly) Adrenalin (Epinephrine) Enkephalins (Enk) Histamine N-Acetylaspartylglutamate (NAAG) Noradrenalin (NA)/ Neuropeptide Y (Norepinephrine (NE)) Serotonin (5-HT) Somatostatin Substance P Thyrotropin-releasing hormone(trh) Vasoactive intestinal polypeptide(vip) Different neurons in the brain release different NTs. The amino acid and amine NTs are small organic molecules contain a nitrogen atom stored and released from synaptic vesicles The peptide NTs are: Large molecules Stored in secretory granules Secretory granules and synaptic vesicles are frequently observed in the same axon terminals. These different neurotransmitters are released under different conditions A neurotransmitter should be Localised in the presynaptic terminals Released in response to stimulation Able to interact with postsynaptic receptors Rapidly removed from the synapse implies cellular specialisation for mechanisms for synthesis and/or storage release post-synaptic recognition (receptors) transmitter release transmitter removal Agonist- mimics normal NT function Antagonist blocks effect of NTs and agonist Different neurotransmitters are synthesised in different ways Glutamate and glycine are among the 20amino acids (protein building blocks) they are abundant in all cells in the body GABA and the amines are only made by the neurons that release them. They require specific enzymes to synthesize them: these are situated locally at the axon terminal, Once synthesised the amino acid and amine NTs are concentrated into synaptic vesicles by transporter proteins. (Synaptic vesicles specialised class of tiny (~50nm diameter) vesicles- store amino acid and amine NTs.) Peptides are formed in the rer. Secretory granules from the peptide bud off from the Golgi apparatus and are carried to the axon terminal by axoplasmic transport

3 Transmitter-gated ion channels specialised for rapidly converting extracellular chemical signals into electrical signals concentrated in plasma membrane of postsynaptic cell open transiently in response to binding of NT brief permeability change in membrane change in membrane potential that are graded according to how much NT is released at synapse and how long it persists there An AP is triggered only if local membrane potential increases enough to open sufficient number of nearby voltage-gated cation channels in the same target cell membrane Transmitter-gated ion channels differ from one another Highly selective binding for the NT released from the presynaptic terminal Selective as the type of ions they let pass across the plasma membrane determines nature of postsynaptic response Excitatory NTs open cation channels influx of Na + depolarises postsynaptic membrane (excitatory post synaptic potential (EPSP)) toward the threshold potential for firing an AP Inhibitory NTs open either Cl - or K + channels surpresses firing (inhibitory post synaptic potential (IPSP)_= make it harder for excitatory influences to depolarise postsynaptic membrane. Inhibition is important: Strychnine binds to glycine receptors blocks action of glycine muscle spasms, convulsions death ACh, glutamate, 5-HT -usually excitatory GABA and glycine usually inhibitory Transmitter-gated ion channels are major targets for psychoactive drugs Curare- poison arrows /muscle relaxant in surgery block ACh receptors on skeletal muscle Barbiturates and tranquilizers e.g. diazepam (valium) bind to GABA receptors potentiate inhibitory action of GABA by allowing lower[gaba] to open Cl- channels Fluozetine (Prozac)- blocks uptake of 5-HT G-coupled receptors : NT binds to receptors activate small G-proteins activate effector proteins (either G-protein gated ion channels or 2 nd messengers). Synapses with transmitter-gated channels carry the bulk of specific information that is processed by the nervous system. But the effectiveness of these are modified by the many synapses with G-protein coupled receptors. The same NT can give different postsynaptic actions depending on what receptor it binds to e.g. ACh in heart coupled by a G -protein to a K + channel hyperpolarises the heart muscle fibre slows heartbeat ACh in skeletal muscle- binds to ACh-gated ion channel permeable to Na + rapid depolarises skeletal muscle contraction After neurotransmitter has been secreted it is rapidly removed- either destroyed by specific enzymes in synaptic cleft or taken up presynaptic nerve terminal or by surrounding glial cells. Reuptake is mediated by variety of Na + -dependent neurotransmitter carrier proteins allows neurotransmitter to be recycled allows cells to keep up with high rate of release. Rapid removal ensures spatial and temporal precision of synaptic signal. Decreases the chance of neurotransmitter influencing neighbouring cells Clears the synaptic cleft before next pulse is released

