Mohammed El-Khateeb. Tumor Genetics. MGL-12 July 21 st 2013 台大農藝系遺傳學 Chapter 22 slide 1

Size: px
Start display at page:

Download "Mohammed El-Khateeb. Tumor Genetics. MGL-12 July 21 st 2013 台大農藝系遺傳學 Chapter 22 slide 1"

Transcription

1 Mohammed El-Khateeb Tumor Genetics MGL-12 July 21 st 2013 台大農藝系遺傳學 Chapter 22 slide 1

2 Cellular Basis of Cancer Cancer is a collection of diseases characterized by abnormal and uncontrolled growth Cancer arises from a loss of normal growth control In normal tissues, the rates of new cell growth and old cell death are kept in balance In cancer, this balance is disrupted This disruption can result from 1) uncontrolled cell growth or 2) loss of a cell's ability to undergo apoptosis 2

3 Cancer Cell Do Not Grow Faster Than Normal Cells Rather, Their Growth is Just Uncontrolled 3

4 Cellular equilibrium Proliferation Differentiation Death Renewing Proliferating Transit Exiting 4

5 Cancer: disruption of cellular equilibrium Proliferation Differentiation Death5

6 Stem cells as the target of carcinogens Stem cell Differentiated Post mitotic Normal senescent differentiated cell Benign tumor Grade 2 malignancy Grade 3 or 4 malignancy 6

7 CELL GROWTH Cancer is a Disease of the Cell Cycle Cells in the body are "programmed" to: To develop To grow To differentiate To die in response to a complex system of biochemical signals. Cancer results from the emergence of a clone of cells freed of these developmental programming constraints and capable of inappropriate proliferation

8 Response to the Environmental Signals SIGNALS Growth Factors Steroids Cell to Cell Interaction RESPONSE Differentiation Growth and Death Mitosis

9 8.2, Regulation of cell division by signal transduction.

10 Five types of proteins encoded by proto-oncogenes participate in control of cell growth: Class I: Growth Factors Class II: Receptors for Growth Factors and Hormones Class III: Intracellular Signal Transducers Class IV: Nuclear Transcription Factors Class V: Cell-Cycle Control Proteins 10

11 Types of Growth Factors for Differentiation

12 Oncogenes and Proto-Oncogenes Products 1.Growth Factors 2.TM GF R (TKase) 3. Integral MR 4. Ras GTPase 5. Cytoplasmic Oncogenes 6. Nuclear Oncogene

13 Cancer cells have acquired the ability to proliferate in the absence of appropriate signals

14 Cancer: General Etiology and Pathogenesis Etiologic agents: Environmental (chemical, physical, and biological) Hereditary (familial cancer syndromes) General mechanisms: Acquired capabilities (Self-maintained replication, longer survival, genetic instability, neoangiogenesis, invasion and metastasis) Activation of oncogenes, inactivation of TSG, noneffective DNA repair Caretaker and gatekeeper pathways

15 THE CAUSES OF GENOMIC CHANGES IN CANCER : Somatic Changes Cause Damage Cancer Risk Signals Physical Chemical UV Radiation Skin Ca, Melanoma Thyroid Ca., Leucemia P53 (CC-TT) Translokation Benzopren Lung Ca. p53 (G-T) Aflatoxin Liver Ca. p53 (249 G-T) Oxidative Stress Geriatric Ca Biological HBV Liver Ca. P53 (C-T) Virus DNA Integration 15

16 Chemical Signals that Control the Cell Cycle 1. Cyclin and Kinase proteins that initiate mitosis requires buildup of cyclin to pair with kinase 2. Hormones chemical signals from specialized glands that stimulate mitosis 3. Growth Factors chemical factors produced locally that stimulate mitosis

17 Cell cycle and cancer: Cell differentiation occurs as cells proliferate to form tissues. Cell differentiation correlates with loss of ability to proliferate; highly specialized cells are terminally differentiated. Terminally differentiated cells have a finite life span, and are replaced with new cells produced from stem cells. Stem cells are capable of self-renewal; cells divide without undergoing terminal differentiation.

18 Cell Cycle Checkpoints Apoptosis Checkpoint Mitosis Spindle Assembly Checkpoint DNA Damage Checkpoints G2 assembly of components for division S chromosomes replicate P M A G1 T cytokinesis cytoplasm doubles DNA Damage Checkpoint

19 The Cell Cycle Oncogenes M (mitosis) G 1 (cell growth) G 2 DNA repair genes REPAIRS AHEAD S (synthesis) G 0 (resting) Tumor suppressor genes ASCO

20 Normal cell cycle is controlled by signal transduction: Growth factors bind to surface receptors on the cell; transmembrane proteins relay signals into the cell. Two types of growth factors: 1. Growth factors stimulate cell division. 2. Growth-inhibiting factors inhibit cell division Healthy cells divide only when growth factor and growthinhibiting factor balance favors cell division. Cancer cells divide without constraint (e.g., mutations in growth and growth-inhibiting factor genes).

21 Genetic Mechanisms of Tumors Gene deletions / amplifications Mutations Inserstional Point Mutations Genetic Instability Microsatellite Instability (MSI) Chromosomal Instability (CIN)

22 EXAMPLES

23 Environmental vs. Hereditary Cancer

24 Familial Clustering of Cancer Epidemiological studies show an increased relative risk of cancer in individuals with a family history of cancer This is probably due to a mixture of rare highly penetrant genes, commoner lower penetrance genes and environmental effects

25 Cancer Inheritance MULTIPLE HITS PROCESS The first hit it could be embryonic as in Retinoplastoma The others could be due to: Point mutation Loss of reduplication Deletion Mutation of normal gene Somatic recombination

26 Inherited Cancer Genes Neurofibromatosis type-1 P53 gene Familial Polyposis Gene (APC) Hereditary nonpolyposis colon cancer (HNCC) Breast Cancer Genes (BRCAI, BRCA2) P16 Familial Melanoma RET proto-oncogene and multiple endocrine neoplasia

