The Hierarchical Organization of Normal and Malignant Hematopoiesis

Size: px
Start display at page:

Download "The Hierarchical Organization of Normal and Malignant Hematopoiesis"

Transcription

1 The Hierarchical Organization of Normal and Malignant Hematopoiesis NORMAL Hematopoie2c Stem Cell (HSC) Leukemia Stem Cells (LSC) MPP MLP CMP Leukemic Progenitors MEP GMP B/NK ETP Leukemic Blasts Erythrocytes Megakaryocytes/ Monocytes Platelets Granulocytes Dendri2c cells NK cells B cells T Cells

2 Human hematopoie2c stem cells iden2fied on the basis of xenotransplant repopula2on STABLE MULTILINEAGE! HEMATOPOIETIC GRAFT! Human hematopoietic! stem cells! Immune-deficient recipient! 20 yrs of assay op2miza2on - intrafemoral injec2on - T, B, NK, deficiency - macrophage impairment due to Nod allele of SIRP- α - female NSG recipients 10x more sensi2ve Quantitative repopulation assay permits study of human stem cell biology:! self-renewal! differentiation! Proliferation!

3 Elucida2on of the human hematopoie2c hierarchy at single cell resolu2on From: Doulatov et al Cell Stem Cell 2012

4 What is Cancer? Cannot differen2ate properly Uncontrolled prolifera2on Cannot die properly.etc Individual cancer cells vary in many cancer hallmarks True, but Hanahan and Weinberg Cell 2011 Is every tumour cell equal and able to maintain long term clonal growth?

5 Func2onal assay for leukemia- ini2a2ng cells PB or BM from leukemia patient! Immune-deficient recipient! LEUKEMIC GRAFT! Leukemia Initiating Cell (L-IC)! Rare-frequency in AML ~ 1 in 10 6 (varies from patient to patient)! Dormant-able to survive common anti-proliferative chemotherapy!

6 The Cancer Stem Cell Model apex of neoplastic hierarchy! CSCs possess 2 key stem cell properties:! self-renewal-long term clonal maintenance! ability to differentiate and regenerate tumour heterogeneity! Epigenetic or developmental program in operation! Tumors are caricatures of normal development! NO TUMOR NO TUMOR NO TUMOR NO TUMOR NO TUMOR NO TUMOR

7 The Hierarchical Organization of Normal and Malignant Hematopoiesis NORMAL Hematopoie2c Stem Cell (HSC) LEUKEMIC MPP MLP Leukemia Stem Cells (LSC) MEP CMP GMP B/NK ETP Hypothesis: If LSC are only cell type capable of sustaining clonal Leukemic Progenitors growth then their properties ultimately govern patient survival Erythrocytes Megakaryocytes/ Monocytes Platelets Granulocytes Dendri2c cells NK cells B cells T Cells Leukemic Blasts

8 Iden2fica2on of LSC genes Iden2fica2on of LSC specific gene signatures Sort cells HSC Progenitors Mature Patient blood sample (n=84) AML cells (LSC+) no AML cells (LSC-) 160 unique genes differentially expressed Gene expression measurement With Jean Wang and Mark Minden L1 regression analysis on training cohort (n=495) adapted from Eppert et al., Nat Med, gene LSC signature

9 LSC signature is prognos2c in 4 independent datasets HR = , p = 8.24e- 08 median survival: NA (low risk), 223 (high risk) HR = , p = median survival: NA (low risk), 301 (high risk) Overall Survival Metzeler primary GSE12417 n=156 HR = , p = 1.5e- 07 median survival: 1029 (low risk), 303 (high risk) Metzeler Secondary GSE12417 n=70 HR = , p = median survival: 723 (low risk), 314 (high risk) Ley- TCAG Full GSE10358 n=183 Ley- TCAG NK- AML GSE10358 n=83 Survival Time

10 LSC signature prognos2c across 1000 cancer genomes Low LSC signature High LSC signature Ø Stemness influences pa2ent survival Ø Many gene2c drivers must converge on stemness Ø Determinants of stemness represent a common therapeu2c target

11 Oien considered as mutually exclusive mechanisms of tumor heterogeneity Gene2c Diversity Epigene2cs and Developmental Pathways- > Hierarchies Tumour Micro- environment Ø Heterogeneity contributes to therapy failure and disease recurrence

12 Mechanisms of tumor heterogeneity impinge on stemness

13 Key Ques2ons in the genesis of AML What is the cell of origin: Stem cell or progenitor? What is the First Hit? Why will these cells progress to AML? What is the sequence of subsequent hits? Liran Shlush Sasan Zandi NORMAL HEMATOPOIETIC CELL PRELEUKEMIC CELL LEUKEMIC STEM CELL CSCC Disease Team Genomics Program Tom Hudson, John McPherson LSC Team Jean Wang, Mark Minden Shlush, Zandi et al Nature, 2014

14 Pre-leukemia: backtracking AML to it s origins Hematopoie2c Stem Cell (HSC) NORMAL Ini2a2ng muta2on Preleukemic Stem Cell (prelsc) ACUTE MYELOID LEUKEMIA Addi2onal muta2ons MPP MLP Clonal expansion Mul2lineage differen2a2on Leukemia Stem Cells (LSC) CMP MEP GMP B/NK ETP Leukemic Progenitors Erythrocytes Megakaryocytes/ Monocytes Platelets Granulocytes Dendri2c cells NK cells B cells T Cells Leukemic Blasts

Getting to the root of Cancer

Getting to the root of Cancer Cancer Stem Cells: Getting to the root of Cancer Dominique Bonnet, Ph.D Senior Group Leader, Haematopoietic Stem Cell Laboratory Cancer Research UK, London Research Institute Venice, Sept 2009 Overview

More information

AML Genomics 11/27/17. Normal neutrophil maturation. Acute Myeloid Leukemia (AML) = block in differentiation. Myelomonocy9c FAB M5

AML Genomics 11/27/17. Normal neutrophil maturation. Acute Myeloid Leukemia (AML) = block in differentiation. Myelomonocy9c FAB M5 AML Genomics 1 Normal neutrophil maturation Acute Myeloid Leukemia (AML) = block in differentiation AML with minimal differen9a9on FAB M1 Promyelocy9c leukemia FAB M3 Myelomonocy9c FAB M5 2 1 Principle

More information

Stem cells: units of development and regeneration. Fernando D. Camargo Ph.D. Whitehead Fellow Whitehead Institute for Biomedical Research.