4 Dale s principle: A single neuron has only one NT e.g. cholinergic, glutamatergic, GABAergic etc. (Strictly speaking many peptide containing neurons violate this because the cells release an amino acid or amine AND a peptide, BUT it can be used to assign most neurons to distinct overlapping classes. Cholinergic neurons- Acetylcholine (ACh) First identified as substance released from vagus nerve to diminish heart rate ACh is transmitter in parasympathetic nerves, neuromuscular junction (therefore synthesised by all motorneurons of spinal cord and brain stem) and parts of brain e.g. 1)Neurons in the basal forebrain (nucleus basalis) innervate the cortex and hippocampus etc. These are involved in memory, coordination etc., and are lost in Alzheimer s disease. 2) Interneurons in the striatum are involved in motor function. A side effect of the treatment of parkinsonism with muscarinic ACh receptor antagonists (see below) is confusion. ACh formed from readily available substrates: Choline + Acetyl-CoA Ach. Synthesised by: Choline acetyltransferase (ChAT) ChAT is specific to cholinergic neurons and present in neuronal terminal in excess (i.e. enzyme is not saturated) Choline component of membrane lipids. Transport of choline into neuron = rate-limiting step (by altering amount can increase/decrease Ach synthesis AcetylCoA intermediary metabolism, deriving from glucose Following transmitter release, ACh is degraded by acetylcholinesterase (AChE): ACh choline + acetic acid Interfering with ACh pathway eg: 1.Prevent release of ACh eg-botulism-poisoning from Clostridium botulinum toxin or black-widow spider venom 2.AChE inhibitors: nerve gases, insecticides (organophosphates)+ treatments for Alzheimer s disease. Acute effects = decrease in heart rate + BP. Irreversible inhibition of AChE results in respiratory paralysis death 3.Block ACh receptors (skeletal muscle)-curare (see above) Catecholamines Neurotransmitters dopamine, noradrenalin and adrenalin are synthesised from the amino acid tyrosine Catecholaminergic neurons- found in regions of nervous system involved with regulation of movement, mood, attention and visceral function. Tyrosine has an active transport mechanism for uptake into the brain, shared with other large neutral amino acids. -Tyrosine L-Dopa (L-Dihydroxyphenylalanine) Dopamine (DA) Noradrenalin (NA) adrenalin Tyrosine hydroxylase (TH) Dopa decarboxylase (DDC) TH is the rate-determining step as it is normally saturated by substrate and is present only in neurons. DDC has high activity and is non-specific. Therefore the amount of dopamine is dependent on the amount of Dopa available. Removal of catecholamine neurotransmitters from synaptic cleft is by selective uptake back via Na + -dependent transporter into presynaptic terminal axon terminals. Amphetamine increases release of DA whilst cocaine blocks uptake therefore both prolong DA action In axon terminal- catecholamines may be reloaded into synaptic vesicle for reuse or enzymatically degraded by enzymes esp. Monoamine oxidase (MAO) on outer mitochondrial membrane MAO-A removes noradrenalin and 5-HT, MAO-B removes dopamine (MAO enzymes are present in the liver and gut, and provide protection from exogenous retroactive chemicals) MAO inhibitors have been used (a) in the treatment of: Depression and Parkinson s disease and (b) to increase levels of NT- BUT MAO-A inhibition can cause hypertensive crisis (the cheese effect ) due to the neuroactive effects of dietary amines such as tyramine, found in cheese, marmite etc

5 Parkinson s disease Tremor, rigidity, akinesia (slowing of movement, postural changes. No sensory loss and cognitive function is preserved until late stages. Primary pathology- progressive cell degeneration of pigmented dopaminergic cells in the substantia nigra which innervate the striatum (The striatum can be considered as a system that inhibits motor function). Dopamine, via its effects on D2 receptors, inhibits the cells of the striatum diminishes their inhibitory activity. As well as output neurons and dopaminergic terminals, the striatum contains cholinergic interneurons that have an excitatory effect (i.e. opposite to that of dopamine) on the striatum; If dopamine is lost, decreasing ACh activity will tend to restore the balance. So an antagonist at ACh receptors has similar effects to an agonist at dopamine receptors (Anticholinergic drugs blocking muscarinic receptors (a subtype of ACh receptors) can alleviate Parkinsonian symptoms Old treatments for Parkinson s used anticholinergic agents (belladonna alkaloids)) Pharmacological intervention in dopamine neurotransmission Synthesis: L-Dopa increases dopamine synthesis Storage: Reserpine destroys vesicular stores of dopamine induces Parkinsonism Release: Amphetamine increases dopamine release Reuptake: Cocaine blocks dopamine reuptake Metabolism MAO (B) inhibitor selegiline increases dopamine and used to treat Parkinson s disease. Receptors: Dopamine receptor agonists used to treat Parkinson s disease (Dopamine D2 antagonists induce parkinsonism) The pathway from the subs. nigra to the striatum is only one of several important dopaminergic systems in the brain innervating the: striatum (part of the basal ganglia - controlling motor function) cortical and limbic regions (emotion, memory, complex behaviours, addiction, psychosis) pituitary gland (hormonal secretion) The antipsychotic drugs are thought to act on dopamine receptors in cortical and/or limbic regions to improve some of the symptoms of schizophrenia. Their Parkinsonian side effects are due to antagonism of striatal dopamine receptors. There effects on dopamine receptors in the pituitary that control prolactin secretion can result in the overproduction of prolactin and gynaecomastia (enlarged breasts) and galactorrhoea (milk secretion) even in males! 5-Hydroxytryptamine (5-HT, serotonin) Synthesis: Similar to dopamine but from tryptophan via tryptophan hydroxylase. Availability of tryptophan is rate-determining. Controlled by binding to albumin. Removal of 5-HT by active uptake process; MAO-A 5-HT systems: Diffuse projection from brainstem (raphe nuclei in the reticular formation the reticular activating system ) to widespread areas of forebrain, particularly the cortex. The function of 5-HT systems include: Consciousness/arousal Circadian rhythms Mood Regulating aggression Drugs that increase synaptic 5-HT levels are used in the treatment of depression. These include the tricyclic antidepressants and the newer specific serotonin reuptake inhibitors (SSRIs) like fluoxetine (Prozac), that block reuptake removal of 5-HT into the presynaptic terminal. Tryptophan, as a precursor of 5-HT, has also been used as an antidepressant, as have MAO (A) inhibitors that prevent 5-HT breakdown

