Introduction... xvii Complexes and the Origin of Liquid Liquid Immiscibility... xvii Outlook... xxi

Size: px
Start display at page:

Download "Introduction... xvii Complexes and the Origin of Liquid Liquid Immiscibility... xvii Outlook... xxi"

Transcription

1 CONTENTS Perspectives: Complexes in Liquids, Harden McConnell Introduction... xvii Complexes and the Origin of Liquid Liquid Immiscibility... xvii Outlook... xxi 1 Molecular Theory Applied to Lipid Bilayers and Lipid Protein Interactions Amalie L. Frischknecht and Laura J. D. Frink 1.1. Introduction Essential Elements for Molecular Membrane Theories Fluids Density Functional Theories A Simple Lipid Model Performing Fluids-DFT Calculations for Model Lipid Bilayers Lipid Bilayer Structure Mechanical Properties of Bilayers Conclusions Membrane Elasticity and Mediated Interactions in Continuum Theory: A Differential Geometric Approach Markus Deserno 2.1. Introduction: Biophysics and Scale Separation Continuum Theory for Membranes: A First Look Curvature Elasticity Membrane Stresses and Shape Equilibria Membrane-Mediated Interactions Summary vii

2 viii CONTENTS 3 Structure and Dynamics of Lipid Monolayers: Theory and Applications Svetlana Baoukina, Siewert J. Marrink, and D. Peter Tieleman 3.1. Introduction Lipid Monolayers: Basic Properties and Applications Experimental Studies Theoretical Models Computer Simulations Conclusions and Outlook Multiscale Modeling of Supported Lipid Bilayers Matthew I. Hoopes, Chenyue Xing, and Roland Faller 4.1. Introduction Multiscale Modeling of Membranes Atomistic Modeling Mesoscale Modeling Water-Free Large-Scale Modeling Visualizations Density Profiles Pressure and Lateral Tension Summary and Outlook Collective Dynamics in Lipid Membranes: From Pore Formation to Flip-Flops Andrey A. Gurtovenko and Ilpo Vattulainen 5.1. Introduction Dynamics of Lipids in Membranes Flip-Flops Associated with Asymmetric Distribution of Lipids in Membranes Formation of Transient Water Pores in Lipid Membranes Flip-Flops of Lipid Molecules across Protein-Free Lipid Membranes Summary

3 HANDBOOK OF MODERN BIOPHYSICS, VOLUME 2 ix 6 Spatiotemporal Organization of Spin-Coated Supported Model Membranes Adam Cohen Simonsen 6.1. Introduction Methods for Preparing Supported Membranes Membrane Support Materials Spin Coating Lamellar Lipid Films by Spin Coating Supported Membranes by Hydration of Spin-Coated Precursor Films Membrane Support and Membrane Membrane Interactions Imaging the Membrane Microstructure AFM for Imaging Supported Membranes Fluorescence Microscopy for Imaging Supported Membranes Phase Transitions and Domains in Model Membranes Binary Model Membranes Ternary Model Membranes Appendix Nanopore Analysis of Nucleic Acids: Single-Molecule Studies of Molecular Dynamics, Structure, and Base Sequence Felix Olasagasti and David W. Deamer 7.1. Introduction The Nanopore Apparatus Detection of Single Macromolecules Detection of Macromolecular Complexes Conclusions and Future Prospects Complex Applications of Simple FRAP on Membranes Minchul Kang and Anne K. Kenworthy 8.1. Introduction Principles of Fluorescence Basic Theory of FRAP Further Applications of FRAP Challenges and Artifacts in Confocal FRAP Summary

4 x CONTENTS 9 Punching Holes in Membranes: How Oligomeric Pore-Forming Proteins and Lipids Cooperate to Form Aqueous Channels in Membranes Cécile Fradin, Dmitri Satsoura, and David W. Andrews 9.1. Introduction Pore-Forming Proteins Pore Structures Influence of the Lipids on Pore Formation and Stability Pore Formation Mechanism Summary Morphogens, Membranes and Mechanotransduction in Articular Cartilage Shirley Motaung, Stephanie Chan, and A. Hari Reddi Introduction Morphogens Cartilage Morphogenesis Bone Morphogenetic Proteins Structure and Function of Articular Cartilage Role of Transforming Growth Factor (TGF- ) in Chondrocytes Membranes and Matrix in Mechanotransduction Mechanical Properties of Cartilage Mechanical Signal Transduction Applications of BMPs Summary Lifecycle of a Lipoprotein from a Biophysical Perspective John C. Rutledge, Thomas Huser, John Voss, James Chan, and Atul Parikh Introduction Laser Trapping Raman Spectroscopy for Analysis of Single Lipoproteins Apolipoprotein E Conformational Changes in the Postprandial State TGRL Lipolysis Products and Vascular Inflammation Cell-Free Membrane-Mimetic Model Bilayers to Study Interaction of TGRL with Raft-Like Microenvironments TGRL Lipolysis Products and Increased Endothelial Layer Permeability Monocytes and TGRL Lipolysis Products Summary Conclusions

