Sensorimotor modulation of human cortical swallowing pathways

Size: px
Start display at page:

Download "Sensorimotor modulation of human cortical swallowing pathways"

Transcription

1 Keywords: Cerebral cortex, Deglutition, Magnetic stimulation 6592 Journal of Physiology (1998), 506.3, pp Sensorimotor modulation of human cortical swallowing pathways Shaheen Hamdy *, Qasim Aziz *, John C. Rothwell, Anthony Hobson * and David G. Thompson * * University of Manchester Gastroenterology Unit, Hope Hospital, Salford M6 8HD and MRC Human Movement and Balance Unit, Institute of Neurology, Queen Square, London WC1N 3BG, UK (Received 7 February 1997; accepted after revision 3 October 1997) 1. Transcranial magnetic stimulation over motor areas of cerebral cortex in man can activate short latency bilateral cortical projections to the pharynx and oesophagus. In the present paper we investigate the interaction between pathways from each hemisphere and explore how activity in these pathways is modulated by afferent feedback from the face, pharynx and oesophagus. 2. Comparison of unilateral and bilateral stimulation (using interstimulus intervals (ISIs) of 1, 5 or 10 ms between shocks) showed spatial summation of responses from each hemisphere at an ISI of 1 ms, indicating that cortical efferents project onto a shared population of target neurones. Such summation was not evident at ISIs of 5 or 10 ms. There was little evidence for transcallosal inhibition of responses from each hemisphere, as described for limb muscles. 3. Single stimuli applied to the vagus nerve in the neck or the supraorbital nerve, which alone produce intermediate (onset ms) and long (50 70 ms) latency reflex responses in the pharynx and oesophagus, were used to condition the cortical responses. Compared with rest, responses evoked by cortical stimulation were facilitated when they were timed to coincide with the late part of the reflex. The onset latency was reduced during both parts of the reflex response. No facilitation was observed with subthreshold reflex stimuli. 4. Single electrical stimuli applied to the pharynx or oesophagus had no effect on the response to cortical stimulation. However, trains of stimuli at frequencies varying from 0 2 to 10 Hz decreased the latency of the cortically evoked responses without consistently influencing their amplitudes. The effect was site specific: pharyngeal stimulation shortened both pharyngeal and oesophageal response latencies, whereas oesophageal stimulation shortened only the oesophageal response latencies. 5. Cortical swallowing motor pathways from each hemisphere interact and their excitability is modulated in a site-specific manner by sensory input. The latter may produce a mixture of excitation and inhibition at both brainstem and cortical levels. The process of swallowing comprises an ordered sequence of sensory and motor events that transport food from mouth to stomach, whilst ensuring protection of the airway. It is functionally divided into three stages: oral, pharyngeal and oesophageal (Miller, 1982), reflecting the anatomical structures involved. The central neural control of swallowing is also divided, with cortical centres in conjunction with afferent feedback from the musculature acting to initiate and modulate the volitional swallow (Sumi, 1969; Car, 1970; Hockman, Beiger & Weerasuriya, 1979; Jean, 1990; Martin & Sessle, 1993), whilst the brainstem swallowing centre (Jean, 1990) generates the sequenced events of reflex swallowing via the V, IX, X and XII cranial nerve nuclei. The interaction between each of these elements is responsible for a normal swallow in healthy subjects, whilst their disruption will lead to swallowing dysfunction (Wiles, 1991). The importance of suprabulbar influences in regulating swallowing has been established in animal studies, through disruption of cortical swallowing regions by lesioning, anaesthesia or cooling (Sumi, 1969, 1972b; Hockman et al. 1979; Martin & Sessle, 1993), and disturbing the normal swallowing pattern. Animal data have also demonstrated

2 858 S. Hamdy, Q. Aziz, J. C. Rothwell, A. Hobson and D. G. Thompson J. Physiol that repetitive stimulation of either hemisphere can evoke a swallow, that stimulation of both cerebral hemispheres, simultaneously, can enhance the number of swallows evoked compared with unilateral stimulation (Sumi, 1969), and that concurrent afferent excitation can facilitate swallowing in an intensity- and frequency-dependent manner (Sumi, 1969; Miller, 1972; Beiger & Hockman, 1976; Jean & Car, 1979). We have shown that the cortical pathways to human swallowing musculature can be studied by applying transcranial magneto-electric stimuli to the motor cortex whilst recording the electromyographic (EMG) responses evoked from the oro-pharynx and upper oesophagus (Aziz et al. 1994; Hamdy et al. 1996). In addition, we have demonstrated that these pathways are present on both hemispheres, display marked inter-hemispheric asymmetry independent of handedness (Aziz, Rothwell, Hamdy, Barlow & Thompson, 1996; Hamdy et al. 1996), and can be facilitated by prior stimulation of cranial nerve afferents, which evoke reflex pharyngo-oesophageal EMG responses (Aziz, Rothwell, Barlow & Thompson, 1995; Hamdy, Aziz, Rothwell, Hobson, Barlow & Thompson, 1997). It remains uncertain, however, how the cortical centres on each hemisphere interact, or how the facilitation of the cortical swallowing pathways is modulated by afferent stimulation. We therefore conducted the following series of studies, in healthy human volunteers, to explore (i) how bilateral stimulation of the cortical hemispheres would influence the cortically evoked swallow response, and (ii) whether the facilitation of the cortical swallowing pathways by afferent pathway stimulation displays intensity or frequency dependence. METHODS Subjects All participants in the studies were healthy adult volunteers recruited from personnel affiliated with the research units involved in the project. None gave any history of swallowing problems. The project was formally approved by Salford & Trafford Ethics Committee. Subjects were given details of the experimental protocol and all gave full written informed consent before the studies were conducted. Magnetic stimulation Magnetic stimulation of the cerebral cortex and cranial nerves was performed using two commercially available magnetic stimulators (Magstim 200, MAGSTIM Company Limited, Whitland, Dyfield, UK). Cortical stimulation. Focal magnetic stimulation of one hemisphere was performed using a 70 mm (outer diameter) figure of eight coil oriented at an angle of 45 deg to the parasagittal plane, tangential to the scalp surface and with the anterior edge of the bifurcation positioned over the site of interest. Focal bilateral stimulation was performed using two identical magnetic stimulators and two figure of eight coils, one positioned over each hemisphere. Both stimulators were attached to a timing device (Bistim Module, MAGSTIM Company Limited), the output of which was programmed to discharge the stimulators at intervals varying from 1 10 ms. Diffuse stimulation of both hemispheres was performed using a single magnetic stimulator connected to a 90 mm (outer diameter) circular coil, which, when discharged over the vertex of the cranium, provided diffuse stimulation of the cortex beneath the coil. Cranial nerve stimulation. This was performed using a magnetic stimulator connected to a small (50 mm outer diameter) figure of eightcoil,whichprovidedfocalstimulationofanareaoftissue approximately one square centimetre beneath its bifurcation. Stimulation of the vagus nerve was performed by discharging the coil over the right side of neck, 2 cm below the angle of the jaw, at the anterior border of the sternocleidomastoid muscle (Aziz et al. 1994, 1995). Stimulation of the trigeminal nerve was performed by positioning the centre of the figure of eight coil over the right supra-orbital branch of the trigeminal nerve (Hamdy et al. 1997). This was chosen because it is a purely afferent branch, and because its excitation evokes a bilateral blink reflex (Kimura, Powers & Van Allen, 1969), thereby confirming that effective stimulation had occurred. Combined cranial nerve and cortical stimulation. This was performed using the two magnetic stimulators connected to the timing device, programmed to discharge both stimulators at intervals varying from ms. Electrical stimulation Electrical stimulation of the pharynx and oesophagus was performed using two pairs of bipolar platinum ring electrodes built into a 3 mm diameter intraluminal catheter (Gaeltec, Dunvegan, Isle of Skye, UK). The electrode pairs were sited 5 and 12 cm from the distal tip of the catheter, the proximal electrode pair being used to stimulate the mucosa of the pharynx and the distal pair to stimulate the mucosa of the upper oesophagus. Each electrode pair had an inter-electrode distance of 1 cm and each was connected to an electrical stimulator device (Stimulator Model DS7, Digitimer, Welwyn Garden City, Hertfordshire, UK) via a trigger generator (Neurolog System, Digitimer), which delivered trains of stimuli (pulse duration, 0 1 ms; voltage, 280 V) repetitively, at frequencies of Hz. Combined sensory and cortical stimulation. This was performed by connecting both the magnetic stimulator and the electrical stimulator to a timing device (Neurolog System, Digitimer), programmed to discharge the magnetic stimulator 100 ms after the last pulse of a train of twenty-five electrical stimuli for each frequency studied. Electromyographic recording The swallow muscle groups chosen for study were the pharyngeal muscles and the striated muscle of the upper oesophagus. EMG responses were detected using a second intraluminal catheter identical to that used for electrical stimulation. The proximal electrode pair was used to detect pharyngeal EMG responses and the distal electrode pair to detect oesophageal EMG responses. Each electrode pair was connected to a pre-amplifier (CED 1902, Cambridge Electronic Design, Cambridge, UK) with filter settings of Hz. Response signals were then collected through a

