Sources of ionizing radiation Atomic structure and radioactivity Radiation interaction with matter Radiation units and dose Biological effects

Size: px
Start display at page:

Download "Sources of ionizing radiation Atomic structure and radioactivity Radiation interaction with matter Radiation units and dose Biological effects"

Transcription

1 INTRODUCTION TO RADIATION PROTECTION Sources of ionizing radiation Atomic structure and radioactivity Radiation interaction with matter Radiation units and dose Biological effects 3/14/2018 1

2 Wilhelm C. Roentgen ( ) In 1895, while working with electricallyenergized, sealedglass Crookes tubes, he discovered that photographic plates kept near the tubes become darkened. 2

3 X-Ray Photography Roentgen assumes previously unknown X-RAYS are escaping the tube. Roentgen makes photo images with x-rays and shows they easily penetrate soft tissue. 3

4 Henri Becquerel ( ) In 1896, discovered other invisible rays coming from natural Uranium would also darken photo plates. 4

5 Roentgen and Becquerel had discovered IONIZING RADIATION Ionizing Radiations (causing alteration of photo media) are generated by high energy natural or manmade processes occurring within the atom. 3/14/2018 5

6 Ionizing Radiation Possess enough energy to remove electrons from atoms, creating ion pairs. These ion pairs then go on to create highly reactive chemicals that can damage DNA and other important cellular molecules. 3/14/2018 6

7 We live in a sea of ionizing radiation Terrestrial Cosmic Human generated Accelerators Reactors Medical procedures Industrial (radiography, airports, interrogation) 3/14/2018 7

8 Radiation Use Availability and use of radioactive materials exploded after World War II. 3/14/2018 8

9 Radiation in the Workplace Research Medicine Radiation Therapy Laboratory Use Irradiations Nuclear Medicine 3/14/2018 9

10 Radiation in the Workplace Measurement and Quality Control Measure Thickness Static Control Industrial Radiography Measure Density 3/14/

11 Radiation in the Workplace Baggage X-ray 3/14/

12 Radiation in the Environment Biomedical/Industrial wastes or byproducts Lost sources 3/14/

13 Radiation in the Environment Active Production or Processing Sites Closed/Abandoned Production or Processing Sites 3/14/

14 Radiation in the Environment Nuclear Accidents 3/14/

15 Detecting Incoming Radioactive Materials Seaports Borders Airports 3/14/

16 Where does it come from? Can be naturally occurring or man-made Produce radiation at all times, but decays away over time. If unsealed and loose, it can be easily spread around (contamination). 3/14/

17 ISOTOPE ½ Life APPLICATIONS Uranium billions of years Natural uranium is comprised of several different isotopes. When enriched in the isotope of U-235, it s used to power nuclear reactor or nuclear weapons. Carbon y Found in nature from cosmic interactions, used to carbon date items and as radiolabel for detection of tumors. Cesium y Blood irradiators, tumor treatment through external exposure. Also used for industrial radiography. Hydrogen y Labeling biological tracers. Iridium d Implants or "seeds" for treatment of cancer. Also used for industrial radiography. Molybdenum h Parent for Tc-99m generator. Technicium-99m 6 h Brain, heart, liver (gastroenterology), lungs, bones, thyroid, and kidney imaging, regional cerebral blood flow, etc.. 3/14/

18 Where does it come from? Machine Produced X-ray Machines, cyclotrons, accelerators, etc. Most produce x-rays but particles also possible. Only produce radiation when energized. High energy machines can activate materials to create radioactive materials. 3/14/

19 Atomic Structure and Radioactivity Nuclear notation Terminology Decay modes X-rays Half life 3/14/

20 Nuclear notation Not actual size Not to scale Li-7 3/14/

21 Terminology Radioactivity process Radiation - energy Activity quantity Contamination material Half life - time 3/14/

22 Radioactivity The process by which an energetically unstable nucleus spontaneously transforms to a more stable energy state and in the process emits radiation.

23 Radiation means matter or energy moving outward from a point of origin. Radiation from a point source decreases as a function of the square of the distance (1/R 2) 3/14/

24 Five basic types of radiation From the nucleus From the electron shells 3/14/

25 Electromagnetic Radiation No Mass No Charge Very Penetrating 3/14/

26 X-ray/Gamma Same except for origin Photon Can be stopped by layers of lead or concrete Hazardous to tissues and organs Common photon emitters: Tc-99m, I-125 Characteristic x-rays and gamma are essentially monoenergetic Bremsstrahlung x-rays can be a spectrum

27 Characteristic X-rays Characteristic X-rays are emitted when outer-shell electrons fill a vacancy in the inner shell of an atom, releasing X-rays in a pattern that is "characteristic" to each element. 3/14/

28 Bremstrahlung x-rays 3/14/

29 Alpha α Made up of 2 neutrons and 2 protons (nucleus of the Helium atom) Travel short distances, stopped by paper and dead layer of skin Mainly an internal hazard in the body Common Alpha emitters: Uranium, Thorium, Radon and radon daughters Characteristically mono energetic

30 Beta β Energetic electron Can be stopped by 1 cm of plastic Hazard to skin and eyes and when taken internally Common Beta emitters: Phosphorus, Tritium, Carbon, Sulfur Spectrum of energies are emitted (β max ) Most beta emitters are also gamma emitters

31 Neutron Has no charge Range in air is very far. Easily can go several hundred feet. High penetrating power due to lack of charge Can be a hazard to whole body Common neutron emitter: Cf-252

32 Radioactive Decay After Time Pure Sample Full Activity Decayed Sample Lower Activity 3/14/

33 Half life The radioactive half-life for a given radioisotope is the time for half the radioactive nuclei in any sample to undergo radioactive decay.