Stem cells: units of development and regeneration. Fernando D. Camargo Ph.D. Whitehead Fellow Whitehead Institute for Biomedical Research. Stem cells: units of development and regeneration Fernando D. Camargo Ph.D. Whitehead Fellow Whitehead Institute for Biomedical Research Concepts 1. Embryonic vs. adult stem cells 2. Hematopoietic stem

More information

Chronic Myeloid Leukemia Outlook: The Future of CML Therapy

Chronic Myeloid Leukemia Outlook: The Future of CML Therapy Chronic Myeloid Leukemia Outlook: The Future of CML Therapy Neil Shah, MD PhD Edward S. AgenoDistinguished Professor in Hematology/Oncology UCSF School of Medicine San Francisco, California Progression

More information

Molecular Characterization of Leukemia Stem Cell Development. Scott A. Armstrong MD, Ph.D.

Molecular Characterization of Leukemia Stem Cell Development. Scott A. Armstrong MD, Ph.D. Molecular Characterization of Leukemia Stem Cell Development Scott A. Armstrong MD, Ph.D. Normal and Leukemic Hierarchies NORMAL HSC (SRC) Myeloid progenitor LTC-IC CFU AML LSC (SL-IC) Leukemic LTC-IC

More information

CD34+ Cells: A Comparison of Stem and Progenitor Cells in Cord Blood, Peripheral Blood, and the Bone Marrow

CD34+ Cells: A Comparison of Stem and Progenitor Cells in Cord Blood, Peripheral Blood, and the Bone Marrow White Paper September 2016 CD34+ Cells: A Comparison of Stem and Progenitor Cells in Cord Blood, Peripheral Blood, and the Bone Marrow Lily C. Trajman, PhD Introduction: Hematopoietic Stem Cells (HSCs)

More information

Haematopoietic stem cells

Haematopoietic stem cells Haematopoietic stem cells Neil P. Rodrigues, DPhil NIH Centre for Biomedical Research Excellence in Stem Cell Biology Boston University School of Medicine neil.rodrigues@imm.ox.ac.uk Haematopoiesis: An

More information

Hematology Unit Lab 2 Review Material

Hematology Unit Lab 2 Review Material Objectives Hematology Unit Lab 2 Review Material - 2018 Laboratory Instructors: 1. Assist students during lab session Students: 1. Review the introductory material 2. Study the case histories provided

More information

Supplement Material. Spleen weight (mg) LN cells (X106) Acat1-/- Acat1-/- Mouse weight (g)

Supplement Material. Spleen weight (mg) LN cells (X106) Acat1-/- Acat1-/- Mouse weight (g) Supplement Material A Spleen weight (mg) C Mouse weight (g) 1 5 1 2 9 6 3 2 5 2 1 5 Male LN cells (X16) 4 ** ** Female B 3 2 1 Supplemental Figure I. Spleen weight (A), Inguinal lymph node (LN) cell number

More information

Single cell approaches resolve the molecular network driving malignant hematopoie6c stem cell self-renewal

Single cell approaches resolve the molecular network driving malignant hematopoie6c stem cell self-renewal Single cell approaches resolve the molecular network driving malignant hematopoie6c stem cell self-renewal David Kent WT/MRC Cambridge Stem Cell Ins6tute University of Cambridge, UK MPN EuroNet 17 May,

More information

September 20, Submitted electronically to: Cc: To Whom It May Concern:

September 20, Submitted electronically to: Cc: To Whom It May Concern: History Study (NOT-HL-12-147), p. 1 September 20, 2012 Re: Request for Information (RFI): Building a National Resource to Study Myelodysplastic Syndromes (MDS) The MDS Cohort Natural History Study (NOT-HL-12-147).

More information

Transfer protocol of human HSC into NOG mice

Transfer protocol of human HSC into NOG mice Transfer protocol of human HSC into NOG mice Mice: Adult NOG mice are aged 8-12 weeks. Newborn mice are 1 2 days old. 8-12 week old NOG mice irradiated with 2.5 Gy Intravenous transfer of 1-0.5 x 10 5

More information

SUPPLEMENTARY INFORMATION doi: /nature12026

SUPPLEMENTARY INFORMATION doi: /nature12026 doi:1.138/nature1226 a 4 35 3 MCSF level (pg/ml) 25 2 15 1 5 1h3 3h 5h 7h 15h 24h b MPP (CD135 KSL) HSC (CD34 CD15 KSLF) c % 4 ** LPS 3 GFP pos cells 2 PU.1 GFP LPS 1 FSCA Ctl NI 24h LPS Sup.Fig.1 Effect

More information

The following slides are provided as presented by the author during the live educa7onal ac7vity and are intended for reference purposes only.