3 J. Physiol Modulation of cortical swallowing pathways 859 laboratory interface (CED 1401 plus, Cambridge Electronic Design) at a sampling rate of 4 8 khz and fed into a 486 Sx desktop computer (Mitac Europe Ltd, Shropshire, UK) for immediate display, data collection and averaging. During each study, electrode contact was monitored at 10 min intervals by observing the real time EMG responses to a wet swallow. Manometric recording Two solid-state strain gauge transducers (Gaeltec) were incorporated into the recording catheter, one between each electrode pair. The output of each transducer was amplified and connected to a solid_state data logger (TDS 9090 Forth Computer, Triangle Digital Services Ltd, London, UK), and then down loaded onto a 486 Sx desktop computer for display and storage. Manometric measurements were made from the pharynx and oesophagus at the start of, and during, each study. This enabled the upper oesophageal sphincter to be identified, and the distal electrode pair to be maintained in position, 3 cm below its lower margin. Experimental protocols All the protocols described below were presented to, and approved by, the Salford Health Authority Ethics Committee. Throughout each study, the volunteer sat comfortably in a chair, and the vertex of the cranium was identified according to the international system (Jasper, 1958). The pharyngo-oesophageal catheter for recording EMG responses was then inserted either trans-orally or trans-nasally, depending on subject preference. Study 1: effect of single and bilateral hemispheric stimulation on cortically evoked EMG responses. Eight volunteers (five male, three female; mean age, 29 years; age range, years) were studied. First, to determine the optimal sites for cortical stimulation for each subject, a preliminary mapping study was performed by discharging the figure of eight coil over multiple grid points, 1 cm apart, inan8cm ² 8cmareaanterior andlateral to the vertex, using stimulation intensities of 2 2 tesla (T) (100 % stimulator output). The sites evoking the greatest EMG responses for each muscle group on each hemisphere were identified and marked on the scalp. Next, a series of cortical stimulations were performed over these marked positions, starting at a subthreshold intensity and increasing in 5 % steps until the threshold intensity for evoking EMG responses of greater than 30 ìv in five out of ten consecutive trials was found. The stimulation coil was then repositioned over one or other hemisphere, the order of study being randomized between subjects, and at each site the coil was discharged at the following three intensities: (i) 10 % below threshold intensity, (ii) threshold intensity, and (iii) 10 % above threshold intensity. Three stimuli weredeliveredateachintensity,withanintervalof15sbetween each stimulation, and the EMG responses to each stimulus recorded. Finally, bilateral hemispheric stimulation of the chosen sites was performed at the subthreshold, threshold and suprathreshold intensities, using interstimulus intervals (ISIs) of 1, 5 and 10 ms, three paired stimuli being delivered at 15 s intervals for each stimulation intensity at each ISI, and the responses recorded. Study 2: effect of cranial nerve stimulation intensity on cortically evoked EMG responses. Six volunteers (four male, two female; mean age, 32 years; age range, years) were studied. First, the figure of eight coil was discharged over the right supraorbital nerve or the right vagus nerve at an intensity of 30 % stimulator output and increased in 5 % steps until EMG responses were evoked in both muscle groups. The lowest intensity which induced reflex responses in 50 % of trials for both muscle groups was defined as the threshold stimulus intensity for that nerve. Next, the cerebral cortex of each subject was diffusely stimulated, initially at a discharge intensity of 30 %, increasing in 5 % steps until EMG responses of greater than 30 ìv were obtained in both muscle groups on at least five out of ten consecutive trials, this being defined as the threshold intensity. Three stimuli, 15 s apart, were then delivered at 20 % above the threshold stimulus intensity and the EMG responses to each recorded. Finally, a series of stimuli were delivered to the trigeminal and vagus nerves, in random order, at the following intensities: (i) 5 % stimulator output ( sham excitation), (ii) 10 % below threshold, (iii) threshold and (iv) 10 % above threshold. Each stimulus was followed by diffuse stimulation of the cortex, at 20 % above threshold intensity, at either 10, 20, 30, 50, or 100 ms intervals. Three stimulations, each 15 s apart, were delivered for each interval, and the EMG responses from each muscle group were recorded. Study 3: effect of repetitive pharyngeal and oesophageal stimulation on cortically evoked EMG responses. Seven volunteers were studied (four male, three female; mean age, 33 years; age range, years) were studied. First, the electrical stimulation catheter was inserted alongside the EMG recording catheter, with the distal electrode pair positioned in the upper oesophagus and the proximal pair in the pharynx. Next, the cerebral cortex was diffusely stimulated, at an intensity of 30 %, and then intensity was increased in 5 % steps until responses of greater than 30 ìv were obtained in 50 % of trials in both the pharynx and oesophagus; this intensity being defined as the threshold. Three stimuli, 15 s apart, were then delivered at 20 % above threshold and the EMG responses recorded. Finally, repeated electrical stimulation of the pharynx or oesophagus was performed, at a constant stimulus intensity which was just perceived by the subject, and at varying frequencies (0 2, 0 5, 1, 5 and 10 Hz). One hundred milliseconds after the delivery of the last of a series of twenty-five stimuli, the cerebral cortex was stimulated at 20 % above threshold intensity. The procedure was repeated three times at each stimulation frequency, and the EMG responses from each muscle group recorded. Definition of terms Response latency: the interval between the onset of the stimulus and the onset of the EMG response, expressed in milliseconds (ms). Response amplitude: the maximum peak-to-peak voltage of the EMG response, expressed in microvolts (ìv). Response facilitation: the enhancement of the EMG response, ascertained as either a reduction in the response latency or an increase in the response amplitude. Data analysis For each muscle group, the mean values of the EMG responses evoked in studies 1 3 were calculated and used for data analysis. The normality of the data was then assessed using the Shapiro Wilk W test (Altman, 1991). In study 1, responses evoked following bilateral hemispheric stimulation were compared both with those obtained following unilateral hemispheric stimulation of either side, and with the calculated sum of the responses of the two individual hemispheres. Student s paired, two-tailed, t test was used for the normally distributed latencies and the Wilcoxon

4 860 S. Hamdy, Q. Aziz, J. C. Rothwell, A. Hobson and D. G. Thompson J. Physiol signed-rank sum test for the non-normally distributed response amplitudes. In study 2, the cortically evoked EMG responses following cranial nerve stimulation at each intensity were compared with the responses following sham stimulation, using repeated measures ANOVA, with post hoc Student s t tests to determine where the differences lay. In study 3, the cortically evoked responses obtained during pharyngeal and oesophageal stimulation for each frequency were compared with those evoked by cortical stimulation alone, again using repeated measures ANOVA and post hoc Student s t tests, where appropriate. Results are expressed in thetextasmeans±standarderrorofthemean(s.e.m.) unless stated otherwise. A P value of 0 05 or less was taken to indicate that any observed differences were unlikely to have occurred by chance. RESULTS As reported in previous studies (Aziz et al. 1994; Hamdy et al. 1996), cortical stimulation evoked early and late EMG responses in both the pharynx and oesophagus. The early responses were biphasic or triphasic and were reproducible within individuals. The late responses were, in contrast, polyphasic and inconsistently evoked. All results described below relate to the early responses. Because the experiments were conducted in relaxed subjects without overt voluntary facilitation, response amplitudes were small but reproducible (Aziz et al. 1994). Figure 1. Effects of increasing intensities of bilateral hemispheric stimuli on the cortically evoked swallow muscle responses The mean (of 3 trials) cortically evoked pharyngeal (P) and oesophageal (O) EMG responses in one individual are shown for each stimulation intensity following unilateral right (R) and left (L) hemisphere stimulation, and then bilateral hemispheric stimulation at ISIs of 1, 5 and 10 ms. It can be seen that subthreshold bilateral hemispheric stimulation only evokes pharyngeal responses at an ISI of 1 ms. In comparison, bilateral stimulation at threshold and suprathreshold intensities enhances both the pharyngeal and oesophageal response amplitudes at an ISI of 1 ms, which reduces at ISIs of 5 and 10 ms.

5 J. Physiol Modulation of cortical swallowing pathways 861 Comparison of unilateral and bilateral hemispheric stimulation on cortically evoked EMG responses The mean stimulus intensities used for subthreshold, threshold and suprathreshold stimulus pairings were 64 ± 5, 74 ± 5 and 84 ± 5 %, respectively, for the right hemisphere, and68±5, 78±5and88±5%, respectively,fortheleft hemisphere. Responses to bilateral stimulation at an ISI of 1 ms were often larger than the sum of the responses to each (unilateral) stimulus given alone (Figs 1 and 2). This was significant for responses in the pharynx when subthreshold intensities were used, and approached significance in both pharynx and oesophagus at higher intensities (P < 0 06; Wilcoxon signed-rank sum test). Responses were no longer facilitated when the ISI was lengthened to 5 or 10 ms. Response latency decreased by ms with bilateral stimulation at an ISI of 5 ms, but not at ISIs of 1 or 10 ms. Effect of cranial nerve stimulation intensity on cortically evoked EMG responses We have reported previously (Hamdy et al. 1997) that single suprathreshold stimuli applied alone to either the trigeminal or vagus nerve produce an intermediate and a late reflex response in the pharynx and oesophagus, with onset latencies of about and ms, respectively. If such stimuli are given 50 or 100 ms prior to a cortical shock, then the cortical potential occurs within the later part of the reflex response: its amplitude is facilitated, and the onset latency is reduced. Surprisingly, with such stimuli the onset latency of the cortical response is reduced at an ISI of 30 ms, even though its amplitude is unaffected. In the present experiments, we compared the effects of giving three different intensities of peripheral stimulation. The subthreshold, threshold, and suprathreshold intensities used for the trigeminal nerve were 36 ± 5, 46 ± 5 and Figure 2. Comparison of bilateral and unilateral hemisphere stimulation on the cortically evoked swallow muscle responses at increasing intensities Histogram plots of the group (n = 8) mean(± s.e.m.) response latencies and amplitudes, for the pharynx (A) and oesophagus (B), are shown for each stimulation intensity following unilateral right (4) and left(%) hemisphere stimulation, and bilateral hemisphere stimulation with ISIs of 1 ms (Ú), 5 ms (5) and 10 ms (¾). In both the pharynx and oesophagus, bilateral stimulation, at threshold and suprathreshold intensities, always increased the response amplitudes at an ISI of 1 ms, and shortened the response latencies at an ISI of 5 ms compared with single hemisphere stimulation. In contrast, at subthreshold intensities, bilateral stimulation enhanced only the pharyngeal responses, and only at an ISI of 1 ms.