5 HANDBOOK OF MODERN BIOPHYSICS, VOLUME 2 xi 12 Targeting Apolipoproteins in Magnetic Resonance Imaging Renuka Sriram, Jens O. Lagerstedt, Haris Samardzic, Ulrike Kreutzer, Jitka Petrolova, Hongtao Xie, George A. Kaysen, John C. Voss, Jean F. Desreux, and Thomas Jue Introduction Chylomicrons and Triacylglycerol LDL and Cholesterol Transport HDL and Cholesterol Scavenging Lipoproteins as Indices of CVD Risk Apolipoproteins and CVD Risk ApoA-I and HDL ApoA-I Therapy Imaging Lipoprotein In Vivo Specific apoa-i Contrast Agent Relaxivity Imaging apoa-i in Vivo Summary Problem Solutions Index

6

Series Editor Thomas Jue University of California Davis Davis, California

Series Editor Thomas Jue University of California Davis Davis, California HANDBOOK OF M ODERN BIOPHYSICS Series Editor Thomas Jue Davis, California For other titles published in this series, go to www.springer.com/series/7845 Roland Faller Thomas Jue Marjorie L. Longo Subhash

More information

Lipids are macromolecules, but NOT polymers. They are amphipathic composed of a phosphate head and two fatty acid tails attached to a glycerol

Lipids are macromolecules, but NOT polymers. They are amphipathic composed of a phosphate head and two fatty acid tails attached to a glycerol d 1 2 Lipids are macromolecules, but NOT polymers. They are amphipathic composed of a phosphate head and two fatty acid tails attached to a glycerol backbone. The phosphate head group is hydrophilic water

More information

Phase Transition Behaviours of the Supported DPPC Bilayer. Investigated by Sum Frequency Generation (SFG) and Atomic Force

Phase Transition Behaviours of the Supported DPPC Bilayer. Investigated by Sum Frequency Generation (SFG) and Atomic Force Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supporting Information for Phase Transition Behaviours of the Supported DPPC Bilayer

More information

Chapter 12. Part II. Biological Membrane

Chapter 12. Part II. Biological Membrane Chapter 12 Part II. Biological Membrane Single-tailed lipids tend to form micelles Critical micelle concentration (cmc): minimum concentration that forms micelles e.g.) cmc for SDS 1mM; cmc for phospholipids

More information

Biological Membranes. Lipid Membranes. Bilayer Permeability. Common Features of Biological Membranes. A highly selective permeability barrier

Biological Membranes. Lipid Membranes. Bilayer Permeability. Common Features of Biological Membranes. A highly selective permeability barrier Biological Membranes Structure Function Composition Physicochemical properties Self-assembly Molecular models Lipid Membranes Receptors, detecting the signals from outside: Light Odorant Taste Chemicals

More information

1Why lipids cannot be transported in blood alone? 2How we transport Fatty acids and steroid hormones?

1Why lipids cannot be transported in blood alone? 2How we transport Fatty acids and steroid hormones? 1Why lipids cannot be transported in blood alone? 2How we transport Fatty acids and steroid hormones? 3How are dietary lipids transported? 4How lipids synthesized in the liver are transported? 5 Lipoprotien

More information

Laboratoire de Physique Statistique Université Pierre & Marie Curie

Laboratoire de Physique Statistique Université Pierre & Marie Curie INHOMOGENEOUS LIPID MEMBRANE:ELASTICITY AND FLUIDITY Martine Ben Amar Laboratoire de Physique Statistique Université Pierre & Marie Curie Ecole Normale Supérieure Collaborators:J.M. ALLAIN,MIGUEL TREJO,FELIX

More information

Raman spectroscopy of chocolate bloom

Raman spectroscopy of chocolate bloom Raman spectroscopy of chocolate bloom Siyu He, and Dmitri V. Voronine,3 Texas A&M University, College Station, TX 77843, USA Xi an Jiaotong University, Xi an 70049, China 3 Baylor University, Waco, TX

More information

Lipids: Membranes Testing Fluid Mosaic Model of Membrane Structure: Cellular Fusion

Lipids: Membranes Testing Fluid Mosaic Model of Membrane Structure: Cellular Fusion Models for Membrane Structure NEW MODEL (1972) Fluid Mosaic Model proposed by Singer & Nicholson Lipids form a viscous, twodimensional solvent into which proteins are inserted and integrated more or less

More information

Biomembranes structure and function. B. Balen

Biomembranes structure and function. B. Balen Biomembranes structure and function B. Balen All cells are surrounded by membranes Selective barrier But also important for: 1. Compartmentalization 2. Biochemical activities 3. Transport of dissolved

More information

Physical Cell Biology Lecture 10: membranes elasticity and geometry. Hydrophobicity as an entropic effect

Physical Cell Biology Lecture 10: membranes elasticity and geometry. Hydrophobicity as an entropic effect Physical Cell Biology Lecture 10: membranes elasticity and geometry Phillips: Chapter 5, Chapter 11 and Pollard Chapter 13 Hydrophobicity as an entropic effect 1 Self-Assembly of Lipid Structures Lipid

More information

Lecture 15 The Lipid Bilayer: A Dynamic Self- Assembled Structure of Multiple Lipid Classes