The following slides are provided as presented by the author during the live educa7onal ac7vity and are intended for reference purposes only. The following slides are provided as presented by the author during the live educa7onal ac7vity and are intended for reference purposes only. If you have any ques7ons, please contact Imedex via email at:

More information

Normal & Leukaemic haematopoiesis. Dr. Liu Te Chih Dept of Haematology / Oncology National University Health Services Singapore

Normal & Leukaemic haematopoiesis. Dr. Liu Te Chih Dept of Haematology / Oncology National University Health Services Singapore Normal & Leukaemic haematopoiesis 2010 Dr. Liu Te Chih Dept of Haematology / Oncology National University Health Services Singapore Use of Immunophenotyping today Lineage assignment Differentiation of

More information

Heme 9 Myeloid neoplasms

Heme 9 Myeloid neoplasms Heme 9 Myeloid neoplasms The minimum number of blasts to diagnose acute myeloid leukemia is 5% 10% 20% 50% 80% AML with the best prognosis is AML with recurrent cytogenetic abnormality AML with myelodysplasia

More information

Myeloproliferative Disorders - D Savage - 9 Jan 2002

Myeloproliferative Disorders - D Savage - 9 Jan 2002 Disease Usual phenotype acute leukemia precursor chronic leukemia low grade lymphoma myeloma differentiated Total WBC > 60 leukemoid reaction acute leukemia Blast Pro Myel Meta Band Seg Lymph 0 0 0 2

More information

Hematopoiesis. BHS Liège 27/1/2012. Dr Sonet Anne UCL Mont-Godinne

Hematopoiesis. BHS Liège 27/1/2012. Dr Sonet Anne UCL Mont-Godinne Hematopoiesis BHS Liège 27/1/2012 Dr Sonet Anne UCL Mont-Godinne Hematopoiesis: definition = all the phenomenons to produce blood cells Leukocytes = White Blood Cells Polynuclear = Granulocytes Platelet

More information

Na#onal Neutropenia Network Family Conference July 12, 2014

Na#onal Neutropenia Network Family Conference July 12, 2014 Na#onal Neutropenia Network Family Conference July 12, 2014 Jim Connelly, MD Assistant Professor of Pediatrics and Communicable Diseases Blood and Marrow Transplant Program University of Michigan Transplant

More information

Juvenile Myelomonocytic Leukemia (JMML)

Juvenile Myelomonocytic Leukemia (JMML) Juvenile Myelomonocytic Leukemia (JMML) JMML: Definition Monoclonal hematopoietic disorder of childhood characterized by proliferation of the granulocytic and monocytic lineages Erythroid and megakaryocytic

More information

Blood 101 Introduction Blood and Marrow & Overview of Bone Marrow Failure Diseases. Dr. M. Sabloff October 16 th 2010

Blood 101 Introduction Blood and Marrow & Overview of Bone Marrow Failure Diseases. Dr. M. Sabloff October 16 th 2010 Blood 101 Introduction Blood and Marrow & Overview of Bone Marrow Failure Diseases Dr. M. Sabloff October 16 th 2010 Normal Marrow knee joint white is articular cartilage Adjacent to this is the red marrow

More information

DISCOVERING ATCC IMMUNOLOGICAL CELLS - MODEL SYSTEMS TO STUDY THE IMMUNE AND CARDIOVASCULAR SYSTEMS

DISCOVERING ATCC IMMUNOLOGICAL CELLS - MODEL SYSTEMS TO STUDY THE IMMUNE AND CARDIOVASCULAR SYSTEMS DISCOVERING ATCC IMMUNOLOGICAL CELLS - MODEL SYSTEMS TO STUDY THE IMMUNE AND CARDIOVASCULAR SYSTEMS James Clinton, Ph.D. Scientist, ATCC February 19, 2015 About ATCC Founded in 1925, ATCC is a non-profit

More information

Hematopoiesis. - Process of generation of mature blood cells. - Daily turnover of blood cells (70 kg human)

Hematopoiesis. - Process of generation of mature blood cells. - Daily turnover of blood cells (70 kg human) Hematopoiesis - Process of generation of mature blood cells - Daily turnover of blood cells (70 kg human) 1,000,000,000,000 total cells 200,000,000,000 red blood cells 70,000,000,000 neutrophils Hematopoiesis

More information

TITLE: Assessing the Mechanisms of MDS and its Transformation to Leukemia in a Novel Humanized Mouse. REPORT DATE: September 2014

TITLE: Assessing the Mechanisms of MDS and its Transformation to Leukemia in a Novel Humanized Mouse. REPORT DATE: September 2014 AWARD NUMBER: W81XWH-13-1-0245 TITLE: Assessing the Mechanisms of MDS and its Transformation to Leukemia in a Novel Humanized Mouse PRINCIPAL INVESTIGATOR: Stephanie Halene CONTRACTING ORGANIZATION: Yale

More information

Myelodysplastic Syndromes: Hematopathology. Analysis of SHIP1 as a potential biomarker of Disease Progression

Myelodysplastic Syndromes: Hematopathology. Analysis of SHIP1 as a potential biomarker of Disease Progression Myelodysplastic Syndromes: Hematopathology. Analysis of SHIP1 as a potential biomarker of Disease Progression Carlos E. Bueso-Ramos, M.D., Ph.D Department of Hematopathology The University of Texas M.

More information

RUNX1 and FPD/AML Translational Research. The Leukemia and Lymphoma Society / Babich Family Foundation Partnership. September 2016

RUNX1 and FPD/AML Translational Research. The Leukemia and Lymphoma Society / Babich Family Foundation Partnership. September 2016 www.lls.org www.runx1.com RUNX1 and FPD/AML Translational Research The Leukemia and Lymphoma Society / Babich Family Foundation Partnership September 2016 Prepared by L. Greenberger, PhD Chief Scientific

More information

Flow cytometry for MRD detec1on: Focus on AML. Sindhu Cherian University of Washington, Sea6le, WA, USA

Flow cytometry for MRD detec1on: Focus on AML. Sindhu Cherian University of Washington, Sea6le, WA, USA Flow cytometry for MRD detec1on: Focus on AML Sindhu Cherian University of Washington, Sea6le, WA, USA Residual disease in hematopoie1c malignancy Residual disease has tradi:onal been defined by morphology