6 862 S. Hamdy, Q. Aziz, J. C. Rothwell, A. Hobson and D. G. Thompson J. Physiol ± 5 %, respectively, whereas for the vagus nerve they were32±5,42±5and52±5%,respectively. Subthreshold conditioning stimulation of either the trigeminalorthevagusnervehadnoeffectoncortically evoked EMG responses (P = 0 4, ANOVA; Fig. 3). However, stimulation at threshold intensities again produced a differential effect on amplitude and latency. The only effect of threshold stimulation on response amplitude was facilitation of pharyngeal responses following trigeminal nerve stimulation (P < 0 02, ANOVA), vagus nerve stimulation failing to induce any effect on the pharyngeal and oesophageal responses (P = 0 2, ANOVA). The increase in pharyngeal response amplitude occurred only at an ISI of 100 ms after stimulation of the trigeminal nerve (P <0 05, Figure 3. Comparisons of the time course effects of increasing intensities of trigeminal and vagal stimulation on the cortically evoked swallow muscle response A series of graphs are shown, comparing the effects of increasing intensities of prior trigeminal (A) and vagal (B) nerve stimulation on the group (n = 6) mean (± s.e.m.) cortically evoked response latencies and amplitudes in the pharynx and oesophagus at increasing interstimulus intervals. It can be seen that suprathreshold (±, dashed line) and threshold (þ, continuous line) cranial nerve stimulation facilitate both the pharyngeal and oesophageal responses in comparison with subthreshold (1, dashed line) or sham (, continuous line) stimulation. The time course of the reduction in response latencies, occurring at ISIs of ms appears uninfluenced by increasing cranial nerve stimulus intensities. In contrast, the time course for the increases in response amplitudes, occurring at ISIs of ms, are seen to shorten in the pharynx following stronger trigeminal nerve stimulation and in the oesophagus following stronger vagal stimulation.

7 J. Physiol Modulation of cortical swallowing pathways 863 Student s t test). In contrast, onset latencies were reduced after stimulation of either site, (P < 0 01, ANOVA), occurring specifically at ISIs of 30, 50 or 100 ms (P < 0 03, Student s t test; Fig. 3). Effects of pharyngo-oesophageal stimulation on cortically evoked EMG responses Sensory threshold was lower in the pharynx (12 9 ± 1 9 ma) than in the oesophagus (16 3 ± 2 2 ma) (P < 0 05). Single stimuli at threshold or 10 % suprathreshold intensity had no consistent effect on cortically evoked responses. In view of this, we used trains of stimuli at each site, given at a range of frequencies, to condition cortically evoked responses. Neither pharyngeal nor oesophageal stimulation had any consistent effect on the amplitude of cortically evoked responses (P = 0 3, ANOVA). In contrast, latencies were often shortened following stimulation of either site (P < 0 01 and P < 0 02, ANOVA, for pharyngeal and oesophageal responses, respectively). Pharyngeal stimulation at high frequencies (5 and 10 Hz) shortened the onset latency of responses in both pharynx and oesophagus (P < 0 03, Student s t test; Fig. 4). At low frequencies (0 2 and 0 5 Hz), however, only the oesophageal response latencies were shortened (P < 0 03, Student s t test). Oesophageal stimulation had a less consistent effect, shortening the latency of oesophageal responses at frequencies of 0 5 and 5 Hz (P < 0 02, Student s t test), with little effect on the latency of pharyngeal responses (Fig. 4). DISCUSSION In previous studies we have shown that is it possible to investigate some of the cortical pathways involved in control of the pharynx and upper oesophagus using transcranial magnetic brain stimulation in conscious human subjects (Aziz et al. 1994, 1995; Hamdy et al. 1996, 1997). In the present paper we extend these findings by showing, first, how the pathways from each hemisphere interact to control these mid-line structures, and second, how the excitability ofthepathwaysisinfluencedbyafferentinputfromthe face, pharynx and oesophagus. Figure 4. Comparison of increasing frequencies of pharyngeal and oesophageal stimulation on the cortically evoked swallow muscle responses Histographic plots of the group (n = 7) mean (± s.e.m.) cortically evoked pharyngeal (A) and oesophageal (B) EMG responses following repetitive pharyngeal (þ, dashed line) and oesophageal (, continuous line) stimulation at increasing frequencies. The hatched area for each plot indicates the mean (± s.e.m.) range of response values to cortical stimulation alone. The stimulation frequency axes are plotted on a logarithmic scale. Pharyngeal stimulation affects both the cortically evoked pharyngeal and oesophageal response latencies, the former in a frequency-dependent manner. Oesophageal stimulation, however, only affects the cortically evoked oesophageal response latencies, showing some degree of frequency specificity. In addition, it can be seen that whilst response latencies are clearly influenced both by pharyngeal and oesophageal stimulation, response amplitudes are not significantly affected.

8 864 S. Hamdy, Q. Aziz, J. C. Rothwell, A. Hobson and D. G. Thompson J. Physiol Interaction between pathways from each hemisphere The present data confirm that single stimuli applied over either hemisphere can elicit EMG responses both in the pharynx and oesophagus. In addition, the experiments with pairs of stimuli suggest that spatial facilitation can occur between the responses from each hemisphere. Thus, single stimuli applied to either hemisphere, which on their own were too small to evoke any EMG response, could evoke clear activity when given together. At suprathreshold intensities, the size of responses to pairs of stimuli was larger than the sum of the responses to each stimulus given alone, and the latency was shorter. These results are compatible with a shared population of brainstem interneurones or motoneurones receiving combined input from both hemispheres. Thus, as described in animal experiments, fibres from the motor and pre-motor cortex of both cerebral hemispheres probably converge, via interneurones of the central pattern generator (CPG), onto motor nuclei of the V, IX, X and XII cranial nerves (Car, 1970; Hockman et al. 1979; Miller, 1986). This overlap of inputs from each hemisphere may well explain why swallowing can be maintained in a large percentage of patients after unilateral cerebral stroke (Barer, 1989). It also suggests that both cerebral hemispheres are involved in initiating volitional swallows, possibly following pre-initiation processing (intention to initiate motor activity) in other cortical swallowing regions such as the insula (Mesulam & Mufson, 1982), or in supplementary motor areas (Penfield & Rasmussen, 1950), or via ascending afferent feedback (Miller, 1972). There were subtle differences in hemispheric summation for the pharynx and oesophagus. Spatial facilitation for the pharyngeal responses was clear even with subthreshold stimuli, whereas this was not the case for the oesophagus. In addition, although facilitation was maximal at an interstimulus interval of 1 ms in both muscles, some degree of facilitation was seen at all three intervals in the pharynx, but not in the oesophagus. It is unclear why these differences occurred, although they may be due to the fact that cortical input to the pharynx is probably larger than to the oesophagus (Hamdy et al. 1996) and that input to the pharynx can induce distal inhibition of motor activity within the oesophagus (Jean, 1990), which could have influenced the oesophageal response to the second cortical stimulus. If facilitation were caused by the arrival of descending volleys at shared interneurones or motoneurones, then a 1 ms ISI would produce larger amplitude facilitation thana5or10msisi, because the excitatory post synaptic potentials (EPSPs) would sum on their rising phases. Facilitation at 5 and 10 ms would be correspondingly smaller because summation would occur on the falling phase of the initial EPSP. It is interesting to note that it was only when an interval of 5 ms was used that the latency of the response to combined stimulation was shorter than the response to single stimuli given alone. The reason for this is probably that at 5 ms, the first EPSP raises the excitability of shared brainstem neurones nearer to threshold so that they can respond more quickly to the arrival of the second input. This is compatible with the fact that the latency decrement is similar to that seen when responses are elicited in preactive rather than relaxed muscle. No latency decrease was evident with an ISI of 1 ms, but this is probably because the maximum possible reduction (i.e. 1 ms) was within the noise of our measurements of onset latency in these muscles. It is of interest that when the two hemispheres were stimulated sequentially (at ISIs of 5 10 ms), no convincing inhibition was seen. This is in contrast to the effects seen in hand muscles, where sequential magnetic stimuli of each hemisphere, at ISIs of 5 30 ms, inhibited the motor response, possibly via transcallosal interactions that may exist, at least for limb muscles, to ensure strictly unilateral movement (Ferbert, Priori, Rothwell, Day, Colebatch & Marsden, 1992). Our data indicate that the interhemispheric interactions for mid-line structures such as the pharynx and oesophagus, which are represented on both hemispheres and have bilateral projections to their motor nuclei, differ from those which have predominantly unilateral representation, although in the absence of direct recordings from the cortico-bulbar tracts, some transcallosal inhibition cannot be completely excluded, given that increased excitability of downstream neurons (at ISIs of 1 5 ms) could have masked any reduction in motor cortex output. Interaction between afferent input and responses to cortical stimulation In a previous paper we reported the effect of suprathreshold vagal or trigeminal stimuli on the response to cortical stimulation (Hamdy et al. 1997). The present paper extends these findings by using a range of different intensities of conditioning shock. Single suprathreshold stimuli applied to the vagus or trigeminal nerves elicit both an intermediate and a late reflex response in the pharynx and oesophagus by exciting afferent pathways from the face and neck, which then converge on interneurones of the nucleus of the tractus solitarius in the brainstem (Aziz et al. 1995; Hamdy et al. 1997). The former reflex response is small and has a latency of ms; the latter is larger and longer lasting, with a latency to onset of about ms. When the cortical stimulation is timed so that the evoked responses occur at the time of the late reflex (ISI, ms), then facilitation is clear, and the onset latency of the cortical component is reduced. Presumably, neuronal pools in the brainstem are facilitated by the reflex input, and become more responsive to descending input from cortex. The situation is more difficult to understand when the interstimulus interval is short (20 30 ms), and cortical responses occur during the initial part of the reflex. At these times, the latency is reduced but there is no facilitation of the size of the cortically evoked responses. In order to account for this discrepancy between the effect on latency and amplitude, we proposed that reflex input could have had two effects: excitation at the brainstem and suppression at the cortex.