Lecture 15 The Lipid Bilayer: A Dynamic Self- Assembled Structure of Multiple Lipid Classes Lecture 15 The Lipid Bilayer: A Dynamic Self- Assembled Structure of Multiple Lipid Classes LIPIDS-Biological molecules with low solubility in water and high solubility in non-polar solvents -Lipids form

More information

Cell Membranes Valencia college

Cell Membranes Valencia college 6 Cell Membranes Valencia college 6 Cell Membranes Chapter objectives: The Structure of a Biological Membrane The Plasma Membrane Involved in Cell Adhesion and Recognition Passive Processes of Membrane

More information

RELEASE OF CONTENT THROUGH MECHANO- SENSITIVE GATES IN PRESSURISED LIPOSOMES. Martti Louhivuori University of Groningen

RELEASE OF CONTENT THROUGH MECHANO- SENSITIVE GATES IN PRESSURISED LIPOSOMES. Martti Louhivuori University of Groningen RELEASE OF CONTENT THROUGH MECHANO- SENSITIVE GATES IN PRESSURISED LIPOSOMES Martti Louhivuori University of Groningen www.cgmartini.nl MARTINI coarse-grained model water P4 butane Qo Na DPPC cholesterol

More information

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 12 Membrane Transport Review Chapter 15 regarding Endocytosis and Exocytosis Read Chapter 20 (Cell

More information

Lecture Series 4 Cellular Membranes

Lecture Series 4 Cellular Membranes Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 12 Membrane Transport Review Chapter 15 regarding Endocytosis and Exocytosis Read Chapter 20 (Cell

More information

Lipids and Membranes

Lipids and Membranes Lipids and Membranes Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy Biological membranes are composed of lipid bilayers

More information

THE INS AND OUTS OF YOUR SKIN. Emma Sparr Physical Chemistry Lund University

THE INS AND OUTS OF YOUR SKIN. Emma Sparr Physical Chemistry Lund University THE INS AND OUTS OF YOUR SKIN Emma Sparr Physical Chemistry Lund University The skin - A Responding Barrier Membrane stratum corneum (10 20 µm) Water CO 2 Temperature ph 5.5 O 2 Moisturizers, Drugs etc

More information

This week s topic will be: Evidence for the Fluid Mosaic Model. Developing theories, testing hypotheses and techniques for visualizing cells

This week s topic will be: Evidence for the Fluid Mosaic Model. Developing theories, testing hypotheses and techniques for visualizing cells Tutorials, while not mandatory, will allow you to improve your final grade in this course. Thank you for your attendance to date. These notes are not a substitute for the discussions that we will have

More information

Chapter 12: Membranes. Voet & Voet: Pages

Chapter 12: Membranes. Voet & Voet: Pages Chapter 12: Membranes Voet & Voet: Pages 390-415 Slide 1 Membranes Essential components of all living cells (define boundry of cells) exclude toxic ions and compounds; accumulation of nutrients energy

More information

Effects of Cholesterol on Membranes: Physical Properties

Effects of Cholesterol on Membranes: Physical Properties Effects of Cholesterol on Membranes: Physical Properties Removes gel to liquid crystal phase transition New intermediate phase called liquid ordered - ordering of the membrane lipids due to condensation

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Visualization of the Self Assembly of Silica Nanochannels reveals growth mechanism Christophe Jung, Peter Schwaderer, Mark Dethlefsen, Ralf Köhn, Jens Michaelis * and Christoph

More information

Thin films of cellulose derivatives

Thin films of cellulose derivatives LIGNCELLVALUE-ADDED MATERIALS AND FUNCTINAL STRUCTURES FRM LIGNCELLULSICS Thin films of cellulose derivatives Steering group meeting 20.5.2011 Laura Taajamaa UTLINE Background - Thin films - Polymer blends

More information

Walter B. Bayubay CLS (ASCP), AMT, MA Ed, CPI

Walter B. Bayubay CLS (ASCP), AMT, MA Ed, CPI Walter B. Bayubay CLS (ASCP), AMT, MA Ed, CPI Biochemical Analysis (Lipid Panel) Analyte Total Cholesterol Reference Range Patient A < 200 241 LDL-C /= 40 38 Triglycerides

More information

Biology 5357: Membranes

Biology 5357: Membranes s 5357 Biology 5357: s Assembly and Thermodynamics of Soft Matter Paul H. MD, PhD Department of Cell Biology and Physiology pschlesinger@.wustl.edu 362-2223 Characteristics s 5357 s are polymorphic s 5357

More information

Handbook of Liquid Crystals

Handbook of Liquid Crystals Hans Kelker/Rolf Hatz Handbook of Liquid Crystals With a Contribution by Christian Schumann Eigentum der Firma Kort Eichweber Hamburg-Altona Verlag Chemie Weinheim Deerfield Beach, Florida Basel 1980 Contents

More information

Flip-Flop Induced Relaxation Of Bending Energy: Implications For Membrane Remodeling

Flip-Flop Induced Relaxation Of Bending Energy: Implications For Membrane Remodeling Biophysical Journal, Volume 97 Supporting Material Flip-Flop Induced Relaxation Of Bending Energy: Implications For Membrane Remodeling Raphael Jeremy Bruckner, Sheref S. Mansy, Alonso Ricardo, L. Mahadevan,

