IUPHAR Nomenclature Report: The Class Frizzled

Size: px
Start display at page:

Download "IUPHAR Nomenclature Report: The Class Frizzled"

Transcription

1 supplemental material IUPHAR Nomenclature Report: The Class Frizzled receptors Gunnar Schulte Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, S Stockholm, Sweden

2 Figure S1: Protein sequence alignment of the Class Frizzled receptors FZD 1-10 and SMO. Alignment was performed with ClustalW2, a general purpose multiple sequence alignment program for DNA or proteins ( Bars indicate the location of the cystein rich domain (CRD) in the N terminal region and the seven transmembrane spanning domains (TM1-TM7).

3 Page 1 CRD Supplemental Material Class Frizzled receptor aligment Schulte, G. Pharmacological Reviews 2010

4 Page 2 TM1 Supplemental Material Class Frizzled receptor aligment Schulte, G. Pharmacological Reviews 2010

5 TM2 Page 3 TM3 TM4 TM5 Supplemental Material Class Frizzled receptor aligment Schulte, G. Pharmacological Reviews 2010

6 TM6 Page 4 TM7 KTxxxW Supplemental Material Class Frizzled receptor aligment Schulte, G. Pharmacological Reviews 2010

7 Page 5 Supplemental Material Class Frizzled receptor aligment Schulte, G. Pharmacological Reviews 2010

8 Figure S2: The intracellular domains of the Class Frizzled receptors (FZD 1-10 and SMO), i e the first, second and third intracellular loops and the C terminus were analyzed for putative phosphorylation sites (underlined) with the Mini Motif Miner software MnM2.0 (Balla et al, 2006). The conserved KTxxxW site in FZD 1-10 is marked with bold letters. The terminal PDZ ligand domains are marked in grey.

9 Intracellular domains of human FZDs underlined potential phosphorylation sites accoring to MiniMotifMiner grey Class I PDZ ligand sequence human FZD 1 : FZD DMRRFSYPERP-354 FZD SLTWFLAAGMKWGHEAIEANSQ-445 FZD VSLFRIRTIMKHDGTKTEKLEKLMVR-536 FZD SGKTLNSWRKFYTRLTNSKQGETTV-647 human FZD 2 : FZD DMQRFRYPERP-279 FZD SLTWFLAAGMKWGHEAIEANSQ-370 FZD VSLFRIRTIMKHDGTKTEKLERLMVR-461 FZD SGKTLHSWRKFYTRLTNSRHGETTV -565 human FZD 3 : FZD DVTRFRYPERP-237 FZD TWFLAAVPKWGSEAIEKKA-328 FZD SLNRVRIEIPLEKENQDKLVKFMIR-420 FZD GSKKTCFEWASFFHGRRKKEIVNESRQVL QEPDFAQSLLRDPNTPIIRKSRGTSTQGTSTHASSTQ LAMVDDQRSKAGSIHSKVSSYHGSLHRSRDGRYTPC SYRGMEERLPHGSMSRLTDHSRHSSSHRLNEQSR HSSIRDLSNNPMTHITHGTSMNRVIEEDGTSA-666 human FZD 4 : FZD DSSRFSYPERP-254 FZD TLTWFLAAGLKWGHEAIEMHS-344 FZD VALFKIRSNLQKDGTKTDKLERLMVK-436 FZD KTLHTWQKCSNRLVNSGKVKREKRGNGW VKPGKGSETVV -537 human FZD 5 : FZD DMERFRYPERP-270 FZD SLTWFLAAGMKWGNEAIAGYAQ-358 FZD VSLFRIRSVIKQGGTKTDKLEKLMIR-449 FZD WSGKTVESWRRFTSRCCCRPRRGHKSG GAMAAGDYPEASAALTGRTGPPGPAATYHKQVS LSHV-585 human FZD6: FZD6 223-DVRRFRYPERP-233 FZD6 306-TWFLAAGRKWSCEAIEQKA-324 FZD6 392-SLNHVRQVIQHDGRNQEKLKKFMIR-416 FZD6-465-GSKKTCTEWAGFFKRNRKRDPISESRRVLQ ESCEFFLKHNSKVKHKKKHYKPSSHKLKVISKSMGTST GATANHGTSAVAITSHDYLGQETLTEIQTSPETSMREV KADGASTPRLREQDCGEPASPAASISRLSGEQVDGKG QAGSVSESARSEGRISPKSDITDTGLAQSNNLQVPSSS EPSSLKGSTSLLVHPVSGVRKEQGGGCHSDT-706 human FZD 7 : FZD DMRRFSYPERP-288 FZD SLTWFLAAGMKWGHEAIEANSQ-379 FZD VSLFRIRTIMKHDGTKTEKLEKLMVR-470 FZD SGKTLQSWRRFYHRLSHSSKGETAV-574 human FZD 8 : FZD STFLIDMERFKYPERP-312 FZD SLTWFLAAGMKWGNEAIAGYSQY-439 FZD VSLFRIRSVIKQQDGPTKTHKLEKLMIR-532 FZD SGKTLESWRSLCTRCCWASKGAAVGGGAG ATAAGGGGGPGGGGGGGPGGGGGPGGGGGSLYSDV STGLTWRSGTASSVSYPKQMPLSQV-694 human FZD 9 : FZD LTFLLEPHRFQYPERP-366 FZD TWFLAAGKKWGHEAIEAHG-355 FZD VALFHIRKIMKTGGTNTEKLEKLMVK-447 FZD SSKTFQTWQSLCYRKIAAGRARAKACRAPG SYGRGTHCHYKAPTVVLHMTKTDPSLENPTHL -591 human FZD 10 : FZD LTFLIDPARFRYPERP-262 FZD TWFLAAGKKWGHEAIEANS-351 FZD SGFVALFHIRRVMKTGGENTDKLEKLMVR-443 FZD TSKTLQSWQQVCSRRLKKKSRRKPASVITSGG IYKKAQHPQKTHHGKYEIPAQSPTCV-581 human SMO: SMO 255-DWRNSNRY-262 SMO 336-TYAWHTSFKALGTTYQPLSGKTS -358 SMO 424-MTLFSIKSNHPGLLSEKAASKINETMLR -451 SMO-546-RRTWCRLTGQSDDEPKRIKKSKMIAKAFSKRHELL QNPGQELSFSMHTVSHDGPVAGLAFDLNEPSADVSSAWAQH VTKMVARRGAILPQDISVTPVATPVPPEEQANLWLVEAEISPEL QKRLGRKKKRRKRKKEVCPLAPPPELHPPAPAPSTIPRLPQLP RQKCLVAAGAWGAGDSCRQGAWTLVSNPFCPEPSPPQDPFL PSAPAPVAWAHGRRQGLGPIHSRTNLMDTELMDADSDF-787 Supplemental Material Class Frizzled receptor aligment Schulte, G. Pharmacological Reviews 2010

