Data analysis and binary regression for predictive discrimination. using DNA microarray data. (Breast cancer) discrimination. Expression array data

Size: px
Start display at page:

Download "Data analysis and binary regression for predictive discrimination. using DNA microarray data. (Breast cancer) discrimination. Expression array data"

Transcription

1 West Mike of Statistics & Decision Sciences Institute Duke University wwwstatdukeedu IPAM Functional Genomics Workshop November Two group problems: Binary outcomes ffl eg, ER+ versus ER ffl eg, lymph node + versus lymph node DNA microarray data: expression levels of ß genes (sequences) ffl RNA from tumour, tumour location, time point, in ffl ER+, ER ffl Discriminatory patterns of expression? ffl Predictive classification of tumours 44, 4,? ffl Which genes are implicated? Surprises? ffl Which tumours depart from general patterns? How? ffl etc Nevins Genetics Joseph Dressman Genetics Holly Marks Surgery & Cancer Center Jeff Blanchette Surgery & Cancer Center Carrie Spang ISDS & Genetics Rainer Zuzan ISDS & Genetics Harry Mike West ISDS for Bioinformatics & Computational Biology Center for Genome Technology Center Microarray data: Affymetrix arrays ffl ß genes (sequences) ffl Data issues: imaging, probe cell specific expression data summaries in commercial software ffl Estimates of expression level by gene: Absolute difference ffl Here: log (max(; AbsDiff)) 4 Data analysis and binary regression for predictive discrimination using DNA microarray data (Breast cancer) discrimination Collaborators Expression array data

2 ffl Binary regression: many predictor variables ffl Possibly many interacting genes relate to status ffl Singular factor projection of expression data reduces dimension with no loss of information summarises important structure" in expression data ffl Principal components decomposition Variances and correlations in expression fully explained" by small ffl of factors number ffl Expression of (many) genes driven" by (few) factors X = ADF Factor loadings matrix A = [a;:::;a n ] ffl patterns/relationships among genes Latent factors are rows of F ffl patterns/relationships among arrays: n << p factors Supergenes=Factors: linear combinations of expression Factors drive" expression levels: gene i on array j : xi;j = a i; f;j + a i; f;j + :::+ a i;n f n;j Notation: ffl x i;j is expression level of gene i on microarray j ffl p genes, n arrays: n << p ffl p = ± genes, n = arrays X = [x; x;:::;x n ] = x; x; x;n x; x; x;n x p; x p;n xp; C A Projecting large-scale expression data Singular value (factor) decomposition 4 4 F F F F Arrays on supergene factors: Coloured for ER+/ER- Summary expression data

3 Weight vectors a; a;:::; Regression on (many) genes reduces to regression on (few) supergenes ffl n parameters, sample size n ffl Ignore stable" factors X fi = F = DA fi ffl Use of stochastic regularisation: priors on elements j independent (orthogonality) j ο N(;fi j ) with prior on fi j neutral: implied priors for classification probability p(x j ) ffl Efficient analysis to estimate ffl Markov chain Monte Carlo model fitting ffl Microarray j; expression profile x j ffl Binary classification: (ER+) or (ER) ffl array j is ER+ is p(x j ) ffl Standard probit model: p(x j ) = Φ(x j fi) Linear regression on gene expression, mapped to probability scale ffl x j fi = P p i= fi i x i;j fi i is regression coefficient on gene i ffl Statistical analysis: estimate coefficients, uncertainty ffl depends on design data X ffl New arrays: new parameter, new priors ffl Out-of-sample prediction: New tumours ffl SVD analysis of all arrays ffl Underlying latent factor model genesis ffl SVD regression as a limiting case Consistent priors for and underlying gene coefficients fi as new ffl arises data ffl Generalised g-prior" Factor weight vectors genes 4 Supergenes in binary regression modelling Binary regression modelling Theoretical context and issues

4 Latent factor model for gene expression: tumour i ffl i ο N(; I) and ffl i ο N(; Ψ) xi = B i + ffl i ffl patterns explained by (a few) latent factors: k =dim( i ) ffl residual/idiosyncratic terms ffl i Outcomes: ο N( i ; ) yi ffl outcomes regress on latent factors in x i indirect regression on x i ffl different outcomes relate to different latent factors ffl Efficient analysis of regression on n << p supergenes ffl Posterior (samples) for supergene vector ffl Compute posterior (samples) fi = AD ffl Bayesian/model justification of generalised inverse to = DA fi ffl Latent factor model defines p(y i ; x i ; i ) ffl Implied p(y i jx i ): regression of y i on x i ffl Linear regression coefficient fi = H ffl H depends on B; Ψ Some implications: ffl Prior on implies generalised gprior on fi ffl Limiting case: Ψ! leads to SVD regression 4 Critical predictive assessment of discriminatory performance ffl One-at-a-time analysis ffl Take out microarray j Fit model Predict status of tumour j ffl Repeat for all arrays j Underlying latent factor models Regression on genes via supergenes Underlying latent factor models: SVD regression case Cross-validation (honest) prediction

5 Marginalising over fi implies with kernel covariance matrix with ffl correlations between arrays y ο N(; K) K = F TF + I T = diag(fi ;:::;fi n) ffl effective dependence structure with respect to classification ffl key role of T ffl effective non-linear classifier First run of tumours/arrays only Kernel regression structure Fitted classification Classification probabilities and outcomes array kernel correlations ER arrays array kernel correlations ER+ arrays Estimated kernel correlation structure Gene 4 beta 4 x Supergene gamma 4 Expression weights: Genes & SuperGenes ER status: Estimated regression coefficients

6 One-at-a-time analysis ffl Heterogeneity in data: noise" from many irrelevant" genes? ffl Screen to smaller subsets - eg, raw correlations with ER+= status ffl Select top k" and fit model on k genes ffl Oestrogen receptor status example: k = Multiple genes refine classification: minor effects Collective effects in addition to primary gene Interesting cases (ER),, 4 (ER+) ffl Tumour : Classified ER+ (non-duke diagnosis) ffl Reclassify as ER+ and refit model: Perfect" classification Overall top 4 Cross-validatory predictions Validation classification probabilities and outcomes Cross-validation predictions: Top Validation classification probabilities and outcomes Validation classification probabilities and outcomes 4 4 Cross-validation predictions Gene screening