More information

MEMBRANE STRUCTURE. Lecture 8. Biology Department Concordia University. Dr. S. Azam BIOL 266/

MEMBRANE STRUCTURE. Lecture 8. Biology Department Concordia University. Dr. S. Azam BIOL 266/ 1 MEMBRANE STRUCTURE Lecture 8 BIOL 266/4 2014-15 Dr. S. Azam Biology Department Concordia University Plasma Membrane 2 Plasma membrane: The outer boundary of the cell that separates it from the world

More information

Chapter 7: Membrane Structure & Function

Chapter 7: Membrane Structure & Function Chapter 7: Membrane Structure & Function 1. Membrane Structure 2. Transport Across Membranes 1. Membrane Structure Chapter Reading pp. 125-129 What are Biological Membranes? Hydrophilic head WATER They

More information

Chapter 7: Membrane Structure & Function. 1. Membrane Structure. What are Biological Membranes? 10/21/2015. Why phospholipids? 1. Membrane Structure

Chapter 7: Membrane Structure & Function. 1. Membrane Structure. What are Biological Membranes? 10/21/2015. Why phospholipids? 1. Membrane Structure Chapter 7: Membrane Structure & Function 1. Membrane Structure 2. Transport Across Membranes 1. Membrane Structure Chapter Reading pp. 125-129 What are Biological Membranes? Hydrophilic head WATER They

More information

Membrane Structure and Function

Membrane Structure and Function Chapter 7 Membrane Structure and Function PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM Lipoprotein Metabolism

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM Lipoprotein Metabolism ANSC/NUTR 618 LIPIDS & LIPID METABOLISM Lipoprotein Metabolism I. Chylomicrons (exogenous pathway) A. 83% triacylglycerol, 2% protein, 8% cholesterol plus cholesterol esters, 7% phospholipid (esp. phosphatidylcholine)

More information

Week 5 Section. Junaid Malek, M.D.

Week 5 Section. Junaid Malek, M.D. Week 5 Section Junaid Malek, M.D. HIV: Anatomy Membrane (partiallystolen from host cell) 2 Glycoproteins (proteins modified by added sugar) 2 copies of RNA Capsid HIV Genome Encodes: Structural Proteins

More information

Photochemical Applications to the Study of Complexity Phospholipid Bilayer Environments

Photochemical Applications to the Study of Complexity Phospholipid Bilayer Environments Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2006 Photochemical Applications to the Study of Complexity Phospholipid Bilayer Environments Christopher John

More information

High density lipoprotein metabolism

High density lipoprotein metabolism High density lipoprotein metabolism Lipoprotein classes and atherosclerosis Chylomicrons, VLDL, and their catabolic remnants Pro-atherogenic LDL HDL Anti-atherogenic Plasma lipid transport Liver VLDL FC

More information

MEMBRANE STRUCTURE AND FUNCTION

MEMBRANE STRUCTURE AND FUNCTION MEMBRANE STRUCTURE AND FUNCTION selective permeability permits some substances to cross it more easily than others Figure 7.1 Scientists studying the plasma Reasoned that it must be a phospholipid bilayer

More information

Chapter 1 Membrane Structure and Function

Chapter 1 Membrane Structure and Function Chapter 1 Membrane Structure and Function Architecture of Membranes Subcellular fractionation techniques can partially separate and purify several important biological membranes, including the plasma and

More information

BIOB111_CHBIO - Tutorial activity for Session 12

BIOB111_CHBIO - Tutorial activity for Session 12 BIOB111_CHBIO - Tutorial activity for Session 12 General topic for week 6 Session 12 Lipids Useful Links: 1. Animations on Cholesterol (its synthesis, lifestyle factors, LDL) http://www.wiley.com/college/boyer/0470003790/animations/cholesterol/cholesterol.htm

More information

Glossary For TheFatNurse s For All Ages Series Adipocytes, also known as lipocytes and fat cells, are the cells that primarily compose adipose tissue, specialized in storing energy as fat. Apolipoprotein

More information

From HDL Structure to Function - How Structural Information Can Help Address Clinical Need March 17, 2012

From HDL Structure to Function - How Structural Information Can Help Address Clinical Need March 17, 2012 From HDL Structure to Function - How Structural Information Can Help Address Clinical Need March 17, 2012 Teaching Objectives There exists no definitive test for risk of cardiovascular disease. Age and

More information

Lipid/Lipoprotein Structure and Metabolism (Overview)

Lipid/Lipoprotein Structure and Metabolism (Overview) Lipid/Lipoprotein Structure and Metabolism (Overview) Philip Barter President, International Atherosclerosis Society Centre for Vascular Research University of New South Wales Sydney, Australia Disclosures

More information

Fluid Mozaic Model of Membranes

Fluid Mozaic Model of Membranes Replacement for the 1935 Davson Danielli model Provided explanation for Gortner-Grendel lack of lipid and permitted the unit membrane model. Trans membrane protein by labelling Fry & Edidin showed that

More information

Glossary For TheFatNurse s For All Ages Series Apolipoprotein B (APOB or ApoB) are the primary apolipoproteins of chylomicrons and low-density lipoproteins (LDL - known commonly by the misnomer "bad cholesterol"

More information

1.2 introduction to the cell. me239 mechanics of the cell. 1.2 introduction to the cell. 1.2 introduction to the cell.