9 J. Physiol Modulation of cortical swallowing pathways 865 The result would be that a given stimulus evoked a smaller descending volley which impinged on more excitable downstream structures. The present data show that, as might be expected, threshold stimuli have effects similar to, but smaller than, those seen with suprathreshold intensities. In general, the time course of effects is similar, except that facilitation begins earlier at higher intensities. There were, however, apparent differences between the cranial nerves in effecting facilitation: for example, an increase in the response amplitude was observed following threshold conditioning of the trigeminal nerve but not the vagus nerve. This may indicate that whilst afferent inputs from both sites have comparable effects in exciting brainstem (swallowing) circuitry, ascending vagal input to the cortex is largely inhibitory (Rutecki, 1990) unless more vigorous stimuli are applied. Furthermore, the data also show that facilitation is not evident at subthreshold intensities. The implication is that afferent input evoked by such stimuli does not reach the population of neurones excited by descending cortical input. This may be because there are several synapses in the afferent pathway before convergence with cortical inputs. Single stimuli applied, in pilot studies, to either the pharynx or oesophagus had no effect on the responses evoked by cortical stimulation. Because of this we used a train of repetitive stimuli, and gave the cortical test shock 100 ms after the end of the train, a time at which there had been maximum effects in the experiments using cranial nerve conditioning shocks. Under such conditions, stimulation of the pharynx or oesophagus demonstrated both frequency- and site-specific properties. At the highest frequencies, pharyngeal stimulation facilitated cortically evoked responses in both pharynx and oesophagus, whereas oesophageal stimulation had only limited effects on responses from the oesophagus alone. This indicates that pharyngeal sensation has a more powerful facilitatory effect on the cortical swallowing pathways than oesophageal sensation. These differences probably reflect the differing properties of the fibres innervating these regions. Sensation from the pharynx is carried largely by the glossopharyngeal nerve and the superior laryngeal nerve (SLN), stimulation of which is the most potent trigger of swallowing (Jean, 1990), whereas that from the upper oesophagus is conveyed via the recurrent laryngeal nerve, which does not trigger reflex swallowing (Miller, 1982; Jean, 1990). In addition, it is recognized that convergence of afferent fibres from the pharynx, in the nucleus of the tractus solitarius of the brainstem swallowing centre, is much more extensive than that from the upper oesophagus (Sessle, 1973). Our observation that the highest stimulation frequencies of the pharynx also produced the greatest facilitation suggests that there may exist, at least for the pharynx, a frequencydependent pattern for afferent feedback. In support of this, animal studies have indicated that the facilitation of reflex swallowing by SLN and glossopharyngeal nerve stimulation is also frequency dependent, with an optimal frequency of Hz (Sinclair, 1971; Miller, 1972; Jean & Car, 1979; Weerasuriya, Bieger & Hockman, 1980). Although there was a clear shortening of response latency, repetitive stimulation of the pharynx or oesophagus had no consistent effects on the amplitude of cortically evoked responses. This is similar to the results seen with cranial nerve conditioning at short intervals. As in the latter case, it might be that conditioning with pharyngeal or oesophageal stimuli excited brainstem motoneurones, whilst the motor cortex was inhibited. Direct excitation of brainstem vagal neurones seems likely in view of the strong projections from the pharynx and oesophagus to the CPG of the brainstem (Jean & Car, 1979). The mechanism of a possible cortical inhibition is less obvious. It is plausible that the same stimuli could produce direct inhibition of motor cortex. Alternatively, since the duration of the sensory stimulation was at least 2 5s, it could be that subjects volitionally attempted to suppress (at a cortical level) the reflex swallowing which such stimuli can induce (Miller, 1982). In support of the first explanation, animal data have demonstrated that repetitive stimulation of pontine swallowing regions, receiving afferent input from the pharynx, inhibits cortical swallowing neurones, a finding that was not observed with similarly applied single stimuli (Sumi, 1972a). In addition, it is also known that repetitive stimulation of the human vagus nerve can suppress the frequency of epileptiform seizures, inferring a reduction in cortical excitability (Rutecki, 1990). While future animal studies may elucidate further the exact relationship between the short latency responses explored in our study and those activated during swallowing, it is possible that cortical inhibition may ensure that once brainstem CPG is activated, cortical discharge is suppressed, so that reflex swallowing can occur without interruption by other volitional commands to swallowing musculature. Altman, D. G. (1991). Comparing groups: continuous data. In Practical Statistics for Medical Research, pp Chapman & Hall, London. Aziz, Q., Rothwell, J. C., Barlow, J., Hobson, A., Alani, S., Bancewicz, J. & Thompson, D. G. (1994). Esophageal myoelectric responses to magnetic stimulation of the human cortex and the extracranial vagus nerve. American Journal of Physiology 267, G Aziz, Q., Rothwell, J. C., Barlow, J. & Thompson, D. G. (1995). Modulation of esophageal responses to stimulation of the human brain by swallowing and by vagal stimulation. Gastroenterology 109, Aziz, Q., Rothwell, J. C., Hamdy, S., Barlow, J. & Thompson, D. G. (1996). The topographic representation of esophageal motor function on the human cerebral cortex. Gastroenterology 111, Barer, D. H. (1989). The natural history and functional consequences of dysphagia after hemispheric stroke. Journal of Neurology, Neurosurgery and Psychiatry 52,

10 866 S. Hamdy, Q. Aziz, J. C. Rothwell, A. Hobson and D. G. Thompson J. Physiol Bieger, D. & Hockman, C. H. (1976). Suprabulbar modulation of reflex swallowing. Experimental Neurology 52, Car, A. (1970). La commande corticale du centre deglutiteur bulbaire. Journal of Physiology (Paris) 62, Ferbert, A., Priori, A., Rothwell, J. C., Day, B. L., Colebatch, J. G. & Marsden, C. D. (1992). Interhemispheric inhibition of the human motor cortex. Journal of Physiology 453, Hamdy, S., Aziz, Q., Rothwell, J. C., Hobson, A., Barlow, J. & Thompson, D. G. (1997). Cranial nerve modulation of human cortical swallowing motor pathways. American Journal of Physiology 272, G Hamdy, S., Aziz, Q., Rothwell, J. C., Singh, K. D., Barlow, J., Hughes, D. G., Tallis, R. C. & Thompson, D. G. (1996). The cortical topography of human swallowing musculature in health and disease. Nature Medicine 2, Hockman, C. H., Beiger, D. & Weerasuriya, A. (1979). Supranuclear pathways of swallowing. Progress in Neurobiology 12, Jasper, H. H. (1958). The electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology 10, Jean, A. (1990). Brainstem control of swallowing: localisation and organisation of the central pattern generator for swallowing. In Neurophysiology of the Jaws and Teeth, ed. Taylor, A., pp Macmillan Press, London. Jean, A. & Car, A. (1979). Inputs to the swallowing medullary neurones from the peripheral fibres and the swallowing cortical area. Brain Research 178, Kimura, J., Powers, J. M. & Van Allen, M. W. (1969). Reflex response of the orbicularis oculi muscle to supraorbital stimulation: study in normal subjects and in peripheral facial paresis. Archives of Neurology 21, 193. Martin, R. E. & Sessle, B. J. (1993). The role of the cerebral cortex in swallowing. Dysphagia 8, Mesulam, M. M. & Mufson, E. J. (1982). Insula of the Old World Monkey. III: Efferent cortical output and comments on function. Journal of Comparative Neurology 212, Miller, A. J. (1972). Characteristics of the swallowing reflex induced by peripheral nerve and brainstem stimulation. Experimental Neurology 34, Miller, A. J. (1982). Deglutition. Physiological Reviews 62, Miller, A. J. (1986). Neurophysiological basis of swallowing. Dysphagia 1, Penfield, W. P. & Rusmussen, T. (1950). The Cerebral Cortex of Man. Macmillan, New York. Rutecki, P. (1990). Anatomical, physiological and theoretical basis for the antiepileptic effect of vagus nerve stimulation. Epilepsia 31, S1 S6. Sessle, B. J. (1973). Excitatory and inhibitory inputs to single neurones in the solitary tract nucleus and adjacent reticular formation. Brain Research 53, Sinclair, W. J. (1971). Role of the pharyngeal plexus in initiation of swallowing. American Journal of Physiology 221, G Sumi, T. (1969). Some properties of cortically evoked swallowing in rabbits. Brain Research 15, Sumi, T. (1972a). Reticular ascending activation of frontal cortical neurones in rabbits, with special reference to the regulation of deglutition. Brain Research 46, Sumi, T. (1972b).Roleofthepontinereticularformationintheneural organisation of deglutition. Japanese Journal of Physiology 22, Weesasuriya, A., Bieger, D. & Hockman, C. H. (1980). Interaction between primary afferent nerves in the elicitation of swallowing. American Journal of Physiology 239, R Wiles, C. M. (1991). Neurogenic dysphagia. Journal of Neurology, Neurosurgery and Psychiatry 54, Acknowledgements The authors wish to thank Ms Josephine Barlow of the Gastrointestinal Physiology Laboratory at Hope Hospital for her assistance and Ms Fiona Campbell in the Research and Development Support Unit at Hope Hospital for her statistical advice. This work wasconductedwiththeaidofaprojectgrantfromthestroke Association. Dr S. Hamdy is a Clinical Training Fellow of the Medical Research Council, United Kingdom. Corresponding author D. G. Thompson: University of Manchester Gastroenterology Unit, Hope Hospital, Salford M6 8HD, UK. dthomso@fs1.ho. man.ac.uk