7 ffl ps protein gene Some top genes: up favours ER+ ffl mrna for oestrogen receptor ffl cytochrome p4 iib (hiib) mrna ffl intestinal trefoil factor mrna ffl hepatoma mrna for serine protease hepsin ffl insulin like growth factor binding protein [ placenta ] ffl pnb mrna ffl c-myb gene ffl ccaat displacement protein ffl clone 4 mrna sequence ffl nat gene for arylamine n-acetyltransferase ffl ffl breast cancer, oestrogen regulated liv- protein mrna ffl Similar patterns: ER+ or ER? ffl High uncertainty about Pr(ER+) Oestrogen gene marginally down" - Ps and Liv- higher ffl regulated by oestrogen receptor Both ffl Other up for ER+" genes high on arrays, 4 ffl Mixed story in data on arrays, 4 ffl High classification uncertainty results Other regulators of Ps, Liv-? ER status determination? Evolving from to +? F 4 4 hhkb cd4 4 4 cytochrome p4 iib intestinal trefoil factor 4 4 ps oestrogen Expression levels of some top genes 4 F F F Arrays on pairs of factors: Top Tumours, 4

8 Classification probability for tumour Choice of point estimates" - Mean values conservative" initial arrays, later arrays ffl Same breast cancer arrays, classified by axilliary lymph nodal status: lymph node-negative breast cancer primary, versus primary, lymph node-positive ffl Expression: expected to be highly heterogeneous ffl Data confirms this: Analysis of all + genes no clear discrimination expected none found ffl Clearer picture based on Top " - Similar story to ER ffl Data issues: Consistency of samples : +/: most extreme" Case 4: +/ Case F F F F Arrays on supergene factors 4 mean value % interval Classification and uncertainty Validation classification probabilities and outcomes Cross-validation predictions: -at-a-time/top Breast cancer nodal status

9 ffl alk-4 mrna Overall top Some top genes: up favours Node ffl bloom syndrome protein (blm) mrna ffl wilm tumour-related protein ffl mrna for actin-related protein ffl retinoid x receptor beta (rxr-beta) ffl fkbp-rapamycin associated protein (frap) ffl ribosomal protein s4 ffl histone h ffl receptor tyrosine kinase ligand lerk- precursor (eplg) mrna ffl mrna for kiaa gene ffl mrna for glycerol kinase ffl Whitehead Institute, Lander group Golub et al Science, initial arrays, later arrays ffl leukemias: ALL () and AML () ffl easily" identified on non-genetic bases ffl samples (/) on training arrays ffl 4 samples (/4) on validation arrays ffl MIT (Whitehead) study: 4 some difficulty in predictive classification of validation cases Cross-validation predictions: Top 4 4 Validation classification probabilities and outcomes F MIT ALL/AML leukemia study 4 4 F F F Arrays on supergene factors: Top

10 ffl Hybridisation problems: RNA quality ffl Fluorescent image scanning (registration, resolution) ffl Global normalisation of expression, array to array global scaling non-linearities induced by varying hybridisation quality ffl Local issues: scratches, patches, All distort expression summaries ffl Pixel-level image model for background ffl Bayesian image analysis: (non-negative) expression level parameters 4 F Leukemias: factors F Top genes on four leukemia arrays x 4 x 4 Array 4 Array 4 Top genes 4 Top genes x 4 x 4 Array Array 4 Top genes 4 Top genes Data issues with Affymetrix arrays Classification probabilities and outcomes Validation predictions on top

11 ffl probe sequences per gene averaging" of pixel values within probe cells averaging" of probe cell averages empirically based: global reliability? ffl Marked variability across probes for some genes ffl mer specific hybridisation intensity Use all data: measures per gene 4 Applications/extensions ffl Other outcomes: eg, genomic predictor of treatment outcome ffl Multiple outcomes: eg, cancer stages/states ffl Measured outcomes: eg, time to remission ffl Exploration of relationships among genes ffl Combining expression profiles with other clinical data Statistical models ffl Refine empirical" singular factor method ffl Latent supergene factors - to de-noise" singular factor method ffl Accounting for measurement errors in expression summaries ffl Non-linear regressions 4 More data issues Alternatives: ffl Model mer-specific hybridisation intensities (Li & Wong ) Futures Probe effects 4 x 4 Oestrogen levels across probes 4 4 Oestrogen probe effects 4 4 4

Aspects of Statistical Modelling & Data Analysis in Gene Expression Genomics. Mike West Duke University

Aspects of Statistical Modelling & Data Analysis in Gene Expression Genomics. Mike West Duke University Aspects of Statistical Modelling & Data Analysis in Gene Expression Genomics Mike West Duke University Papers, software, many links: www.isds.duke.edu/~mw ABS04 web site: Lecture slides, stats notes, papers,

More information

Bayesian Prediction Tree Models

Bayesian Prediction Tree Models Bayesian Prediction Tree Models Statistical Prediction Tree Modelling for Clinico-Genomics Clinical gene expression data - expression signatures, profiling Tree models for predictive sub-typing Combining

More information

Prediction and uncertainty in the analysis of gene expression profiles.