1.2 introduction to the cell. me239 mechanics of the cell. 1.2 introduction to the cell. 1.2 introduction to the cell. 2. introduction to mechanics prokaryotic cells Figure 1.1 Prokaryotic cell. Cell without a nucleus. the inner life of a cell, viel & lue, harvard [2006] me239 mechanics of the cell 1 eukaryotic cells 1.2

More information

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Mathematical Sciences 2018, 52(3), p. 217 221 P h y s i c s STUDY OF THE SWELLING OF THE PHOSPHOLIPID BILAYER, DEPENDING ON THE ANGLE BETWEEN THE

More information

The Amyloid Precursor Protein Has a Flexible Transmembrane Domain and Binds Cholesterol

The Amyloid Precursor Protein Has a Flexible Transmembrane Domain and Binds Cholesterol The Amyloid Precursor Protein Has a Flexible Transmembrane Domain and Binds Cholesterol Science 336, 1171 (2013) Coach Prof. : Dr. Chung-I Chang Sit-in Prof.: Dr. Wei Yuan Yang Presenter: Han-Ying Wu Date:

More information

Cellular control of cholesterol. Peter Takizawa Department of Cell Biology

Cellular control of cholesterol. Peter Takizawa Department of Cell Biology Cellular control of cholesterol Peter Takizawa Department of Cell Biology Brief overview of cholesterol s biological role Regulation of cholesterol synthesis Dietary and cellular uptake of cholesterol

More information

Chapter VIII: Dr. Sameh Sarray Hlaoui

Chapter VIII: Dr. Sameh Sarray Hlaoui Chapter VIII: Dr. Sameh Sarray Hlaoui Lipoproteins a Lipids are insoluble in plasma. In order to be transported they are combined with specific proteins to form lipoproteins: Clusters of proteins and lipids.

More information

A. Membrane Composition and Structure. B. Animal Cell Adhesion. C. Passive Processes of Membrane Transport. D. Active Transport

A. Membrane Composition and Structure. B. Animal Cell Adhesion. C. Passive Processes of Membrane Transport. D. Active Transport Cellular Membranes A. Membrane Composition and Structure Lecture Series 5 Cellular Membranes B. Animal Cell Adhesion E. Endocytosis and Exocytosis A. Membrane Composition and Structure The Fluid Mosaic

More information

Lecture Series 5 Cellular Membranes

Lecture Series 5 Cellular Membranes Lecture Series 5 Cellular Membranes Cellular Membranes A. Membrane Composition and Structure B. Animal Cell Adhesion C. Passive Processes of Membrane Transport D. Active Transport E. Endocytosis and Exocytosis

More information

Raman spectroscopy methods for detecting and imaging supported lipid bilayers

Raman spectroscopy methods for detecting and imaging supported lipid bilayers Spectroscopy 24 (2010) 113 117 113 DOI 10.3233/SPE-2010-0426 IOS Press Raman spectroscopy methods for detecting and imaging supported lipid bilayers Claire S. Sweetenham and Ioan Notingher Nanoscience

More information

Coarse-grained simulation studies of mesoscopic membrane phenomena

Coarse-grained simulation studies of mesoscopic membrane phenomena Coarse-grained simulation studies of mesoscopic membrane phenomena Markus Deserno Department of Physics Carnegie Mellon University with: Ira R. Cooke, Gregoria Illya, Benedict J. Reynwar, Vagelis A. Harmandaris,

More information

Pressure Modulation of the Enzymatic Activity of. Phospholipase A2, a Putative Membraneassociated

Pressure Modulation of the Enzymatic Activity of. Phospholipase A2, a Putative Membraneassociated SUPPORTING INFORMATION Pressure Modulation of the Enzymatic Activity of Phospholipase A2, a Putative Membraneassociated Pressure Sensor Saba Suladze, Suleyman Cinar, Benjamin Sperlich, and Roland Winter*

More information

Mechanism of Muscular Contraction

Mechanism of Muscular Contraction ~ Sorin2:er Jack A. Rail Mechanism of Muscular Contraction Contents 1 Setting the Stage: Myosin, Actin, Actomyosin and ATP... 1.1 Introduction... 1 1.2 Muscle Structure as Observed by Nineteenth Century

More information

Incorporating HDL interaction in an ODE model of Atherosclerosis

Incorporating HDL interaction in an ODE model of Atherosclerosis Incorporating HDL interaction in an ODE model of Atherosclerosis Diego Lopez Texas A&M University July 29, 2015 Diego Lopez (TAMU) July 29, 2015 1 / 10 Introduction Atherosclerosis A disease of the arteries

More information

Lecture Series 4 Cellular Membranes

Lecture Series 4 Cellular Membranes Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 21 pages 709-717 717 (Animal( Cell Adhesion) Review Chapter 12 Membrane Transport Review Chapter

More information

Membrane biochemistry. Red blood cell ghost Only plasmalemma Size known (7 µm) Gorter & Grendel 1925 Tension on surface Enough lipid for 2 layers