34 Simple Half-Life Calculation Activity decreases over time by a rate defined as the half-life Where n is the number of half lives: A = A o /2 n Thus after one half-life the nuclide will be half of its original activity, after two half-lives, one quarter, and etc. After 7 half lives less than 1% of the original activity remains 3/14/

35 Activity Activity describes how much radioactive material is present at any given time Curie (Ci): 37 Billion transformations per second Usually expressed as milli (10-3) or micro (10-6) Bequerel (Bq): 1 transformation per second Usually expressed in Mega (10 6 ) or Giga (10 9 ) 3/14/

36 Interaction of ionizing radiation with matter Alpha and Beta energy is lost by transfer of energy to electrons via electrostatic interaction Photons all or part of its energy is transferred to an orbital electron via collision Neutron energy and material dependent (Z#) <0.5 MeV - elastic scattering with nucleus >0.5 MeV - inelastic scattering with nucleus Thermal absorption in the nucleus 3/14/

37 Interaction of ionizing radiation with matter 3/14/

38 Penetration ability of some radiations 3/14/

39 Radiation Absorbed Dose (rad) Rad- A measure of energy deposition per unit mass irradiated 1 Rad = 100 ergs per gram of material SI Unit is Gray 1Gy = 1 joule per kilogram (J kg 1) 1 Gy = 100 rad

40 Dose equivalent (rem) rem: absorbed dose (D) modified by a radiation weighting factor (wr ) or quality factor (Q) which accounts for the different biological effects of different types of radiation rem = rad x Q In the SI system of units, it is replaced by the special name sievert (Sv) where Sv = Gy x wr 1 Sv = 100 rem

41 Quality Factor (10CFR20) Type of radiation Quality Factor X-, gamma, or beta radiation 1 Alpha particles, multiple-charged particles, fission fragments and heavy particles of unknown charge 20 Neutrons of unknown energy 10 High-energy protons 10 3/14/

42 Average dose equivalent = 620 mrem/yr

43 3/14/

44 Typical medical doses Chest X-ray = 2 mrem Mammogram = 13 mrem Abdomen CT = 1000 mrem (1 rem) Heart stress test = 585 mrem

45 Terrestrial Radiation Levels 3/14/

46 Cosmic Radiation Levels 3/14/

47 Health physics nerd fun What is the radiation dose equivalent for flying across the United States? Seattle WA - Washington DC: 37, 000 ft; 4.1hours msv (which is how many millirem?) Reference: DOT/FAA/AM-03/16 Office of Aerospace Medicine Washington, DC What Aircrews Should Know About Their Occupational Exposure to Ionizing Radiation 3/14/

48 Radiation Hazards Usually much greater at entrance than exit. May come from inhalation, ingestion, injection, absorption, or injury Could be partial or whole body. External vs. Internal Often concentrates in particular organs. 3/14/

49 Biological Effects Acute effects Chronic effects Linear non-threshold model Basis for regulatory limits 3/14/

50 Biological Effects Many groups and individuals exposed to ionizing radiation at high levels resulted in adverse effects Somatic effects Prompt - skin burns and cataracts Delayed - cancer Genetic effects Teratogenetic effects

51 Biological Effects Biological effects are caused by chemical changes in the cell brought about by the conversion of kinetic energy to chemical energy Direct effects caused by initial ionization Indirect effects free radicals and ions (mostly from water) interact with cell material

52 Fate of Early Radiologists 3/14/

53 Radiologist Fingers 3/14/

54 Early Radiation Injury 1898 Photograph shows severe chest burn on a United States soldier in the Spanish-American War, caused by repeated exposure to X rays. 3/14/

55 Internal Dose Caused by radioactive material inside the body Routes of entry: Inhalation Ingestion Absorbtion Injection Organs can concentrate based on chemical affinity (e.g. thyroid, bone, kidneys) 3/14/

56 Radiation Health Effects High-level radiation effects are acute effects which are manifested shortly after (hours, days, weeks) a large exposure (1 Sv or 100 rem+). Low-level radiation effects are described as latent effects, appearing many years after a non-lethal acute dose, or chronic effects after many years of small doses (like radiation workers). 3/14/

57 High Level Radiation Effects Acute Radiation Syndrome Bone Marrow Injury (over 1 Sv or 100 rem) may cause death if injury is severe. GI Tract Injury (over 6 Sv or 600 rem) causes death in days or weeks. Central Nervous System Injury (over 50 Sv or 5000 rem) causes death in hours or days. Radiation Burns (over 2 Sv or 200 rem) local or whole body Cataracts (over 1.5 Sv or 150 rem) 3/14/

58 Dose (Rads*) Effects First sign of physical effects (drop in white blood cell count) Threshold for vomiting (within a few hours of exposure) ~ 50% die within 60 days (with minimal supportive care) ~50 % die within 60 days (with supportive medical care) 1,000 ~ 100% die within 30 days

59 500+ rad X-Ray Burns 5,000+ rad

60 Cancer Radiation can damage cells through two methods; Production of free radicals and Direct damage to the DNA Risk factor for radiation dose: 4% increase in risk of dying of cancer for every 100 rem of dose. Normal cancer risk is 20%.

61 Low Level Radiation Health Effects Cancer 0.1 Sv (10 rem) given to 100 people in U.S. population would be expected to cause about 1 extra cancer over a lifetime. About 42 of these people would be expected to get cancer from natural causes. BIER VII Report 3/14/

62 Dose Response Relationship 0.03 Risk of death fromcancer Risk Is not Predictable below 20 rem Effect is Detrimental risk level is uncertain Predictable Effects Committed Lifetime Dose (rem)

63 Low Level Radiation Health Effects Genetic mutations has not been observed in humans, but has been observed in experimental animal populations Teratogenesis - abnormalities induced in an exposed fetus depends on dose and period of pregnancy. The risk of abnormality is considered negligible at 5 rad or less when compared to the other risks of pregnancy. (NCRP Report 54) 3/14/

64 Relative hazard summary 1 rem received in a short period or over a long period is safe we don t expect observable health effects. 10 rem received in a short period or over a long period is safe we don t expect immediate observable health effects, although your chances of getting cancer might be very slightly increased. 100 rem received in a short time can cause observable health effects from which your body will likely recover, and 100 rem received in a short time or over many years will increase your chances of getting cancer. 1,000 rem in a short or long period of time will cause immediately observable health effects and is likely to cause death

65 Health physics nerd fun How much energy is absorbed in the body for an LD 100/30 day whole body acute dose of gamma radiation? LD 100/30 day dose is 1000 rads; person = 87kg (160lb) 1000 rads x (100 ergs/gm/rad) x (87kg) = 8.7e+6 ergs 8.3 BTU to raise 1 gallon (3.76 kg) of water 1 F = 8.8e+10erg (1 BTU = 1.06e+10 erg) (87kg/3.76kg) x 8.8e+10 erg = 2e+12erg to raise the body 1 F 8.7e+6erg/2e+12 erg per 1 F= 4.3e-6 F 3/14/