Prediction and uncertainty in the analysis of gene expression profiles. Prediction and uncertainty in the analysis of gene expression profiles. Rainer Spang Harry Zuzan Mike West Joseph Nevins Carrie Blanchette Jeffrey R. Marks Abstract We have developed a complete statistical

More information

Trans-Study Projection of Genomic Biomarkers in Analysis of Oncogene Deregulation and Breast Cancer

Trans-Study Projection of Genomic Biomarkers in Analysis of Oncogene Deregulation and Breast Cancer Trans-Study Projection of Genomic Biomarkers in Analysis of Oncogene Deregulation and Breast Cancer Dan Merl, Joseph E. Lucas, Joseph R. Nevins, Haige Shen & Mike West Duke University June 9, 2008 Abstract

More information

Comparison of discrimination methods for the classification of tumors using gene expression data

Comparison of discrimination methods for the classification of tumors using gene expression data Comparison of discrimination methods for the classification of tumors using gene expression data Sandrine Dudoit, Jane Fridlyand 2 and Terry Speed 2,. Mathematical Sciences Research Institute, Berkeley

More information

A COMBINATORY ALGORITHM OF UNIVARIATE AND MULTIVARIATE GENE SELECTION

A COMBINATORY ALGORITHM OF UNIVARIATE AND MULTIVARIATE GENE SELECTION 5-9 JATIT. All rights reserved. A COMBINATORY ALGORITHM OF UNIVARIATE AND MULTIVARIATE GENE SELECTION 1 H. Mahmoodian, M. Hamiruce Marhaban, 3 R. A. Rahim, R. Rosli, 5 M. Iqbal Saripan 1 PhD student, Department

More information

MOST: detecting cancer differential gene expression

MOST: detecting cancer differential gene expression Biostatistics (2008), 9, 3, pp. 411 418 doi:10.1093/biostatistics/kxm042 Advance Access publication on November 29, 2007 MOST: detecting cancer differential gene expression HENG LIAN Division of Mathematical

More information

ABS04. ~ Inaugural Applied Bayesian Statistics School EXPRESSION

ABS04. ~ Inaugural Applied Bayesian Statistics School EXPRESSION ABS04-2004 Applied Bayesian Statistics School STATISTICS & GENE EXPRESSION GENOMICS: METHODS AND COMPUTATIONS Mike West Duke University Centro Congressi Panorama, Trento,, Italy 15th-19th 19th June 2004

More information

Review: Logistic regression, Gaussian naïve Bayes, linear regression, and their connections

Review: Logistic regression, Gaussian naïve Bayes, linear regression, and their connections Review: Logistic regression, Gaussian naïve Bayes, linear regression, and their connections New: Bias-variance decomposition, biasvariance tradeoff, overfitting, regularization, and feature selection Yi

More information

Bayesian analysis of binary prediction tree models for retrospectively sampled outcomes

Bayesian analysis of binary prediction tree models for retrospectively sampled outcomes Biostatistics (24),,,pp. 1 15 doi: 1.193/biostatistics/kxh11 Bayesian analysis of binary prediction tree models for retrospectively sampled outcomes JENNIFER PITTMAN Institute of Statistics & Decision

More information

Statistical Assessment of the Global Regulatory Role of Histone. Acetylation in Saccharomyces cerevisiae. (Support Information)

Statistical Assessment of the Global Regulatory Role of Histone. Acetylation in Saccharomyces cerevisiae. (Support Information) Statistical Assessment of the Global Regulatory Role of Histone Acetylation in Saccharomyces cerevisiae (Support Information) Authors: Guo-Cheng Yuan, Ping Ma, Wenxuan Zhong and Jun S. Liu Linear Relationship

More information

Kelvin Chan Feb 10, 2015

Kelvin Chan Feb 10, 2015 Underestimation of Variance of Predicted Mean Health Utilities Derived from Multi- Attribute Utility Instruments: The Use of Multiple Imputation as a Potential Solution. Kelvin Chan Feb 10, 2015 Outline

More information

Gene expression analysis. Roadmap. Microarray technology: how it work Applications: what can we do with it Preprocessing: Classification Clustering

Gene expression analysis. Roadmap. Microarray technology: how it work Applications: what can we do with it Preprocessing: Classification Clustering Gene expression analysis Roadmap Microarray technology: how it work Applications: what can we do with it Preprocessing: Image processing Data normalization Classification Clustering Biclustering 1 Gene

More information

Research Supervised clustering of genes Marcel Dettling and Peter Bühlmann

Research Supervised clustering of genes Marcel Dettling and Peter Bühlmann http://genomebiology.com/22/3/2/research/69. Research Supervised clustering of genes Marcel Dettling and Peter Bühlmann Address: Seminar für Statistik, Eidgenössische Technische Hochschule (ETH) Zürich,

More information

Bayesian graphical models for combining multiple data sources, with applications in environmental epidemiology

Bayesian graphical models for combining multiple data sources, with applications in environmental epidemiology Bayesian graphical models for combining multiple data sources, with applications in environmental epidemiology Sylvia Richardson 1 sylvia.richardson@imperial.co.uk Joint work with: Alexina Mason 1, Lawrence

More information

Cancer outlier differential gene expression detection

Cancer outlier differential gene expression detection Biostatistics (2007), 8, 3, pp. 566 575 doi:10.1093/biostatistics/kxl029 Advance Access publication on October 4, 2006 Cancer outlier differential gene expression detection BAOLIN WU Division of Biostatistics,

More information

Recent studies demonstrate that gene expression information

Recent studies demonstrate that gene expression information Predicting the clinical status of human breast cancer by using gene expression profiles Mike West*, Carrie Blanchette, Holly Dressman, Erich Huang, Seiichi Ishida, Rainer Spang*, Harry Zuzan*, John A.