10 Figure S3: Summary of putative Class Frizzled receptor kinases and their suggested target regions in the receptors. Abbreviations: ABL, non-receptor protein tyrosine kinase derived from oncogene c-abl; ATM, Ataxia telangiectasia mutated kinase; CamKII, Ca 2+ /calmodulin-dependent kinase II; CDK, cyclindependent kinase; CK, casein kinase; CSK, EGFR, epidermal growth factor receptor; ERK1/2, extracellular signal-regulated kinases 1/2; GSK3, glycogen synthase kinase 3; JAK2, Janus kinase 2; p70s6 kinase, Ser/Thr knase 70 kda phosphorylating the ribosomal S6 protein; PLK, polo-like kinase; PKA, campdependent protein kinase; PKC, Ca 2+ -dependent protein kinase; PKG, cgmpdependent protein kinase; RSK, SRC, non-receptor protein tyrosine kinase derived from oncogene c-src;

11 P70 S6 kinase ERK1/2 ATM JAK2 GSK3α GSK3β PLK CDK Phosphorylase kinase ABL EGFR TPK- IIB/p38SYK CSK SRC FZD domain PKA PKC PKG CK1 CK2 CamKII RSK FZD 1 _i1 FZD 1 _i2 FZD 1 _i3 (x2) FZD 1 _c-term (x2) FZD 2 _i1 FZD 2 _i2 FZD 2 _i3 FZD 2 _c-term (x2) FZD 3 _i1 FZD 3 _i2 FZD 3 _i3 FZD 3 _c-term (x6) (x4) (x7) (x2) (x5) (x6) (x2) (x11) (x3) (x2) FZD 4 _i1 FZD 4 _i2 FZD 4 _i3 (x2) FZD 4 _c-term (x2) FZD 5 _i1 FZD 5 _i2 FZD 5 _i3 FZD 5 _c-term (x2) (x4) (x2) (x3) FZD 6 _i1 FZD 6 _i2 FZD 6 _i3 FZD 6 _c-term (x2) (x8) (x8) (x7) (x5) (x7) FZD 7 _i1 (x2) FZD 7 _i2 FZD 7 _i3 (x2) FZD 7 _c-term (x3) (x2) FZD 8 _i1 FZD 8 _i2 FZD 8 _i3 (x2) FZD 8 _c-term (x3) (x6) FZD 9 _i1 FZD 9 _i2 FZD 9 _i3 FZD 9 _c-term FZD 10 _i1 FZD 10 _i2 FZD 10 _i3 FZD 10 _cterm (x3) (x2) SMO_i1 SMO_i2 (x2) (x2) SMO_i3 (x2) SMO_c-term (x2) (x2) (x3) (x3) (x2)

12 References Balla S, Thapar V, Verma S, Luong T, Faghri T, Huang CH, Rajasekaran S, del Campo JJ, Shinn JH, Mohler WA, Maciejewski MW, Gryk MR, Piccirillo B, Schiller SR and Schiller MR (2006) Minimotif Miner: a tool for investigating protein function. Nat Methods 3(3):

Signal-Transduction Cascades - 2. The Phosphoinositide Cascade

Signal-Transduction Cascades - 2. The Phosphoinositide Cascade Signal-Transduction Cascades - 2 The Phosphoinositide Cascade Calcium ion as a second messenger Tyrosine kinase and receptor dimerization scribd.com Faisal Khatib JU The Phosphoinositide Cascade Used by

More information

Effects of Second Messengers

Effects of Second Messengers Effects of Second Messengers Inositol trisphosphate Diacylglycerol Opens Calcium Channels Binding to IP 3 -gated Channel Cooperative binding Activates Protein Kinase C is required Phosphorylation of many

More information

Signal Transduction: Information Metabolism. Chem 454: Regulatory Mechanisms in Biochemistry University of Wisconsin-Eau Claire

Signal Transduction: Information Metabolism. Chem 454: Regulatory Mechanisms in Biochemistry University of Wisconsin-Eau Claire Signal Transduction: Information Metabolism Chem 454: Regulatory Mechanisms in Biochemistry University of Wisconsin-Eau Claire Introduction Information Metabolism How cells receive, process and respond

More information

G-Protein Signaling. Introduction to intracellular signaling. Dr. SARRAY Sameh, Ph.D

G-Protein Signaling. Introduction to intracellular signaling. Dr. SARRAY Sameh, Ph.D G-Protein Signaling Introduction to intracellular signaling Dr. SARRAY Sameh, Ph.D Cell signaling Cells communicate via extracellular signaling molecules (Hormones, growth factors and neurotransmitters