Membrane biochemistry. Red blood cell ghost Only plasmalemma Size known (7 µm) Gorter & Grendel 1925 Tension on surface Enough lipid for 2 layers Membrane biochemistry Red blood cell ghost Only plasmalemma Size known (7 µm) Gorter & Grendel 1925 Tension on surface Enough lipid for 2 layers Fig. 6.5 Osmosis water moves passively from high WATER

More information

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins Lecture 6: Membranes and Cell Transport Biological Membranes I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins 1. Characteristics a. Phospholipids form bilayers

More information

PROCHONDRIX CARTILAGE RESTORATION MATRIX CONTAINS GROWTH FACTORS NECESSARY FOR HYALINE CARTILAGE REGENERATION

PROCHONDRIX CARTILAGE RESTORATION MATRIX CONTAINS GROWTH FACTORS NECESSARY FOR HYALINE CARTILAGE REGENERATION A L L O S O U R C E PROCHONDRIX CARTILAGE RESTORATION MATRIX CONTAINS GROWTH FACTORS NECESSARY FOR HYALINE CARTILAGE REGENERATION Ryan Delaney MS; Carolyn Barrett BS, MBA; Peter Stevens PhD, MBA AlloSource,

More information

Introduction to Membrane

Introduction to Membrane Heinrich Strathmann Introduction to Membrane Science and Technology WILEY- VCH WILEY-VCH Verlag GmbH & Co. KG aa V Preface Symbols XIII XV 1 Introduction 2 1.1 Overview of Membrane Science and Technology

More information

Boundary Lipid bilayer Selectively Permeable Fluid mosaic of lipids and proteins Contains embedded proteins

Boundary Lipid bilayer Selectively Permeable Fluid mosaic of lipids and proteins Contains embedded proteins 1 Boundary Lipid bilayer Selectively Permeable Fluid mosaic of lipids and proteins Contains embedded proteins 2 Phosphate head hydrophilic Fatty acid tails hydrophobic Amphipathic Phosphate attracted to

More information

Coarse grained simulations of Lipid Bilayer Membranes

Coarse grained simulations of Lipid Bilayer Membranes Coarse grained simulations of Lipid Bilayer Membranes P. B. Sunil Kumar Department of Physics IIT Madras, Chennai 600036 sunil@iitm.ac.in Atomistic MD: time scales ~ 10 ns length scales ~100 nm 2 To study

More information

Ch. 7 Cell Membrane BIOL 222

Ch. 7 Cell Membrane BIOL 222 Ch. 7 Cell Membrane BIOL 222 Overview: Plasma Membrane Plasma membrane boundary that separates the living cell from its surroundings Selec4ve permeability Allowance of some substances to cross more easily

More information

Supporting Information

Supporting Information Composition and lipid spatial distribution of High Density Lipoprotein particles in subjects with Laxman Yetukuri, 1 Sanni Söderlund, 2 Artturi Koivuniemi, 3 Tuulikki Seppänen-Laakso, 1 Perttu S. Niemelä,

More information

Methods and Materials

Methods and Materials a division of Halcyonics GmbH Anna-Vandenhoeck-Ring 5 37081 Göttingen, Germany Application Note Micostructured lipid bilayers ANDREAS JANSHOFF 1), MAJA GEDIG, AND SIMON FAISS Fig.1: Thickness map of microstructured

More information

Cellular membranes are fluid mosaics of lipids and proteins.

Cellular membranes are fluid mosaics of lipids and proteins. Study Guide e Plasma Membrane You should be able to write out the definitions to each of the following terms in your own words: plasma membrane fluid mosaic integral proteins peripheral proteins receptor

More information

Protein directed assembly of lipids

Protein directed assembly of lipids Protein directed assembly of lipids D. Nordin, O. Yarkoni, L. Donlon, N. Savinykh, and D.J. Frankel SUPPLEMENTARY MATERIAL Materials and Methods Supported bilayer preparation 1,2-dioleoyl-sn-glycero-3-phosphocholine

More information

2 A mechanism determining the stability of echinocytes

2 A mechanism determining the stability of echinocytes Membrane shear elasticity and stability of spiculated red cells A. Iglic Faculty of Electrical and Computer Engineering, University of Ljublijana, Trzaska 25, 61000 Ljublijana, Slovenia 8291 Abstract In

More information

What do you remember about the cell membrane?

What do you remember about the cell membrane? Cell Membrane What do you remember about the cell membrane? Cell (Plasma) Membrane Separates the internal environment of the cell from the external environment All cells have a cell membrane Selectively

More information

CHAPTER 8 MEMBRANE STUCTURE AND FUNCTION

CHAPTER 8 MEMBRANE STUCTURE AND FUNCTION CHAPTER 8 MEMBRANE STUCTURE AND FUNCTION Plasma Membrane Plasma membrane is selectively permeable, (allowing some substances to cross more easily than others) PM is flexible bends and changes shape

More information

The Cell Membrane (Ch. 7)

The Cell Membrane (Ch. 7) The Cell Membrane (Ch. 7) Phospholipids Phosphate head hydrophilic Fatty acid tails hydrophobic Arranged as a bilayer Phosphate attracted to water Fatty acid repelled by water Aaaah, one of those structure