27 SOLID TUMORS SARCOMAS In addition to leukemias and lymphomas some sarcomas also have specific chromosomal abnormalities One example is t(11;22) seen in Ewing s sarcoma in which the DNA binding domain of a transcription factor FLI1 is fused with the transactivation domain of EWSR1 gene

28

29 RECURRENT ABNORMALITIES EPITHELIAL TUMORS Small cell ca of the lung del(3)(p14- p24) Wilm s tumor del(11)(p13) Breast Her-2/neu amplification Mostly multiple abnormalities

30 Ovarian Cancer > 400 cases karyotyped 2 cytogenetic pathways 1: +7,+8q and +12 2: 6q- and 1q- 3 phases of karyotypic evolution 1. step wise changes 2. Increased chromosome instability 3. Triploidization with 6q- and 1q- CGH reveal multiple changes in the malignant and fewer changes in borderline tumors

31 Uterine leiomyomas and leiomyosarcomas Benign tumors such as leiomyomas also show recurrent chromosomal abnormalities such as t(12;14) and deletion of 7q 40% of leiomyomas show abnormal karyotypes Leiomyosarcomas show complex chromosomal rearrangements

32 COPY NUMBER CHANGES IN LEIOMYOSARCOMA LOSS GAIN 13q (59%) 10q(59%) 2q(35%) 16q(29%) 5p(35%) 6p amplification 17p amplification

33 The Familial Polyposis Gene (A PC), The familial polyposis gene (APC), which strikingly predisposes to colon cancer, was ultimately identified by mutations in patients. The inherited gene is also involved in the great majority of sporadic cases of colon polyps and colon cancer. This tumor suppressor gene has been shown to function as a major regulator of the Wnt pathway, a signaling system that is well characterized both biochemically and developmentally

34 Moderate Colorectal Cancer Risk Two first-degree relatives affected (0.4% population) One first-degree relative diagnosed <45y (0.2% population) Suggest colonoscopy at 35y (2% risk of polyp) and 55y (17-21% risk of polyp)

35 Morphological and Molecular Changes in Adenoma and Carcinoma Sequence

36

37 The Hereditary Nonpolyposis Colon Cancer Genes HNPCC is an inherited form of colorectal cancer that is caused by mutations in any of several genes involved in DNA mismatch repair. It represents an example of a cancer syndrome caused by genomic instability

38 Hereditary Non-Polyposis Colon Cancer 80% lifetime risk of colorectal cancer (males) 60% lifetime risk of endometrial cancer 10% risk of ovarian cancer Surveillance 1-2 yearly colonoscopies from 25y Consider endometrial screening by ultrasound and endometrial pipelle biopsy Consider ovarian screening by transvaginal ultrasound

39 Cancer and repair: HNPCC Mismatch repair defects Normal epithelium Adenoma Carcinoma Metastasis Accumulation of mutations in multiple genes Oncogenes: (gain of function) =increased proli-feration, etc. Tumor supressors: (loss of function) =loss of control: apoptosis, etc.

40

41 Retinoblastoma Deletions 13q14 or mutations of the RB1 gene Cell cycle regulatory protein that inhibits G1 to S phase transition 80% de novo mutations High rate of loss of heterozygosity in tumor tissue

42 Retinoplastoma Inheritance Inheritance of RB1 heterozygous Second hit occurs during embryonic life due to Point mutation Loss of reduplication Deletion Mutation of normal gene Somatic recombination

43 The Development of Hereditary Cancer 2 normal genes 1 damaged gene 2 damaged genes 1 normal gene Tumor develops In hereditary cancer, one damaged gene is inherited. 1 damaged gene 1 normal gene 2 damaged genes Tumor develops

44 Sporadic and Familial (Mendelian) forms of Cancer Knudson s Two-Hit Hypothesis Sporadic Normal tumor suppressor gene Somatic mutation in one allele Somatic mutation in other allele Single tumors, unilateral, later-onset two mutations (two hits) are required for loss of tumor suppressor function

45 Sporadic and Familial (Mendelian) Forms of Cancer Knudson s two-hit hypothesis Familial Tumor suppressor gene containing a germline mutation in one allele - heterozygous for the mutation Somatic mutation in other allele Multiple tumors, bilateral, early-onset two mutations (two hits) are required for loss of tumor suppressor function the first hit is inherited and the second hit is somatic

46 Neurofibromatosis Type 1 The gene responsible for NFl chro. 17q GAP Protein, and a similar role in signal transduction.

47 BRCA1 and BRCA2 High (60-80%) lifetime risk of breast cancer, both genes. Increased ovarian cancer risk (BRCA1>BRCA2) Surveillance for both indicated; mammography, MRI, TV ultrasound Consider prophylactic surgery

48 The Inherited Breast Cancer Genes: BRCA 1 and BRCA2 Mutations in BRCA 1 and BRCA2 are responsible for a large proportion of inherited breast cancer cases. These mutations usually result in a truncated protein product and loss of function. The protein products of both of these genes interact with RAD51, a DNA repair protein.

49 BRCA1-Linked Hereditary Breast and Ovarian Cancer 92 Breast, dx d Ovary, dx 59 d. 62 Breast, dx Breast, dx 59 Noncarrier BRCA1-mutation carrier Affected with cancer

50

51 p16 and Familial Melanoma Can be aused by loss-of-function mutations in the p 16 tumor suppressor gene or by gain-offunction mutations in the target of p16, the CDK4 proto-oncogene. Both mutations result in a loss of cell cycle control via the pri pathway.