More information

Receptor mediated Signal Transduction

Receptor mediated Signal Transduction Receptor mediated Signal Transduction G-protein-linked receptors adenylyl cyclase camp PKA Organization of receptor protein-tyrosine kinases From G.M. Cooper, The Cell. A molecular approach, 2004, third

More information

Signaling Through Immune System Receptors (Ch. 7)

Signaling Through Immune System Receptors (Ch. 7) Signaling Through Immune System Receptors (Ch. 7) 1. General principles of signal transduction and propagation. 2. Antigen receptor signaling and lymphocyte activation. 3. Other receptors and signaling

More information

Post-translational modifications of proteins in gene regulation under hypoxic conditions

Post-translational modifications of proteins in gene regulation under hypoxic conditions 203 Review Article Post-translational modifications of proteins in gene regulation under hypoxic conditions 1, 2) Olga S. Safronova 1) Department of Cellular Physiological Chemistry, Tokyo Medical and

More information

Signal transduction and protein kinase inhibitors. Feng Qian ( 钱峰 )

Signal transduction and protein kinase inhibitors. Feng Qian ( 钱峰 ) Signal transduction and protein kinase inhibitors Feng Qian ( 钱峰 ) fengqian@sjtu.edu.cn Protein Kinases in the Human Genome 518 kinases 1.7 % of human genome Lipid kinases Nucleotide kinases Cell Signaling

More information

BL 424 Chapter 15: Cell Signaling; Signal Transduction

BL 424 Chapter 15: Cell Signaling; Signal Transduction BL 424 Chapter 15: Cell Signaling; Signal Transduction All cells receive and respond to signals from their environments. The behavior of each individual cell in multicellular plants and animals must be

More information

Cell Signaling part 2

Cell Signaling part 2 15 Cell Signaling part 2 Functions of Cell Surface Receptors Other cell surface receptors are directly linked to intracellular enzymes. The largest family of these is the receptor protein tyrosine kinases,

More information

Signal Transduction Pathways. Part 2

Signal Transduction Pathways. Part 2 Signal Transduction Pathways Part 2 GPCRs G-protein coupled receptors > 700 GPCRs in humans Mediate responses to senses taste, smell, sight ~ 1000 GPCRs mediate sense of smell in mouse Half of all known

More information

Signal Transduction Pathway Smorgasbord

Signal Transduction Pathway Smorgasbord Molecular Cell Biology Lecture. Oct 28, 2014 Signal Transduction Pathway Smorgasbord Ron Bose, MD PhD Biochemistry and Molecular Cell Biology Programs Washington University School of Medicine Outline 1.

More information

2. Appendix Tables legend General Legend applicable for Table S1 to S4 (Page 10)

2. Appendix Tables legend General Legend applicable for Table S1 to S4 (Page 10) Appendix Data The hvps- signalling module counteracts inhibition of the PIK-Akt pathway to maintain mtorc activity and tumour growth Ruzica Bago, Eeva Sommer, Pau Castel, Claire Crafter, Fiona P. Bailey,

More information

Principles of Genetics and Molecular Biology

Principles of Genetics and Molecular Biology Cell signaling Dr. Diala Abu-Hassan, DDS, PhD School of Medicine Dr.abuhassand@gmail.com Principles of Genetics and Molecular Biology www.cs.montana.edu Modes of cell signaling Direct interaction of a

More information

Protein kinases a CRASH course. Michael Freissmuth Institute of Pharmacology

Protein kinases a CRASH course. Michael Freissmuth Institute of Pharmacology Protein kinases a CRASH course Michael Freissmuth Institute of Pharmacology Protein kinases Outline: Kinome - multitude of kinases (why, what for?) Specificity Regulation Significance for drug development

More information

Regulation of Enzymatic Activity. Lesson 4

Regulation of Enzymatic Activity. Lesson 4 Regulation of Enzymatic Activity Lesson 4 Regulation of Enzymatic Activity no real regulation: - regulation of enzyme expression and turnover - control of enzyme trafficking - supply of cofactors real

More information

INTERACTION DRUG BODY

INTERACTION DRUG BODY INTERACTION DRUG BODY What the drug does to the body What the body does to the drug Receptors - intracellular receptors - membrane receptors - Channel receptors - G protein-coupled receptors - Tyrosine-kinase

More information

The Tissue Engineer s Toolkit

The Tissue Engineer s Toolkit The Tissue Engineer s Toolkit Stimuli Detection and Response Ken Webb, Ph. D. Assistant Professor Dept. of Bioengineering Clemson University Environmental Stimulus-Cellular Response Environmental Stimuli

More information

human epithelial cells were pretreated with control sirna (50 nm) or GSK-3β sirna (50 nm)

human epithelial cells were pretreated with control sirna (50 nm) or GSK-3β sirna (50 nm) GSK3β facilitates IFNγ signaling Supplementary Figure Legends Figure S1. The effects of inhibiting GSK3β on IFNγinduced TNFα expression. A, A549 human epithelial cells were pretreated with control sirna

More information

Regulation of cell function by intracellular signaling

Regulation of cell function by intracellular signaling Regulation of cell function by intracellular signaling Objectives: Regulation principle Allosteric and covalent mechanisms, Popular second messengers, Protein kinases, Kinase cascade and interaction. regulation

More information

Biosignals, Chapter 8, rearranged, Part I

Biosignals, Chapter 8, rearranged, Part I Biosignals, Chapter 8, rearranged, Part I Nicotinic Acetylcholine Receptor: A Ligand-Binding Ion Channel Classes of Receptor Proteins in Eukaryotes, Heterotrimeric G Proteins Signaling View the Heterotrimeric

More information

Vets 111/Biov 111 Cell Signalling-2. Secondary messengers the cyclic AMP intracellular signalling system