More information

40s 50s. 70s. Membrane Rafts

40s 50s. 70s. Membrane Rafts 40s 50s 70s Membrane Rafts Membrane Microdomains Raft is a specific type of microdomain sphingolipid/cholesterol rich region Separation of discrete liquid-ordered and liquid-disordered phase domains occurring

More information

DEVELOPMENT AND APPLICATION OF HIGH-FIELD, HIGH-GRADIENT PULSED FIELD GRADIENT NMR FOR STUDIES OF DIFFUSION BEHAVIOR OF LIPIDS IN MODEL MEMBRANES

DEVELOPMENT AND APPLICATION OF HIGH-FIELD, HIGH-GRADIENT PULSED FIELD GRADIENT NMR FOR STUDIES OF DIFFUSION BEHAVIOR OF LIPIDS IN MODEL MEMBRANES DEVELOPMENT AND APPLICATION OF HIGH-FIELD, HIGH-GRADIENT PULSED FIELD GRADIENT NMR FOR STUDIES OF DIFFUSION BEHAVIOR OF LIPIDS IN MODEL MEMBRANES By MONICA DANIELLE SANDERS A DISSERTATION PRESENTED TO

More information

Paper 12: Membrane Biophysics Module 15: Principles of membrane transport, Passive Transport, Diffusion, Fick s law

Paper 12: Membrane Biophysics Module 15: Principles of membrane transport, Passive Transport, Diffusion, Fick s law Paper 12: Membrane Biophysics Module 15: Principles of membrane transport, Passive Transport, Diffusion, Fick s law LEARNING OBJECTIVES OF MODULE: We would begin this module by considering some general

More information

LDL/VLDL Purification Kit (Ultracentrifugation Free)

LDL/VLDL Purification Kit (Ultracentrifugation Free) Product Manual LDL/VLDL Purification Kit (Ultracentrifugation Free) Catalog Number STA- 606 10 preps FOR RESEARCH USE ONLY Not for use in diagnostic procedures Introduction Lipoproteins are submicroscopic

More information

Polarization and Circular Dichroism (Notes 17)

Polarization and Circular Dichroism (Notes 17) Polarization and Circular Dichroism - 2014 (Notes 17) Since is vector, if fix molec. orient., E-field interact (absorb) with molecule differently when change E-orientation (polarization) Transitions can

More information

Lipoproteins Metabolism

Lipoproteins Metabolism Lipoproteins Metabolism LEARNING OBJECTIVES By the end of this Lecture, the student should be able to describe: What are Lipoproteins? Describe Lipoprotein Particles. Composition of Lipoproteins. The chemical

More information

COR 011 Lecture 9: ell membrane structure ept 19, 2005

COR 011 Lecture 9: ell membrane structure ept 19, 2005 COR 011 Lecture 9: ell membrane structure ept 19, 2005 Cell membranes 1. What are the functions of cell membranes? 2. What is the current model of membrane structure? 3. Evidence supporting the fluid mosaic

More information

Supplementary information Common molecular mechanism of amyloid pore formation by Alzheimer s -amyloid peptide and -synuclein

Supplementary information Common molecular mechanism of amyloid pore formation by Alzheimer s -amyloid peptide and -synuclein 1 Supplementary information Common molecular mechanism of amyloid pore formation by Alzheimer s -amyloid peptide and -synuclein by Coralie Di Scala, Nouara Yahi, Sonia Boutemeur, Alessandra Flores, Léa

More information

Measures of Membrane Fluidity: Melting Temperature

Measures of Membrane Fluidity: Melting Temperature Measures of Membrane Fluidity: Melting Temperature T m (melting temperature) is a phase transition, a change from a more rigid solid-like state to a fluid-like state The fluidity - ease with which lipids

More information

Advanced Cell Biology. Lecture 28

Advanced Cell Biology. Lecture 28 Advanced Cell Biology. Lecture 28 Alexey Shipunov Minot State University April 8, 2013 Shipunov (MSU) Advanced Cell Biology. Lecture 28 April 8, 2013 1 / 41 Outline Questions and answers Shipunov (MSU)

More information

Reconstruction of a transmembrane protein tetraspanin (CD9) into lipid bilayer by interaction of ganglioside GM3 and tetraspanin

Reconstruction of a transmembrane protein tetraspanin (CD9) into lipid bilayer by interaction of ganglioside GM3 and tetraspanin Reconstruction of a transmembrane protein tetraspanin (CD9) into lipid bilayer by interaction of ganglioside GM3 and tetraspanin Glycobiology World Congress August 12, 2015 Tokyo University of Science,

More information

Nafith Abu Tarboush DDS, MSc, PhD

Nafith Abu Tarboush DDS, MSc, PhD Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush Lipids (cholesterol, cholesterol esters, phospholipids & triacylglycerols) combined with proteins (apolipoprotein) in

More information

Advanced Cell Biology. Lecture 28

Advanced Cell Biology. Lecture 28 Alexey Shipunov Minot State University March 30, 2012 Outline Questions and answers Outline Questions and answers Questions and answers Previous final question: the answer How to make a transgenic organism

More information

CELL MEMBRANES (MAS)