66 Health physics nerd fun Compute your radiation dose exercise 3/14/

67 Information sources Health Physics Society National Council on Radiation Protection - Nuclear Regulatory Commission American Nuclear Society Radiation Answers - 3/14/

Understanding Radiation and Its Effects

Understanding Radiation and Its Effects Understanding Radiation and Its Effects Prepared by Brooke Buddemeier, CHP University of California Lawrence Livermore National Laboratory Presented by Jeff Tappen Desert Research Institute 1 Radiation

More information

BIOLOGICAL EFFECTS OF

BIOLOGICAL EFFECTS OF BIOLOGICAL EFFECTS OF RADIATION Natural Sources of Radiation Natural background radiation comes from three sources: Cosmic Radiation Terrestrial Radiation Internal Radiation 2 Natural Sources of Radiation

More information

Laboratory Safety 197/405. Types of Radiation 198/405

Laboratory Safety 197/405. Types of Radiation 198/405 Laboratory Safety 197/405 Types of Radiation 198/405 Particle Radiation Alpha He nucleus (heavy particle) +2 charge Internal hazard only Beta Electron -1 charge Internal and external hazard Neutron 199/405

More information

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units INAYA MEDICAL COLLEGE (IMC) RAD 232 - LECTURE 2 & 3 Biological Effects of Ionizing Radiation & Commonly Used Radiation Units DR. MOHAMMED MOSTAFA EMAM How does radiation injure people? - High energy radiation

More information

Ionizing Radiation. Alpha Particles CHAPTER 1

Ionizing Radiation. Alpha Particles CHAPTER 1 CHAPTER 1 Ionizing Radiation Ionizing radiation is radiation that has sufficient energy to remove electrons from atoms. In this document, it will be referred to simply as radiation. One source of radiation

More information

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units INAYA MEDICAL COLLEGE (IMC) RAD 232 - LECTURE 3, 4 & 5 Biological Effects of Ionizing Radiation & Commonly Used Radiation Units DR. MOHAMMED MOSTAFA EMAM How does radiation injure people? - High energy

More information

Lecture 14 Exposure to Ionizing Radiation

Lecture 14 Exposure to Ionizing Radiation Lecture 14 Exposure to Ionizing Radiation Course Director, Conrad Daniel Volz, DrPH, MPH Assistant Professor, Environmental & Occupational Health, University of Pittsburgh, Graduate School of Public Health

More information

Radiation Safety Information for Students in Courses given by the Nuclear Physics Group at KTH, Stockholm, Sweden

Radiation Safety Information for Students in Courses given by the Nuclear Physics Group at KTH, Stockholm, Sweden Radiation Safety Information for Students in Courses given by the Nuclear Physics Group at KTH, Stockholm, Sweden September 2006 The aim of this text is to explain some of the basic quantities and units

More information

Ionizing Radiation. Michael J. Vala, CHP. Bristol-Myers Squibb

Ionizing Radiation. Michael J. Vala, CHP. Bristol-Myers Squibb Ionizing Radiation Michael J. Vala, CHP Bristol-Myers Squibb michael.vala@bms.com 732-227-5096 2013 American Industrial Hygiene Association, New Jersey Section, Inc. Course Objectives At the end of this

More information

RADIATION RISK ASSESSMENT

RADIATION RISK ASSESSMENT RADIATION RISK ASSESSMENT EXPOSURE and TOXITY ASSESSMENT Osipova Nina, associated professor, PhD in chemistry, Matveenko Irina, Associate professor, PhD in philology TOMSK -2013 The contents 1.What is

More information

Radioactivity. Alpha particles (α) :

Radioactivity. Alpha particles (α) : Radioactivity It is the property of an element that causes it to emit radiation Discovered by Becquerel (1896) Radiation comes from the nucleus of the atom There are three types of radiation : alpha particles

More information

Basic radiation protection & radiobiology

Basic radiation protection & radiobiology Basic radiation protection & radiobiology By Dr. Mohsen Dashti Patient care & management 202 Wednesday, October 13, 2010 Ionizing radiation. Discussion issues Protecting the patient. Protecting the radiographer.

More information

Radiation physics and radiation protection. University of Szeged Department of Nuclear Medicine

Radiation physics and radiation protection. University of Szeged Department of Nuclear Medicine Radiation physics and radiation protection University of Szeged Department of Nuclear Medicine Radiation doses to the population 1 Radiation doses to the population 2 Sources of radiation 1 Radiation we

More information

Radiologic Units: What You Need to Know

Radiologic Units: What You Need to Know Radiologic Units: What You Need to Know TODD VAN AUKEN M.ED. RT (R)(MR) Agenda Greys, Sieverts, Coulombs per kg, & Becquerel's Conventional Units Other Concepts (LET, Q-Factor, Effective Dose, NCRP Report

More information

Radiation Health Effects

Radiation Health Effects Radiation Health Effects Elena Buglova Incident and Emergency Centre Department of Nuclear Safety and Security Content Historical background Primary target for cell damage Deterministic effects Stochastic

More information

Option D: Medicinal Chemistry

Option D: Medicinal Chemistry Option D: Medicinal Chemistry Basics - unstable radioactive nuclei emit radiation in the form of smaller particles alpha, beta, positron, proton, neutron, & gamma are all used in nuclear medicine unstable

More information

RADIOACTIVITY & RADIATION CHARACTERISTICS

RADIOACTIVITY & RADIATION CHARACTERISTICS CEMP TRAINING SESSION 15-17 JULY 2013 RADIOACTIVITY & RADIATION CHARACTERISTICS Instructor: Gary M. Sandquist, PhD, CHP 2013 Training Session Slide 1 Occupational Dose Equivalent Limits General Public

More information

ACUTE RADIATION SYNDROME: Diagnosis and Treatment

ACUTE RADIATION SYNDROME: Diagnosis and Treatment ACUTE RADIATION SYNDROME: Diagnosis and Treatment Badria Al Hatali, MD Medical Toxicologist Department of Environmental and Occupational Health MOH - Oman Objectives Provide a review of radiation basics