Vets 111/Biov 111 Cell Signalling-2. Secondary messengers the cyclic AMP intracellular signalling system Vets 111/Biov 111 Cell Signalling-2 Secondary messengers the cyclic AMP intracellular signalling system The classical secondary messenger model of intracellular signalling A cell surface receptor binds

More information

Receptors Functions and Signal Transduction- L4- L5

Receptors Functions and Signal Transduction- L4- L5 Receptors Functions and Signal Transduction- L4- L5 Faisal I. Mohammed, MD, PhD University of Jordan 1 PKC Phosphorylates many substrates, can activate kinase pathway, gene regulation PLC- signaling pathway

More information

Signaling. Dr. Sujata Persad Katz Group Centre for Pharmacy & Health research

Signaling. Dr. Sujata Persad Katz Group Centre for Pharmacy & Health research Signaling Dr. Sujata Persad 3-020 Katz Group Centre for Pharmacy & Health research E-mail:sujata.persad@ualberta.ca 1 Growth Factor Receptors and Other Signaling Pathways What we will cover today: How

More information

Insulin Resistance. Biol 405 Molecular Medicine

Insulin Resistance. Biol 405 Molecular Medicine Insulin Resistance Biol 405 Molecular Medicine Insulin resistance: a subnormal biological response to insulin. Defects of either insulin secretion or insulin action can cause diabetes mellitus. Insulin-dependent

More information

SUPPLEMENTARY INFORMATION In format provided by Giordano et al. (JULY 2008)

SUPPLEMENTARY INFORMATION In format provided by Giordano et al. (JULY 2008) UPPLEMETARY IRMATI In format provided by Giordano et al. (JULY 2008) up plement ary i nfor mation 2 elected inhibitors of cell cycle in preclinical screening Inhib itor (co m pan y)* Main ta rge ts ther

More information

Cell, Volume 141. Supplemental Information Cell Signaling by Receptor Tyrosine Kinases Mark A. Lemmon and Joseph Schlessinger

Cell, Volume 141. Supplemental Information Cell Signaling by Receptor Tyrosine Kinases Mark A. Lemmon and Joseph Schlessinger Cell, Volume 141 Supplemental Information Cell Signaling by Receptor Tyrosine Kinases Mark A. Lemmon and Joseph Schlessinger Figure S1. RTK Mutations in Diseases Locations of gain-of-function (green arrows)

More information

Cell Cell Communication

Cell Cell Communication IBS 8102 Cell, Molecular, and Developmental Biology Cell Cell Communication January 29, 2008 Communicate What? Why do cells communicate? To govern or modify each other for the benefit of the organism differentiate

More information

CYTOKINE RECEPTORS AND SIGNAL TRANSDUCTION

CYTOKINE RECEPTORS AND SIGNAL TRANSDUCTION CYTOKINE RECEPTORS AND SIGNAL TRANSDUCTION What is Cytokine? Secreted popypeptide (protein) involved in cell-to-cell signaling. Acts in paracrine or autocrine fashion through specific cellular receptors.

More information

Cell Cell Communication

Cell Cell Communication IBS 8102 Cell, Molecular, and Developmental Biology Cell Cell Communication January 29, 2008 Communicate What? Why do cells communicate? To govern or modify each other for the benefit of the organism differentiate

More information

Protein tyrosine kinase signaling

Protein tyrosine kinase signaling rotein tyrosine kinase signaling Serge ROCHE CRBM CNRS/Montpellier University serge.roche@crbm.cnrs.fr rotein phosphorylation on Tyr A central mechanism to control cell communication in a multicellular

More information

Cell Cyc Cell Cy l c e

Cell Cyc Cell Cy l c e Mechanisms of Cell Proliferation 1 Cell Cycle G 2 S G 1 2 Multi-cellular organisms depend on cell division/proliferation; Each organism has a developmental plan that determines its behavior and properties;

More information

KEY CONCEPT QUESTIONS IN SIGNAL TRANSDUCTION

KEY CONCEPT QUESTIONS IN SIGNAL TRANSDUCTION Signal Transduction - Part 2 Key Concepts - Receptor tyrosine kinases control cell metabolism and proliferation Growth factor signaling through Ras Mutated cell signaling genes in cancer cells are called

More information

Propagation of the Signal

Propagation of the Signal OpenStax-CNX module: m44452 1 Propagation of the Signal OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

Lecture: CHAPTER 13 Signal Transduction Pathways

Lecture: CHAPTER 13 Signal Transduction Pathways Lecture: 10 17 2016 CHAPTER 13 Signal Transduction Pathways Chapter 13 Outline Signal transduction cascades have many components in common: 1. Release of a primary message as a response to a physiological

More information

Computational Biology I LSM5191

Computational Biology I LSM5191 Computational Biology I LSM5191 Aylwin Ng, D.Phil Lecture 6 Notes: Control Systems in Gene Expression Pulling it all together: coordinated control of transcriptional regulatory molecules Simple Control:

More information

Synaptic Plasticity and Memory

Synaptic Plasticity and Memory Synaptic Plasticity and Memory Properties and synaptic mechanisms underlying the induction of long-term potentiation (LTP) The role of calcium/calmodulin-dependent kinase II (CamKII) in the induction,

More information

Tyrosine kinases. Cell surface receptors ligand binding. Producer cell RNA. Target cell

Tyrosine kinases.   Cell surface receptors ligand binding. Producer cell RNA. Target cell Tyrosine kinases http://msbl.helsinki.fi/tkseminar roducer cell Signaling molecules Receptor binding Signal transduction Target cell Activation of Gene expression RNA Biological responses proliferation,

More information

Discovery and Optimization of Inhibitors of STAT3 Activation for the Treatment of Squamous Cell Carcinoma of the Head and Neck