More information

Hybridized KNN and SVM for gene expression data classification

Hybridized KNN and SVM for gene expression data classification Mei, et al, Hybridized KNN and SVM for gene expression data classification Hybridized KNN and SVM for gene expression data classification Zhen Mei, Qi Shen *, Baoxian Ye Chemistry Department, Zhengzhou

More information

Class discovery in Gene Expression Data: Characterizing Splits by Support Vector Machines

Class discovery in Gene Expression Data: Characterizing Splits by Support Vector Machines Class discovery in Gene Expression Data: Characterizing Splits by Support Vector Machines Florian Markowetz and Anja von Heydebreck Max-Planck-Institute for Molecular Genetics Computational Molecular Biology

More information

Bayesian Networks Representation. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University

Bayesian Networks Representation. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University Bayesian Networks Representation Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University March 16 th, 2005 Handwriting recognition Character recognition, e.g., kernel SVMs r r r a c r rr

More information

Case Studies on High Throughput Gene Expression Data Kun Huang, PhD Raghu Machiraju, PhD

Case Studies on High Throughput Gene Expression Data Kun Huang, PhD Raghu Machiraju, PhD Case Studies on High Throughput Gene Expression Data Kun Huang, PhD Raghu Machiraju, PhD Department of Biomedical Informatics Department of Computer Science and Engineering The Ohio State University Review

More information

A Vision-based Affective Computing System. Jieyu Zhao Ningbo University, China

A Vision-based Affective Computing System. Jieyu Zhao Ningbo University, China A Vision-based Affective Computing System Jieyu Zhao Ningbo University, China Outline Affective Computing A Dynamic 3D Morphable Model Facial Expression Recognition Probabilistic Graphical Models Some

More information

Bayesian hierarchical modelling

Bayesian hierarchical modelling Bayesian hierarchical modelling Matthew Schofield Department of Mathematics and Statistics, University of Otago Bayesian hierarchical modelling Slide 1 What is a statistical model? A statistical model:

More information

Risk-prediction modelling in cancer with multiple genomic data sets: a Bayesian variable selection approach

Risk-prediction modelling in cancer with multiple genomic data sets: a Bayesian variable selection approach Risk-prediction modelling in cancer with multiple genomic data sets: a Bayesian variable selection approach Manuela Zucknick Division of Biostatistics, German Cancer Research Center Biometry Workshop,

More information

Gene Selection for Tumor Classification Using Microarray Gene Expression Data

Gene Selection for Tumor Classification Using Microarray Gene Expression Data Gene Selection for Tumor Classification Using Microarray Gene Expression Data K. Yendrapalli, R. Basnet, S. Mukkamala, A. H. Sung Department of Computer Science New Mexico Institute of Mining and Technology

More information

Statistical Analysis of Single Nucleotide Polymorphism Microarrays in Cancer Studies

Statistical Analysis of Single Nucleotide Polymorphism Microarrays in Cancer Studies Statistical Analysis of Single Nucleotide Polymorphism Microarrays in Cancer Studies Stanford Biostatistics Workshop Pierre Neuvial with Henrik Bengtsson and Terry Speed Department of Statistics, UC Berkeley

More information

International Journal of Innovative Research in Computer and Communication Engineering. (An ISO 3297: 2007 Certified Organization)

International Journal of Innovative Research in Computer and Communication Engineering. (An ISO 3297: 2007 Certified Organization) Reconstruction of Gene Regulatory Network to Identify Prognostic Molecular Markers of the Reactive Stroma of Breast and Prostate Cancer Using Information Theoretic Approach Prof. Shanthi Mahesh 1, Dr.

More information

Evaluation of Gene Selection Using Support Vector Machine Recursive Feature Elimination

Evaluation of Gene Selection Using Support Vector Machine Recursive Feature Elimination Evaluation of Gene Selection Using Support Vector Machine Recursive Feature Elimination Committee: Advisor: Dr. Rosemary Renaut Dr. Adrienne C. Scheck Dr. Kenneth Hoober Dr. Bradford Kirkman-Liff John

More information

T. R. Golub, D. K. Slonim & Others 1999

T. R. Golub, D. K. Slonim & Others 1999 T. R. Golub, D. K. Slonim & Others 1999 Big Picture in 1999 The Need for Cancer Classification Cancer classification very important for advances in cancer treatment. Cancers of Identical grade can have

More information

Mediation Analysis With Principal Stratification

Mediation Analysis With Principal Stratification University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 3-30-009 Mediation Analysis With Principal Stratification Robert Gallop Dylan S. Small University of Pennsylvania

More information

Bayesians methods in system identification: equivalences, differences, and misunderstandings

Bayesians methods in system identification: equivalences, differences, and misunderstandings Bayesians methods in system identification: equivalences, differences, and misunderstandings Johan Schoukens and Carl Edward Rasmussen ERNSI 217 Workshop on System Identification Lyon, September 24-27,

More information

CSE 255 Assignment 9

CSE 255 Assignment 9 CSE 255 Assignment 9 Alexander Asplund, William Fedus September 25, 2015 1 Introduction In this paper we train a logistic regression function for two forms of link prediction among a set of 244 suspected

More information

SubLasso:a feature selection and classification R package with a. fixed feature subset

SubLasso:a feature selection and classification R package with a. fixed feature subset SubLasso:a feature selection and classification R package with a fixed feature subset Youxi Luo,3,*, Qinghan Meng,2,*, Ruiquan Ge,2, Guoqin Mai, Jikui Liu, Fengfeng Zhou,#. Shenzhen Institutes of Advanced

More information

Bayesian Models for Combining Data Across Subjects and Studies in Predictive fmri Data Analysis

Bayesian Models for Combining Data Across Subjects and Studies in Predictive fmri Data Analysis Bayesian Models for Combining Data Across Subjects and Studies in Predictive fmri Data Analysis Thesis Proposal Indrayana Rustandi April 3, 2007 Outline Motivation and Thesis Preliminary results: Hierarchical

More information

EECS 433 Statistical Pattern Recognition

EECS 433 Statistical Pattern Recognition EECS 433 Statistical Pattern Recognition Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1 / 19 Outline What is Pattern

More information

Computing at the Center of Genomic Medicine

Computing at the Center of Genomic Medicine Harvard-MIT Division of Health Sciences and Technology HST.512: Genomic Medicine Prof. Isaac Samuel Kohane Computing at the Center of Genomic Medicine Isaac S. Kohane The Challenge of a (Sometimes Forced)

More information

Advanced Bayesian Models for the Social Sciences

Advanced Bayesian Models for the Social Sciences Advanced Bayesian Models for the Social Sciences Jeff Harden Department of Political Science, University of Colorado Boulder jeffrey.harden@colorado.edu Daniel Stegmueller Department of Government, University

More information

Measurement Error in Nonlinear Models

Measurement Error in Nonlinear Models Measurement Error in Nonlinear Models R.J. CARROLL Professor of Statistics Texas A&M University, USA D. RUPPERT Professor of Operations Research and Industrial Engineering Cornell University, USA and L.A.