52 CHROMOSOMAL ABNORMALITIES IN MALIGNANCIES 7/21/2013 MSK/UJ/GL2 52

53

54 Three classes of error lead to aneuploidy in tumor cells

55 Chronic Myelogenous Leukemia Invariably fatal The Philadelphia Chromosome Reciprocal Translocation long arm of HAS 22 < > small part of HSA 9 2 chromosomal changes Translocation causes oncogene activation

56 MOST FREQUENT CLONAL CHROMOSOME ABNORMALITIES IN HEMATOLOGIC MALIGNANCIES DIAGNOSIS: ABNORMALITY: CML, ALL t(9;22)(q34;q11.2) AML t(8;21)(q22;q22) APL t(15;17)(q22;q12~21) AML with EO inv(16)(p13q22) MDS /AML 5q-, -7, 7q-,+8, 20q- CLL del(13q), +12 ALL t(1;19)(q23;p13) t(4;11)(q21;q23) Burkitt s Lymphoma t(8;14)(q24;q32) Follicular Lymphoma t(14;18)(q32;q21) Mantle Cell Lymphoma t(11;14)(q13;q32)

57 Chromosomal Rearrangements or Translocations Neoplasm Translocation Proto-oncogene Burkitt lymphoma t(8;14) 80% of cases c-myc 1 t(8;22) 15% of cases t(2;8) 5% of cases Chronic myelogenous t(9;22) 90-95% of cases bcr-abl 2 leukemia Acute lymphocytic t(9;22) 10-15% of cases bcr-abl 2 leukemia 1 c-myc is translocated to the IgG locus, which results in its activated expression 2 bcr-abl fusion protein is produced, which results in a constitutively active abl kinase

58 Examples of Chromosomal Regions That Show Loss of Heterozygosity in Tumors Chormosome Region Disorder(s) Associated TSG lq Breast carcinoma Unknown 3p Small~celllung carcinoma Unknown 5q Familial polyposis coli; colorectal carcinoma MCC 11 p Wilms tumor; rhabdomyosarcoma WTl 13q Retinoblastoma; breast carcinoma; osteosarcomas RB 1 17p Colorectal carcinoma; breast cancer TP53 18q Colorectal carcinoma DCC 22 Neurofibromatosis, type 2 Unknown

59 Cancer: General Etiology and Pathogenesis

Mohammed El-Khateeb. Tumor Genetics. MGL-12 May 13 th Chapter 22 slide 1 台大農藝系遺傳學

Mohammed El-Khateeb. Tumor Genetics. MGL-12 May 13 th Chapter 22 slide 1 台大農藝系遺傳學 Mohammed El-Khateeb Tumor Genetics MGL-12 May 13 th 2014 台大農藝系遺傳學 601 20000 Chapter 22 slide 1 Cancer Genetics Types of Genetic Alterations in Cancer Evidence that Mutations Cause Cancer Multistage Model

More information

Cancer Genetics. What is Cancer? Cancer Classification. Medical Genetics. Uncontrolled growth of cells. Not all tumors are cancerous

Cancer Genetics. What is Cancer? Cancer Classification. Medical Genetics. Uncontrolled growth of cells. Not all tumors are cancerous Session8 Medical Genetics Cancer Genetics J avad Jamshidi F a s a U n i v e r s i t y o f M e d i c a l S c i e n c e s, N o v e m b e r 2 0 1 7 What is Cancer? Uncontrolled growth of cells Not all tumors

More information

oncogenes-and- tumour-suppressor-genes)

oncogenes-and- tumour-suppressor-genes) Special topics in tumor biochemistry oncogenes-and- tumour-suppressor-genes) Speaker: Prof. Jiunn-Jye Chuu E-Mail: jjchuu@mail.stust.edu.tw Genetic Basis of Cancer Cancer-causing mutations Disease of aging

More information

Multistep nature of cancer development. Cancer genes

Multistep nature of cancer development. Cancer genes Multistep nature of cancer development Phenotypic progression loss of control over cell growth/death (neoplasm) invasiveness (carcinoma) distal spread (metastatic tumor) Genetic progression multiple genetic

More information

Cancer genetics

Cancer genetics Cancer genetics General information about tumorogenesis. Cancer induced by viruses. The role of somatic mutations in cancer production. Oncogenes and Tumor Suppressor Genes (TSG). Hereditary cancer. 1

More information

Karyotype analysis reveals transloction of chromosome 22 to 9 in CML chronic myelogenous leukemia has fusion protein Bcr-Abl

Karyotype analysis reveals transloction of chromosome 22 to 9 in CML chronic myelogenous leukemia has fusion protein Bcr-Abl Chapt. 18 Cancer Molecular Biology of Cancer Student Learning Outcomes: Describe cancer diseases in which cells no longer respond Describe how cancers come from genomic mutations (inherited or somatic)

More information

Determination Differentiation. determinated precursor specialized cell

Determination Differentiation. determinated precursor specialized cell Biology of Cancer -Developmental Biology: Determination and Differentiation -Cell Cycle Regulation -Tumor genes: Proto-Oncogenes, Tumor supressor genes -Tumor-Progression -Example for Tumor-Progression:

More information

A class of genes that normally suppress cell proliferation. p53 and Rb..ect. suppressor gene products can release cells. hyperproliferation.

A class of genes that normally suppress cell proliferation. p53 and Rb..ect. suppressor gene products can release cells. hyperproliferation. Tumor Suppressor Genes A class of genes that normally suppress cell proliferation. p53 and Rb..ect Mutations that inactivate the tumor suppressor gene products can release cells from growth suppression

More information

CELL CYCLE REGULATION AND CANCER. Cellular Reproduction II

CELL CYCLE REGULATION AND CANCER. Cellular Reproduction II CELL CYCLE REGULATION AND CANCER Cellular Reproduction II THE CELL CYCLE Interphase G1- gap phase 1- cell grows and develops S- DNA synthesis phase- cell replicates each chromosome G2- gap phase 2- cell

More information

HST.161 Molecular Biology and Genetics in Modern Medicine Fall 2007

HST.161 Molecular Biology and Genetics in Modern Medicine Fall 2007 MIT OpenCourseWare http://ocw.mit.edu HST.161 Molecular Biology and Genetics in Modern Medicine Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Chapt 15: Molecular Genetics of Cell Cycle and Cancer

Chapt 15: Molecular Genetics of Cell Cycle and Cancer Chapt 15: Molecular Genetics of Cell Cycle and Cancer Student Learning Outcomes: Describe the cell cycle: steps taken by a cell to duplicate itself = cell division; Interphase (G1, S and G2), Mitosis.