Discovery and Optimization of Inhibitors of STAT3 Activation for the Treatment of Squamous Cell Carcinoma of the Head and Neck Discovery and ptimization of Inhibitors of STAT3 Activation for the Treatment of Squamous Cell Carcinoma of the Head and Neck Feng Zhang Wipf Group Research Topic Seminar 02-09-2013 1 Feng Zhang @ Wipf

More information

Chapter 9. Cellular Signaling

Chapter 9. Cellular Signaling Chapter 9 Cellular Signaling Cellular Messaging Page 215 Cells can signal to each other and interpret the signals they receive from other cells and the environment Signals are most often chemicals The

More information

Signal Transduction: G-Protein Coupled Receptors

Signal Transduction: G-Protein Coupled Receptors Signal Transduction: G-Protein Coupled Receptors Federle, M. (2017). Lectures 4-5: Signal Transduction parts 1&2: nuclear receptors and GPCRs. Lecture presented at PHAR 423 Lecture in UIC College of Pharmacy,

More information

TRK RECEPTORS: ROLES IN NEURONAL SIGNAL TRANSDUCTION *

TRK RECEPTORS: ROLES IN NEURONAL SIGNAL TRANSDUCTION * Annu. Rev. Biochem. 2003. 72:609 642 doi: 10.1146/annurev.biochem.72.121801.161629 First published online as a Review in Advance on March 27, 2003 TRK RECEPTORS: ROLES IN NEURONAL SIGNAL TRANSDUCTION *

More information

Cell cycle, signaling to cell cycle, and molecular basis of oncogenesis

Cell cycle, signaling to cell cycle, and molecular basis of oncogenesis Cell cycle, signaling to cell cycle, and molecular basis of oncogenesis MUDr. Jiří Vachtenheim, CSc. CELL CYCLE - SUMMARY Basic terminology: Cyclins conserved proteins with homologous regions; their cellular

More information

Ets-1 identifying polynucleotide sequence for targeted delivery of anti-cancer drugs

Ets-1 identifying polynucleotide sequence for targeted delivery of anti-cancer drugs Ets-1 identifying polynucleotide sequence for targeted delivery of anti-cancer drugs Indian Patent Application No. 1623/DEL/2014 Inventors: Prof. Kulbhushan Tikoo and Jasmine Kaur Department of Pharmacology

More information

A Self-Propelled Biological Process Plk1-Dependent Product- Activated, Feed-Forward Mechanism

A Self-Propelled Biological Process Plk1-Dependent Product- Activated, Feed-Forward Mechanism A Self-Propelled Biological Process Plk1-Dependent Product- Activated, Feed-Forward Mechanism The Harvard community has made this article openly available. Please share how this access benefits you. Your

More information

Molecular Cell Biology - Problem Drill 19: Cell Signaling Pathways and Gene Expression

Molecular Cell Biology - Problem Drill 19: Cell Signaling Pathways and Gene Expression Molecular Cell Biology - Problem Drill 19: Cell Signaling Pathways and Gene Expression Question No. 1 of 10 1. Which statement about cell signaling is correct? Question #1 (A) Cell signaling involves receiving

More information

Edited by Bert Klebl, Gerhard Müller, and Michael Hamacher. Protein Kinases as Drug Targets WILEY VCH. WILEY-VCH Verlag GmbH & Co.

Edited by Bert Klebl, Gerhard Müller, and Michael Hamacher. Protein Kinases as Drug Targets WILEY VCH. WILEY-VCH Verlag GmbH & Co. Edited by Bert Klebl, Gerhard Müller, and Michael Hamacher Protein Kinases as Drug Targets ~ WILEY VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents List of Contributors Preface XV A Personal Foreword XI XVI

More information

1. Activated receptor tyrosine kinases (RTKs) phosphorylates themselves

1. Activated receptor tyrosine kinases (RTKs) phosphorylates themselves Enzyme-coupled receptors Transmembrane proteins Ligand-binding domain on the outer surface Cytoplasmic domain acts as an enzyme itself or forms a complex with enzyme 1. Activated receptor tyrosine kinases

More information

CELL CYCLE REGULATION AND CANCER. Cellular Reproduction II

CELL CYCLE REGULATION AND CANCER. Cellular Reproduction II CELL CYCLE REGULATION AND CANCER Cellular Reproduction II THE CELL CYCLE Interphase G1- gap phase 1- cell grows and develops S- DNA synthesis phase- cell replicates each chromosome G2- gap phase 2- cell

More information

The elements of G protein-coupled receptor systems

The elements of G protein-coupled receptor systems The elements of G protein-coupled receptor systems Prostaglandines Sphingosine 1-phosphate a receptor that contains 7 membrane-spanning domains a coupled trimeric G protein which functions as a switch

More information

Prof. R. V. Skibbens

Prof. R. V. Skibbens Prof. R. V. Skibbens December 2, 2011 BIOS 10: BioScience in the 21 st Century Cell Cycle, Cell Division and Cancer (Part 2) Directionality The Cell Cycle clock goes in only one direction S-phase cells

More information

Bio 111 Study Guide Chapter 11 Cell Communication

Bio 111 Study Guide Chapter 11 Cell Communication Bio 111 Study Guide Chapter 11 Cell Communication BEFORE CLASS: Reading: Read the introduction on p. 210, and for Concept 11.1, read from the first full paragraph on p. 212. Read all of Concept 11.2. Pay

More information

EGFR: fundamenteel en klinisch

EGFR: fundamenteel en klinisch EGFR: fundamenteel en klinisch Guido Lammering MAASTRO Clinic Maastricht, NL What is EGFR?? The EGFR some facts 1186 amino acids 170 kda Expressed by all cells of epithelial origin Increased activation

More information

Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor!

Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor! Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor Allosteric pocket SHP2 Phosphatase ovel allosteric Phosphatase inhibitor Evan Carder Wipf

More information

Enzyme-coupled Receptors. Cell-surface receptors 1. Ion-channel-coupled receptors 2. G-protein-coupled receptors 3. Enzyme-coupled receptors

Enzyme-coupled Receptors. Cell-surface receptors 1. Ion-channel-coupled receptors 2. G-protein-coupled receptors 3. Enzyme-coupled receptors Enzyme-coupled Receptors Cell-surface receptors 1. Ion-channel-coupled receptors 2. G-protein-coupled receptors 3. Enzyme-coupled receptors Cell-surface receptors allow a flow of ions across the plasma

More information

Previous Class. Today. Detection of enzymatic intermediates: Protein tyrosine phosphatase mechanism. Protein Kinase Catalytic Properties

Previous Class. Today. Detection of enzymatic intermediates: Protein tyrosine phosphatase mechanism. Protein Kinase Catalytic Properties Previous Class Detection of enzymatic intermediates: Protein tyrosine phosphatase mechanism Today Protein Kinase Catalytic Properties Protein Phosphorylation Phosphorylation: key protein modification

More information

Sarah Jaar Marah Al-Darawsheh

Sarah Jaar Marah Al-Darawsheh 22 Sarah Jaar Marah Al-Darawsheh Faisal Mohammad Receptors can be membrane proteins (for water-soluble hormones/ligands) or intracellular (found in the cytosol or nucleus and bind to DNA, for lipid-soluble

More information

Lecture 15. Signal Transduction Pathways - Introduction

Lecture 15. Signal Transduction Pathways - Introduction Lecture 15 Signal Transduction Pathways - Introduction So far.. Regulation of mrna synthesis Regulation of rrna synthesis Regulation of trna & 5S rrna synthesis Regulation of gene expression by signals

More information

RAS Genes. The ras superfamily of genes encodes small GTP binding proteins that are responsible for the regulation of many cellular processes.

RAS Genes. The ras superfamily of genes encodes small GTP binding proteins that are responsible for the regulation of many cellular processes. ۱ RAS Genes The ras superfamily of genes encodes small GTP binding proteins that are responsible for the regulation of many cellular processes. Oncogenic ras genes in human cells include H ras, N ras,

More information

MCB*4010 Midterm Exam / Winter 2008

MCB*4010 Midterm Exam / Winter 2008 MCB*4010 Midterm Exam / Winter 2008 Name: ID: Instructions: Answer all 4 questions. The number of marks for each question indicates how many points you need to provide. Write your answers in point form,

More information

Introduction! Introduction! Introduction! Chem Lecture 10 Signal Transduction & Sensory Systems Part 2

Introduction! Introduction! Introduction! Chem Lecture 10 Signal Transduction & Sensory Systems Part 2 Chem 452 - Lecture 10 Signal Transduction & Sensory Systems Part 2 Questions of the Day: How does the hormone insulin trigger the uptake of glucose in the cells that it targets. Introduction! Signal transduction

More information

Cell signaling. How do cells receive and respond to signals from their surroundings?

Cell signaling. How do cells receive and respond to signals from their surroundings? Cell signaling How do cells receive and respond to signals from their surroundings? Prokaryotes and unicellular eukaryotes are largely independent and autonomous. In multicellular organisms there is a

More information

Cell Signaling II: A circuitous pursuit

Cell Signaling II: A circuitous pursuit Cell Signaling II: A circuitous pursuit Joe W. Ramos, Ph.D. joeramos@hawaii.edu www2.hawaii.edu/~joeramos From Genes and the Biology of Cancer, Varmus and Weinberg, 1993 1 Epinephrine binds β adrenergic

More information

Thanks to: Signal Transduction. BCB 570 "Signal Transduction" 4/8/08. Drena Dobbs, ISU 1. An Aging Biologist s. One Biologist s Perspective

Thanks to: Signal Transduction. BCB 570 Signal Transduction 4/8/08. Drena Dobbs, ISU 1. An Aging Biologist s. One Biologist s Perspective BCB 570 "" Thanks to: One Biologist s Perspective Drena Dobbs BCB & GDCB Iowa State University Howard Booth Biology Eastern Michigan University for Slides modified from his lecture Cell-Cell Communication

More information

Mechanisms of Hormone Action

Mechanisms of Hormone Action Mechanisms of Hormone Action General principles: 1. Signals act over different ranges. 2. Signals have different chemical natures. 3. The same signal can induce a different response in different cells.

More information

Biol220 Cellular Signalling. Non-receptor tyrosine kinases

Biol220 Cellular Signalling. Non-receptor tyrosine kinases Biol220 Cellular Signalling Non-receptor tyrosine kinases The 7TM receptors initiate signal transducton pathways through changes in tertiary structure that are induced by ligand binding. A fundamentally

More information

CELL CYCLE MOLECULAR BASIS OF ONCOGENESIS

CELL CYCLE MOLECULAR BASIS OF ONCOGENESIS CELL CYCLE MOLECULAR BASIS OF ONCOGENESIS Summary of the regulation of cyclin/cdk complexes during celll cycle Cell cycle phase Cyclin-cdk complex inhibitor activation Substrate(s) G1 Cyclin D/cdk 4,6

More information

Examination II Key PHRM 836 Biochemistry for Pharmaceutical Sciences II October 31, 2013

Examination II Key PHRM 836 Biochemistry for Pharmaceutical Sciences II October 31, 2013 Examination II Key PHRM 836 Biochemistry for Pharmaceutical Sciences II October 31, 2013 Correct answers in multiple choice questions are indicated in RED and underlined. Correct answers to essay questions

More information

Prof. R. V. Skibbens. Cell Cycle, Cell Division and Cancer (Part 2)