6 Amino acids, Glutamate, Glycine and GABA serve as NTs at most CNS synapses. Gamma-amino butyric acid (GABA) Most common inhibitory transmitter in brain. Very efficient and specific uptake processes remove GABA from synapse, not only into neurons but also into glia. GABA is found in striatum main output controlling motor function. GABA is also found throughout the brain, and esp. the cortex, in interneurons. Glutamate Most common excitatory transmitter in brain. Very efficient and specific uptake processes remove glutamate into neurons and glia. Found throughout the brain, notably as the transmitter in large pyramidal neurons (e.g. motor neurons) of the cortex that project to other regions of the brain or spinal cord. As GABA and glutamate are widely distributed throughout the brain they are therefore involved in all aspects of brain function. Imbalance between these two transmitter systems (increased excitatory glutamate, or decreased inhibitory GABA) occurs in epilepsy. This can be treated by e.g. GABA agonists. In the CNS, single neurons can receive inputs from 1000s of other neurons and can in turn synapse on may thousands of other selves The average motor neuron in the spinal cord has several thousand nerve terminals synapsing on its cell body + dendrites. The motor neuron must combine information from these sources and react either by firing APs along its axon or remaining quiet. Any single NT can have different effects depending on what receptor it can bind to. Divergence =The ability of one NT to activate more than one subtype of receptor and cause more than one type of postsynaptic response. Divergence may occur at any stage in the cascade of transmitter (e.g. which G-proteins and which effector systems are activated) Convergence. multiple transmitters activating their own receptor type can converge on the same effector system (again can occur at any stage in the signal cascade) Neurons integrate divergent and convergent signalling systems Recommended Reading: Anatomy & Physiology: The Unity of form of function not extensive enough on pathways and neurochemistry Neuroscience Chapter 6 admittedly a bit deep but it s all there. Neuroscience at a Glance 24-25, 106, 122. Fundamentals of Psychopharmacology by Brain Leonard also has this material in Chapter 1 but the book isn t particularly user friendly for Level 1. Neuroscience: exploring the brain Chapter 5 and 6- good general overview with additional facts of special interest

Neurotransmitter Systems III Neurochemistry. Reading: BCP Chapter 6

Neurotransmitter Systems III Neurochemistry. Reading: BCP Chapter 6 Neurotransmitter Systems III Neurochemistry Reading: BCP Chapter 6 Neurotransmitter Systems Normal function of the human brain requires an orderly set of chemical reactions. Some of the most important

More information

Synaptic transmission

Synaptic transmission Outline Synaptic transmission Sompol Tapechum M.D., Ph.D. Department of Physiology Faculty of Medicine Siriraj Hospital, Bangkok, Thailand. sisth@mahidol.ac.th 2 Structure of synapse Modes of synaptic

More information

The Nervous System Mark Stanford, Ph.D.

The Nervous System Mark Stanford, Ph.D. The Nervous System Functional Neuroanatomy and How Neurons Communicate Mark Stanford, Ph.D. Santa Clara Valley Health & Hospital System Addiction Medicine and Therapy Services The Nervous System In response

More information

Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells

Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells CHAPTER 7 The Nervous System: Neurons and Synapses Chapter 7 Outline Neurons and Supporting Cells Activity in Axons The Synapse Acetylcholine as a Neurotransmitter Monoamines as Neurotransmitters Other

More information

Synaptic Communication. Steven McLoon Department of Neuroscience University of Minnesota

Synaptic Communication. Steven McLoon Department of Neuroscience University of Minnesota Synaptic Communication Steven McLoon Department of Neuroscience University of Minnesota 1 Course News The first exam is next week on Friday! Be sure to checkout the sample exam on the course website. 2

More information

Neurotransmitter Systems I Identification and Distribution. Reading: BCP Chapter 6

Neurotransmitter Systems I Identification and Distribution. Reading: BCP Chapter 6 Neurotransmitter Systems I Identification and Distribution Reading: BCP Chapter 6 Neurotransmitter Systems Normal function of the human brain requires an orderly set of chemical reactions. Some of the

More information

Neuron types and Neurotransmitters

Neuron types and Neurotransmitters Neuron types and Neurotransmitters Faisal I. Mohammed. PhD, MD University of Jordan 1 Transmission of Receptor Information to the Brain the larger the nerve fiber diameter the faster the rate of transmission

More information

NERVOUS SYSTEM 1 CHAPTER 10 BIO 211: ANATOMY & PHYSIOLOGY I

NERVOUS SYSTEM 1 CHAPTER 10 BIO 211: ANATOMY & PHYSIOLOGY I BIO 211: ANATOMY & PHYSIOLOGY I 1 Ch 10 A Ch 10 B This set CHAPTER 10 NERVOUS SYSTEM 1 BASIC STRUCTURE and FUNCTION Dr. Lawrence G. Altman www.lawrencegaltman.com Some illustrations are courtesy of McGraw-Hill.

More information

Objectives. 1. Outline the criteria that need to be met before a molecule can be classified as neurotransmitter

Objectives. 1. Outline the criteria that need to be met before a molecule can be classified as neurotransmitter Neurotransmitters Objectives 1. Outline the criteria that need to be met before a molecule can be classified as neurotransmitter 2. Identify the major neurotransmitter types 3. Mechanism of action of important

More information

NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES 34.3

NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES 34.3 NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES 34.3 NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES Neurons communicate with other neurons or target cells at synapses. Chemical synapse: a very narrow

More information

Omar Ismail. Dana Almanzalji. Faisal Mohammad

Omar Ismail. Dana Almanzalji. Faisal Mohammad 11 Omar Ismail Dana Almanzalji Faisal Mohammad Neuronal classification: Neurons are responsible for transmitting the action potential to the brain. The speed at which the action potential is transmitted

More information

Neurotransmitters. Chemical transmission of a nerve signal by neurotransmitters at a synapse

Neurotransmitters. Chemical transmission of a nerve signal by neurotransmitters at a synapse Neurotransmitters A chemical released by one neuron that affects another neuron or an effector organ (e.g., muscle, gland, blood vessel). Neurotransmitters are small molecules that serve as messengers

More information

NEURAL TISSUE (NEUROPHYSIOLOGY) PART I (A): NEURONS & NEUROGLIA

NEURAL TISSUE (NEUROPHYSIOLOGY) PART I (A): NEURONS & NEUROGLIA PART I (A): NEURONS & NEUROGLIA Neural Tissue Contains 2 kinds of cells: neurons: cells that send and receive signals neuroglia (glial cells): cells that support and protect neurons Neuron Types Sensory

More information

Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons. Chad Smurthwaite & Jordan Shellmire

Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons. Chad Smurthwaite & Jordan Shellmire Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons Chad Smurthwaite & Jordan Shellmire The Chemical Synapse The most common type of synapse used for signal transmission in the central

More information

The Nervous System. Chapter 4. Neuron 3/9/ Components of the Nervous System

The Nervous System. Chapter 4. Neuron 3/9/ Components of the Nervous System Chapter 4 The Nervous System 1. Components of the Nervous System a. Nerve cells (neurons) Analyze and transmit information Over 100 billion neurons in system Four defined regions Cell body Dendrites Axon

More information

Dania Ahmad. Tamer Barakat + Dania Ahmad. Faisal I. Mohammed

Dania Ahmad. Tamer Barakat + Dania Ahmad. Faisal I. Mohammed 16 Dania Ahmad Tamer Barakat + Dania Ahmad Faisal I. Mohammed Revision: What are the basic types of neurons? sensory (afferent), motor (efferent) and interneuron (equaled association neurons). We classified

More information

BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1

BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1 BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1 Terms you should know: synapse, neuromuscular junction (NMJ), pre-synaptic, post-synaptic, synaptic cleft, acetylcholine (ACh), acetylcholine

More information

Section: Chapter 5: Multiple Choice. 1. The structure of synapses is best viewed with a(n):

Section: Chapter 5: Multiple Choice. 1. The structure of synapses is best viewed with a(n): Section: Chapter 5: Multiple Choice 1. The structure of synapses is best viewed with a(n): p.155 electron microscope. light microscope. confocal microscope. nissle-stained microscopic procedure. 2. Electron

More information

I. OVERVIEW DIRECT. Drugs affecting the autonomic nervous system (ANS) are divided into two groups according to the type of

I. OVERVIEW DIRECT. Drugs affecting the autonomic nervous system (ANS) are divided into two groups according to the type of THE CHOLINERGIC NEURON 1 I. OVERVIEW DIRECT Drugs affecting the autonomic nervous system (ANS) are divided into two groups according to the type of ACTING neuron involved in their mechanism of action.

More information

Communication Between

Communication Between Communication Between Neurons Bởi: OpenStaxCollege The electrical changes taking place within a neuron, as described in the previous section, are similar to a light switch being turned on. A stimulus starts

More information

Autonomic Nervous System. Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry

Autonomic Nervous System. Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry Autonomic Nervous System Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry Peripheral Nervous System A. Sensory Somatic Nervous System B. Autonomic Nervous System 1. Sympathetic Nervous

More information

BIOL Week 6. Nervous System. Transmission at Synapses

BIOL Week 6. Nervous System. Transmission at Synapses Collin County Community College BIOL 2401 Week 6 Nervous System 1 Transmission at Synapses Synapses are the site of communication between 2 or more neurons. It mediates the transfer of information and

More information

PSY 302 Lecture 6: The Neurotransmitters (continued) September 12, 2017 Notes by: Desiree Acetylcholine (ACh) CoA + Acetate Acetyl-CoA (mitochondria) (food, vinegar) + Choline ChAT CoA + ACh (lipids, foods)

More information

The Nervous System. Anatomy of a Neuron

The Nervous System. Anatomy of a Neuron The Nervous System Chapter 38.1-38.5 Anatomy of a Neuron I. Dendrites II. Cell Body III. Axon Synaptic terminal 1 Neuron Connections dendrites cell body terminal cell body cell body terminals dendrites

More information

Review of Neurochemistry What are neurotransmitters?

Review of Neurochemistry What are neurotransmitters? Review of Neurochemistry What are neurotransmitters? In molecular terms, neurotransmitters are molecules that ( ) and of neurons by, for example, increasing or decreasing enzymatic activity or altering

More information

Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve

Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve impulses - Impulse may be blocked in its transmission

More information

Neurochemistry 2. Loewi s experiment

Neurochemistry 2. Loewi s experiment Neurochemistry 2 Loewi s experiment Cengage Learning 2016 AP reaches the axon terminal and activates voltage-gated Ca++ channels (3 major classes). Ca++ influx results in exocytosis of neurotransmitters

More information

- Neurotransmitters Of The Brain -

- Neurotransmitters Of The Brain - - Neurotransmitters Of The Brain - INTRODUCTION Synapsis: a specialized connection between two neurons that permits the transmission of signals in a one-way fashion (presynaptic postsynaptic). Types of

More information

Fundamentals of the Nervous System and Nervous Tissue: Part C

Fundamentals of the Nervous System and Nervous Tissue: Part C PowerPoint Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R 11 Fundamentals of the Nervous System and Nervous Tissue: Part C Warm Up What is a neurotransmitter? What is the

More information

What effect would an AChE inhibitor have at the neuromuscular junction?

What effect would an AChE inhibitor have at the neuromuscular junction? CASE 4 A 32-year-old woman presents to her primary care physician s office with difficulty chewing food. She states that when she eats certain foods that require a significant amount of chewing (meat),

More information

Mohammad Tarek. Wahab Al-tekreeti Tamer Barakat. Faisal Mohammad

Mohammad Tarek. Wahab Al-tekreeti Tamer Barakat. Faisal Mohammad 15 Mohammad Tarek Wahab Al-tekreeti Tamer Barakat Faisal Mohammad Things to remember Types of synapse: Neuron types and neurotransmitters When it happens between an axon and dendrites it is called axodendritic

More information

NEUROCHEMISTRY Brief Review

NEUROCHEMISTRY Brief Review NEUROCHEMISTRY Brief Review UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY PBL MBBS YEAR V SEMINAR VJ Temple 1 Membrane potential Membrane potential:

More information

BIOL455 COMPARITIVE NEUROBIOLOGY LECTURE#7 DR. OLLIE HULME! FALL 2010! UBC

BIOL455 COMPARITIVE NEUROBIOLOGY LECTURE#7 DR. OLLIE HULME! FALL 2010! UBC BIOL455 COMPARITIVE NEUROBIOLOGY LECTURE#7 DR. OLLIE HULME! FALL 2010! UBC Days: MWF, 12-1, room 201! Same old details! Ollieʼs Office hours:! Fri 1.30-4.30pm (may change)! room 3308 Biosciences! Lindsayʼs

More information

Part 2: How Your Brain and Nervous System Work

Part 2: How Your Brain and Nervous System Work Part 2: How Your Brain and Nervous System Work with Dr. Ritamarie Loscalzo Medical Disclaimer: The information in this presentation is not intended to replace a one onone relationship with a qualified

More information

Synaptic transmission

Synaptic transmission Michael J. Fox Hollywood actor John Nash Nobel prize laureate 1994 Synaptic transmission Sompol Tapechum, M.D., Ph.D. Department of Physiology Faculty of Medicine Siriraj Hospital sisth@mahidol.ac.th www.ps.si.mahidol.ac.th

More information

Chapter 12 Nervous Tissue. Copyright 2009 John Wiley & Sons, Inc. 1

Chapter 12 Nervous Tissue. Copyright 2009 John Wiley & Sons, Inc. 1 Chapter 12 Nervous Tissue Copyright 2009 John Wiley & Sons, Inc. 1 Terms to Know CNS PNS Afferent division Efferent division Somatic nervous system Autonomic nervous system Sympathetic nervous system Parasympathetic

More information

Chapter 2: Cellular Mechanisms and Cognition

Chapter 2: Cellular Mechanisms and Cognition Chapter 2: Cellular Mechanisms and Cognition MULTIPLE CHOICE 1. Two principles about neurons were defined by Ramón y Cajal. The principle of connectional specificity states that, whereas the principle

More information

BIPN140 Lecture 8: Synaptic Transmission II

BIPN140 Lecture 8: Synaptic Transmission II BIPN140 Lecture 8: Synaptic Transmission II 1. Postsynaptic Receptors: Metabotropic & Ionotropic 2. Postsynaptic Responses (Postsynaptic Potentials, PSPs) 3. Neurotransmitters Su (FA16) Chemical Synapse:

More information

What are the 6 types of neuroglia and their functions?!

What are the 6 types of neuroglia and their functions?! Warm Up! Take out your 11C Notes What are the 6 types of neuroglia and their functions?! Astrocytes Microglia Ependymal Cells Satellite Cells Schwann Cells Oligodendrocytes Support, brace, & nutrient transfer

More information

The Nervous System. Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output

The Nervous System. Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output The Nervous System Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output The Nervous System 2 Parts of the Nervous System 1. central

More information

1. Name the two major divisions of the nervous system and list the organs within each. Central Nervous System Peripheral Nervous System

1. Name the two major divisions of the nervous system and list the organs within each. Central Nervous System Peripheral Nervous System CHAPTER 10: NERVOUS SYSTEM I OBJECTIVES 1. Name the two major divisions of the nervous system and list the organs within each. Central Nervous System Peripheral Nervous System Brain Spinal Cord Cranial

More information

Neural Communication. Central Nervous System Peripheral Nervous System. Communication in the Nervous System. 4 Common Components of a Neuron

Neural Communication. Central Nervous System Peripheral Nervous System. Communication in the Nervous System. 4 Common Components of a Neuron Neural Communication Overview of CNS / PNS Electrical Signaling Chemical Signaling Central Nervous System Peripheral Nervous System Somatic = sensory & motor Autonomic = arousal state Parasympathetic =

More information

Chapter 17. Nervous System Nervous systems receive sensory input, interpret it, and send out appropriate commands. !

Chapter 17. Nervous System Nervous systems receive sensory input, interpret it, and send out appropriate commands. ! Chapter 17 Sensory receptor Sensory input Integration Nervous System Motor output Brain and spinal cord Effector cells Peripheral nervous system (PNS) Central nervous system (CNS) 28.1 Nervous systems

More information

Chapter 12 Nervous Tissue

Chapter 12 Nervous Tissue 9/12/11 Chapter 12 Nervous Tissue Overview of the nervous system Cells of the nervous system Electrophysiology of neurons Synapses Neural integration Subdivisions of the Nervous System 1 Subdivisions of

More information

Biopsychology 2012 sec 003 (Dr. Campeau)

Biopsychology 2012 sec 003 (Dr. Campeau) Biopsychology 2012 sec 003 (Dr. Campeau) Study Guide for First Midterm What are some fun facts about the human brain? - there are approximately 100 billion neurons in the brain; - each neuron makes between

More information

Psych 181: Dr. Anagnostaras

Psych 181: Dr. Anagnostaras Psych 181: Dr. Anagnostaras Lecture 5 Synaptic Transmission Introduction to synaptic transmission Synapses (Gk., to clasp or join) Site of action of most psychoactive drugs 6.5 1 Synapses Know basic terminology:

More information

Synapse. 1. Presynaptic Terminal Button 2. Postsynaptic Membrane 3. Vesicles 4. Synaptic Cleft 5. Neurotransmitters 6.

Synapse. 1. Presynaptic Terminal Button 2. Postsynaptic Membrane 3. Vesicles 4. Synaptic Cleft 5. Neurotransmitters 6. Synapse 1. Presynaptic Terminal Button 2. Postsynaptic Membrane 3. Vesicles 4. Synaptic Cleft 5. Neurotransmitters 6. Receptor Sites For communication between neurons to occur, an electrical impulse must

More information

Organization of the nervous system. [See Fig. 48.1]

Organization of the nervous system. [See Fig. 48.1] Nervous System [Note: This is the text version of this lecture file. To make the lecture notes downloadable over a slow connection (e.g. modem) the figures have been replaced with figure numbers as found

More information

Parkinsonism or Parkinson s Disease I. Symptoms: Main disorder of movement. Named after, an English physician who described the then known, in 1817.