More information

Cross-Study Projections of Genomic Biomarkers: An Evaluation in Cancer Genomics

Cross-Study Projections of Genomic Biomarkers: An Evaluation in Cancer Genomics of Genomic Biomarkers: An Evaluation in Cancer Genomics Joseph E. Lucas 1 *, Carlos M. Carvalho 2, Julia Ling-Yu Chen 1, Jen-Tsan Chi 1, Mike West 3 1 Institute for Genome Sciences and Policy, Duke University,

More information

Data analysis in microarray experiment

Data analysis in microarray experiment 16 1 004 Chinese Bulletin of Life Sciences Vol. 16, No. 1 Feb., 004 1004-0374 (004) 01-0041-08 100005 Q33 A Data analysis in microarray experiment YANG Chang, FANG Fu-De * (National Laboratory of Medical

More information

Method Comparison for Interrater Reliability of an Image Processing Technique in Epilepsy Subjects

Method Comparison for Interrater Reliability of an Image Processing Technique in Epilepsy Subjects 22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 mssanz.org.au/modsim2017 Method Comparison for Interrater Reliability of an Image Processing Technique

More information

Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment. Berkes, Orban, Lengyel, Fiser.

Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment. Berkes, Orban, Lengyel, Fiser. Statistically optimal perception and learning: from behavior to neural representations. Fiser, Berkes, Orban & Lengyel Trends in Cognitive Sciences (2010) Spontaneous Cortical Activity Reveals Hallmarks

More information

Machine Learning! Robert Stengel! Robotics and Intelligent Systems MAE 345,! Princeton University, 2017

Machine Learning! Robert Stengel! Robotics and Intelligent Systems MAE 345,! Princeton University, 2017 Machine Learning! Robert Stengel! Robotics and Intelligent Systems MAE 345,! Princeton University, 2017 A.K.A. Artificial Intelligence Unsupervised learning! Cluster analysis Patterns, Clumps, and Joining

More information

Detecting and Modeling Spatial Disease Clustering. A Bayesian Approach

Detecting and Modeling Spatial Disease Clustering. A Bayesian Approach Detecting and Modeling Spatial Disease Clustering: A Bayesian Approach Ronald E. Gangnon Department of Biostatistics and Medical Informatics and Murray K. Clayton Department of Statistics University of

More information

Advanced Bayesian Models for the Social Sciences. TA: Elizabeth Menninga (University of North Carolina, Chapel Hill)

Advanced Bayesian Models for the Social Sciences. TA: Elizabeth Menninga (University of North Carolina, Chapel Hill) Advanced Bayesian Models for the Social Sciences Instructors: Week 1&2: Skyler J. Cranmer Department of Political Science University of North Carolina, Chapel Hill skyler@unc.edu Week 3&4: Daniel Stegmueller

More information

George B. Ploubidis. The role of sensitivity analysis in the estimation of causal pathways from observational data. Improving health worldwide

George B. Ploubidis. The role of sensitivity analysis in the estimation of causal pathways from observational data. Improving health worldwide George B. Ploubidis The role of sensitivity analysis in the estimation of causal pathways from observational data Improving health worldwide www.lshtm.ac.uk Outline Sensitivity analysis Causal Mediation

More information

Lecture 21. RNA-seq: Advanced analysis

Lecture 21. RNA-seq: Advanced analysis Lecture 21 RNA-seq: Advanced analysis Experimental design Introduction An experiment is a process or study that results in the collection of data. Statistical experiments are conducted in situations in

More information

Ordinal Data Modeling

Ordinal Data Modeling Valen E. Johnson James H. Albert Ordinal Data Modeling With 73 illustrations I ". Springer Contents Preface v 1 Review of Classical and Bayesian Inference 1 1.1 Learning about a binomial proportion 1 1.1.1

More information

A Comparison of Methods of Estimating Subscale Scores for Mixed-Format Tests

A Comparison of Methods of Estimating Subscale Scores for Mixed-Format Tests A Comparison of Methods of Estimating Subscale Scores for Mixed-Format Tests David Shin Pearson Educational Measurement May 007 rr0701 Using assessment and research to promote learning Pearson Educational

More information

Bayesian Inference for Single-cell ClUstering and ImpuTing (BISCUIT) Elham Azizi

Bayesian Inference for Single-cell ClUstering and ImpuTing (BISCUIT) Elham Azizi Bayesian Inference for Single-cell ClUstering and ImpuTing (BISCUIT) Elham Azizi BioC 2017: Where Software and Biology Connect Profiling Tumor-Immune Ecosystem in Breast Cancer Immunotherapy treatments

More information

Score Tests of Normality in Bivariate Probit Models

Score Tests of Normality in Bivariate Probit Models Score Tests of Normality in Bivariate Probit Models Anthony Murphy Nuffield College, Oxford OX1 1NF, UK Abstract: A relatively simple and convenient score test of normality in the bivariate probit model

More information

Computational Identification and Prediction of Tissue-Specific Alternative Splicing in H. Sapiens. Eric Van Nostrand CS229 Final Project

Computational Identification and Prediction of Tissue-Specific Alternative Splicing in H. Sapiens. Eric Van Nostrand CS229 Final Project Computational Identification and Prediction of Tissue-Specific Alternative Splicing in H. Sapiens. Eric Van Nostrand CS229 Final Project Introduction RNA splicing is a critical step in eukaryotic gene

More information

Complex Trait Genetics in Animal Models. Will Valdar Oxford University

Complex Trait Genetics in Animal Models. Will Valdar Oxford University Complex Trait Genetics in Animal Models Will Valdar Oxford University Mapping Genes for Quantitative Traits in Outbred Mice Will Valdar Oxford University What s so great about mice? Share ~99% of genes

More information

LETTERS. Oncogenic pathway signatures in human cancers as a guide to targeted therapies