More information

Tools for MRD in AML: flow cytometry

Tools for MRD in AML: flow cytometry ACUTE MYELOID LEUKEMIA MEETING Ravenna - October 27, 2017 Tools for MRD in AML: flow cytometry Francesco Buccisano Can MRD improve outcome determina3on? No. of leukemic cells 10 12 10 10 10 8 10 6 10 4

More information

Chi sono i candidati agli inibitori di JAK2

Chi sono i candidati agli inibitori di JAK2 Chi sono i candidati agli inibitori di JAK2 Francesco Passamon, Hematology, University Hospital Varese, Italy Ruxoli8nib (US approved in MF; EAP study and compassionate use in Italy) SAR302503 (phase 3

More information

Automated and Standardized Counting of Mouse Bone Marrow CFU Assays

Automated and Standardized Counting of Mouse Bone Marrow CFU Assays Automated and Standardized Counting of Mouse Bone Marrow CFU Assays 2 Automated and Standardized Colony Counting Table of Contents 4 Colony-Forming Unit (CFU) Assays for Mouse Bone Marrow 5 Automated Assay

More information

Stem Cells and Infec/ous Disease

Stem Cells and Infec/ous Disease Stem Cells and Infec/ous Disease Professor Vassie Ware Bioscience in the 21 st Century December 4, 2015 www.gothamgaze+e.com/.../stemcell/stem_cell.jpg Overview Se4ng the stage for the discussion: historical

More information

Meeting Report. From December 8 to 11, 2012 at Atlanta, GA, U.S.A

Meeting Report. From December 8 to 11, 2012 at Atlanta, GA, U.S.A Meeting Report Affiliation Department of Transfusion Medicine and Cell Therapy Name Hisayuki Yao Name of the meeting Period and venue Type of your presentation Title of your presentation The 54 th Annual

More information

The Immune System. A macrophage. ! Functions of the Immune System. ! Types of Immune Responses. ! Organization of the Immune System

The Immune System. A macrophage. ! Functions of the Immune System. ! Types of Immune Responses. ! Organization of the Immune System The Immune System! Functions of the Immune System! Types of Immune Responses! Organization of the Immune System! Innate Defense Mechanisms! Acquired Defense Mechanisms! Applied Immunology A macrophage

More information

Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rγc-deficient mice

Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rγc-deficient mice Research article Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rγc-deficient mice Jean-Emmanuel Sarry, 1 Kathleen Murphy, 1 Robin Perry, 1 Patricia

More information

Nature Immunology: doi: /ni Supplementary Figure 1. Characteristics of SEs in T reg and T conv cells.

Nature Immunology: doi: /ni Supplementary Figure 1. Characteristics of SEs in T reg and T conv cells. Supplementary Figure 1 Characteristics of SEs in T reg and T conv cells. (a) Patterns of indicated transcription factor-binding at SEs and surrounding regions in T reg and T conv cells. Average normalized

More information

CHAPTER:4 LEUKEMIA. BY Mrs. K.SHAILAJA., M. PHARM., LECTURER DEPT OF PHARMACY PRACTICE, SRM COLLEGE OF PHARMACY 8/12/2009

CHAPTER:4 LEUKEMIA. BY Mrs. K.SHAILAJA., M. PHARM., LECTURER DEPT OF PHARMACY PRACTICE, SRM COLLEGE OF PHARMACY 8/12/2009 LEUKEMIA CHAPTER:4 1 BY Mrs. K.SHAILAJA., M. PHARM., LECTURER DEPT OF PHARMACY PRACTICE, SRM COLLEGE OF PHARMACY Leukemia A group of malignant disorders affecting the blood and blood-forming tissues of

More information

Accelerate Your Research with Conversant Bio

Accelerate Your Research with Conversant Bio Accelerate Your Research with Conversant Bio 400+ Participating MDs 50+ Partner sites for tissue procurement Continuous expansion of sourcing capabilities Closely monitored chain of custody Full regulatory

More information

Bone Marrow Stroma in Myelodysplastic Syndromes

Bone Marrow Stroma in Myelodysplastic Syndromes Bone Marrow Stroma in Myelodysplastic Syndromes Universidad de Salamanca Prof Mª M Consuelo del Cañizo Hematology Dept. University Hospital, Salamanca SPAIN Bone marrow stroma in MDS Introduction Mesenchymal

More information

The Internists Approach to Polycythemia and Implications of Uncontrolled Disease

The Internists Approach to Polycythemia and Implications of Uncontrolled Disease The Internists Approach to Polycythemia and Implications of Uncontrolled Disease Mary Jo K. Voelpel, DO, FACOI, MA, CS Associate Clinical Professor MSU-COM Disclosures NONE Overview 1. Objectives 2. Case

More information

MicroRNA-223 regulates granulopoiesis but is not required for HSC maintenance in mice

MicroRNA-223 regulates granulopoiesis but is not required for HSC maintenance in mice Washington University School of Medicine Digital Commons@Becker Open Access Publications 2015 MicroRNA-223 regulates granulopoiesis but is not required for HSC maintenance in mice Maria C. Trissal Washington

More information

Nicholas Chiorazzi The Feinstein Ins3tute for Medical Research Northwell Health Manhasset, NY

Nicholas Chiorazzi The Feinstein Ins3tute for Medical Research Northwell Health Manhasset, NY A Somewhat Different View of the Gene3c Portrait of Chronic Lymphocy3c Leukemia Nicholas Chiorazzi The Feinstein Ins3tute for Medical Research Northwell Health Manhasset, NY Acknowledgments Davide Bagnara