Parkinsonism or Parkinson s Disease I. Symptoms: Main disorder of movement. Named after, an English physician who described the then known, in 1817. Parkinsonism or Parkinson s Disease I. Symptoms: Main disorder of movement. Named after, an English physician who described the then known, in 1817. Four (4) hallmark clinical signs: 1) Tremor: (Note -

More information

COGS 269. Lecture 1 Spring 2018

COGS 269. Lecture 1 Spring 2018 COGS 269 Lecture 1 Spring 2018 Psychological Experience Methods of Cognitive Neuroscience Dissociation experiments (patients with brain damage) Neuroimaging experiments Computational modeling Brain damage

More information

Adrenergic agonists Sympathomimetic drugs. ANS Pharmacology Lecture 4 Dr. Hiwa K. Saaed College of Pharmacy/University of Sulaimani

Adrenergic agonists Sympathomimetic drugs. ANS Pharmacology Lecture 4 Dr. Hiwa K. Saaed College of Pharmacy/University of Sulaimani Adrenergic agonists Sympathomimetic drugs ANS Pharmacology Lecture 4 Dr. Hiwa K. Saaed College of Pharmacy/University of Sulaimani 2017-2018 Adrenergic agonists The adrenergic drugs affect receptors that

More information

Division Ave. High School AP Biology. cell body. signal direction

Division Ave. High School AP Biology. cell body. signal direction signal direction Nervous system cells Neuron a nerve cell dendrites myelin sheath axon cell body dendrite cell body axon Structure fits function many entry points for signal one path out transmits signal

More information

Cell communication. Gated ion channels. Allow specific ions to pass only when gates are open

Cell communication. Gated ion channels. Allow specific ions to pass only when gates are open increase decrease Cell communication Gated ion channels Allow specific ions to pass only when gates are open Triggered by: potential change, chemical binding, temperature change, stretching 1 Voltage-Gated

More information

Cell communication. Gated ion channels. Voltage-Gated Na + Channel. Allow specific ions to pass only when gates are open

Cell communication. Gated ion channels. Voltage-Gated Na + Channel. Allow specific ions to pass only when gates are open increase decrease Cell communication Gated ion channels Allow specific ions to pass only when gates are open Voltage-Gated Na + Channel Activation gate ECF Triggered by: change, chemical binding, temperature

More information

Biol 219 Lec 12 Fall 2016

Biol 219 Lec 12 Fall 2016 Cell-to-Cell: Neurons Communicate at Synapses Electrical synapses pass electrical signals through gap junctions Signal can be bi-directional Synchronizes the activity of a network of cells Primarily in

More information

Chemical Control of Behavior and Brain 1 of 9

Chemical Control of Behavior and Brain 1 of 9 Chemical Control of Behavior and Brain 1 of 9 I) INTRO A) Nervous system discussed so far 1) Specific 2) Fast B) Other systems extended in space and time 1) Nonspecific 2) Slow C) Three components that

More information

3) Most of the organelles in a neuron are located in the A) dendritic region. B) axon hillock. C) axon. D) cell body. E) axon terminals.

3) Most of the organelles in a neuron are located in the A) dendritic region. B) axon hillock. C) axon. D) cell body. E) axon terminals. Chapter 48 Neurons, Synapses, and Signaling Multiple-Choice Questions 1) A simple nervous system A) must include chemical senses, mechanoreception, and vision. B) includes a minimum of 12 ganglia. C) has

More information

9/28/2016. Neuron. Multipolar Neuron. Astrocytes Exchange Materials With Neurons. Glia or Glial Cells ( supporting cells of the nervous system)

9/28/2016. Neuron. Multipolar Neuron. Astrocytes Exchange Materials With Neurons. Glia or Glial Cells ( supporting cells of the nervous system) Neuron Multipolar Neuron https://www.youtube.com/watch?v=lw-psbnu5xago to :38 Glia or Glial Cells ( supporting cells of the nervous system) 10X more numerous than neurons but one-tenth the size make up

More information

Notes: Synapse. Overview. PSYC Summer Professor Claffey PDF. Conversion from an signal to a signal - electrical signal is the

Notes: Synapse. Overview. PSYC Summer Professor Claffey PDF. Conversion from an signal to a signal - electrical signal is the PSYC 170 - Summer 2013 - Professor Claffey Notes: Synapse PDF Overview Conversion from an signal to a signal - electrical signal is the - chemical signal is the Presynaptic - refers to that sends/receives

More information

Neurons, Synapses and Signaling. Chapter 48

Neurons, Synapses and Signaling. Chapter 48 Neurons, Synapses and Signaling Chapter 48 Warm Up Exercise What types of cells can receive a nerve signal? Nervous Organization Neurons- nerve cells. Brain- organized into clusters of neurons, called

More information

Lujain Hamdan. Tamer Barakat. Faisal Mohammad

Lujain Hamdan. Tamer Barakat. Faisal Mohammad 17 Lujain Hamdan Tamer Barakat Faisal Mohammad Review : Summary of synaptic transmission: 1) Action potential arrives to presynaptic terminals of a nerve and causes depolarization by opening Ca 2+ voltage-gated

More information

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Module 11.1 Overview of the Nervous System (Figures 11.1-11.3) A. The nervous system controls our perception and experience

More information

BIOLOGICAL PROCESSES

BIOLOGICAL PROCESSES BIOLOGICAL PROCESSES CHAPTER 3 1 LEARNING GOALS Discuss how the nervous system communicates internally. Describe the structure and function of neurons Describe how the neuron transmits information Describe