Long-term reorganization of human motor cortex driven by short-term sensory stimulation

Long-term reorganization of human motor cortex driven by short-term sensory stimulation Long-term reorganization of human motor cortex driven by short-term sensory Shaheen Hamdy 1,2, John C. Rothwell 2, Qasim Aziz 1, Krishna D. Singh 3, and David G. Thompson 1 1 University Department of Gastroenterology,

More information

The Journal of Physiology Neuroscience

The Journal of Physiology Neuroscience J Physiol 592.4 (2014) pp 695 709 695 The Journal of Physiology Neuroscience Transcranial direct current stimulation reverses neurophysiological and behavioural effects of focal inhibition of human pharyngeal

More information

Targeting Unlesioned Pharyngeal Motor Cortex Improves Swallowing in Healthy Individuals and After Dysphagic Stroke

Targeting Unlesioned Pharyngeal Motor Cortex Improves Swallowing in Healthy Individuals and After Dysphagic Stroke GASTROENTEROLOGY 2012;142:29 38 CLINICAL ALIMENTARY TRACT Targeting Unlesioned Pharyngeal Motor Cortex Improves Swallowing in Healthy Individuals and After Dysphagic Stroke EMILIA MICHOU,* SATISH MISTRY,*

More information

Corticospinal excitation of presumed cervical propriospinal neurones and its reversal to inhibition in humans

Corticospinal excitation of presumed cervical propriospinal neurones and its reversal to inhibition in humans 11911 Journal of Physiology (2001), 533.3, pp.903 919 903 Corticospinal excitation of presumed cervical propriospinal neurones and its reversal to inhibition in humans Guillaume Nicolas, Véronique Marchand-Pauvert,

More information

Differential modulation of intracortical inhibition in human motor cortex during selective activation of an intrinsic hand muscle

Differential modulation of intracortical inhibition in human motor cortex during selective activation of an intrinsic hand muscle J Physiol (2003), 550.3, pp. 933 946 DOI: 10.1113/jphysiol.2003.042606 The Physiological Society 2003 www.jphysiol.org Differential modulation of intracortical inhibition in human motor cortex during selective

More information

Introduction to TMS Transcranial Magnetic Stimulation

Introduction to TMS Transcranial Magnetic Stimulation Introduction to TMS Transcranial Magnetic Stimulation Lisa Koski, PhD, Clin Psy TMS Neurorehabilitation Lab Royal Victoria Hospital 2009-12-14 BIC Seminar, MNI Overview History, basic principles, instrumentation

More information

Nervous System. The Peripheral Nervous System Agenda Review of CNS v. PNS PNS Basics Cranial Nerves Spinal Nerves Reflexes Pathways

Nervous System. The Peripheral Nervous System Agenda Review of CNS v. PNS PNS Basics Cranial Nerves Spinal Nerves Reflexes Pathways Nervous System Agenda Review of CNS v. PNS PNS Basics Cranial Nerves Spinal Nerves Sensory Motor Review of CNS v. PNS Central nervous system (CNS) Brain Spinal cord Peripheral nervous system (PNS) All

More information

Cortical Control of Movement

Cortical Control of Movement Strick Lecture 2 March 24, 2006 Page 1 Cortical Control of Movement Four parts of this lecture: I) Anatomical Framework, II) Physiological Framework, III) Primary Motor Cortex Function and IV) Premotor

More information

Modulation of single motor unit discharges using magnetic stimulation of the motor cortex in incomplete spinal cord injury

Modulation of single motor unit discharges using magnetic stimulation of the motor cortex in incomplete spinal cord injury 1 SHORT REPORT Division of Neuroscience and Psychological Medicine, Imperial College School of Medicine, Charing Cross Hospital, London W 8RF, UK H C Smith NJDavey D W Maskill P H Ellaway National Spinal

More information

Facilitation of reflex swallowing from the pharynx and larynx

Facilitation of reflex swallowing from the pharynx and larynx 167 Journal of Oral Science, Vol. 51, No. 2, 167-171, 2009 Original Facilitation of reflex swallowing from the pharynx and larynx Junichi Kitagawa 1,5), Kazuharu Nakagawa 2), Momoko Hasegawa 3), Tomoyo

More information

MOTOR EVOKED POTENTIALS AND TRANSCUTANEOUS MAGNETO-ELECTRICAL NERVE STIMULATION

MOTOR EVOKED POTENTIALS AND TRANSCUTANEOUS MAGNETO-ELECTRICAL NERVE STIMULATION MOTOR EVOKED POTENTIAS AND TRANSCUTANEOUS MAGNETO-EECTRICA NERVE STIMUATION Hongguang iu, in Zhou 1 and Dazong Jiang Xian Jiaotong University, Xian, People s Republic of China 1 Shanxi Normal University,

More information

64 Chiharu Ashida and Tomoshige Koga of blood gases as well as afferent gag reflex activities are sent to secondary NTS neurons in the medulla oblonga

64 Chiharu Ashida and Tomoshige Koga of blood gases as well as afferent gag reflex activities are sent to secondary NTS neurons in the medulla oblonga Kawasaki Journal of Medical Welfare Vol. 11, No. 2, 2006 63 68 Original Paper Effects of Arterial Oxygen Saturation on Gag Reflex in Humans Chiharu ASHIDA Λ and Tomoshige KOGA ΛΛ (Accepted November 4,

More information

NEURO-MS TMS. Diagnostic Monophasic Magnetic Stimulator

NEURO-MS TMS. Diagnostic Monophasic Magnetic Stimulator NEURO-MS Diagnostic Monophasic Magnetic Stimulator Diagnostics of neurological disorders Powerful monophasic stimulus Ergonomic and lightweight coils of different shapes and sizes Configurations for single

More information

Neurophysiology of systems

Neurophysiology of systems Neurophysiology of systems Motor cortex (voluntary movements) Dana Cohen, Room 410, tel: 7138 danacoh@gmail.com Voluntary movements vs. reflexes Same stimulus yields a different movement depending on context

More information

Neurophysiological Basis of TMS Workshop

Neurophysiological Basis of TMS Workshop Neurophysiological Basis of TMS Workshop Programme 31st March - 3rd April 2017 Sobell Department Institute of Neurology University College London 33 Queen Square London WC1N 3BG Brought to you by 31 March

More information

Cranial Nerves VII to XII

Cranial Nerves VII to XII Cranial Nerves VII to XII MSTN121 - Neurophysiology Session 13 Department of Myotherapy Cranial Nerve VIII: Vestibulocochlear Sensory nerve with two distinct branches. Vestibular branch transmits information

More information

Neuromodulation in Dravet Syndrome. Eric BJ Segal, MD Director of Pediatric Epilepsy Northeast Regional Epilepsy Group Hackensack, New Jersey

Neuromodulation in Dravet Syndrome. Eric BJ Segal, MD Director of Pediatric Epilepsy Northeast Regional Epilepsy Group Hackensack, New Jersey Neuromodulation in Dravet Syndrome Eric BJ Segal, MD Director of Pediatric Epilepsy Northeast Regional Epilepsy Group Hackensack, New Jersey What is neuromodulation? Seizures are caused by synchronized

More information

The role of non-invasive brain stimulation in neurorehabilitation of poststroke

The role of non-invasive brain stimulation in neurorehabilitation of poststroke Case Report http://www.alliedacademies.org/journal-brain-neurology/ The role of non-invasive brain stimulation in neurorehabilitation of poststroke dysphagia. Meysam Amidfar*, Hadis Jalainejad Fasa University

More information

A Dynamic Neural Network Model of Sensorimotor Transformations in the Leech

A Dynamic Neural Network Model of Sensorimotor Transformations in the Leech Communicated by Richard Andersen 1 A Dynamic Neural Network Model of Sensorimotor Transformations in the Leech Shawn R. Lockery Yan Fang Terrence J. Sejnowski Computational Neurobiological Laboratory,

More information

Primary motor cortical metaplasticity induced by priming over the supplementary motor area

Primary motor cortical metaplasticity induced by priming over the supplementary motor area J Physiol 587.20 (2009) pp 4845 4862 4845 Primary motor cortical metaplasticity induced by priming over the supplementary motor area Masashi Hamada 1, Ritsuko Hanajima 1, Yasuo Terao 1,ShingoOkabe 1, Setsu

More information

Cutaneomuscular reflexes recorded from the lower limb

Cutaneomuscular reflexes recorded from the lower limb Journal of Physiology (1995), 487.1, pp.237-242 376 237 Cutaneomuscular reflexes recorded from the lower limb in man during different tasks J. Gibbs, Linda M. Harrison * and J. A. Stephens Department of

More information

SUPPLEMENTARY INFORMATION. Supplementary Figure 1

SUPPLEMENTARY INFORMATION. Supplementary Figure 1 SUPPLEMENTARY INFORMATION Supplementary Figure 1 The supralinear events evoked in CA3 pyramidal cells fulfill the criteria for NMDA spikes, exhibiting a threshold, sensitivity to NMDAR blockade, and all-or-none

More information

Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex

Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex Archives of Disease in Childhood, 1988, 63, 1347-1352 Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex T H H G KOH AND J A EYRE Department of Child Health,