More information

Radiopharmaceuticals. Radionuclides in NM. Radionuclides NUCLEAR MEDICINE. Modes of radioactive decays DIAGNOSTIC THERAPY CHEMICAL COMPOUND

Radiopharmaceuticals. Radionuclides in NM. Radionuclides NUCLEAR MEDICINE. Modes of radioactive decays DIAGNOSTIC THERAPY CHEMICAL COMPOUND Univerzita Karlova v Praze - 1. Lékařská fakulta Radiation protection NUCLEAR MEDICINE Involving the application of radioactive substances in the diagnosis and treatment of disease. Nuclear medicine study

More information

Chem 481 Lecture Material 3/11/09

Chem 481 Lecture Material 3/11/09 Chem 481 Lecture Material 3/11/09 Health Physics NRC Dose Limits The NRC has established the following annual dose limits. Organ NRC Limit (mrem/year) Comments Whole Body 5000 (50 msv/yr) Lens of the Eye

More information

Medical Use of Radioisotopes

Medical Use of Radioisotopes Medical Use of Radioisotopes Therapy Radioisotopes prove to be useful in the application of brachytherapy, the procedure for using temporary irradiation close to the area of disease (i.e. cancer) 10% Medical

More information

Chapter 8. Ionizing and Non-Ionizing Radiation

Chapter 8. Ionizing and Non-Ionizing Radiation Chapter 8 Ionizing and Non-Ionizing Radiation Learning Objectives By the end of the chapter the reader will be able to: Define the terms ionizing radiation and nonionizing radiation State the differences

More information

Radiation Protection in Laboratory work. Mats Isaksson, prof. Department of radiation physics, GU

Radiation Protection in Laboratory work. Mats Isaksson, prof. Department of radiation physics, GU Radiation Protection in Laboratory work Mats Isaksson, prof. Department of radiation physics, GU mats.isaksson@radfys.gu.se Fundamental principles (ICRP) Justification Optimisation Application of dose

More information

Topic 6 Benefits and drawbacks of using radioactive materials

Topic 6 Benefits and drawbacks of using radioactive materials Topic 6 Benefits and drawbacks of using radioactive materials CHANGING IDEAS When radioactivity was first discovered in the late 1800s, scientists did not know it was dangerous: o Becquerel handled radioactive

More information

Radiation Safety for New Medical Physics Graduate Students

Radiation Safety for New Medical Physics Graduate Students Radiation Safety for New Medical Physics Graduate Students John Vetter, PhD Medical Physics Department UW School of Medicine & Public Health Background and Purpose of This Training This is intended as

More information

RADIATION HAZARDS. A dabbler s perspective. Jess H. Brewer

RADIATION HAZARDS. A dabbler s perspective. Jess H. Brewer RADIATION HAZARDS A dabbler s perspective by Jess H. Brewer Mortality Paraphrased from memory: Front page of special HEALTH edition of LA Free Press (around 1970): No matter how much money you have, how

More information

Radioactive Exposure. Abstract of Article:

Radioactive Exposure. Abstract of Article: Radioactive Exposure Abstract of Article: All ionizing radiations, at sufficiently large exposures, can cause cancer. Many, in carefully controlled exposures, are also used for cancer therapy. Ionizing

More information

IONIZING RADIATION, HEALTH EFFECTS AND PROTECTIVE MEASURES

IONIZING RADIATION, HEALTH EFFECTS AND PROTECTIVE MEASURES May 2011 IONIZING RADIATION, HEALTH EFFECTS AND PROTECTIVE MEASURES KEY FACTS Ionizing radiation is a type of energy released by atoms in the form of electromagnetic waves or particles. People are exposed

More information

Biological Effects of Radiation KJ350.

Biological Effects of Radiation KJ350. Biological Effects of Radiation KJ350 deborah.oughton@nmbu.no 2111 2005 Radiation Biology Interaction of radiation with biological material Doses (Gy, Sv) and effects Scientific Controversy Radiation Protection

More information

Adult: > 18 Years ALARA: As low as reasonably achievable ALI:

Adult: > 18 Years ALARA: As low as reasonably achievable ALI: Health Physics Adult: > 18 Years ALARA: As low as reasonably achievable ALI: Annual Limit on Intake. The amount of an isotope that if taken into the body over the course of a year would result in in a

More information

Indoor emissions. foams) > CH 2 =O; plasticizers, especially dialkyl phthalates. Especially a problem with mobile homes. - Regulations in Sweden

Indoor emissions. foams) > CH 2 =O; plasticizers, especially dialkyl phthalates. Especially a problem with mobile homes. - Regulations in Sweden CHEM/TOX 336 Lecture 9 Indoor Air Emissions Radioisotopes in the Environment Indoor emissions From synthetic materials (carpets, plywood, ureaformaldehyde foams) > CH 2 =O; plasticizers, especially dialkyl

More information

Radiation Safety Guide. Analytical X-Ray Equipment

Radiation Safety Guide. Analytical X-Ray Equipment Radiation Safety Guide Analytical X-Ray Equipment Table of Content Page 1. Radiation 2 A. Radiation Quantities 2 B. Background Radiation 2 C. Biological Effect of Radiation 3 D. Radiation Injury To The

More information

Introduction To Nuclear Power Module 3: Understanding Radiation and Its Effects

Introduction To Nuclear Power Module 3: Understanding Radiation and Its Effects Introduction To Nuclear Power Module 3: Understanding Radiation and Its Effects Course # 9CCKN1002 Nathan Hoffman, PhD Greg Johnson, PhD, PE Phil Rutherford R.Z. Litwin (Editor) 1 Introduction To Nuclear

More information

Everyday Radiation. David D. Dixon HDT Rally Hutchinson, KS October 15, 2014

Everyday Radiation. David D. Dixon HDT Rally Hutchinson, KS October 15, 2014 Everyday Radiation David D. Dixon HDT Rally Hutchinson, KS October 15, 2014 Overview Types of radiation and radiation damage Sources of radiation Naturally Occurring Medical Energy Industry Other Man-Made