More information

PSYCH 260 Exam 2. March 2, Answer the questions using the Scantron form. Name:

PSYCH 260 Exam 2. March 2, Answer the questions using the Scantron form. Name: PSYCH 260 Exam 2 March 2, 2017 Answer the questions using the Scantron form. Name: 1 1 Main Please put in their proper order the steps that lead to synaptic communication between neurons. Begin with the

More information

Synaptic Transmission

Synaptic Transmission Synaptic Transmission Postsynaptic Mechanisms Synapses electrical and chemical Part I Neurotransmitters categories and life cycle Neurotransmitters examples and postsynaptic effects Pathology Part II Neurotransmitter

More information

Rick Gilmore :16:57

Rick Gilmore :16:57 260-2017-02-13 Rick Gilmore 2017-02-13 10:16:57 Prelude Prelude https://en.wikipedia.org/wiki/mah_nà_mah_nà Today s Topics Neurotransmitters Quiz 2 on Friday. Review Exam 1 on Friday. The influx of which

More information

Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed.,

Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun, Norton, 2002. Summarized by B.-W. Ku,

More information

Communication Between Neurons *

Communication Between Neurons * OpenStax-CNX module: m46503 1 Communication Between Neurons * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

Introduction to Autonomic

Introduction to Autonomic Part 2 Autonomic Pharmacology 3 Introduction to Autonomic Pharmacology FUNCTIONS OF THE AUTONOMIC NERVOUS SYSTEM The autonomic nervous system (Figure 3 1) is composed of the sympathetic and parasympathetic

More information

PARTS central nervous system brain and spinal cord nerve bundle of neurons wrapped in connective tissue

PARTS central nervous system brain and spinal cord nerve bundle of neurons wrapped in connective tissue NEUROPHYSIOLOGY Electrical Properties of Nerve cells (neurons) Electro physiology of neurons lie in Membrane Physiology Model organisms is Squid Giant Axon (SGA) diversity of Nervous systems NERVOUS SYSTEM

More information

Outline. Neuron Structure. Week 4 - Nervous System. The Nervous System: Neurons and Synapses

Outline. Neuron Structure. Week 4 - Nervous System. The Nervous System: Neurons and Synapses Outline Week 4 - The Nervous System: Neurons and Synapses Neurons Neuron structures Types of neurons Electrical activity of neurons Depolarization, repolarization, hyperpolarization Synapses Release of

More information

MOLECULAR AND CELLULAR NEUROSCIENCE

MOLECULAR AND CELLULAR NEUROSCIENCE MOLECULAR AND CELLULAR NEUROSCIENCE BMP-218 November 4, 2014 DIVISIONS OF THE NERVOUS SYSTEM The nervous system is composed of two primary divisions: 1. CNS - Central Nervous System (Brain + Spinal Cord)

More information

Chapter 4 Neuronal Physiology

Chapter 4 Neuronal Physiology Chapter 4 Neuronal Physiology V edit. Pg. 99-131 VI edit. Pg. 85-113 VII edit. Pg. 87-113 Input Zone Dendrites and Cell body Nucleus Trigger Zone Axon hillock Conducting Zone Axon (may be from 1mm to more

More information

Nervous System. Master controlling and communicating system of the body. Secrete chemicals called neurotransmitters

Nervous System. Master controlling and communicating system of the body. Secrete chemicals called neurotransmitters Nervous System Master controlling and communicating system of the body Interacts with the endocrine system to control and coordinate the body s responses to changes in its environment, as well as growth,

More information

Summarized by B.-W. Ku, E. S. Lee, and B.-T. Zhang Biointelligence Laboratory, Seoul National University.

Summarized by B.-W. Ku, E. S. Lee, and B.-T. Zhang Biointelligence Laboratory, Seoul National University. Chapter 2. The Cellular l and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 3 rd Ed., M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun, Norton, 2008. Summarized by B.-W. Ku,

More information

Neural Tissue. Chapter 12 Part B

Neural Tissue. Chapter 12 Part B Neural Tissue Chapter 12 Part B CNS Tumors - Neurons stop dividing at age 4 but glial cells retain the capacity to divide. - Primary CNS tumors in adults- division of abnormal neuroglia rather than from

More information

Synaptic communication

Synaptic communication Synaptic communication Objectives: after these lectures you should be able to: - explain the differences between an electrical and chemical synapse - describe the steps involved in synaptic communication

More information

Introduction to Neurobiology

Introduction to Neurobiology Biology 240 General Zoology Introduction to Neurobiology Nervous System functions: communication of information via nerve signals integration and processing of information control of physiological and

More information

The Cerebral Cortex and Higher Intellectual Functions

The Cerebral Cortex and Higher Intellectual Functions The Cerebral Cortex and Higher Intellectual Functions The Cerebral cortex consists of 2 cerebral hemisphere and each hemisphere consists of 5 lobes (frontal, parietal,temporal,occipital,insular lobe which

More information

Nervous System. Nervous system cells. Transmission of a signal 2/27/2015. Neuron

Nervous System. Nervous system cells. Transmission of a signal 2/27/2015. Neuron Nervous System 2007-2008 signal direction Neuron a nerve cell Nervous system cells dendrites axon cell body Structure fits function many entry points for signal one path out transmits signal signal direction

More information

Neuropharmacology NOTES

Neuropharmacology NOTES Neuropharmacology NOTES Contents Topic Page # Lecture 1- Intro to Neurochemical Transmission & Neuromodulation 2 Lecture 2- Serotonin & Noradrenaline 7 Lecture 3- Acetylcholine & Dopamine 14 Lecture 4-

More information

Learning Intention. Name and describe the components of a neuron

Learning Intention. Name and describe the components of a neuron c) Neural Pathways Learning Intention Name and describe the components of a neuron Cells of the Nervous System The nervous system consists of a complex network of nerve cells called neurons which receive

More information

Lojayn Salah. Razan Aburumman. Faisal Muhammad

Lojayn Salah. Razan Aburumman. Faisal Muhammad 20 Lojayn Salah Razan Aburumman Faisal Muhammad Note: I tried to include everything that's important from the doctor's slides but you can refer back to them after studying this sheet.. After you read this

More information

9.01 Introduction to Neuroscience Fall 2007

9.01 Introduction to Neuroscience Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 9.01 Introduction to Neuroscience Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 9.01 Recitation (R02)

More information

Neurons have cell membranes that separate them from the environment outside the neuron.