More information

Pathology. #11 Acute Leukemias. Farah Banyhany. Dr. Sohaib Al- Khatib 23/2/16

Pathology. #11 Acute Leukemias. Farah Banyhany. Dr. Sohaib Al- Khatib 23/2/16 35 Pathology #11 Acute Leukemias Farah Banyhany Dr. Sohaib Al- Khatib 23/2/16 1 Salam First of all, this tafreegh is NOT as long as you may think. If you just focus while studying this, everything will

More information

Nature Immunology: doi: /ni.3412

Nature Immunology: doi: /ni.3412 Supplementary Figure 1 Gata1 expression in heamatopoietic stem and progenitor populations. (a) Unsupervised clustering according to 100 top variable genes across single pre-gm cells. The two main cell

More information

Molecular Pathogenesis and Treatment of Chronic Myelogenous Leukemia. Masahiro Kizaki Editor

Molecular Pathogenesis and Treatment of Chronic Myelogenous Leukemia. Masahiro Kizaki Editor Molecular Pathogenesis and Treatment of Chronic Myelogenous Leukemia Masahiro Kizaki Editor 123 Molecular Pathogenesis and Treatment of Chronic Myelogenous Leukemia ThiS is a FM Blank Page Masahiro Kizaki

More information

Aging, clonal hematopoiesis and preleukemia: not just bad luck?

Aging, clonal hematopoiesis and preleukemia: not just bad luck? Int J Hematol (2015) 102:513 522 DOI 10.1007/s12185-015-1870-5 PROGRESS IN HEMATOLOGY Preleukemia/prelymphoma Aging, clonal hematopoiesis and preleukemia: not just bad luck? Liran I. Shlush 1,2 Sasan Zandi

More information

Supplementary Figure 1. Successful excision of genes from WBM lysates and

Supplementary Figure 1. Successful excision of genes from WBM lysates and Supplementary Information: Supplementary Figure 1. Successful excision of genes from WBM lysates and survival of mice with different genotypes. (a) The proper excision of Pten, p110α, p110α and p110δ was

More information

Hematopoietic Stem Cells, Stem Cell Processing, and Transplantation

Hematopoietic Stem Cells, Stem Cell Processing, and Transplantation Hematopoietic Stem Cells, Stem Cell Processing, and Joseph (Yossi) Schwartz, M irector, Hemotherapy and Stem Cell Processing Facility Bone Marrow Can Cure: Leukemia Lymphoma Multiple Myeloma Genetic iseases:

More information

Epigene.cs: What is it and how it effects our health? Overview. Dr. Bill Stanford, PhD OFawa Hospital Research Ins.tute University of OFawa

Epigene.cs: What is it and how it effects our health? Overview. Dr. Bill Stanford, PhD OFawa Hospital Research Ins.tute University of OFawa Epigene.cs: What is it and how it effects our health? Dr. Bill Stanford, PhD OFawa Hospital Research Ins.tute University of OFawa Overview Basic Background Epigene.cs in general Epigene.cs in cancer Epigene.cs

More information

Myelodysplastic syndrome (MDS) & Myeloproliferative neoplasms

Myelodysplastic syndrome (MDS) & Myeloproliferative neoplasms Myelodysplastic syndrome (MDS) & Myeloproliferative neoplasms Myelodysplastic syndrome (MDS) A multipotent stem cell that can differentiate into any of the myeloid lineage cells (RBCs, granulocytes, megakaryocytes)

More information

Regulation of hematopoietic and leukemic stem cells by the immune system

Regulation of hematopoietic and leukemic stem cells by the immune system OPEN Review (2015) 22, 187 198 & 2015 Macmillan Publishers Limited All rights reserved 1350-9047/15 www.nature.com/cdd Regulation of hematopoietic and leukemic stem cells by the immune system C Riether

More information

Production of the Formed Elements *

Production of the Formed Elements * OpenStax-CNX module: m46691 1 Production of the Formed Elements * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

EHA an overview. Christine Chomienne EHA President.

EHA an overview. Christine Chomienne EHA President. EHA an overview Christine Chomienne EHA President www.ehaweb.org EHA activities Career development Calls are open now EHA Learning Center Annual congress EHA promotes excellence in research, education

More information

UMBILICAL CORD BLOOD STEM CELLS EXPANDED IN THE PRESENCE OF NICOTINAMIDE (NICORD) PROVIDE LONG TERM MULITI-LINEAGE ENGRAFTMENT

UMBILICAL CORD BLOOD STEM CELLS EXPANDED IN THE PRESENCE OF NICOTINAMIDE (NICORD) PROVIDE LONG TERM MULITI-LINEAGE ENGRAFTMENT UMBILICAL CORD BLOOD STEM CELLS EXPANDED IN THE PRESENCE OF NICOTINAMIDE (NICORD) PROVIDE LONG TERM MULITI-LINEAGE ENGRAFTMENT Mitchell E. Horwitz, MD Duke University Medical Center Duke Cancer Institute

More information

Ematologia Clinica e Sperimentale ed Ematopatologia

Ematologia Clinica e Sperimentale ed Ematopatologia Alma Mater Studiorum Università di Bologna DOTTORATO DI RICERCA IN Ematologia Clinica e Sperimentale ed Ematopatologia Ciclo XXV Settore Concorsuale di afferenza: 06/D3 Settore Scientifico disciplinare:

More information

Long-term innate immune memory via effects on bone marrow progenitors

Long-term innate immune memory via effects on bone marrow progenitors Long-term innate immune memory via effects on bone marrow progenitors Helen S Goodridge, PhD helen.goodridge@csmc.edu Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, USA Fondation

More information

ANAT3231: lectures overview

ANAT3231: lectures overview ANAT3231: lectures overview Stem Cell Biology Stem Cell Technology Resources: http://php.med.unsw.edu.au/cell biology/ Essential Cell Biology 3 rd edition Alberts Dr Annemiek Beverdam School of Medical

More information

Leukine. Leukine (sargramostim) Description

Leukine. Leukine (sargramostim) Description Federal Employee Program 1310 G Street, N.W. Washington, D.C. 20005 202.942.1000 Fax 202.942.1125 5.10.08 Subject: Leukine Page: 1 of 6 Last Review Date: March 13, 2014 Leukine Description Leukine (sargramostim)

More information

TCF3 breakpoints of TCF3-PBX1 (patients 1a 5a) and TCF3-HLF (patients 6a 9a and11a) translocations.