More information

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation Cancer The fundamental defect is unregulated cell division. Properties of Cancerous Cells Altered growth and proliferation Loss of growth factor dependence Loss of contact inhibition Immortalization Alterated

More information

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation Cancer The fundamental defect is unregulated cell division. Properties of Cancerous Cells Altered growth and proliferation Loss of growth factor dependence Loss of contact inhibition Immortalization Alterated

More information

CANCER. Inherited Cancer Syndromes. Affects 25% of US population. Kills 19% of US population (2nd largest killer after heart disease)

CANCER. Inherited Cancer Syndromes. Affects 25% of US population. Kills 19% of US population (2nd largest killer after heart disease) CANCER Affects 25% of US population Kills 19% of US population (2nd largest killer after heart disease) NOT one disease but 200-300 different defects Etiologic Factors In Cancer: Relative contributions

More information

Early Embryonic Development

Early Embryonic Development Early Embryonic Development Maternal effect gene products set the stage by controlling the expression of the first embryonic genes. 1. Transcription factors 2. Receptors 3. Regulatory proteins Maternal

More information

Neoplasia 18 lecture 6. Dr Heyam Awad MD, FRCPath

Neoplasia 18 lecture 6. Dr Heyam Awad MD, FRCPath Neoplasia 18 lecture 6 Dr Heyam Awad MD, FRCPath ILOS 1. understand the role of TGF beta, contact inhibition and APC in tumorigenesis. 2. implement the above knowledge in understanding histopathology reports.

More information

Lecture 8 Neoplasia II. Dr. Nabila Hamdi MD, PhD

Lecture 8 Neoplasia II. Dr. Nabila Hamdi MD, PhD Lecture 8 Neoplasia II Dr. Nabila Hamdi MD, PhD ILOs Understand the definition of neoplasia. List the classification of neoplasia. Describe the general characters of benign tumors. Understand the nomenclature

More information

Tumor suppressor genes D R. S H O S S E I N I - A S L

Tumor suppressor genes D R. S H O S S E I N I - A S L Tumor suppressor genes 1 D R. S H O S S E I N I - A S L What is a Tumor Suppressor Gene? 2 A tumor suppressor gene is a type of cancer gene that is created by loss-of function mutations. In contrast to

More information

Introduction. Cancer Biology. Tumor-suppressor genes. Proto-oncogenes. DNA stability genes. Mechanisms of carcinogenesis.

Introduction. Cancer Biology. Tumor-suppressor genes. Proto-oncogenes. DNA stability genes. Mechanisms of carcinogenesis. Cancer Biology Chapter 18 Eric J. Hall., Amato Giaccia, Radiobiology for the Radiologist Introduction Tissue homeostasis depends on the regulated cell division and self-elimination (programmed cell death)

More information

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar Link full download:https://getbooksolutions.com/download/test-bank-for-robbinsand-cotran-pathologic-basis-of-disease-9th-edition-by-kumar Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th

More information

MOLECULAR BASIS OF ONCOGENESIS

MOLECULAR BASIS OF ONCOGENESIS MOLECULAR BASIS OF ONCOGENESIS MUDr. Jiří Vachtenheim, CSc. 1 Cell processes which result also in cell cycle effects. Differentiation. Differentiated cells are usually in the G0 phase of the cell cycle.

More information

LESSON 3.2 WORKBOOK. How do normal cells become cancer cells? Workbook Lesson 3.2

LESSON 3.2 WORKBOOK. How do normal cells become cancer cells? Workbook Lesson 3.2 For a complete list of defined terms, see the Glossary. Transformation the process by which a cell acquires characteristics of a tumor cell. LESSON 3.2 WORKBOOK How do normal cells become cancer cells?

More information

American Society of Cytopathology Core Curriculum in Molecular Biology

American Society of Cytopathology Core Curriculum in Molecular Biology American Society of Cytopathology Core Curriculum in Molecular Biology American Society of Cytopathology Core Curriculum in Molecular Biology Chapter 1 Molecular Basis of Cancer Molecular Oncology Keisha

More information

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar Link full download: http://testbankair.com/download/test-bank-for-robbins-cotran-pathologic-basis-of-disease-9th-edition-bykumar-abbas-and-aster Test Bank for Robbins and Cotran Pathologic Basis of Disease

More information

number Done by Corrected by Doctor Maha Shomaf

number Done by Corrected by Doctor Maha Shomaf number 19 Done by Waseem Abo-Obeida Corrected by Abdullah Zreiqat Doctor Maha Shomaf Carcinogenesis: the molecular basis of cancer. Non-lethal genetic damage lies at the heart of carcinogenesis and leads

More information

What All of Us Should Know About Cancer and Genetics

What All of Us Should Know About Cancer and Genetics What All of Us Should Know About Cancer and Genetics Beth A. Pletcher, MD, FAAP, FACMG Associate Professor of Pediatrics UMDNJ- New Jersey Medical School Disclosures I have no relevant financial relationships

More information

Biochemistry of Carcinogenesis. Lecture # 35 Alexander N. Koval

Biochemistry of Carcinogenesis. Lecture # 35 Alexander N. Koval Biochemistry of Carcinogenesis Lecture # 35 Alexander N. Koval What is Cancer? The term "cancer" refers to a group of diseases in which cells grow and spread unrestrained throughout the body. It is difficult

More information

Molecular Cell Biology. Prof. D. Karunagaran. Department of Biotechnology. Indian Institute of Technology Madras

Molecular Cell Biology. Prof. D. Karunagaran. Department of Biotechnology. Indian Institute of Technology Madras Molecular Cell Biology Prof. D. Karunagaran Department of Biotechnology Indian Institute of Technology Madras Module 9 Molecular Basis of Cancer, Oncogenes and Tumor Suppressor Genes Lecture 2 Genes Associated

More information

Activation of cellular proto-oncogenes to oncogenes. How was active Ras identified?