Prof. R. V. Skibbens. Cell Cycle, Cell Division and Cancer (Part 2) Prof. R. V. Skibbens November 22, 2010 BIOS 10: BioScience in the 21 st Century Cell Cycle, Cell Division and Cancer (Part 2) Directionality - clocks go in only one direction G1 doesn t have replication-inducing

More information

Receptors Families. Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia

Receptors Families. Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia Receptors Families Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia Receptor Families 1. Ligand-gated ion channels 2. G protein coupled receptors 3. Enzyme-linked

More information

G-Protein Coupled Receptors GPCRs. GPCRs

G-Protein Coupled Receptors GPCRs. GPCRs 2 type of ligands 1 G-Protein Coupled Receptors GPCRs One of the largest protein families: > 1000 type of GPCRs in mammals >3% of the human genes Major drug targets: ~ 60 % of approved drugs interact with

More information

Designer Affinity Reagents. Brian Kay

Designer Affinity Reagents. Brian Kay Designer Affinity Reagents Brian Kay bkay@uic.edu Types of Affinity Reagents Src SH3 domain Lysozyme Src SH3 domain FN3 monobody Peptide Ligand Antibody Fragment Scaffold M13 Bacteriophage 900 nm x 10

More information

Signal Transduction I

Signal Transduction I Signal Transduction I Prof. Tianhua Zhou Department of Cell Biology Zhejiang University School of Medicine Office hours by appointment tzhou@zju.edu.cn Signal transduction: Key contents for signal transduction:

More information

EGF receptor transactivation is crucial for cholinergic MAP kinase signaling in human keratinocytes

EGF receptor transactivation is crucial for cholinergic MAP kinase signaling in human keratinocytes 1st Electronic Conference on Molecular Science EGF receptor transactivation is crucial for cholinergic MAP kinase signaling in human keratinocytes Wymke Ockenga, Sina Kühne, Antje Banning and Ritva Tikkanen

More information

2013 W. H. Freeman and Company. 12 Signal Transduction

2013 W. H. Freeman and Company. 12 Signal Transduction 2013 W. H. Freeman and Company 12 Signal Transduction CHAPTER 12 Signal Transduction Key topics: General features of signal transduction Structure and function of G protein coupled receptors Structure

More information

Designer Affinity Reagents. Reagents. Types of Affinity. M13 Bacteriophage. 900 nm x 10 nm. Brian Kay Src SH3 domain.

Designer Affinity Reagents. Reagents. Types of Affinity. M13 Bacteriophage. 900 nm x 10 nm. Brian Kay Src SH3 domain. Designer Affinity Reagents Brian Kay bkay@uic.edu Types of Affinity Reagents Src SH3 domain Lysozyme Src SH3 domain FN3 monobody Peptide Ligand Antibody Fragment Scaffold M13 Bacteriophage 900 nm 10 nm

More information

Principles of cell signaling Lecture 4

Principles of cell signaling Lecture 4 Principles of cell signaling Lecture 4 Johan Lennartsson Molecular Cell Biology (1BG320), 2014 Johan.Lennartsson@licr.uu.se 1 Receptor tyrosine kinase-induced signal transduction Erk MAP kinase pathway

More information

Molecular Medicine: Gleevec and Chronic Myelogenous Leukemia

Molecular Medicine: Gleevec and Chronic Myelogenous Leukemia Molecular Medicine: Gleevec and Chronic Myelogenous Leukemia Dec 14 & 19, 2006 Prof. Erin Shea Prof. Dan Kahne Cancer, Kinases and Gleevec: 1. What is CML? a. Blood cell maturation b. Philadelphia Chromosome

More information

Protein regulation Protein motion

Protein regulation Protein motion Lecture 13 Protein regulation Protein motion Antoine van Oijen BCMP201 Spring 2008 04/02 Section IV 04/09 Hands-on methods session / PS 4 due 1 Today s lecture 1) Mechanisms of protein regulation 2) Molecular

More information

Cellular Neurobiology BIPN140. 1st Midterm Exam October 18 th, Tuesday Material covered: Lectures 1-6 & Reading

Cellular Neurobiology BIPN140. 1st Midterm Exam October 18 th, Tuesday Material covered: Lectures 1-6 & Reading Cellular Neurobiology BIPN140 1st Midterm Exam October 18 th, Tuesday Material covered: Lectures 1-6 & Reading Review session October 17 th 3500 Pacitic Hall, 6-8 pm (access code is 127895) Come with questions!

More information

Oncogenes and tumour suppressor genes

Oncogenes and tumour suppressor genes Cancer mutations disrupt cellular homeostasis Oncogenes and tumour suppressor genes Oncogenes: Gain of function mutations Proto-oncogene Tumour suppressor genes: loss of function mutations Normal cell

More information

Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system

Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system Basic Elements of cell signaling: Signal or signaling molecule (ligand, first messenger) o Small molecules (epinephrine,

More information

Phosphorylase and the Origin of Reversible Protein Phosphorylation Prof. Edmond Fischer

Phosphorylase and the Origin of Reversible Protein Phosphorylation Prof. Edmond Fischer hosphorylase and the Origin University of Washington, Seattle, USA 1 55 years ago Endocrinology was well-established, but remained in the phenomenological level Insulin was known as the message sent by

More information

PCB 3023 Exam 4 - Form A First and Last Name

PCB 3023 Exam 4 - Form A First and Last Name PCB 3023 Exam 4 - Form A First and Last Name Student ID # (U Number) A Before beginning this exam, please complete the following instructions: 1) Write your name and U number on the first page of this

More information

Jakinibs 101: Theory, Practice and Prospects. References 10/27/2013

Jakinibs 101: Theory, Practice and Prospects. References 10/27/2013 Jakinibs 101: Theory, Practice and Prospects As a rheumatologist, what do you need to know? Why should you care? Understand what Jaks are Which cytokines care, which don t Mechanisms underlying Jakinib