TCF3 breakpoints of TCF3-PBX1 (patients 1a 5a) and TCF3-HLF (patients 6a 9a and11a) translocations. Supplementary Figure 1 TCF3 breakpoints of TCF3-PBX1 (patients 1a 5a) and TCF3-HLF (patients 6a 9a and11a) translocations. The CpG motifs closest to the breakpoints are highlighted in red boxes and the

More information

BCL2 inhibition by ABT-199 in T-cell acute lymphoblastic leukemia (T-ALL)

BCL2 inhibition by ABT-199 in T-cell acute lymphoblastic leukemia (T-ALL) BCL2 inhibition by ABT-199 in T-cell acute lymphoblastic leukemia (T-ALL) Pieter Van Vlierberghe Bioluminescent Cell-based Assay Seminar Day Monday 31 march 2014 UCL De Duve institute Brussels, Belgium

More information

Gene+c fate mapping. x loxp. Foxp3 3 UTR ROSA26 RFP IRES GFP CRE. STOP loxp. Stable Foxp3 expression. Foxp3 expression in new Treg.

Gene+c fate mapping. x loxp. Foxp3 3 UTR ROSA26 RFP IRES GFP CRE. STOP loxp. Stable Foxp3 expression. Foxp3 expression in new Treg. 1 Introduc+on (CD4 + CD25 + Foxp3 + )are indispensable for immune homeostasis. Muta+ons in Foxp3 gene leads to fatal autoimmune disorder. Condi+onal dele+on of Foxp3 reprograms cells into pathogenic Th

More information

Interleukin-3 Receptor Alpha Chain as a Unique Marker for Leukemic Stem Cells in Acute Myeloid Leukemia. Cairo, Egypt

Interleukin-3 Receptor Alpha Chain as a Unique Marker for Leukemic Stem Cells in Acute Myeloid Leukemia. Cairo, Egypt Interleukin-3 Receptor Alpha Chain as a Unique Marker for Leukemic Stem Cells in Acute Myeloid Leukemia Khorshed, Amira 1 ; Elsharkawy, Nahla 1 ; Elrefaey, Fatma 1 Mansour Osman 2 and Elgamal, Basma *1

More information

Riposta immune versus stato immune

Riposta immune versus stato immune Riposta immune versus stato immune Russell E. Lewis U.O. Malattie Infettive, Policlinico S. Orsola-Malpighi Dipartimento di Scienze Mediche e Chirurgiche Alma Mater Studiorum Università di Bologna Immunodeficiency

More information

Donatore HLA identico di anni o MUD giovane?

Donatore HLA identico di anni o MUD giovane? Donatore HLA identico di 60-70 anni o MUD giovane? Stella Santarone Dipartimento di Ematologia, Medicina Trasfusionale e Biotecnologie Pescara AGENDA 1. Stem Cell Donation: fatalities and severe events

More information

Leukine. Leukine (sargramostim) Description

Leukine. Leukine (sargramostim) Description Federal Employee Program 1310 G Street, N.W. Washington, D.C. 20005 202.942.1000 Fax 202.942.1125 5.85.08 Subject: Leukine Page: 1 of 5 Last Review Date: September 15, 2017 Leukine Description Leukine

More information

Leukine. Leukine (sargramostim) Description

Leukine. Leukine (sargramostim) Description Federal Employee Program 1310 G Street, N.W. Washington, D.C. 20005 202.942.1000 Fax 202.942.1125 Subject: Leukine Page: 1 of 6 Last Review Date: November 30, 2018 Leukine Description Leukine (sargramostim)

More information

Acute Myeloid Leukemia: A Patient s Perspective

Acute Myeloid Leukemia: A Patient s Perspective Acute Myeloid Leukemia: A Patient s Perspective Patrick A Hagen, MD, MPH Cardinal Bernardin Cancer Center Loyola University Medical Center Maywood, IL Overview 1. What is AML? 2. Who gets AML? Epidemiology

More information

Myelodysplastic Syndromes: Everyday Challenges and Pitfalls

Myelodysplastic Syndromes: Everyday Challenges and Pitfalls Myelodysplastic Syndromes: Everyday Challenges and Pitfalls Kathryn Foucar, MD kfoucar@salud.unm.edu Henry Moon lecture May 2007 Outline Definition Conceptual overview; pathophysiologic mechanisms Incidence,

More information

Corporate Medical Policy. Policy Effective February 23, 2018

Corporate Medical Policy. Policy Effective February 23, 2018 Corporate Medical Policy Genetic Testing for FLT3, NPM1 and CEBPA Mutations in Acute File Name: Origination: Last CAP Review: Next CAP Review: Last Review: genetic_testing_for_flt3_npm1_and_cebpa_mutations_in_acute_myeloid_leukemia

More information

Leukemias and Lymphomas Come From Normal Blood Cells

Leukemias and Lymphomas Come From Normal Blood Cells Leukemias and Lymphomas Come From Normal Blood Cells by Steve Anderson, Ph.D. Steve Anderson has a Ph.D. in Immunology with 25 years experience in biomedical research. His scientific expertise includes

More information

Tumor suppression by modulating stem cell fitness. James DeGregori University of Colorado Denver School of Medicine