More information

Accelerator Laboratory GENERAL EMPLOYEE RADIATION TRAINING

Accelerator Laboratory GENERAL EMPLOYEE RADIATION TRAINING f Fermi National Accelerator Laboratory GENERAL EMPLOYEE RADIATION TRAINING Operated by Universities Research Association, Inc. under contract with the United States Department of Energy October, 1999

More information

ARRT Specifications Radiation Exposure & Monitoring

ARRT Specifications Radiation Exposure & Monitoring Radiation Protection Review 15% (30) 11% (22) Gina Tice, MSRS, RT(R) Gadsden State Community College ARRT Specifications Radiation Exposure & Monitoring Radiation Protection (45) Biological Aspects of

More information

AN INTRODUCTION TO NUCLEAR MEDICINE

AN INTRODUCTION TO NUCLEAR MEDICINE AN INTRODUCTION TO NUCLEAR MEDICINE WITH RESPECT TO THYROID DISORDERS By: B.Shafiei MD Nuclear Physician Taleghani Medical Center Radioactive: An element with Unstable Nucleus (Excess Energy), can achieve

More information

Radiation Carcinogenesis

Radiation Carcinogenesis Radiation Carcinogenesis November 11, 2014 Dhyan Chandra, Ph.D. Pharmacology and Therapeutics Roswell Park Cancer Institute Email: dhyan.chandra@roswellpark.org Overview - History of radiation and radiation-induced

More information

RELIANT HOLDINGS LTD AND ITS AFFILIATES Safety Management System. Preparation: Safety Mgr Authority: CEO Issuing Dept: Safety Page: Page 1 of 5

RELIANT HOLDINGS LTD AND ITS AFFILIATES Safety Management System. Preparation: Safety Mgr Authority: CEO Issuing Dept: Safety Page: Page 1 of 5 Preparation: Safety Mgr Authority: CEO Issuing Dept: Safety Page: Page 1 of 5 Purpose The purpose of this program is to protect employees who may encounter ionizing radiation and its hazards while performing

More information

User's Guide for the Interactive RadioEpidemiological Program (NIOSH-IREP)

User's Guide for the Interactive RadioEpidemiological Program (NIOSH-IREP) User's Guide for the Interactive RadioEpidemiological Program (NIOSH-IREP) Designed for use by the Department of Labor in adjudicating claims under the Energy Employees Occupational Illness Compensation

More information

Cancer Risk Factors in Ontario. Other Radiation

Cancer Risk Factors in Ontario. Other Radiation Cancer Risk Factors in Ontario Other Radiation OTHer radiation risk factor/ exposure Radon-222 and decay products X-radiation, gamma radiation Cancer The context where high risks were reported Magnitude

More information

Radiation in Everyday Life

Radiation in Everyday Life Image not found Rincón http://www.rinconeducativo.org/sites/default/files/logo.jpg Educativo Published on Rincón Educativo (http://www.rinconeducativo.org) Inicio > Radiation in Everyday Life Recursos

More information

Special Topic: Radiological Dispersal Device or Dirty Bomb EXPLOSION AND BLAST INJURIES

Special Topic: Radiological Dispersal Device or Dirty Bomb EXPLOSION AND BLAST INJURIES Special Topic: Radiological Dispersal Device or Dirty Bomb EXPLOSION AND BLAST INJURIES Scenario Presentation Possible Scenarios Simple radiological device Improvised nuclear device (IND) Nuclear weapon

More information

Neutron Interactions Part 2. Neutron shielding. Neutron shielding. George Starkschall, Ph.D. Department of Radiation Physics

Neutron Interactions Part 2. Neutron shielding. Neutron shielding. George Starkschall, Ph.D. Department of Radiation Physics Neutron Interactions Part 2 George Starkschall, Ph.D. Department of Radiation Physics Neutron shielding Fast neutrons Slow down rapidly by scatter in hydrogenous materials, e.g., polyethylene, paraffin,

More information

UQ X-ray Safety Training Module

UQ X-ray Safety Training Module UQ X-ray Safety Training Module 23 January 2018, v2 1 UQ X-ray Safety Training Module Course Overview: This training module has been developed for workers at the University of Queensland, and forms part

More information

CRACKCast E146 Radiation Injuries

CRACKCast E146 Radiation Injuries CRACKCast E146 Radiation Injuries Key concepts: Patients contaminated with radiation pose very little risk to health care providers when appropriate precautions and decontamination procedures are employed.

More information

Radiation Safety in the Workplace. v1.0

Radiation Safety in the Workplace. v1.0 Radiation Safety in the Workplace v1.0 Outline What is radiation? Different types of radiation Activity and Half-life Units of radiation dose Health effects of exposure to radiation Dose limits Common

More information

Fukushima: What We All Should Know about Radiation

Fukushima: What We All Should Know about Radiation Fukushima: What We All Should Know about Radiation Peter N. Saeta, Harvey Mudd College Physics, 25 March 2011 Outline Radioactivity: what is it, what causes it, and what s a half life? How does ionizing

More information

Principles of Radiation

Principles of Radiation RADIOACTIVE AGENTS Principles of Radiation 2 types of radiation Non-ionizing (no tissue damage) Ionizing (tissue damage) 2010 MGH International Disaster Institute 1 2010 MGH International Disaster Institute

More information

PHYSICS 2: HSC COURSE 2 nd edition (Andriessen et al) CHAPTER 20 Radioactivity as a diagnostic tool (pages 394-5)

PHYSICS 2: HSC COURSE 2 nd edition (Andriessen et al) CHAPTER 20 Radioactivity as a diagnostic tool (pages 394-5) PHYSICS 2: HSC COURSE 2 nd edition (Andriessen et al) CHAPTER 20 Radioactivity as a diagnostic tool (pages 394-5) 1. (a) A radioisotope is an isotope that is unstable and will emit particles from the nucleus

More information

Radioactivity. Lecture 8 Biological Effects of Radiation

Radioactivity. Lecture 8 Biological Effects of Radiation Radioactivity Lecture 8 Biological Effects of Radiation Studies of impact of ionizing radiation on the human body - Hiroshima - US-Japanese teams medical tests, autopsies, human organ analysis, on-site

More information

Quiz True/False: Large amounts of radiation to insects will cause them to mutate!