More information

Biochem 503 Fall Protein Tyr Phosphatases

Biochem 503 Fall Protein Tyr Phosphatases Biochem 503 Fall 2005 Protein Tyr Phosphatases David Brautigan assigned reading: Stoker (2005) J. Endocrin. 185:19-33 History 1981-1982 First description of P-Tyr specific phosphohydrolyase activity in

More information

Revision. camp pathway

Revision. camp pathway االله الرحمن الرحيم بسم Revision camp pathway camp pathway Revision camp pathway Adenylate cyclase Adenylate Cyclase enzyme Adenylate cyclase catalyses the formation of camp from ATP. Stimulation or inhibition

More information

Targeting the ERBB family in cancer: couples therapy

Targeting the ERBB family in cancer: couples therapy OPINION Targeting the ERBB family in cancer: couples therapy Niall Tebbutt, Mikkel W. Pedersen and Terrance G. Johns Abstract The ERBB family of receptor tyrosine kinases has a central role in the tumorigenesis

More information

Supplementary Table 1. Genes analysed for expression by angiogenesis gene-array.

Supplementary Table 1. Genes analysed for expression by angiogenesis gene-array. Supplementary Table 1. Genes analysed for expression by angiogenesis gene-array. Gene symbol Gene name TaqMan Assay ID UniGene ID 18S rrna 18S ribosomal RNA Hs99999901_s1 Actb actin, beta Mm00607939_s1

More information

The Phagocytic Synapse in Distinguishing Particulate and Soluble Stimuli David M. Underhill

The Phagocytic Synapse in Distinguishing Particulate and Soluble Stimuli David M. Underhill The hagocytic Synapse in Distinguishing articulate and Soluble Stimuli The hagocytic Synapse in Distinguishing articulate and Soluble Stimuli How does a cell know the difference between an inflammatory

More information

Molecular Oncology, oncology parameters see each test

Molecular Oncology, oncology parameters see each test Molecular Oncology, oncology parameters see each test DPD deficiency Dihydropyrimidine dehydrogenase deficiency (DPD deficiency) is an autosomal recessive metabolic disorder in which there is absent or

More information

Carcinoma midollare tiroideo familiare

Carcinoma midollare tiroideo familiare 12 AME Italian Meeting 6 Joint Meeting with AACE Carcinoma midollare tiroideo familiare Profilo genetico e stratificazione del rischio Maria Chiara Zatelli Sezione di Endocrinologia Dipartimento di Scienze

More information

THE HALLMARKS OF CANCER

THE HALLMARKS OF CANCER THE HALLMARKS OF CANCER ONCOGENES - Most of the oncogenes were first identified in retroviruses: EGFR (ErbB), Src, Ras, Myc, PI3K and others (slightly more than 30) - Mutated cellular genes incorporated

More information

Biol403 MAP kinase signalling

Biol403 MAP kinase signalling Biol403 MAP kinase signalling The mitogen activated protein kinase (MAPK) pathway is a signalling cascade activated by a diverse range of effectors. The cascade regulates many cellular activities including

More information

Chapter 9: Biochemical Mechanisms for Information Storage at the Cellular Level. From Mechanisms of Memory, second edition By J. David Sweatt, Ph.D.

Chapter 9: Biochemical Mechanisms for Information Storage at the Cellular Level. From Mechanisms of Memory, second edition By J. David Sweatt, Ph.D. Chapter 9: Biochemical Mechanisms for Information Storage at the Cellular Level From Mechanisms of Memory, second edition By J. David Sweatt, Ph.D. Chapter 9: Dendritic Spine Figure 1 Summary: Three Primary

More information

Protein kinases are enzymes that add a phosphate group to proteins according to the. ATP + protein OH > Protein OPO 3 + ADP

Protein kinases are enzymes that add a phosphate group to proteins according to the. ATP + protein OH > Protein OPO 3 + ADP Protein kinase Protein kinases are enzymes that add a phosphate group to proteins according to the following equation: 2 ATP + protein OH > Protein OPO 3 + ADP ATP represents adenosine trisphosphate, ADP

More information

Part I => CARBS and LIPIDS. 1.7 Signal Transduction 1.7a Endocrine Hormones 1.7b Hormone Receptors

Part I => CARBS and LIPIDS. 1.7 Signal Transduction 1.7a Endocrine Hormones 1.7b Hormone Receptors Part I => CARBS and LIPIDS 1.7 Signal Transduction 1.7a Endocrine Hormones 1.7b Hormone Receptors Section 1.7a: Endocrine Hormones Synopsis 1.7a - Hormones are chemical messengers that play a key role

More information

Cellular Signaling Pathways. Signaling Overview

Cellular Signaling Pathways. Signaling Overview Cellular Signaling Pathways Signaling Overview Signaling steps Synthesis and release of signaling molecules (ligands) by the signaling cell. Transport of the signal to the target cell Detection of the

More information

Supplemental Table S1: Inhibition of HDAC class I and class II family by CUDC-101 (IC50 in nm)

Supplemental Table S1: Inhibition of HDAC class I and class II family by CUDC-101 (IC50 in nm) Supplemental Table S1: Inhibition of HDAC class I and class II family by CUDC-101 (IC50 in nm) Class I Class II HDAC1 HDAC2 HDAC3 HDAC8 HDAC4 HDAC5 HDAC6 HDAC7 HDAC9 HDAC10 4.5 12.6 9.1 79.8 13.2 11.4

More information

Many Forms of Cell-Cell Communication Regulate Tissue Function and Phenotype Physiological Functions of Gap Junctions Homeostasis buffering/sharing of ions, nutrients, and water Metabolic support nutrient

More information