Tumor suppression by modulating stem cell fitness. James DeGregori University of Colorado Denver School of Medicine Tumor suppression by modulating stem cell fitness James DeGregori University of Colorado Denver School of Medicine Natural Selection can explain cancer incidence at the species level Intrinsic TS Integral

More information

Revision of the Human Hematopoietic Tree: Granulocyte Subtypes Derive from Distinct Hematopoietic Lineages

Revision of the Human Hematopoietic Tree: Granulocyte Subtypes Derive from Distinct Hematopoietic Lineages Cell Reports Article Revision of the Human Hematopoietic Tree: Granulocyte Subtypes Derive from Distinct Hematopoietic Lineages André Görgens, 1 Stefan Radtke, 1 Michael Möllmann, 2 Michael Cross, 3 Jan

More information

Lymphoma: What You Need to Know. Richard van der Jagt MD, FRCPC

Lymphoma: What You Need to Know. Richard van der Jagt MD, FRCPC Lymphoma: What You Need to Know Richard van der Jagt MD, FRCPC Overview Concepts, classification, biology Epidemiology Clinical presentation Diagnosis Staging Three important types of lymphoma Conceptualizing

More information

Pathogenetic Features of Hematopoiesis in MDS: Focus on Aging

Pathogenetic Features of Hematopoiesis in MDS: Focus on Aging Pathogenetic Features of Hematopoiesis in MDS: Focus on Aging Irving L. Weissman, MD Stanford University School of Medicine Director, Institute for Stem Cell Biology and Regenerative Medicine Director,

More information

sequences of a styx mutant reveals a T to A transversion in the donor splice site of intron 5

sequences of a styx mutant reveals a T to A transversion in the donor splice site of intron 5 sfigure 1 Styx mutant mice recapitulate the phenotype of SHIP -/- mice. (A) Analysis of the genomic sequences of a styx mutant reveals a T to A transversion in the donor splice site of intron 5 (GTAAC

More information

VUmc Basispresentatie

VUmc Basispresentatie Clinical diagnostic cytometry Gerrit J Schuurhuis Dept of Hematology VU University Medical Center Amsterdam, Netherlands Use of immunophenotyping at diagnosis to trace residual disease after therapy 1.

More information

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland AD Award Number: W81XWH-13-1-0057 TITLE: Role of TIRAP in Myelodysplastic Syndromes PRINCIPAL INVESTIGATOR: Linda Ya-ting Chang CONTRACTING ORGANIZATION: British Columbia Cancer Agency Branch Vancouver,

More information

Characteristics of Cancer Stem Cells (CSCs)

Characteristics of Cancer Stem Cells (CSCs) GENReports: Market & Tech Analysis Characteristics of Cancer Stem Cells (CSCs) > Enal Razvi, Ph.D. Biotechnology Analyst, Managing Director Select Biosciences, Inc. enal@selectbio.us! Topic,IntroducEon,and,Scope!

More information

T cell manipulation of the graft: Yes

T cell manipulation of the graft: Yes T cell manipulation of the graft: Yes J.H. Frederik Falkenburg Department of Hematology L M U C Allogeneic Hematopoietic Stem Cell Transplantation (SCT) for non-malignant disorders: no need for anti-tumor

More information

Adult Acute leukemia. Matthew Seftel. August

Adult Acute leukemia. Matthew Seftel. August Adult Acute leukemia Matthew Seftel August 21 2007 mseftel@cancercare.mb.ca Principles 3 cases Diagnosis and classification of acute leukemia (AL) Therapy Emergencies Remission induction BMT Complications

More information

METABOLIC VULNERABILITIES OF CANCER. Eyal Gottlieb

METABOLIC VULNERABILITIES OF CANCER. Eyal Gottlieb METABOLIC VULNERABILITIES OF CANCER Eyal Gottlieb METABOLIC VULNERABILITIES OF CANCER Eyal Gottlieb Cancer and metabolism: the anabolic angle glucose glucose-6-phosphate Ribose-5-phosphate ADP + Pi Serine

More information

Stem cells and Cancer. John Glod. December 2, 2009

Stem cells and Cancer. John Glod. December 2, 2009 Stem cells and Cancer John Glod Lehigh University Lehigh University December 2, 2009 The Tumor Microenvironment Littlepage et al Cancer Cell 2005 Cancer Stem Cells A small group of cells within the larger

More information

WBCs Disorders 1. Dr. Nabila Hamdi MD, PhD

WBCs Disorders 1. Dr. Nabila Hamdi MD, PhD WBCs Disorders 1 Dr. Nabila Hamdi MD, PhD ILOs Compare and contrast ALL, AML, CLL, CML in terms of age distribution, cytogenetics, morphology, immunophenotyping, laboratory diagnosis clinical features

More information

Effective Targeting of Quiescent Chronic Myelogenous

Effective Targeting of Quiescent Chronic Myelogenous Cancer Cell, Volume 7 Supplemental Information Effective Targeting of Quiescent Chronic Myelogenous Leukemia Stem Cells by Histone Deacetylase Inhibitors in Combination with Imatinib Mesylate Bin Zhang,

More information

Acute leukemia and myelodysplastic syndromes

Acute leukemia and myelodysplastic syndromes 11/01/2012 Post-ASH meeting 1 Acute leukemia and myelodysplastic syndromes Peter Vandenberghe Centrum Menselijke Erfelijkheid & Afdeling Hematologie, UZ Leuven 11/01/2012 Post-ASH meeting 2 1. Acute myeloid

More information

What is a hematological malignancy? Hematology and Hematologic Malignancies. Etiology of hematological malignancies. Leukemias

What is a hematological malignancy? Hematology and Hematologic Malignancies. Etiology of hematological malignancies. Leukemias Hematology and Hematologic Malignancies Cancer of the formed elements of the blood What is a hematological malignancy? A hematologic malignancy is a malignancy (or cancer) of any of the formed elements