LETTERS. Oncogenic pathway signatures in human cancers as a guide to targeted therapies Vol 439 19 January 2006 doi:10.1038/nature04296 Oncogenic pathway signatures in human cancers as a guide to targeted therapies Andrea H. Bild 1,2, Guang Yao 1,2, Jeffrey T. Chang 1,2, Quanli Wang 1, Anil

More information

Applied Medical. Statistics Using SAS. Geoff Der. Brian S. Everitt. CRC Press. Taylor Si Francis Croup. Taylor & Francis Croup, an informa business

Applied Medical. Statistics Using SAS. Geoff Der. Brian S. Everitt. CRC Press. Taylor Si Francis Croup. Taylor & Francis Croup, an informa business Applied Medical Statistics Using SAS Geoff Der Brian S. Everitt CRC Press Taylor Si Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa business A

More information

RALYL Hypermethylation: A Potential Diagnostic Marker of Esophageal Squamous Cell Carcinoma (ESCC) Junwei Liu, MD

RALYL Hypermethylation: A Potential Diagnostic Marker of Esophageal Squamous Cell Carcinoma (ESCC) Junwei Liu, MD RALYL Hypermethylation: A Potential Diagnostic Marker of Esophageal Squamous Cell Carcinoma (ESCC) Junwei Liu, MD Aurora Healthcare, Milwaukee, WI INTRODUCTION v Epigenetic aberration and genetic alteration

More information

Clustering mass spectrometry data using order statistics

Clustering mass spectrometry data using order statistics Proteomics 2003, 3, 1687 1691 DOI 10.1002/pmic.200300517 1687 Douglas J. Slotta 1 Lenwood S. Heath 1 Naren Ramakrishnan 1 Rich Helm 2 Malcolm Potts 3 1 Department of Computer Science 2 Department of Wood

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 Exam policy: This exam allows two one-page, two-sided cheat sheets (i.e. 4 sides); No other materials. Time: 2 hours. Be sure to write

More information

Lecture 10: Learning Optimal Personalized Treatment Rules Under Risk Constraint

Lecture 10: Learning Optimal Personalized Treatment Rules Under Risk Constraint Lecture 10: Learning Optimal Personalized Treatment Rules Under Risk Constraint Introduction Consider Both Efficacy and Safety Outcomes Clinician: Complete picture of treatment decision making involves

More information

Anale. Seria Informatică. Vol. XVI fasc Annals. Computer Science Series. 16 th Tome 1 st Fasc. 2018

Anale. Seria Informatică. Vol. XVI fasc Annals. Computer Science Series. 16 th Tome 1 st Fasc. 2018 HANDLING MULTICOLLINEARITY; A COMPARATIVE STUDY OF THE PREDICTION PERFORMANCE OF SOME METHODS BASED ON SOME PROBABILITY DISTRIBUTIONS Zakari Y., Yau S. A., Usman U. Department of Mathematics, Usmanu Danfodiyo

More information

Small Group Presentations

Small Group Presentations Admin Assignment 1 due next Tuesday at 3pm in the Psychology course centre. Matrix Quiz during the first hour of next lecture. Assignment 2 due 13 May at 10am. I will upload and distribute these at the

More information

The Analysis of Proteomic Spectra from Serum Samples. Keith Baggerly Biostatistics & Applied Mathematics MD Anderson Cancer Center

The Analysis of Proteomic Spectra from Serum Samples. Keith Baggerly Biostatistics & Applied Mathematics MD Anderson Cancer Center The Analysis of Proteomic Spectra from Serum Samples Keith Baggerly Biostatistics & Applied Mathematics MD Anderson Cancer Center PROTEOMICS 1 What Are Proteomic Spectra? DNA makes RNA makes Protein Microarrays

More information

Small-area estimation of mental illness prevalence for schools

Small-area estimation of mental illness prevalence for schools Small-area estimation of mental illness prevalence for schools Fan Li 1 Alan Zaslavsky 2 1 Department of Statistical Science Duke University 2 Department of Health Care Policy Harvard Medical School March

More information

fl/+ KRas;Atg5 fl/+ KRas;Atg5 fl/fl KRas;Atg5 fl/fl KRas;Atg5 Supplementary Figure 1. Gene set enrichment analyses. (a) (b)

fl/+ KRas;Atg5 fl/+ KRas;Atg5 fl/fl KRas;Atg5 fl/fl KRas;Atg5 Supplementary Figure 1. Gene set enrichment analyses. (a) (b) KRas;At KRas;At KRas;At KRas;At a b Supplementary Figure 1. Gene set enrichment analyses. (a) GO gene sets (MSigDB v3. c5) enriched in KRas;Atg5 fl/+ as compared to KRas;Atg5 fl/fl tumors using gene set

More information

Subjective randomness and natural scene statistics

Subjective randomness and natural scene statistics Psychonomic Bulletin & Review 2010, 17 (5), 624-629 doi:10.3758/pbr.17.5.624 Brief Reports Subjective randomness and natural scene statistics Anne S. Hsu University College London, London, England Thomas

More information

Use of GEEs in STATA

Use of GEEs in STATA Use of GEEs in STATA 1. When generalised estimating equations are used and example 2. Stata commands and options for GEEs 3. Results from Stata (and SAS!) 4. Another use of GEEs Use of GEEs GEEs are one

More information

Genome-wide copy-number calling (CNAs not CNVs!) Dr Geoff Macintyre

Genome-wide copy-number calling (CNAs not CNVs!) Dr Geoff Macintyre Genome-wide copy-number calling (CNAs not CNVs!) Dr Geoff Macintyre Structural variation (SVs) Copy-number variations C Deletion A B C Balanced rearrangements A B A B C B A C Duplication Inversion Causes

More information

Data Analysis Using Regression and Multilevel/Hierarchical Models

Data Analysis Using Regression and Multilevel/Hierarchical Models Data Analysis Using Regression and Multilevel/Hierarchical Models ANDREW GELMAN Columbia University JENNIFER HILL Columbia University CAMBRIDGE UNIVERSITY PRESS Contents List of examples V a 9 e xv " Preface