CELL MEMBRANES (MAS) CELL MEMBRANES (MAS) 1 CELL MEMBRANE area of the cell immediately surrounding the cytoplasm the most conserved structure in living cells. Every living thing on this planet has some type of membrane 2 Anatomy

More information

Pathophysiology of Lipid Disorders

Pathophysiology of Lipid Disorders Pathophysiology of Lipid Disorders Henry Ginsberg, M.D. Division of Preventive Medicine and Nutrition CHD in the United States CHD is the single largest killer of men and women 12 million have history

More information

Topic 7b: Biological Membranes

Topic 7b: Biological Membranes Topic 7b: Biological Membranes Overview: Why does life need a compartment? Nature of the packaging what is it made of? properties? New types of deformations in 2D Applications: Stretching membranes, forming

More information

Effect of Osmotic Stress on Intracellular Calcium Signaling of In Situ Juvenile and Mature Chondrocytes

Effect of Osmotic Stress on Intracellular Calcium Signaling of In Situ Juvenile and Mature Chondrocytes Effect of Osmotic Stress on Intracellular Calcium Signaling of In Situ Juvenile and Mature Chondrocytes Yilu Zhou, Michael A. David, Jie Ma, Liyun Wang, X. Lucas Lu. University of Delaware, Newark, DE,

More information

Plasma membrane structure and dynamics explored via a combined AFM/FCS approach

Plasma membrane structure and dynamics explored via a combined AFM/FCS approach Plasma membrane structure and dynamics explored via a combined AFM/FCS approach Salvatore Chiantia Molekulare Biophysik, Dept. Of Biology Humboldt-Universität zu Berlin Dresden nanoseminar, May 2013 Outline

More information

CWDHS Mr. Winch Grade 12 Biology

CWDHS Mr. Winch Grade 12 Biology The Cell Membrane Overview Cell separates living cell from nonliving surroundings thin barrier = 8nm thick Controls traffic in & out of the cell selectively permeable allows some substances to cross more

More information

Molecular Components of HIV

Molecular Components of HIV October 17, 2006 1 Molecular Components of HIV Protein RNA Lipid You heard in the first part of this course about the properties of two of the molecules of life - nucleic acids and proteins. In the next

More information

Transport Movement across the Cell Membrane

Transport Movement across the Cell Membrane Transport Movement across the Cell Membrane Lipids of cell membrane Membrane consists primarily of phosphos phospho bilayer inside cell phosphate hydrophilic outside cell hydrophobic S1 The Fluidity of

More information

THE ESSENTIAL PHOSPHOLIPIDS AS A MEMBRANE THERAPEUTIC

THE ESSENTIAL PHOSPHOLIPIDS AS A MEMBRANE THERAPEUTIC THE ESSENTIAL PHOSPHOLIPIDS AS A MEMBRANE THERAPEUTIC Edited by K. J. Gundermann, PhD, MD Associate Professor Publisher: Polish Section of European Society of Biochemical Pharmacology Institute of Pharmacology

More information

Protein-lipid interactions and the lipid raft hypothesis

Protein-lipid interactions and the lipid raft hypothesis Protein-lipid interactions and the lipid raft hypothesis or? Fivaz & Meyer 2003 euron 40, 319-30 Munro 2003 Cell 115, 377-88 How to target proteins to membranes? 1 Covalent lipid modification of proteins

More information

Liquid Crystalline and Mesomorphic Polymers

Liquid Crystalline and Mesomorphic Polymers Valery P. Shibaev Editors Lui Lam Liquid Crystalline and Mesomorphic Polymers With 199 Illustrations Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest Contents

More information

Membrane Structure and Function. Cell Membranes and Cell Transport

Membrane Structure and Function. Cell Membranes and Cell Transport Membrane Structure and Function Cell Membranes and Cell Transport 1895 1917 1925 Membrane models Membranes are made of lipids Phospholipids can form membranes Its actually 2 layers - there are proteins

More information

Membrane Proteins. David S. Goodsell Joanna R. Long 6740 February 6, 2006

Membrane Proteins. David S. Goodsell Joanna R. Long 6740 February 6, 2006 Membrane Proteins David S. Goodsell 999 Joanna R. Long 6740 February 6, 2006 Homework: ) The structure of the potassium channel: Molecular basis of K+ conduction and selectivity, Doyle et al., Science

More information

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine Membrane Structure and Membrane Transport of Small Molecules Assist. Prof. Pinar Tulay Faculty of Medicine Introduction Cell membranes define compartments of different compositions. Membranes are composed

More information

Lipid metabolism in familial hypercholesterolemia

Lipid metabolism in familial hypercholesterolemia Lipid metabolism in familial hypercholesterolemia Khalid Al-Rasadi, BSc, MD, FRCPC Head of Biochemistry Department, SQU Head of Lipid and LDL-Apheresis Unit, SQUH President of Oman society of Lipid & Atherosclerosis

More information

level and yield the relevant dynamical and structural information.

level and yield the relevant dynamical and structural information. Lecture 1 ATOMIC LEVEL SIMULATIONS OF MEMBRANES A fundamental understanding of the properties of biological membranes and membrane proteins from the atomic point of view is undoubtedly of great biochemical,

More information