More information

Myeloid neoplasms. Early arrest in the blast cell or immature cell "we call it acute leukemia" Myoid neoplasm divided in to 3 major categories:

Myeloid neoplasms. Early arrest in the blast cell or immature cell we call it acute leukemia Myoid neoplasm divided in to 3 major categories: Myeloid neoplasms Note: Early arrest in the blast cell or immature cell "we call it acute leukemia" Myoid neoplasm divided in to 3 major categories: 1. AML : Acute myeloid leukemia(stem cell with myeloid

More information

LCD for Sargramostim (GM-CSF, Leukine ) (L29275)

LCD for Sargramostim (GM-CSF, Leukine ) (L29275) LCD for Sargramostim (GM-CSF, Leukine ) (L29275) Contractor Information Contractor Name First Coast Service Options, Inc. Contractor Number 09102 Contractor Type MAC - Part B LCD ID Number L29275 LCD Information

More information

microrna-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia

microrna-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia Published Online: 8 March, 2010 Supp Info: http://doi.org/10.1084/jem.20090831 Downloaded from jem.rupress.org on December 17, 2018 Ar ticle microrna-29a induces aberrant self-renewal capacity in hematopoietic

More information

Impact of Comorbidity on Quality of Life and Clinical Outcomes in MDS

Impact of Comorbidity on Quality of Life and Clinical Outcomes in MDS Current Therapeutic and Biologic Advances in MDS A Symposium of The MDS Foundation ASH 2014 Impact of Comorbidity on Quality of Life and Clinical Outcomes in MDS Peter Valent Medical University of Vienna

More information

ASH 2014 Analyst & Investor Event

ASH 2014 Analyst & Investor Event ASH 2014 Analyst & Investor Event December 8, 2014 John A. Scarlett, M.D. President & CEO, Geron Corporation Steven Lane, M.D., Ph.D. Queensland Institute of Medical Research Forward-Looking Statements

More information

The National Marrow Donor Program. Graft Sources for Hematopoietic Cell Transplantation. Simon Bostic, URD Transplant Recipient

The National Marrow Donor Program. Graft Sources for Hematopoietic Cell Transplantation. Simon Bostic, URD Transplant Recipient 1988 199 1992 1994 1996 1998 2 22 24 26 28 21 212 214 216 218 Adult Donors Cord Blood Units The National Donor Program Graft Sources for Hematopoietic Cell Transplantation Dennis L. Confer, MD Chief Medical

More information

Objectives. Morphology and IHC. Flow and Cyto FISH. Testing for Heme Malignancies 3/20/2013

Objectives. Morphology and IHC. Flow and Cyto FISH. Testing for Heme Malignancies 3/20/2013 Molecular Markers in Hematologic Malignancy: Ways to locate the needle in the haystack. Objectives Review the types of testing for hematologic malignancies Understand rationale for molecular testing Marcie

More information

Cancer stem cells: the lessons from precancerous stem cells

Cancer stem cells: the lessons from precancerous stem cells Received: 10 th August 2007 Accepted: 12 th November 2007 Cancer stem cells: the lessons from precancerous stem cells Jian-Xin Gao Department of Pathology and Comprehensive Cancer Center, Medical Center,

More information

Molecular Markers. Marcie Riches, MD, MS Associate Professor University of North Carolina Scientific Director, Infection and Immune Reconstitution WC

Molecular Markers. Marcie Riches, MD, MS Associate Professor University of North Carolina Scientific Director, Infection and Immune Reconstitution WC Molecular Markers Marcie Riches, MD, MS Associate Professor University of North Carolina Scientific Director, Infection and Immune Reconstitution WC Overview Testing methods Rationale for molecular testing

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/111569

More information

Glioblastoma pathophysiology: or a

Glioblastoma pathophysiology: or a Glioblastoma pathophysiology: A or a? M.J. van den Bent The Brain Tumor Center at Erasmus MC Cancer Center Rotterdam, the Netherlands Pathophysiology: pathophysiology seeks to explain the physiological

More information

2013 Congress of the European Hematology Association Abstract 4398

2013 Congress of the European Hematology Association Abstract 4398 2013 Congress of the European Hematology Association Abstract 4398 IMETELSTAT: A NOVEL APPROACH WITH ROBUST HEMATOLOGIC AND MOLECULAR RESPONSES IN A PHASE 2 STUDY IN PATIENTS WITH ESSENTIAL THROMBOCYTHEMIA

More information

TUMOR INITIATING CELLS: THE STEM CELL THEORY OF CANCER

TUMOR INITIATING CELLS: THE STEM CELL THEORY OF CANCER Pr John DE VOS Département d Ingénierie Cellulaire et Tissulaire INSERM 1183 - IRMB Hôpital St Eloi - CHU de Montpellier john.devos@inserm.fr @_jdevos_ TUMOR INITIATING CELLS: THE STEM CELL THEORY OF CANCER

More information

CHALLENGING CASES PRESENTATION

CHALLENGING CASES PRESENTATION CHALLENGING CASES PRESENTATION Michael C. Wiemann, MD, FACP Program Co-Chair and Vice President Indy Hematology Education President, Clinical St. John Providence Physician Network Detroit, Michigan 36

More information

Transplantation - Challenges for the future. Dr Gordon Cook S t James s Institute of Oncology, Leeds Teaching Hospitals Trust

Transplantation - Challenges for the future. Dr Gordon Cook S t James s Institute of Oncology, Leeds Teaching Hospitals Trust Transplantation - Challenges for the future Dr Gordon Cook S t James s Institute of Oncology, Leeds Teaching Hospitals Trust Bone Marrow Transplantation Timeline, 1957-2006 Appelbaum F. N Engl J Med 2007;357:1472-1475

More information