Neurons have cell membranes that separate them from the environment outside the neuron. Neural Communication Lecture 11 A. Resting Potential In this section, we will consider the basic unit of the nervous system the neuron and how neurons communicate with each other. The story of neural communication

More information

Classes of Neurotransmitters. Neurotransmitters

Classes of Neurotransmitters. Neurotransmitters 1 Drugs Outline 2 Neurotransmitters Agonists and Antagonists Cocaine & other dopamine agonists Alcohol & its effects / Marijuana & its effects Synthetic & Designer Drugs: Ecstasy 1 Classes of Neurotransmitters

More information

NEUROTRANSMITTERS. Contraction of muscles to move our bodies Release hormones Psychological states of thinking and emotions

NEUROTRANSMITTERS. Contraction of muscles to move our bodies Release hormones Psychological states of thinking and emotions NEUROTRANSMITTERS NEURONS Neurons don t actually touch Separated by a tiny fluid-filled gap called a synapse Neural impulses must be ferried across the synapse by chemical messengers called neurotransmitters.

More information

Chapter 4. Psychopharmacology. Copyright Allyn & Bacon 2004

Chapter 4. Psychopharmacology. Copyright Allyn & Bacon 2004 Chapter 4 Psychopharmacology This multimedia product and its contents are protected under copyright law. The following are prohibited by law: any public performance or display, including transmission of

More information

Na + K + pump. The beauty of the Na + K + pump. Cotransport. The setup Cotransport the result. Found along the plasma membrane of all cells.

Na + K + pump. The beauty of the Na + K + pump. Cotransport. The setup Cotransport the result. Found along the plasma membrane of all cells. The beauty of the Na + K + pump Na + K + pump Found along the plasma membrane of all cells. Establishes gradients, controls osmotic effects, allows for cotransport Nerve cells have a Na + K + pump and

More information

2401 : Anatomy/Physiology

2401 : Anatomy/Physiology Dr. Chris Doumen Week 6 2401 : Anatomy/Physiology Transmission at Synapses NeuroPhysiology TextBook Readings Pages 408 through 420 Make use of the figures in your textbook ; a picture is worth a thousand

More information

Brain Neurotransmitters

Brain Neurotransmitters Brain Neurotransmitters * Chemical substances released by electrical impulses into the synaptic cleft from synaptic vesicles of presynaptic membrane * Diffuses to the postsynaptic membrane * Binds to and

More information

The Cerebral Cortex and Higher Intellectual Functions

The Cerebral Cortex and Higher Intellectual Functions The Cerebral Cortex and Higher Intellectual Functions Lobes in a lateral view of left hemisphere Atlas Fig.2-11 The Insula The Hidden Lobe Atlas Fig. 2-11 Atlas Fig. 2-39 Lobes in a lateral view of left

More information

Chapter 7. The Nervous System: Structure and Control of Movement

Chapter 7. The Nervous System: Structure and Control of Movement Chapter 7 The Nervous System: Structure and Control of Movement Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways

More information

SYNAPTIC COMMUNICATION

SYNAPTIC COMMUNICATION BASICS OF NEUROBIOLOGY SYNAPTIC COMMUNICATION ZSOLT LIPOSITS 1 NERVE ENDINGS II. Interneuronal communication 2 INTERNEURONAL COMMUNICATION I. ELECTRONIC SYNAPSE GAP JUNCTION II. CHEMICAL SYNAPSE SYNAPSES

More information

Integrated Cardiopulmonary Pharmacology Third Edition

Integrated Cardiopulmonary Pharmacology Third Edition Integrated Cardiopulmonary Pharmacology Third Edition Chapter 3 Pharmacology of the Autonomic Nervous System Multimedia Directory Slide 19 Slide 37 Slide 38 Slide 39 Slide 40 Slide 41 Slide 42 Slide 43

More information

Chapter 7. Objectives

Chapter 7. Objectives Chapter 7 The Nervous System: Structure and Control of Movement Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways

More information

Chapter 2. The Cellular and Molecular Basis of Cognition

Chapter 2. The Cellular and Molecular Basis of Cognition Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga,, R. B. Ivry,, and G. R. Mangun,, Norton, 2002. Summarized by B.-W. Ku,

More information

Lecture 22: A little Neurobiology

Lecture 22: A little Neurobiology BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 22: A little Neurobiology http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Nervous system development Part of the ectoderm

More information

Lec 2b Structure and Function of Cells. Cogs17 Cognitive Neuroscience UCSD

Lec 2b Structure and Function of Cells. Cogs17 Cognitive Neuroscience UCSD Lec 2b Structure and Function of Cells Cogs17 Cognitive Neuroscience UCSD THE SYNAPSE Communication between cells VESICLE Double lipid membrane NTs Exocytosis VESICLE Exocytosis Double lipid membrane

More information

Exam 2 PSYC Fall (2 points) Match a brain structure that is located closest to the following portions of the ventricular system

Exam 2 PSYC Fall (2 points) Match a brain structure that is located closest to the following portions of the ventricular system Exam 2 PSYC 2022 Fall 1998 (2 points) What 2 nuclei are collectively called the striatum? (2 points) Match a brain structure that is located closest to the following portions of the ventricular system

More information