More information

closely resembling that following an antidromic impulse [Eccles and

closely resembling that following an antidromic impulse [Eccles and 185 6I2.833. 96 REFLEX INTERRUPTIONS OF RHYTHMIC DISCHARGE. By E. C. HOFF, H. E. HOFF AND D. SHEEHAN1. (New Haven, Conn.) (From the Laboratory of Physiology, Yale University School of Medicine.) (Received

More information

Neural Integration I: Sensory Pathways and the Somatic Nervous System

Neural Integration I: Sensory Pathways and the Somatic Nervous System 15 Neural Integration I: Sensory Pathways and the Somatic Nervous System PowerPoint Lecture Presentations prepared by Jason LaPres Lone Star College North Harris An Introduction to Sensory Pathways and

More information

Corticomotor representation of the sternocleidomastoid muscle

Corticomotor representation of the sternocleidomastoid muscle braini0203 Corticomotor representation of the sternocleidomastoid muscle Brain (1997), 120, 245 255 M. L. Thompson, 1,2 G. W. Thickbroom 1,2 and F. L. Mastaglia 1,2,3 1 Australian Neuromuscular Research

More information

Laterality evects of human pudendal nerve stimulation on corticoanal pathways: evidence for functional asymmetry

Laterality evects of human pudendal nerve stimulation on corticoanal pathways: evidence for functional asymmetry 58 University Department of Gastroenterology, Hope Hospital, Eccles Old Road, Manchester M6 8HD, UK S Hamdy Q Aziz A Hobson D G Thompson Department of Gastroenterology, Heinrich Heine University, Dusseldorf,

More information

Short latency inhibition of human hand motor cortex by somatosensory input from the hand

Short latency inhibition of human hand motor cortex by somatosensory input from the hand Keywords: 9995 Journal of Physiology (2000), 523.2, pp. 503 513 503 Short latency inhibition of human hand motor cortex by somatosensory input from the hand H. Tokimura *, V. Di Lazzaro, Y. Tokimura *,

More information

Practical. Paired-pulse on two brain regions

Practical. Paired-pulse on two brain regions Practical Paired-pulse on two brain regions Paula Davila Pérez, MD Berenson-Allen Center for Noninvasive Brain Stimulation Beth Israel Deaconess Medical Center Harvard Medical School Plans for the afternoon

More information

10.1: Introduction. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial cells) Dendrites.

10.1: Introduction. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial cells) Dendrites. 10.1: Introduction Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial

More information

b. The groove between the two crests is called 2. The neural folds move toward each other & the fuse to create a

b. The groove between the two crests is called 2. The neural folds move toward each other & the fuse to create a Chapter 13: Brain and Cranial Nerves I. Development of the CNS A. The CNS begins as a flat plate called the B. The process proceeds as: 1. The lateral sides of the become elevated as waves called a. The

More information

Motor systems.... the only thing mankind can do is to move things... whether whispering or felling a forest. C. Sherrington

Motor systems.... the only thing mankind can do is to move things... whether whispering or felling a forest. C. Sherrington Motor systems... the only thing mankind can do is to move things... whether whispering or felling a forest. C. Sherrington 1 Descending pathways: CS corticospinal; TS tectospinal; RS reticulospinal; VS

More information

Physiology of synapses and receptors

Physiology of synapses and receptors Physiology of synapses and receptors Dr Syed Shahid Habib Professor & Consultant Clinical Neurophysiology Dept. of Physiology College of Medicine & KKUH King Saud University REMEMBER These handouts will

More information

The Journal of Physiology Neuroscience

The Journal of Physiology Neuroscience J Physiol 591.19 (2013) pp 4903 4920 4903 The Journal of Physiology Neuroscience Microcircuit mechanisms involved in paired associative stimulation-induced depression of corticospinal excitability David

More information

Physiology. D. Gordon E. Robertson, PhD, FCSB. Biomechanics Laboratory, School of Human Kinetics, University of Ottawa, Ottawa, Canada

Physiology. D. Gordon E. Robertson, PhD, FCSB. Biomechanics Laboratory, School of Human Kinetics, University of Ottawa, Ottawa, Canada Electromyography: Physiology D. Gordon E. Robertson, PhD, FCSB Biomechanics Laboratory, School of Human Kinetics, University of Ottawa, Ottawa, Canada Nervous System Central Nervous System (cerebellum,

More information

Functional components

Functional components Facial Nerve VII cranial nerve Emerges from Pons Two roots Functional components: 1. GSA (general somatic afferent) 2. SA (Somatic afferent) 3. GVE (general visceral efferent) 4. BE (Special visceral/branchial

More information

Stretch reflex and Golgi Tendon Reflex. Prof. Faten zakareia Physiology Department, College of Medicine, King Saud University 2016

Stretch reflex and Golgi Tendon Reflex. Prof. Faten zakareia Physiology Department, College of Medicine, King Saud University 2016 Stretch reflex and Golgi Tendon Reflex Prof. Faten zakareia Physiology Department, College of Medicine, King Saud University 2016 Objectives: Upon completion of this lecture, students should be able to

More information

Myoclonic status epilepticus in hypoxic ischemic encephalopathy which recurred after somatosensory evoked potential testing

Myoclonic status epilepticus in hypoxic ischemic encephalopathy which recurred after somatosensory evoked potential testing ANNALS OF CLINICAL NEUROPHYSIOLOGY CASE REPORT Ann Clin Neurophysiol 2017;19(2):136-140 Myoclonic status epilepticus in hypoxic ischemic encephalopathy which recurred after somatosensory evoked potential

More information

INTRAOPERATIVE NEUROPHYSIOLOGICAL MONITORING FOR MICROVASCULAR DECOMPRESSION SURGERY IN PATIENTS WITH HEMIFACIAL SPASM

INTRAOPERATIVE NEUROPHYSIOLOGICAL MONITORING FOR MICROVASCULAR DECOMPRESSION SURGERY IN PATIENTS WITH HEMIFACIAL SPASM INTRAOPERATIVE NEUROPHYSIOLOGICAL MONITORING FOR MICROVASCULAR DECOMPRESSION SURGERY IN PATIENTS WITH HEMIFACIAL SPASM WILLIAM D. MUSTAIN, PH.D., CNIM, BCS-IOM DEPARTMENT OF OTOLARYNGOLOGY AND COMMUNICATIVE

More information

V1-ophthalmic. V2-maxillary. V3-mandibular. motor

V1-ophthalmic. V2-maxillary. V3-mandibular. motor 4. Trigeminal Nerve I. Objectives:. Understand the types of sensory information transmitted by the trigeminal system.. Describe the major peripheral divisions of the trigeminal nerve and how they innervate

More information

Located below tentorium cerebelli within posterior cranial fossa. Formed of 2 hemispheres connected by the vermis in midline.

Located below tentorium cerebelli within posterior cranial fossa. Formed of 2 hemispheres connected by the vermis in midline. The Cerebellum Cerebellum Located below tentorium cerebelli within posterior cranial fossa. Formed of 2 hemispheres connected by the vermis in midline. Gray matter is external. White matter is internal,

More information

Module H NERVOUS SYSTEM

Module H NERVOUS SYSTEM Module H NERVOUS SYSTEM Topic from General functions of the nervous system Organization of the nervous system from both anatomical & functional perspectives Gross & microscopic anatomy of nervous tissue

More information

The calcium sensitizer levosimendan improves human diaphragm function

The calcium sensitizer levosimendan improves human diaphragm function The calcium sensitizer levosimendan improves human diaphragm function Jonne Doorduin, Christer A Sinderby, Jennifer Beck, Dick F Stegeman, Hieronymus WH van Hees, Johannes G van der Hoeven, and Leo MA

More information

BME 701 Examples of Biomedical Instrumentation. Hubert de Bruin Ph D, P Eng

BME 701 Examples of Biomedical Instrumentation. Hubert de Bruin Ph D, P Eng BME 701 Examples of Biomedical Instrumentation Hubert de Bruin Ph D, P Eng 1 Instrumentation in Cardiology The major cellular components of the heart are: working muscle of the atria & ventricles specialized

More information

STRUCTURAL ORGANIZATION OF THE NERVOUS SYSTEM

STRUCTURAL ORGANIZATION OF THE NERVOUS SYSTEM STRUCTURAL ORGANIZATION OF THE NERVOUS SYSTEM STRUCTURAL ORGANIZATION OF THE BRAIN The central nervous system (CNS), consisting of the brain and spinal cord, receives input from sensory neurons and directs

More information

Intraoperative Monitoring: Role in Epilepsy Based Tumor Surgery December 2, 2012

Intraoperative Monitoring: Role in Epilepsy Based Tumor Surgery December 2, 2012 Intraoperative Monitoring: Role in Epilepsy Based Tumor Surgery December 2, 2012 Aatif M. Husain, M.D. Duke University and Veterans Affairs Medical Centers, Durham, NC American Epilepsy Society Annual

More information

digitorum profundus muscle in the forearm. They consisted of a spinal latency

digitorum profundus muscle in the forearm. They consisted of a spinal latency Journal of Physiology (1991), 433, pp. 41-57 41 With 8 figures Printed in Great Britain CHANGES IN THE RESPONSE TO MAGNETIC AND ELECTRICAL STIMULATION OF THE MOTOR CORTEX FOLLOWING MUSCLE STRETCH IN MAN

More information

Neural Correlates of Human Cognitive Function:

Neural Correlates of Human Cognitive Function: Neural Correlates of Human Cognitive Function: A Comparison of Electrophysiological and Other Neuroimaging Approaches Leun J. Otten Institute of Cognitive Neuroscience & Department of Psychology University

More information

UNIT ACTIVITY IN THE MEDULLA OBLONGATA OF FISHES

UNIT ACTIVITY IN THE MEDULLA OBLONGATA OF FISHES [218] UNIT ACTIVITY IN THE MEDULLA OBLONGATA OF FISHES BY S. WOLDRING AND M. N. J. DIRKEN Physiological Institute, Groningen, Netherlands (Received 17 July 1950) (With Plate 2 and one Text-figure) Adrian

More information

Basic Neuroscience. Sally Curtis

Basic Neuroscience. Sally Curtis The Physiology of Pain Basic Neuroscience Sally Curtis sac3@soton.ac.uk The behaviour of humans is a result of the actions of nerves. Nerves form the basis of Thoughts, sensations and actions both reflex

More information

The Journal of Physiology

The Journal of Physiology J Physiol 590.4 (2012) pp 919 935 919 The early release of planned movement by acoustic startle can be delayed by transcranial magnetic stimulation over the motor cortex Laila Alibiglou 1,2 and Colum D.