More information

Classification of Microarray Gene Expression Data

Classification of Microarray Gene Expression Data Classification of Microarray Gene Expression Data Geoff McLachlan Department of Mathematics & Institute for Molecular Bioscience University of Queensland Institute for Molecular Bioscience, University

More information

HANDOUTS FOR BST 660 ARE AVAILABLE in ACROBAT PDF FORMAT AT:

HANDOUTS FOR BST 660 ARE AVAILABLE in ACROBAT PDF FORMAT AT: Applied Multivariate Analysis BST 660 T. Mark Beasley, Ph.D. Associate Professor, Department of Biostatistics RPHB 309-E E-Mail: mbeasley@uab.edu Voice:(205) 975-4957 Website: http://www.soph.uab.edu/statgenetics/people/beasley/tmbindex.html

More information

Mammographic density and risk of breast cancer by tumor characteristics: a casecontrol

Mammographic density and risk of breast cancer by tumor characteristics: a casecontrol Krishnan et al. BMC Cancer (2017) 17:859 DOI 10.1186/s12885-017-3871-7 RESEARCH ARTICLE Mammographic density and risk of breast cancer by tumor characteristics: a casecontrol study Open Access Kavitha

More information

Understanding DNA Copy Number Data

Understanding DNA Copy Number Data Understanding DNA Copy Number Data Adam B. Olshen Department of Epidemiology and Biostatistics Helen Diller Family Comprehensive Cancer Center University of California, San Francisco http://cc.ucsf.edu/people/olshena_adam.php

More information

In-Vitro to In-Vivo Factor Profiling in Expression Genomics. 1.4 The E2F3 Signature in Ovarian, Lung, and Breast Cancer... 19

In-Vitro to In-Vivo Factor Profiling in Expression Genomics. 1.4 The E2F3 Signature in Ovarian, Lung, and Breast Cancer... 19 Chapter 1 In-Vitro to In-Vivo Factor Profiling in Expression Genomics Joseph E. Lucas 1, Carlos M. Carvalho 2, Daniel Merl 1 & Mike West 1 1 Duke University, 2 University of Chicago 1.1 1.2 Introduction.............................................................

More information

Gianluca Baio. University College London Department of Statistical Science.

Gianluca Baio. University College London Department of Statistical Science. Bayesian hierarchical models and recent computational development using Integrated Nested Laplace Approximation, with applications to pre-implantation genetic screening in IVF Gianluca Baio University

More information

Hierarchical Bayesian Modeling of Individual Differences in Texture Discrimination

Hierarchical Bayesian Modeling of Individual Differences in Texture Discrimination Hierarchical Bayesian Modeling of Individual Differences in Texture Discrimination Timothy N. Rubin (trubin@uci.edu) Michael D. Lee (mdlee@uci.edu) Charles F. Chubb (cchubb@uci.edu) Department of Cognitive

More information

Pre-mRNA Secondary Structure Prediction Aids Splice Site Recognition

Pre-mRNA Secondary Structure Prediction Aids Splice Site Recognition Pre-mRNA Secondary Structure Prediction Aids Splice Site Recognition Donald J. Patterson, Ken Yasuhara, Walter L. Ruzzo January 3-7, 2002 Pacific Symposium on Biocomputing University of Washington Computational

More information

Classifica4on. CSCI1950 Z Computa4onal Methods for Biology Lecture 18. Ben Raphael April 8, hip://cs.brown.edu/courses/csci1950 z/

Classifica4on. CSCI1950 Z Computa4onal Methods for Biology Lecture 18. Ben Raphael April 8, hip://cs.brown.edu/courses/csci1950 z/ CSCI1950 Z Computa4onal Methods for Biology Lecture 18 Ben Raphael April 8, 2009 hip://cs.brown.edu/courses/csci1950 z/ Binary classifica,on Given a set of examples (x i, y i ), where y i = + 1, from unknown

More information

Accommodating informative dropout and death: a joint modelling approach for longitudinal and semicompeting risks data

Accommodating informative dropout and death: a joint modelling approach for longitudinal and semicompeting risks data Appl. Statist. (2018) 67, Part 1, pp. 145 163 Accommodating informative dropout and death: a joint modelling approach for longitudinal and semicompeting risks data Qiuju Li and Li Su Medical Research Council

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Midterm, 2016

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Midterm, 2016 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Midterm, 2016 Exam policy: This exam allows one one-page, two-sided cheat sheet; No other materials. Time: 80 minutes. Be sure to write your name and

More information

Breast cancer. Risk factors you cannot change include: Treatment Plan Selection. Inferring Transcriptional Module from Breast Cancer Profile Data

Breast cancer. Risk factors you cannot change include: Treatment Plan Selection. Inferring Transcriptional Module from Breast Cancer Profile Data Breast cancer Inferring Transcriptional Module from Breast Cancer Profile Data Breast Cancer and Targeted Therapy Microarray Profile Data Inferring Transcriptional Module Methods CSC 177 Data Warehousing

More information

PD-L1 Analyte Control DR

PD-L1 Analyte Control DR Quality in Control PD-L1 Analyte Control DR PD-L1_PI_v2 Product Codes: HCL019, HCL020 and HCL021 Contents PD-L1 Analyte Control DR 2 What is PD-L1? 3 The Role of PD-L1 in Cancer 3 PD-L1 Assessment 4 PD-L1

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 10: Introduction to inference (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 17 What is inference? 2 / 17 Where did our data come from? Recall our sample is: Y, the vector

More information

Linear Regression Analysis

Linear Regression Analysis Linear Regression Analysis WILEY SERIES IN PROBABILITY AND STATISTICS Established by WALTER A. SHEWHART and SAMUEL S. WILKS Editors: David J. Balding, Peter Bloomfield, Noel A. C. Cressie, Nicholas I.

More information

NMF-Density: NMF-Based Breast Density Classifier

NMF-Density: NMF-Based Breast Density Classifier NMF-Density: NMF-Based Breast Density Classifier Lahouari Ghouti and Abdullah H. Owaidh King Fahd University of Petroleum and Minerals - Department of Information and Computer Science. KFUPM Box 1128.