Activation of cellular proto-oncogenes to oncogenes. How was active Ras identified? Dominant Acting Oncogenes Eugene E. Marcantonio, M.D. Ph.D. Oncogenes are altered forms of normal cellular genes called proto-oncogenes that are involved in pathways regulating cell growth, differentiation,

More information

What causes cancer? Physical factors (radiation, ionization) Chemical factors (carcinogens) Biological factors (virus, bacteria, parasite)

What causes cancer? Physical factors (radiation, ionization) Chemical factors (carcinogens) Biological factors (virus, bacteria, parasite) Oncogenes What causes cancer? Chemical factors (carcinogens) Physical factors (radiation, ionization) Biological factors (virus, bacteria, parasite) DNA Mutation or damage Oncogenes Tumor suppressor genes

More information

Section D: The Molecular Biology of Cancer

Section D: The Molecular Biology of Cancer CHAPTER 19 THE ORGANIZATION AND CONTROL OF EUKARYOTIC GENOMES Section D: The Molecular Biology of Cancer 1. Cancer results from genetic changes that affect the cell cycle 2. Oncogene proteins and faulty

More information

Introduction to Cancer Biology

Introduction to Cancer Biology Introduction to Cancer Biology Robin Hesketh Multiple choice questions (choose the one correct answer from the five choices) Which ONE of the following is a tumour suppressor? a. AKT b. APC c. BCL2 d.

More information

609G: Concepts of Cancer Genetics and Treatments (3 credits)

609G: Concepts of Cancer Genetics and Treatments (3 credits) Master of Chemical and Life Sciences Program College of Computer, Mathematical, and Natural Sciences 609G: Concepts of Cancer Genetics and Treatments (3 credits) Text books: Principles of Cancer Genetics,

More information

1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples. Major Principles:

1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples. Major Principles: Carcinogenesis 1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples Carcinogenesis Major Principles: 1. Nonlethal genetic damage is central to

More information

Molecular biology :- Cancer genetics lecture 11

Molecular biology :- Cancer genetics lecture 11 Molecular biology :- Cancer genetics lecture 11 -We have talked about 2 group of genes that is involved in cellular transformation : proto-oncogenes and tumour suppressor genes, and it isn t enough to

More information

Chapter 18- Oncogenes, tumor suppressors & Cancer

Chapter 18- Oncogenes, tumor suppressors & Cancer Chapter 18- Oncogenes, tumor suppressors & Cancer - Previously we have talked about cancer which is an uncontrolled cell proliferation and we have discussed about the definition of benign, malignant, metastasis

More information

Lecture 1: Carcinogenesis

Lecture 1: Carcinogenesis Lecture 1: Carcinogenesis Anti-cancer (oncology agents): These are perhaps the most dangerous of drugs, other than the narcotic analgesics. This is due to their toxicities. Killing or inhibiting cancer

More information

Dr Rodney Itaki Lecturer Anatomical Pathology Discipline. University of Papua New Guinea School of Medicine & Health Sciences Division of Pathology

Dr Rodney Itaki Lecturer Anatomical Pathology Discipline. University of Papua New Guinea School of Medicine & Health Sciences Division of Pathology Neoplasia Dr Rodney Itaki Lecturer Anatomical Pathology Discipline University of Papua New Guinea School of Medicine & Health Sciences Division of Pathology General Considerations Overview: Neoplasia uncontrolled,

More information

Development of Carcinoma Pathways

Development of Carcinoma Pathways The Construction of Genetic Pathway to Colorectal Cancer Moriah Wright, MD Clinical Fellow in Colorectal Surgery Creighton University School of Medicine Management of Colon and Diseases February 23, 2019

More information

Cell Cycle and Cancer

Cell Cycle and Cancer 142 8. Cell Cycle and Cancer NOTES CELL CYCLE G 0 state o Resting cells may re-enter the cell cycle Nondividing cells (skeletal and cardiac muscle, neurons) o Have left the cell cycle and cannot undergo

More information

Chapter 9. Cells Grow and Reproduce

Chapter 9. Cells Grow and Reproduce Chapter 9 Cells Grow and Reproduce DNA Replication DNA polymerase Addition of a nucleotide to the 3 end of a growing strand Use dntps as substrate Release of pyrophosphate Initiation of Replication Replication

More information

Genetics and Cancer Ch 20

Genetics and Cancer Ch 20 Genetics and Cancer Ch 20 Cancer is genetic Hereditary cancers Predisposition genes Ex. some forms of colon cancer Sporadic cancers ~90% of cancers Descendants of cancerous cells all cancerous (clonal)

More information

Emerging" hallmarks of cancer, a. Reprogramming of energy metabolism b. Evasion of the immune system, Enabling characteristics, a.

Emerging hallmarks of cancer, a. Reprogramming of energy metabolism b. Evasion of the immune system, Enabling characteristics, a. HALLMARKS OF CANCER - Together dictate the malignant phenotype. 1. Self-sufficiency in growth signals 2. Insensitivity to growth inhibitory signals 3. Evasion of cell death 4. Limitless replicative potential

More information

AllinaHealthSystems 1

AllinaHealthSystems 1 Overview Biology and Introduction to the Genetics of Cancer Denise Jones, MS, CGC Certified Genetic Counselor Virginia Piper Cancer Service Line I. Our understanding of cancer the historical perspective

More information

Biochemistry of Cancer and Tumor Markers

Biochemistry of Cancer and Tumor Markers Biochemistry of Cancer and Tumor Markers The term cancer applies to a group of diseases in which cells grow abnormally and form a malignant tumor. It is a long term multistage genetic process. The first

More information

Deregulation of signal transduction and cell cycle in Cancer

Deregulation of signal transduction and cell cycle in Cancer Deregulation of signal transduction and cell cycle in Cancer Tuangporn Suthiphongchai, Ph.D. Department of Biochemistry Faculty of Science, Mahidol University Email: tuangporn.sut@mahidol.ac.th Room Pr324

More information

Section D. Genes whose Mutation can lead to Initiation

Section D. Genes whose Mutation can lead to Initiation This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Carcinogenesis. Carcinogenesis. 1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples

Carcinogenesis. Carcinogenesis. 1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples Carcinogenesis 1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples Major Principles (cont d) 4. Principle targets of genetic damage: 4 classes

More information

Cancer Genomics 101. BCCCP 2015 Annual Meeting

Cancer Genomics 101. BCCCP 2015 Annual Meeting Cancer Genomics 101 BCCCP 2015 Annual Meeting Objectives Identify red flags in a person s personal and family medical history that indicate a potential inherited susceptibility to cancer Develop a systematic

More information

Information for You and Your Family

Information for You and Your Family Information for You and Your Family What is Prevention? Cancer prevention is action taken to lower the chance of getting cancer. In 2017, more than 1.6 million people will be diagnosed with cancer in the

More information

Cancer and Gene Alterations - 1

Cancer and Gene Alterations - 1 Cancer and Gene Alterations - 1 Cancer and Gene Alteration As we know, cancer is a disease of unregulated cell growth. Although we looked at some of the features of cancer when we discussed mitosis checkpoints,

More information

Genetics of Oncology. Ryan Allen Roy MD July 8, 2004 University of Tennessee

Genetics of Oncology. Ryan Allen Roy MD July 8, 2004 University of Tennessee Genetics of Oncology Ryan Allen Roy MD July 8, 2004 University of Tennessee CREOG Objectives Describe the clinical relevance of viral oncogenes Describe the role of aneuploidy in the pathogenesis of neoplasia

More information

Cancer and sornat ic evolution

Cancer and sornat ic evolution Chapter 1 Cancer and sornat ic evolution 1.1 What is cancer? The development and healthy life of a human being requires the cooperation of more than ten million cells for the good of the organism. This

More information

Colon Cancer and Hereditary Cancer Syndromes

Colon Cancer and Hereditary Cancer Syndromes Colon Cancer and Hereditary Cancer Syndromes Gisela Keller Institute of Pathology Technische Universität München gisela.keller@lrz.tum.de Colon Cancer and Hereditary Cancer Syndromes epidemiology models

More information

Chapter 12. Regulation of Cell Division. AP Biology

Chapter 12. Regulation of Cell Division. AP Biology Chapter 12. Regulation of Cell Division Coordination of cell division! Multicellular organism " need to coordinate across different parts of organism! timing of cell division! rates of cell division "

More information

Cancer. Questions about cancer. What is cancer? What causes unregulated cell growth? What regulates cell growth? What causes DNA damage?

Cancer. Questions about cancer. What is cancer? What causes unregulated cell growth? What regulates cell growth? What causes DNA damage? Questions about cancer What is cancer? Cancer Gil McVean, Department of Statistics, Oxford What causes unregulated cell growth? What regulates cell growth? What causes DNA damage? What are the steps in

More information

CELL CYCLE MOLECULAR BASIS OF ONCOGENESIS

CELL CYCLE MOLECULAR BASIS OF ONCOGENESIS CELL CYCLE MOLECULAR BASIS OF ONCOGENESIS Summary of the regulation of cyclin/cdk complexes during celll cycle Cell cycle phase Cyclin-cdk complex inhibitor activation Substrate(s) G1 Cyclin D/cdk 4,6

More information

TUMOR-SUPPRESSOR GENES. Molecular Oncology Michael Lea

TUMOR-SUPPRESSOR GENES. Molecular Oncology Michael Lea TUMOR-SUPPRESSOR GENES Molecular Oncology 2011 Michael Lea TUMOR-SUPPRESSOR GENES - Lecture Outline 1. Summary of tumor suppressor genes 2. P53 3. Rb 4. BRCA1 and 2 5. APC and DCC 6. PTEN and PPA2 7. LKB1

More information

Familial and Hereditary Colon Cancer

Familial and Hereditary Colon Cancer Familial and Hereditary Colon Cancer Aasma Shaukat, MD, MPH, FACG, FASGE, FACP GI Section Chief, Minneapolis VAMC Associate Professor, Division of Gastroenterology, Department of Medicine, University of

More information

Lecture 1: Carcinogenesis

Lecture 1: Carcinogenesis Lecture 1: Carcinogenesis Anti-cancer (oncology agents): These are perhaps the most dangerous of drugs, other than the narcotic analgesics. This is due to their toxicities. Killing or inhibiting cancer

More information

BIT 120. Copy of Cancer/HIV Lecture

BIT 120. Copy of Cancer/HIV Lecture BIT 120 Copy of Cancer/HIV Lecture Cancer DEFINITION Any abnormal growth of cells that has malignant potential i.e.. Leukemia Uncontrolled mitosis in WBC Genetic disease caused by an accumulation of mutations

More information

Part II The Cell Cell Division, Chapter 2 Outline of class notes

Part II The Cell Cell Division, Chapter 2 Outline of class notes Part II The Cell Cell Division, Chapter 2 Outline of class notes 1 Cellular Division Overview Types of Cell Division Chromosomal Number The Cell Cycle Mitoses Cancer Cells In Vitro Fertilization Infertility

More information

Molecular mechanisms of human carcinogenesis

Molecular mechanisms of human carcinogenesis Cancer: Cell Structures, Carcinogens and Genomic Instability Edited by Leon P. Bignold 2006 Birkhäuser Verlag/Switzerland 321 Molecular mechanisms of human carcinogenesis William B. Coleman 1 and Gregory

More information

Familial and Hereditary Colon Cancer

Familial and Hereditary Colon Cancer Familial and Hereditary Colon Cancer Aasma Shaukat, MD, MPH, FACG, FASGE, FACP GI Section Chief, Minneapolis VAMC Associate Professor, Division of Gastroenterology, Department of Medicine, University of

More information

Biology is the only subject in which multiplication is the same thing as division

Biology is the only subject in which multiplication is the same thing as division The Cell Cycle Biology is the only subject in which multiplication is the same thing as division Why do cells divide? For reproduction asexual reproduction For growth one-celled organisms from fertilized

More information

Tumour Structure and Nomenclature. Paul Edwards. Department of Pathology and Cancer Research UK Cambridge Institute, University of Cambridge