More information

Neurobiology: The nerve cell. Principle and task To use a nerve function model to study the following aspects of a nerve cell:

Neurobiology: The nerve cell. Principle and task To use a nerve function model to study the following aspects of a nerve cell: Principle and task To use a nerve function model to study the following aspects of a nerve cell: INTRACELLULAR POTENTIAL AND ACTION POTENTIAL Comparison between low and high threshold levels Comparison

More information

XXVIII. Recording of Achilles tendon reflex

XXVIII. Recording of Achilles tendon reflex XXVII. Examination of reflexes in man XXVIII. Recording of Achilles tendon reflex Physiology II - practice Dep. of Physiology, Fac. of Medicine, MU, 2016 Mohamed Al-Kubati Reflexes Reflex: is an involuntary

More information

Active Control of Spike-Timing Dependent Synaptic Plasticity in an Electrosensory System

Active Control of Spike-Timing Dependent Synaptic Plasticity in an Electrosensory System Active Control of Spike-Timing Dependent Synaptic Plasticity in an Electrosensory System Patrick D. Roberts and Curtis C. Bell Neurological Sciences Institute, OHSU 505 N.W. 185 th Avenue, Beaverton, OR

More information

BENG 260 Supplementary neurophysiology slides

BENG 260 Supplementary neurophysiology slides BENG 260 Supplementary neurophysiology slides Fall 2013 Slides are taken from Vander s Human Physiology, 11 th edition, McGraw Hill (ISBN 0077216091)" These slides cover:" Chapter 6, Neuronal Signaling

More information

Exploring the Functional Significance of Dendritic Inhibition In Cortical Pyramidal Cells

Exploring the Functional Significance of Dendritic Inhibition In Cortical Pyramidal Cells Neurocomputing, 5-5:389 95, 003. Exploring the Functional Significance of Dendritic Inhibition In Cortical Pyramidal Cells M. W. Spratling and M. H. Johnson Centre for Brain and Cognitive Development,

More information

Chapter 11: Functional Organization of Nervous Tissue

Chapter 11: Functional Organization of Nervous Tissue Chapter 11: Functional Organization of Nervous Tissue I. Functions of the Nervous System A. List and describe the five major nervous system functions: 1. 2. 3. 4. 5. II. Divisions of the Nervous System

More information

Neurosoft TMS. Transcranial Magnetic Stimulator DIAGNOSTICS REHABILITATION TREATMENT STIMULATION. of motor disorders after the stroke

Neurosoft TMS. Transcranial Magnetic Stimulator DIAGNOSTICS REHABILITATION TREATMENT STIMULATION. of motor disorders after the stroke Neurosoft TMS Transcranial Magnetic Stimulator DIAGNOSTICS REHABILITATION TREATMENT of corticospinal pathways pathology of motor disorders after the stroke of depression and Parkinson s disease STIMULATION

More information

1- Cochlear Impedance Telemetry

1- Cochlear Impedance Telemetry INTRA-OPERATIVE COCHLEAR IMPLANT MEASURMENTS SAMIR ASAL M.D 1- Cochlear Impedance Telemetry 1 Cochlear implants used presently permit bi--directional communication between the inner and outer parts of

More information

Supraorbital nerve stimulation Cefaly Device - FDA Approved for migraine prevention (also being investigated as acute therapy)

Supraorbital nerve stimulation Cefaly Device - FDA Approved for migraine prevention (also being investigated as acute therapy) NEUROSTIMULATION/NEUROMODULATION UPDATE Meyer and Renee Luskin Andrew Charles, M.D. Professor Luskin Chair in Migraine and Headache Studies Director, UCLA Goldberg Migraine Program David Geffen School

More information

Chapter 7 Nerve Cells and Electrical Signaling

Chapter 7 Nerve Cells and Electrical Signaling Chapter 7 Nerve Cells and Electrical Signaling 7.1. Overview of the Nervous System (Figure 7.1) 7.2. Cells of the Nervous System o Neurons are excitable cells which can generate action potentials o 90%

More information

OPTO 5320 VISION SCIENCE I

OPTO 5320 VISION SCIENCE I OPTO 5320 VISION SCIENCE I Monocular Sensory Processes of Vision: Color Vision Mechanisms of Color Processing . Neural Mechanisms of Color Processing A. Parallel processing - M- & P- pathways B. Second

More information

The Nervous System: Sensory and Motor Tracts of the Spinal Cord

The Nervous System: Sensory and Motor Tracts of the Spinal Cord 15 The Nervous System: Sensory and Motor Tracts of the Spinal Cord PowerPoint Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska Introduction Millions of sensory

More information

Neuro-MS/D Transcranial Magnetic Stimulator

Neuro-MS/D Transcranial Magnetic Stimulator Neuro-MS/D Transcranial Magnetic Stimulator 20 Hz stimulation with 100% intensity Peak magnetic field - up to 4 T High-performance cooling: up to 10 000 pulses during one session Neuro-MS.NET software

More information

Long lasting effects of rtms and associated peripheral sensory input on MEPs, SEPs and transcortical reflex excitability in humans

Long lasting effects of rtms and associated peripheral sensory input on MEPs, SEPs and transcortical reflex excitability in humans Journal of Physiology (2002), 540.1, pp. 367 376 DOI: 10.1113/jphysiol.2001.013504 The Physiological Society 2002 www.jphysiol.org Long lasting effects of rtms and associated peripheral sensory input on

More information

HUMAN MOTOR CONTROL. Emmanuel Guigon

HUMAN MOTOR CONTROL. Emmanuel Guigon HUMAN MOTOR CONTROL Emmanuel Guigon Institut des Systèmes Intelligents et de Robotique Université Pierre et Marie Curie CNRS / UMR 7222 Paris, France emmanuel.guigon@upmc.fr e.guigon.free.fr/teaching.html

More information

The Central Auditory System

The Central Auditory System THE AUDITORY SYSTEM Each auditory nerve sends information to the cochlear nucleus. The Central Auditory System From there, projections diverge to many different pathways. The Central Auditory System There

More information

Suppression of the H reflex in humans by disynaptic autogenetic inhibitory pathways activated by the test volley

Suppression of the H reflex in humans by disynaptic autogenetic inhibitory pathways activated by the test volley (2002), 542.3, pp. 963 976 DOI: 10.1113/jphysiol.2002.021683 The Physiological Society 2002 www.jphysiol.org Suppression of the H reflex in humans by disynaptic autogenetic inhibitory pathways activated

More information

THE CENTRAL NERVOUS SYSTE M

THE CENTRAL NERVOUS SYSTE M THE CENTRAL NERVOUS SYSTE M Structure and Functio n THIRD EDITIO N PER BRODAL A Brief Survey, x i Studying the Structures and Function of the Nervous System, xii i Animal Experiments Crucial for Progress,

More information

Paired Associative Transspinal and Transcortical Stimulation Produces Bidirectional Plasticity of Human Cortical and Spinal Motor Pathways

Paired Associative Transspinal and Transcortical Stimulation Produces Bidirectional Plasticity of Human Cortical and Spinal Motor Pathways City University of New York (CUNY) CUNY Academic Works Dissertations, Theses, and Capstone Projects Graduate Center 6-2016 Paired Associative Transspinal and Transcortical Stimulation Produces Bidirectional

More information

Running head: HEARING-AIDS INDUCE PLASTICITY IN THE AUDITORY SYSTEM 1

Running head: HEARING-AIDS INDUCE PLASTICITY IN THE AUDITORY SYSTEM 1 Running head: HEARING-AIDS INDUCE PLASTICITY IN THE AUDITORY SYSTEM 1 Hearing-aids Induce Plasticity in the Auditory System: Perspectives From Three Research Designs and Personal Speculations About the

More information

Voluntary Movements. Lu Chen, Ph.D. MCB, UC Berkeley. Outline. Organization of the motor cortex (somatotopic) Corticospinal projection

Voluntary Movements. Lu Chen, Ph.D. MCB, UC Berkeley. Outline. Organization of the motor cortex (somatotopic) Corticospinal projection Voluntary Movements Lu Chen, Ph.D. MCB, UC Berkeley 1 Outline Organization of the motor cortex (somatotopic) Corticospinal projection Physiology of motor neurons Direction representation, population coding

More information

I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts.