Quiz True/False: Large amounts of radiation to insects will cause them to mutate! RADS, REMS & ROENTGENS Jack L. Barr, M.S., R.T.R., F.A.S.R.T. Quiz True/False: Large amounts of radiation to insects will cause them to mutate! LARGE AMOUNTS OF RADIATION WILL CAUSE VEGETABLES TO BECOME

More information

PRINCIPLES AND METHODS OF RADIATION PROTECTION

PRINCIPLES AND METHODS OF RADIATION PROTECTION PRINCIPLES AND METHODS OF RADIATION PROTECTION Lesson Outcomes At the end of the lesson, student should be able to: Define what is radiation protection (RP) Describe basic principles of RP Explain methods

More information

GUIDELINES ON IONISING RADIATION DOSE LIMITS AND ANNUAL LIMITS ON INTAKE OF RADIOACTIVE MATERIAL

GUIDELINES ON IONISING RADIATION DOSE LIMITS AND ANNUAL LIMITS ON INTAKE OF RADIOACTIVE MATERIAL RADIATION PROTECTION AUTHORITY OF ZIMBABWE (RPAZ) RADIATION PROTECTION ACT [CHAPTER 15:15] GUIDELINES ON IONISING RADIATION DOSE LIMITS AND ANNUAL LIMITS ON INTAKE OF RADIOACTIVE MATERIAL Compiled by Radiation

More information

Radiation Protection Program Update: The Details. July 2010

Radiation Protection Program Update: The Details. July 2010 Radiation Protection Program Update: The Details July 2010 Update Topics 2 Changes mandated by Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection (10 CFR 835) How changes

More information

Everyday Radiation. David D. Dixon HDT Rally Hutchinson, KS October 13, 2015

Everyday Radiation. David D. Dixon HDT Rally Hutchinson, KS October 13, 2015 Everyday Radiation David D. Dixon HDT Rally Hutchinson, KS October 13, 2015 Overview Nuclear Energy Industry Outlook Types of radiation and radiation damage Sources of radiation Naturally Occurring Medical

More information

Public and Worker Health Impacts from the Fukushima Nuclear Plant Accident Thomas McKone, PhD & James Seward, MD, MPP

Public and Worker Health Impacts from the Fukushima Nuclear Plant Accident Thomas McKone, PhD & James Seward, MD, MPP Public and Worker Health Impacts from the Fukushima Nuclear Plant Accident JAPAN EARTHQUAKE & TSUNAMI RELIEF ORGANIZATIONS Doctors Without Borders/Médecins Sans Frontières: Doctorswithoutborders.org The

More information

Table of Contents. Introduction 3. Background 4

Table of Contents. Introduction 3. Background 4 Training manual Table of Contents Introduction 3 Background 4 What are X-rays? 4 How are X-rays Generated? 5 Primary and Scatter Radiation 6 Interactions with Matter 6 Biological Effects of Radiation 7

More information

RADIOLOGY AN DIAGNOSTIC IMAGING

RADIOLOGY AN DIAGNOSTIC IMAGING Day 2 p. 1 RADIOLOGY AN DIAGNOSTIC IMAGING Dr hab. Zbigniew Serafin, MD, PhD serafin@cm.umk.pl and Radiation Protection mainly based on: C. Scott Pease, MD, Allen R. Goode, MS, J. Kevin McGraw, MD, Don

More information

Nature of Radiation and DNA damage

Nature of Radiation and DNA damage Nature of Radiation and DNA damage Index 1. What is radiation? 2. Ionizing Radiation 3. Interaction of Gamma-radiation with Matter 4. Radiobiology 5. Direct and Indirect action of radiation 6. Steps of

More information

Lab & Rad Safety Newsletter

Lab & Rad Safety Newsletter Ohio UNIVERSITY Fall 2018 Lab & Rad Safety Newsletter Alan Watts Radiation Safety Officer In This Issue: Instruction Concerning Risks From Occupational Radiation Exposure... pg.1-5 = Required = Optional

More information

The Basics of Radiation Safety

The Basics of Radiation Safety Cardiac Imaging Symposium 2013 UNIVERSITY OF OTTAWA HEART INSTITUTE The Basics of Radiation Safety Leah Shuparski-Miller Medical Health Physicist Radiation Safety & Emergency Preparedness Department The

More information

PAGE 1 OF 5 HEALTH, SAFETY & ENVIROMENTAL MANUAL PROCEDURE: S560 Radiation Safety REV /14/2012

PAGE 1 OF 5 HEALTH, SAFETY & ENVIROMENTAL MANUAL PROCEDURE: S560 Radiation Safety REV /14/2012 PAGE 1 OF 5 RADIATION SAFETY PURPOSE: A wide usage of x-ray machines and isotopes for examination of steel plate fabricated and erected structures require a knowledge of the radiation hazard and the precautionary

More information

1. The Accident of Chernobyl Unit 4 of 1,000 MWe Graphite-Moderated Boiling Water Pressure Tube Reactor in 1986

1. The Accident of Chernobyl Unit 4 of 1,000 MWe Graphite-Moderated Boiling Water Pressure Tube Reactor in 1986 April 12, 2011 The Lesson learned from the Chernobyl Accident and the Data from Atomic Bomb Survivors For Understanding the Fukushima Daiichi Accident and the Robustness of the Human Body to Ionizing Radiation

More information

ICRP = International Commission on. recommendations and guidance on. Functioning since 1928.