Tumour Structure and Nomenclature. Paul Edwards. Department of Pathology and Cancer Research UK Cambridge Institute, University of Cambridge Tumour Structure and Nomenclature Paul Edwards Department of Pathology and Cancer Research UK Cambridge Institute, University of Cambridge Malignant Metastasis Core idea of cancer Normal Cell Slightly

More information

Oncogenes and Tumor Suppressors MCB 5068 November 12, 2013 Jason Weber

Oncogenes and Tumor Suppressors MCB 5068 November 12, 2013 Jason Weber Oncogenes and Tumor Suppressors MCB 5068 November 12, 2013 Jason Weber jweber@dom.wustl.edu Oncogenes & Cancer DNA Tumor Viruses Simian Virus 40 p300 prb p53 Large T Antigen Human Adenovirus p300 E1A

More information

BASIC CONCEPTS OF CANCER: GENOMIC DETERMINATION

BASIC CONCEPTS OF CANCER: GENOMIC DETERMINATION BASIC CONCEPTS OF CANCER: GENOMIC DETERMINATION Edith Oláh Corresponding author s address: Prof. Edith Olah, Ph.D., D.Sc. Department of Molecular Genetics, National Institute of Oncology, H-1525 Budapest,

More information

Regulation of Cell Division. AP Biology

Regulation of Cell Division. AP Biology Regulation of Cell Division 2006-2007 Coordination of cell division A multicellular organism needs to coordinate cell division across different tissues & organs critical for normal growth, development

More information

Asingle inherited mutant gene may be enough to

Asingle inherited mutant gene may be enough to 396 Cancer Inheritance STEVEN A. FRANK Asingle inherited mutant gene may be enough to cause a very high cancer risk. Single-mutation cases have provided much insight into the genetic basis of carcinogenesis,

More information

Colonic polyps and colon cancer. Andrew Macpherson Director of Gastroentology University of Bern

Colonic polyps and colon cancer. Andrew Macpherson Director of Gastroentology University of Bern Colonic polyps and colon cancer Andrew Macpherson Director of Gastroentology University of Bern Improtance of the problem of colon cancers - Epidemiology Lifetime risk 5% Incidence/10 5 /annum (US Detroit

More information

VIII Curso Internacional del PIRRECV. Some molecular mechanisms of cancer

VIII Curso Internacional del PIRRECV. Some molecular mechanisms of cancer VIII Curso Internacional del PIRRECV Some molecular mechanisms of cancer Laboratorio de Comunicaciones Celulares, Centro FONDAP Estudios Moleculares de la Celula (CEMC), ICBM, Facultad de Medicina, Universidad

More information

HEREDITY & CANCER: Breast cancer as a model

HEREDITY & CANCER: Breast cancer as a model HEREDITY & CANCER: Breast cancer as a model Pierre O. Chappuis, MD Divisions of Oncology and Medical Genetics University Hospitals of Geneva, Switzerland Genetics, Cancer and Heredity Cancers are genetic

More information

Computational Systems Biology: Biology X

Computational Systems Biology: Biology X Bud Mishra Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA L#4:(October-0-4-2010) Cancer and Signals 1 2 1 2 Evidence in Favor Somatic mutations, Aneuploidy, Copy-number changes and LOH

More information

Mitosis and the Cell Cycle

Mitosis and the Cell Cycle Mitosis and the Cell Cycle Chapter 12 The Cell Cycle: Cell Growth & Cell Division Where it all began You started as a cell smaller than a period at the end of a sentence Getting from there to here Cell

More information

Evolution at Its Worst: Cancer. SHP-Neurobiology of Development and Disease

Evolution at Its Worst: Cancer. SHP-Neurobiology of Development and Disease Evolution at Its Worst: Cancer SHP-Neurobiology of Development and Disease Introduction to Cancer Cancer is currently the second leading cause of death in the US (22.8%) behind heart disease. Yearly 0.5%

More information

The mutations that drive cancer. Paul Edwards. Department of Pathology and Cancer Research UK Cambridge Institute, University of Cambridge

The mutations that drive cancer. Paul Edwards. Department of Pathology and Cancer Research UK Cambridge Institute, University of Cambridge The mutations that drive cancer Paul Edwards Department of Pathology and Cancer Research UK Cambridge Institute, University of Cambridge Previously on Cancer... hereditary predisposition Normal Cell Slightly

More information

Lynch Syndrome. Angie Strang, PGY2

Lynch Syndrome. Angie Strang, PGY2 Lynch Syndrome Angie Strang, PGY2 Background Previously hereditary nonpolyposis colorectal cancer Autosomal dominant inherited cancer susceptibility syndrome Caused by defects in the mismatch repair system

More information

Oncogenes and tumour suppressor genes

Oncogenes and tumour suppressor genes Cancer mutations disrupt cellular homeostasis Oncogenes and tumour suppressor genes Oncogenes: Gain of function mutations Proto-oncogene Tumour suppressor genes: loss of function mutations Normal cell

More information

Regulation of Cell Division

Regulation of Cell Division Regulation of Cell Division Two HeLa cancer cells are just completing cytokinesis. Explain how the cell division of cancer cells like these is misregulated. Identify genetic and other changes that might

More information

Cancer statistics (US)

Cancer statistics (US) Disclosure I have no financial relationships to disclose Biology and Introduction to the Genetics of Cancer Vickie Matthias Hagen, MS, CGC Certified Genetic Counselor Virginia Piper Cancer Service Line

More information

Chapter 4 Cellular Oncogenes ~ 4.6 -

Chapter 4 Cellular Oncogenes ~ 4.6 - Chapter 4 Cellular Oncogenes - 4.2 ~ 4.6 - Many retroviruses carrying oncogenes have been found in chickens and mice However, attempts undertaken during the 1970s to isolate viruses from most types of

More information

Bihong Zhao, M.D, Ph.D Department of Pathology

Bihong Zhao, M.D, Ph.D Department of Pathology Bihong Zhao, M.D, Ph.D Department of Pathology 04-28-2009 Is tumor self or non-self? How are tumor antigens generated? What are they? How does immune system respond? Introduction Tumor Antigens/Categories