I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts. Descending Tracts I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts. III: To define the upper and the lower motor neurons. 1. The corticonuclear

More information

to Regulation of the Brain Vessels

to Regulation of the Brain Vessels Short Communication Japanese Journal of Physiology, 34,193-197,1984 The Relevance of Cardio-pulmonary-vascular Reflex to Regulation of the Brain Vessels Masatsugu NAKAI and Koichi OGINO Department of Cardiovascular

More information

MAGPRO. Versatility in Magnetic Stimulation. For clinical and research use

MAGPRO. Versatility in Magnetic Stimulation. For clinical and research use MAGPRO Versatility in Magnetic Stimulation For clinical and research use Magnetic Stimulation From A World Leader MagPro is a complete line of non-invasive magnetic stimulation systems, including both

More information

TMS Produces Two Dissociable Types of Speech Disruption

TMS Produces Two Dissociable Types of Speech Disruption NeuroImage 13, 472 478 (2001) doi:10.1006/nimg.2000.0701, available online at http://www.idealibrary.com on TMS Produces Two Dissociable Types of Speech Disruption L. Stewart,* V. Walsh, U. Frith,* and

More information

Questions Addressed Through Study of Behavioral Mechanisms (Proximate Causes)

Questions Addressed Through Study of Behavioral Mechanisms (Proximate Causes) Jan 28: Neural Mechanisms--intro Questions Addressed Through Study of Behavioral Mechanisms (Proximate Causes) Control of behavior in response to stimuli in environment Diversity of behavior: explain the

More information

Skin types: hairy and glabrous (e.g. back vs. palm of hand)

Skin types: hairy and glabrous (e.g. back vs. palm of hand) Lecture 19 revised 03/10 The Somatic Sensory System Skin- the largest sensory organ we have Also protects from evaporation, infection. Skin types: hairy and glabrous (e.g. back vs. palm of hand) 2 major

More information

Theme 2: Cellular mechanisms in the Cochlear Nucleus

Theme 2: Cellular mechanisms in the Cochlear Nucleus Theme 2: Cellular mechanisms in the Cochlear Nucleus The Cochlear Nucleus (CN) presents a unique opportunity for quantitatively studying input-output transformations by neurons because it gives rise to

More information

Homework Week 2. PreLab 2 HW #2 Synapses (Page 1 in the HW Section)

Homework Week 2. PreLab 2 HW #2 Synapses (Page 1 in the HW Section) Homework Week 2 Due in Lab PreLab 2 HW #2 Synapses (Page 1 in the HW Section) Reminders No class next Monday Quiz 1 is @ 5:30pm on Tuesday, 1/22/13 Study guide posted under Study Aids section of website

More information

Neuro-MS/D DIAGNOSTICS REHABILITATION TREATMENT STIMULATION. Transcranial Magnetic Stimulator. of motor disorders after the stroke

Neuro-MS/D DIAGNOSTICS REHABILITATION TREATMENT STIMULATION. Transcranial Magnetic Stimulator. of motor disorders after the stroke Neuro-MS/D Transcranial Magnetic Stimulator DIAGNOSTICS of corticospinal pathway pathology REHABILITATION of motor disorders after the stroke TREATMENT of depression and Parkinson s disease STIMULATION

More information

Suppression of voluntary motor activity revealed using

Suppression of voluntary motor activity revealed using MS 2226, pp. 223-235 Journal of Physiology (1994), 477.2 223 Suppression of voluntary motor activity revealed using transcranial magnetic stimulation of the motor cortex in man Nick J. Davey, Patricia

More information

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Module 11.1 Overview of the Nervous System (Figures 11.1-11.3) A. The nervous system controls our perception and experience

More information

The Physiology of the Senses Chapter 8 - Muscle Sense

The Physiology of the Senses Chapter 8 - Muscle Sense The Physiology of the Senses Chapter 8 - Muscle Sense www.tutis.ca/senses/ Contents Objectives... 1 Introduction... 2 Muscle Spindles and Golgi Tendon Organs... 3 Gamma Drive... 5 Three Spinal Reflexes...

More information

ParasymPathetic Nervous system. Done by : Zaid Al-Ghnaneem

ParasymPathetic Nervous system. Done by : Zaid Al-Ghnaneem ParasymPathetic Nervous system Done by : Zaid Al-Ghnaneem In this lecture we are going to discuss Parasympathetic, in the last lecture we took sympathetic and one of the objectives of last lecture was

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy File Name: Origination: Last CAP Review: Next CAP Review: Last Review: vagus_nerve_stimulation 6/1998 5/2017 5/2018 5/2017 Description of Procedure or Service Stimulation of the

More information

Biomedical Research 2013; 24 (3): ISSN X

Biomedical Research 2013; 24 (3): ISSN X Biomedical Research 2013; 24 (3): 359-364 ISSN 0970-938X http://www.biomedres.info Investigating relative strengths and positions of electrical activity in the left and right hemispheres of the human brain

More information

Motor tracts Both pyramidal tracts and extrapyramidal both starts from cortex: Area 4 Area 6 Area 312 Pyramidal: mainly from area 4 Extrapyramidal:

Motor tracts Both pyramidal tracts and extrapyramidal both starts from cortex: Area 4 Area 6 Area 312 Pyramidal: mainly from area 4 Extrapyramidal: Motor tracts Both pyramidal tracts and extrapyramidal both starts from cortex: Area 4 Area 6 Area 312 Pyramidal: mainly from area 4 Extrapyramidal: mainly from area 6 area 6 Premotorarea: uses external

More information

Riluzole does not have an acute effect on motor thresholds and the intracortical excitability in amyotrophic lateral sclerosis

Riluzole does not have an acute effect on motor thresholds and the intracortical excitability in amyotrophic lateral sclerosis J Neurol (1999) 246 [Suppl 3]: III/22 III/26 Steinkopff Verlag 1999 Martin Sommer Frithjof Tergau Stephan Wischer Carl-D. Reimers Wolfgang Beuche Walter Paulus Riluzole does not have an acute effect on

More information

CONTENTS. Foreword George H. Kraft. Henry L. Lew

CONTENTS. Foreword George H. Kraft. Henry L. Lew EVOKED POTENTIALS Foreword George H. Kraft xi Preface Henry L. Lew xiii Overview of Artifact Reduction and Removal in Evoked Potential and Event-Related Potential Recordings 1 Martin R. Ford, Stephen Sands,

More information

OVERVIEW. Today. Sensory and Motor Neurons. Thursday. Parkinsons Disease. Administra7on. Exam One Bonus Points Slides Online

OVERVIEW. Today. Sensory and Motor Neurons. Thursday. Parkinsons Disease. Administra7on. Exam One Bonus Points Slides Online OVERVIEW Today Sensory and Motor Neurons Thursday Parkinsons Disease Administra7on Exam One Bonus Points Slides Online 7 major descending motor control pathways from Cerebral Cortex or Brainstem

More information

Neural Basis of Motor Control

Neural Basis of Motor Control Neural Basis of Motor Control Central Nervous System Skeletal muscles are controlled by the CNS which consists of the brain and spinal cord. Determines which muscles will contract When How fast To what

More information

Naoyuki Takeuchi, MD, PhD 1, Takeo Tada, MD, PhD 2, Masahiko Toshima, MD 3, Yuichiro Matsuo, MD 1 and Katsunori Ikoma, MD, PhD 1 ORIGINAL REPORT

Naoyuki Takeuchi, MD, PhD 1, Takeo Tada, MD, PhD 2, Masahiko Toshima, MD 3, Yuichiro Matsuo, MD 1 and Katsunori Ikoma, MD, PhD 1 ORIGINAL REPORT J Rehabil Med 2009; 41: 1049 1054 ORIGINAL REPORT REPETITIVE TRANSCRANIAL MAGNETIC STIMULATION OVER BILATERAL HEMISPHERES ENHANCES MOTOR FUNCTION AND TRAINING EFFECT OF PARETIC HAND IN PATIENTS AFTER STROKE

More information

Central and peripheral fatigue in sustained maximum voluntary contractions of human quadriceps muscle

Central and peripheral fatigue in sustained maximum voluntary contractions of human quadriceps muscle Clinical Science and Molecular Medicine (1978) 54,609-614 Central and peripheral fatigue in sustained maximum voluntary contractions of human quadriceps muscle B. BIGLAND-RITCHIE*, D. A. JONES, G. P. HOSKING

More information

VitalStim in Swallowing Rehabilitation

VitalStim in Swallowing Rehabilitation VitalStim in Swallowing Rehabilitation Meghan McAvoy, MS,CCC-SLP Mary Free Bed at Sparrow Hospital Disclosures No financial or non-financial disclosures Control of the swallow Both voluntary and involuntary

More information

Physiology Unit 2 CONSCIOUSNESS, THE BRAIN AND BEHAVIOR

Physiology Unit 2 CONSCIOUSNESS, THE BRAIN AND BEHAVIOR Physiology Unit 2 CONSCIOUSNESS, THE BRAIN AND BEHAVIOR In Physiology Today What the Brain Does The nervous system determines states of consciousness and produces complex behaviors Any given neuron may

More information

Audit and Compliance Department 1

Audit and Compliance Department 1 Introduction to Intraoperative Neuromonitoring An intro to those squiggly lines Kunal Patel MS, CNIM None Disclosures Learning Objectives History of Intraoperative Monitoring What is Intraoperative Monitoring

More information

Motor Functions of Cerebral Cortex

Motor Functions of Cerebral Cortex Motor Functions of Cerebral Cortex I: To list the functions of different cortical laminae II: To describe the four motor areas of the cerebral cortex. III: To discuss the functions and dysfunctions of

More information

The voluntary sphincter muscles of the anorectum are. The Cortical Topography of Human Anorectal Musculature

The voluntary sphincter muscles of the anorectum are. The Cortical Topography of Human Anorectal Musculature GASTROENTEROLOGY 1999;117:32 39 The Cortical Topography of Human Anorectal Musculature GEOFFREY K. TURNBULL,* SHAHEEN HAMDY, QASIM AZIZ, KRISHNA D. SINGH, and DAVID G. THOMPSON *Department of Medicine,

More information