ICRP = International Commission on. recommendations and guidance on. Functioning since 1928. ICRP = International Commission on Radiological Protection; An advisory body providing recommendations and guidance on radiation protection; Functioning since 1928. While the use of ionising radiation

More information

Dosimetric Consideration in Diagnostic Radiology

Dosimetric Consideration in Diagnostic Radiology Dosimetric Consideration in Diagnostic Radiology Prof. Ng Kwan-Hoong Department of Biomedical Imaging University of Malaya ngkh@um.edu.my Radiation Dosimetry Workshop, 28-29 March 2014 2 Why do we measure

More information

Nuclear Radiation Today

Nuclear Radiation Today CHAPTER 10 13 SECTION Nuclear Changes Nuclear Radiation Today KEY IDEAS As you read this section, keep these questions in mind: Where are some common sources of radiation? What are some beneficial uses

More information

RADIATION HAZARDS AND SAFETY

RADIATION HAZARDS AND SAFETY RADIATION HAZARDS AND SAFETY Dr. S. P. Tyagi All types of radiation produce changes in the living tissues. The resultant cellular injury causes physiological and pathological changes leading to Radiation

More information

Is there a safe level of radiation exposure? The Petkau effect

Is there a safe level of radiation exposure? The Petkau effect Page 1 of 8 Is there a safe level of radiation exposure? The Petkau effect Dr GOURI GOUTAM BORTHAKUR Department of Physics, Jorhat Institute of Science and Technology Jorhat-785010, Assam Mail borthakur.gg@gmail.com

More information

Radiation. c) Terrestrial (solid materials) : like stones and soil, and based on that some places in the world has more radiation than others.

Radiation. c) Terrestrial (solid materials) : like stones and soil, and based on that some places in the world has more radiation than others. Radiation **this sheet contains the two lectures by Dr madi together and doesn't follow the same order as in the records to simplify the info. ** check the tables as they contain important info the dr

More information

Radiation Safety Bone Densitometer

Radiation Safety Bone Densitometer Radiation Safety Bone Densitometer Outline I. State Regulations II. Fundamentals of Radiation Safety III. IV. i. Characteristics of x-ray radiation ii. Units of radiation dose iii. Biological effects iv.

More information

What We Know and What We Don t Know About Radiation Health Effects

What We Know and What We Don t Know About Radiation Health Effects What We Know and What We Don t Know About Radiation Health Effects An Educational Briefing By The HEALTH PHYSICS SOCIETY Specialists In Radiation Safety March 28, 2001 Presentation Agenda Radiation Exposure

More information

Introduction. Chapter 15 Radiation Protection. Advisory bodies. Regulatory bodies. Main Principles of Radiation Protection

Introduction. Chapter 15 Radiation Protection. Advisory bodies. Regulatory bodies. Main Principles of Radiation Protection Introduction Chapter 15 Radiation Protection Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. F.M. Khan, The Physics of Radiation Therapy, 4th ed., Chapter

More information

Neutrons. ρ σ. where. Neutrons act like photons in the sense that they are attenuated as. Unlike photons, neutrons interact via the strong interaction

Neutrons. ρ σ. where. Neutrons act like photons in the sense that they are attenuated as. Unlike photons, neutrons interact via the strong interaction Neutrons Neutrons act like photons in the sense that they are attenuated as I = I 0 e μx where Unlike photons, neutrons interact via the strong interaction μ = The cross sections are much smaller than

More information

Application of the Commission's Recommendations for the Protection of People in

Application of the Commission's Recommendations for the Protection of People in ICRP Publication 127 ICRP Publication 126 ICRP Publication 125 ICRP Publication 124 ICRP Publication 123 ICRP Publication 122 ICRP Publication 121 ICRP Publication 120 ICRP 2011 Proceedings Radiological

More information

Ernest Rutherford:

Ernest Rutherford: November 1895: Roentgen discovers x rays February 1896: Becquerel discovers radioactivity Ernest Rutherford 1898-99 Ernest Rutherford: 1898-99 The Electromagnetic Spectrum Interaction of Charged Particles

More information

RADIATION SAFETY GUIDE FOR ANALYTICAL X-RAY SYSTEM USERS

RADIATION SAFETY GUIDE FOR ANALYTICAL X-RAY SYSTEM USERS DEPARTMENT OF ENVIRONMENTAL HEALTH & SAFETY RADIATION PROTECTION DIVISION MAY 2001 FOR ANALYTICAL X-RAY SYSTEM USERS I INTRODUCTION The Minnesota Department of Health has established rules for the registration

More information

QUANTIFICATION OF THE RISK-REFLECTING STOCHASTIC AND DETERMINISTIC RADIATION EFFECTS

QUANTIFICATION OF THE RISK-REFLECTING STOCHASTIC AND DETERMINISTIC RADIATION EFFECTS RAD Conference Proceedings, vol. 2, pp. 104 108, 2017 www.rad-proceedings.org QUANTIFICATION OF THE RISK-REFLECTING STOCHASTIC AND DETERMINISTIC RADIATION EFFECTS Jozef Sabol *, Bedřich Šesták Crisis Department,

More information

Lecture 13 Radiation Onclolgy

Lecture 13 Radiation Onclolgy Lecture 13 Radiation Onclolgy Radiation Oncology: Tumors attacked with ionizing radiation Photons (gamma rays) High Energy Electrons Protons Other particles Brachytherapy: implants of beta emitters Ionizing

More information

Radiation Safety General Awareness and ALARA Training

Radiation Safety General Awareness and ALARA Training Radiation Safety General Awareness and ALARA Training Authorized User The following materials should be used to provide training to laboratory personnel that do not use radioactive material. Have each

More information

The Principles of Radiation Monitoring and the Radiation Protection System in Hong Kong. H.M.Mok Physicist Radiation Health Unit Department of Health

The Principles of Radiation Monitoring and the Radiation Protection System in Hong Kong. H.M.Mok Physicist Radiation Health Unit Department of Health The Principles of Radiation Monitoring and the Radiation Protection System in Hong Kong H.M.Mok Physicist Radiation Health Unit Department of Health Contents Basic properties of ionising radiation and

More information

An update: Dealing with radiation as a hazard. WAJ Meintjes MBChB; DOM; FCPHM(SA) Occ Med; MMed (Occ Med)

An update: Dealing with radiation as a hazard. WAJ Meintjes MBChB; DOM; FCPHM(SA) Occ Med; MMed (Occ Med) An update: Dealing with radiation as a hazard WAJ Meintjes MBChB; DOM; FCPHM(SA) Occ Med; MMed (Occ Med) Radiation The emission and propagation of energy in the form of rays Usually differentiate ionising

More information

People Exposed to More Radiation from Medical Exams

People Exposed to More Radiation from Medical Exams People Exposed to More Radiation from Medical Exams With its release of a new report, titled Ionizing Radiation Exposure of the Population of the United States (Report No. 160, 2009), the National Council