More information

Disorders of Cell Growth & Neoplasia. Lecture 4 Molecular basis of cancer

Disorders of Cell Growth & Neoplasia. Lecture 4 Molecular basis of cancer General Pathology VPM 152 Disorders of Cell Growth & Neoplasia Lecture 4 Molecular basis of cancer Enrique Aburto Apr 2010 Skin tumor in a 10-year-old Rottweiler. Considering the external appearance and

More information

Hereditary Non Polyposis Colorectal Cancer(HNPCC) From clinic to genetics

Hereditary Non Polyposis Colorectal Cancer(HNPCC) From clinic to genetics From clinic to genetics Question 1) Clinical pattern of inheritance of the HNPCC-Syndrome? Question 1) Clinical pattern of inheritance of the HNPCC-Syndrome? Autosomal dominant Question 2) Incidence of

More information

Colorectal adenocarcinoma leading cancer in developed countries In US, annual deaths due to colorectal adenocarcinoma 57,000.

Colorectal adenocarcinoma leading cancer in developed countries In US, annual deaths due to colorectal adenocarcinoma 57,000. Colonic Neoplasia Remotti Colorectal adenocarcinoma leading cancer in developed countries In US, annual incidence of colorectal adenocarcinoma 150,000. In US, annual deaths due to colorectal adenocarcinoma

More information

CANCER GENETICS PROVIDER SURVEY

CANCER GENETICS PROVIDER SURVEY Dear Participant, Previously you agreed to participate in an evaluation of an education program we developed for primary care providers on the topic of cancer genetics. This is an IRB-approved, CDCfunded

More information

Oncogenes and Tumor. supressors

Oncogenes and Tumor. supressors Oncogenes and Tumor supressors From history to therapeutics Serge ROCHE Neoplastic transformation TUMOR SURESSOR ONCOGENE ONCOGENES History 1911 1960 1980 2001 Transforming retrovirus RSV v-src is an oncogene

More information

Ch 7 Mutation. A heritable change in DNA Random Source of genetic variation in a species may be advantageous, deleterious, neutral

Ch 7 Mutation. A heritable change in DNA Random Source of genetic variation in a species may be advantageous, deleterious, neutral Ch 7 Mutation A heritable change in DNA Random Source of genetic variation in a species may be advantageous, deleterious, neutral Mutation (+ sexual reproduction) + natural selection = evolution Types

More information

Regulation of Cell Division (Ch. 12)

Regulation of Cell Division (Ch. 12) Regulation of Cell Division (Ch. 12) Coordination of cell division A multicellular organism needs to coordinate cell division across different tissues & organs critical for normal growth, development &

More information

Risk of Colorectal Cancer (CRC) Hereditary Syndromes in GI Cancer GENETIC MALPRACTICE

Risk of Colorectal Cancer (CRC) Hereditary Syndromes in GI Cancer GENETIC MALPRACTICE Identifying the Patient at Risk for an Inherited Syndrome Sapna Syngal, MD, MPH, FACG Director, Gastroenterology Director, Familial GI Program Dana-Farber/Brigham and Women s Cancer Center Associate Professor

More information

An adult human has somewhere around one hundred trillion (10 14 ) cells

An adult human has somewhere around one hundred trillion (10 14 ) cells 2/22/10 Cancer genetics Inside cancer web site http://www.insidecancer.org/ National Cancer Institute http://www.cancer.gov/cancerinfo/ An adult human has somewhere around one hundred trillion (10 14 )

More information

Cancer Cells. It would take another 20 years and a revolution in the techniques of biological research to answer these questions.

Cancer Cells. It would take another 20 years and a revolution in the techniques of biological research to answer these questions. Cancer Cells Cancer, then, is a disease in which a single normal body cell undergoes a genetic transformation into a cancer cell. This cell and its descendants, proliferating across many years, produce

More information

Cancer. October is National Breast Cancer Awareness Month

Cancer. October is National Breast Cancer Awareness Month Cancer October is National Breast Cancer Awareness Month Objectives 1: Gene regulation Explain how cells in all the different parts of your body develop such different characteristics and functions. Contrast

More information

Chapter 9, Part 1: Biology of Cancer and Tumor Spread

Chapter 9, Part 1: Biology of Cancer and Tumor Spread PATHOPHYSIOLOGY Name Chapter 9, Part 1: Biology of Cancer and Tumor Spread I. Cancer Characteristics and Terminology Neoplasm new growth, involves the overgrowth of tissue to form a neoplastic mass (tumor).

More information

A Genetic Program for Embryonic Development

A Genetic Program for Embryonic Development Concept 18.4: A program of differential gene expression leads to the different cell types in a multicellular organism During embryonic development, a fertilized egg gives rise to many different cell types

More information

Célia DeLozier-Blanchet

Célia DeLozier-Blanchet The Genetics Consultation in OB-GYN : Hereditary cancers Célia DeLozier-Blanchet Division of Medical Genetics, Geneva University Hospital It is probable that all cancers are genetic! genetic vs. hereditary

More information

Genomic Instability. Kent Nastiuk, PhD Dept. Cancer Genetics Roswell Park Cancer Institute. RPN-530 Oncology for Scientist-I October 18, 2016

Genomic Instability. Kent Nastiuk, PhD Dept. Cancer Genetics Roswell Park Cancer Institute. RPN-530 Oncology for Scientist-I October 18, 2016 Genomic Instability Kent Nastiuk, PhD Dept. Cancer Genetics Roswell Park Cancer Institute RPN-530 Oncology for Scientist-I October 18, 2016 Previous lecturers supplying slides/notes/inspiration Daniel

More information

Multistep Carcinogenesis

Multistep Carcinogenesis Multistep Carcinogenesis M.Rosemann, Institute for Radiation Biology Helmholtz Center Munich, Research Centre for Health and Environment The Hallmarks of Cancer D.Hanahan, Cell 2011 The Hallmarks of Cancer

More information