More information

Gene selection in arthritis classification with large-scale microarray expression profiles

Gene selection in arthritis classification with large-scale microarray expression profiles Comparative and Functional Genomics Comp Funct Genom 23; 4: 7 8. Published online April 23 in Wiley InterScience (www.interscience.wiley.com). DOI:.2/cfg.264 Primary Research Gene selection in arthritis

More information

Predictive Biomarkers

Predictive Biomarkers Uğur Sezerman Evolutionary Selection of Near Optimal Number of Features for Classification of Gene Expression Data Using Genetic Algorithms Predictive Biomarkers Biomarker: A gene, protein, or other change

More information

FUZZY C-MEANS AND ENTROPY BASED GENE SELECTION BY PRINCIPAL COMPONENT ANALYSIS IN CANCER CLASSIFICATION

FUZZY C-MEANS AND ENTROPY BASED GENE SELECTION BY PRINCIPAL COMPONENT ANALYSIS IN CANCER CLASSIFICATION FUZZY C-MEANS AND ENTROPY BASED GENE SELECTION BY PRINCIPAL COMPONENT ANALYSIS IN CANCER CLASSIFICATION SOMAYEH ABBASI, HAMID MAHMOODIAN Department of Electrical Engineering, Najafabad branch, Islamic

More information

What are the determinants of DNA demethylation following treatment of AML cell lines and patient samples with decitabine?

What are the determinants of DNA demethylation following treatment of AML cell lines and patient samples with decitabine? What are the determinants of DNA demethylation following treatment of AML cell lines and patient samples with decitabine? by Robert John Hollows This project is submitted in partial fulfilment of the requirements

More information

Protein SD Units (P-value) Cluster order

Protein SD Units (P-value) Cluster order SUPPLEMENTAL TABLE AND FIGURES Table S1. Signature Phosphoproteome of CD22 E12 Transgenic Mouse BPL Cells. T-test vs. Other Protein SD Units (P-value) Cluster order ATPase (Ab-16) 1.41 0.000880 1 mtor

More information

Introductory Statistical Inference with the Likelihood Function

Introductory Statistical Inference with the Likelihood Function Introductory Statistical Inference with the Likelihood Function Charles A. Rohde Introductory Statistical Inference with the Likelihood Function 123 Charles A. Rohde Bloomberg School of Health Johns Hopkins

More information

PSYCH-GA.2211/NEURL-GA.2201 Fall 2016 Mathematical Tools for Cognitive and Neural Science. Homework 5

PSYCH-GA.2211/NEURL-GA.2201 Fall 2016 Mathematical Tools for Cognitive and Neural Science. Homework 5 PSYCH-GA.2211/NEURL-GA.2201 Fall 2016 Mathematical Tools for Cognitive and Neural Science Homework 5 Due: 21 Dec 2016 (late homeworks penalized 10% per day) See the course web site for submission details.

More information

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL 1 SUPPLEMENTAL MATERIAL Response time and signal detection time distributions SM Fig. 1. Correct response time (thick solid green curve) and error response time densities (dashed red curve), averaged across

More information

Minimizing Uncertainty in Property Casualty Loss Reserve Estimates Chris G. Gross, ACAS, MAAA

Minimizing Uncertainty in Property Casualty Loss Reserve Estimates Chris G. Gross, ACAS, MAAA Minimizing Uncertainty in Property Casualty Loss Reserve Estimates Chris G. Gross, ACAS, MAAA The uncertain nature of property casualty loss reserves Property Casualty loss reserves are inherently uncertain.

More information

Introduction to Discrimination in Microarray Data Analysis

Introduction to Discrimination in Microarray Data Analysis Introduction to Discrimination in Microarray Data Analysis Jane Fridlyand CBMB University of California, San Francisco Genentech Hall Auditorium, Mission Bay, UCSF October 23, 2004 1 Case Study: Van t

More information

Metabolomic Data Analysis with MetaboAnalyst

Metabolomic Data Analysis with MetaboAnalyst Metabolomic Data Analysis with MetaboAnalyst User ID: guest6501 April 16, 2009 1 Data Processing and Normalization 1.1 Reading and Processing the Raw Data MetaboAnalyst accepts a variety of data types

More information

Classification. Methods Course: Gene Expression Data Analysis -Day Five. Rainer Spang

Classification. Methods Course: Gene Expression Data Analysis -Day Five. Rainer Spang Classification Methods Course: Gene Expression Data Analysis -Day Five Rainer Spang Ms. Smith DNA Chip of Ms. Smith Expression profile of Ms. Smith Ms. Smith 30.000 properties of Ms. Smith The expression

More information

Identification of population average treatment effects using nonlinear instrumental variables estimators : another cautionary note

Identification of population average treatment effects using nonlinear instrumental variables estimators : another cautionary note University of Iowa Iowa Research Online Theses and Dissertations Fall 2014 Identification of population average treatment effects using nonlinear instrumental variables estimators : another cautionary

More information

Bayes Linear Statistics. Theory and Methods

Bayes Linear Statistics. Theory and Methods Bayes Linear Statistics Theory and Methods Michael Goldstein and David Wooff Durham University, UK BICENTENNI AL BICENTENNIAL Contents r Preface xvii 1 The Bayes linear approach 1 1.1 Combining beliefs

More information

List of Figures. List of Tables. Preface to the Second Edition. Preface to the First Edition

List of Figures. List of Tables. Preface to the Second Edition. Preface to the First Edition List of Figures List of Tables Preface to the Second Edition Preface to the First Edition xv xxv xxix xxxi 1 What Is R? 1 1.1 Introduction to R................................ 1 1.2 Downloading and Installing

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Behavioral training.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Behavioral training. Supplementary Figure 1 Behavioral training. a, Mazes used for behavioral training. Asterisks indicate reward location. Only some example mazes are shown (for example, right choice and not left choice maze

More information