More information

ICRP 128 ICRP ICRP ICRP 1928

ICRP 128 ICRP ICRP ICRP 1928 ICRP 1928 129 ICRP 1928 ICRP ICRP ICRP 1928 129 ICRP 129 ICRP 128 Radiological Protection in Cone Beam Computed Tomography (CBCT) Radiation Dose to Patients from Radiopharmaceuticals: A Compendium of Current

More information

THE UNIVERSITY OF UTAH RADIATION PROTECTION PROGRAM

THE UNIVERSITY OF UTAH RADIATION PROTECTION PROGRAM THE UNIVERSITY OF UTAH RADIATION PROTECTION PROGRAM The use of radiation sources at the University of Utah entails both legal and moral obligations to provide training on the nature of radiation sources,

More information

6) Radiation Protection (1) Radiation effects in biological material (cells)

6) Radiation Protection (1) Radiation effects in biological material (cells) 6) Radiation Protection (1) Three phase model of biological effects on organisms: Outer irradiation Physical Phase Chemical Phase Internal irradiation Radiolysis, peroxide formation Ionisation and excitation

More information

Chapter 7. What is Radiation Biology? Ionizing Radiation. Energy Transfer Determinants 09/21/2014

Chapter 7. What is Radiation Biology? Ionizing Radiation. Energy Transfer Determinants 09/21/2014 Chapter 7 Molecular & Cellular Radiation Biology What is Radiation Biology? A branch of biology concerned with how ionizing radiation effects living systems. Biological damage that occurs from different

More information

Case Files of the University of Massachusetts Fellowship in Medical Toxicology: Three Patients with an Industrial Radiography Source Exposure

Case Files of the University of Massachusetts Fellowship in Medical Toxicology: Three Patients with an Industrial Radiography Source Exposure Toxicology Case Files Case Files of the University of Massachusetts Fellowship in Medical Toxicology: Three Patients with an Industrial Radiography Source Exposure Christina Hernon, MD a, Edward W. Boyer,

More information

The researches of medical and environmental radiation protection dose Abstract

The researches of medical and environmental radiation protection dose Abstract The researches of medical and environmental radiation protection dose Abstract Nowadays, with the development of modern radiation science, application of radiation exposure has been paid more and more

More information

RADON RESEARCH IN MULTI DISCIPLINES: A REVIEW

RADON RESEARCH IN MULTI DISCIPLINES: A REVIEW RADON RESEARCH IN MULTI DISCIPLINES: A REVIEW PILLALAMARRI ILA Earth Atmospheric & Planetary Sciences Neutron Activation Analysis Laboratory Massachusetts Institute of Technology Cambridge, MA 02139 IAP

More information

Radiation Effects. Radiobiology Steve Curtis Desert Research Institute

Radiation Effects. Radiobiology Steve Curtis Desert Research Institute Radiation Effects Radiobiology Steve Curtis Desert Research Institute Background Radiation Cosmic Terrestrial In our Bodies Total Radiation About 300 mr per year Equals about 15 X-Rays Over half is from

More information

The health risks of exposure to internal radiation. Korea National Assembly Seoul 22 nd August 2015

The health risks of exposure to internal radiation. Korea National Assembly Seoul 22 nd August 2015 The health risks of exposure to internal radiation Korea National Assembly Seoul 22 nd August 2015 Christopher Busby Green Audit UK/ Environmental Research SIA, Riga, Latvia Scientific Secretary: European

More information

Hazards & Safety. Lesson 13a. Radiation. Lesson 13: Radiation & Noise May 16, ENV H 311: Intro. to Environmental Health 1

Hazards & Safety. Lesson 13a. Radiation. Lesson 13: Radiation & Noise May 16, ENV H 311: Intro. to Environmental Health 1 Lesson 13a. Radiation Hazards & Safety April 21, 20056 Stan Addison University of Washington Dept. of Environmental Health & Safety ENV H 311: Lesson 13 1 Radiation In Our Environment November 1, 2005,

More information

The activity. Suggested Answers

The activity. Suggested Answers Teacher notes Introduction This activity encourages students to consider the principles of radiation protection and how they might apply in the nuclear industry and in medicine. They discuss and answer

More information

Radiation Protection

Radiation Protection 2007 CERN Accelerator School (The bases of) Radiation Protection Marco Silari CERN, Geneva, Switzerland M. Silari Radiation Protection 21.09.2007 1 Introduction To tell you in one hour all about radiation

More information

Radiobiology Hall 14: Radiologic Terrorism (Completed)

Radiobiology Hall 14: Radiologic Terrorism (Completed) Radiobiology Hall 14: Radiologic Terrorism (Completed) What are a few of the possible scenarios of radiologic terrorism? 1. Detonation of a nuclear major city 2. An attack on a nuclear power station 3.

More information

Radiation Safety. - Orientation Session - Environmental Health, Safety & Risk Management Health Physics Services Unit

Radiation Safety. - Orientation Session - Environmental Health, Safety & Risk Management Health Physics Services Unit Environmental Health, Safety & Risk Management Health Physics Services Unit Radiation Safety - Orientation Session - Mohamad Houssam Tamim University Radiation Safety Officer B.E. Communications and Electronics

More information

Radiation Metrics and the Media Confusion Fuels Public Fears

Radiation Metrics and the Media Confusion Fuels Public Fears Radiation Metrics and the Media Confusion Fuels Public Fears Radiation Metrics and the Media Confusion Fuels Public Fears THREE MAIN POINTS Journalists neither know nor CARE about the units by which radiation

More information

Medical Physics 4 I3 Radiation in Medicine

Medical Physics 4 I3 Radiation in Medicine Name: Date: 1. This question is about radiation dosimetry. Medical Physics 4 I3 Radiation in Medicine Define exposure. A patient is injected with a gamma ray emitter. The radiation from the source creates

More information

University of Arizona Radiation Generating Machine Protection Reference Guide. Research Laboratory & Safety Services Revised January 8, 2018

University of Arizona Radiation Generating Machine Protection Reference Guide. Research Laboratory & Safety Services Revised January 8, 2018 PO Box 245101 Tucson, AZ 85724-5101 Voice: (520) 626-6850 FAX: (520) 626-2583 rlss.arizona.edu University of Arizona Radiation Generating Machine Protection Reference Guide Research Laboratory & Safety

More information