Porosity of the Basement Membrane Overlying Peyer's Patches in Rats and Monkeys

Size: px
Start display at page:

Download "Porosity of the Basement Membrane Overlying Peyer's Patches in Rats and Monkeys"

Transcription

1 GASTROENTEROLOGY 1986;91: Porosity of the Basement Membrane Overlying Peyer's Patches in Rats and Monkeys SAMUEL G. McCLUGAGE, FRANK N. LOW, and MARIL YN 1. ZIMNY Department of Anatomy, Louisiana State University Medical Center, New Orleans, Louisiana The porosity of the epithelial basement membrane (basal lamina) overlying lymphoid follicles within Peyer's patches was studied in rats and monkeys by scanning electron microscopy. Basement membranes of lymphoid follicles are markedly porous, more conspicuously so than those of adjacent villus cores. The porosity increases centrifugally from the apex of the follicle to its periphery, where the basement membrane continues into the cul-de-sacs of the crypts. Such porosity may facilitate bidirectional passage of lymphocytes during an immune response. The unique structure of the basement membrane overlying lymphoid follicles suggests a biologic adaptation of this tissue boundary to a specific physiologic activity of the organism. Peyer's patches are known to be a functional part of the gut-associated lymphoid tissue. The epithelium covering the dome of the lymphoid follicles within Peyer's patches plays a specialized role in the uptake and processing of antigen from the lumen of the gut. lt transports antigen from the lumen to underlying lymphocytes and macrophages (1). The protruding domelike surface of the follicle, the presence of M cells of epithelial origin, intraepithelial lymphocytes, and the relative absence of mucus-secreting goblet cells within the follicle epithelium all appear to assist in the trapping and transport of antigen (1-5). These features have been described in humans (4) as well as in other species (1-3). The specialized nature of the follicle epithelium is in marked contrast to the epithelium that covers the surrounding intestinal villi (1-5). Received January 28, Accepted April 14, Address requests for reprints to: Dr. Sam G. McClugage, Department of Anatomy, Louisiana State University Medical Center, 1901 Perdido Street, New Orleans, Louisiana This study was supported by National Institutes of Health grants HL and RR by the American Gastroenterological Association /86/$3.50 The majority of previous studies on the mucosal surface of Peyer's patches emphasize'd the uniqueness of the follicle epithelium (1-5). Little attention has been given to the underlying basement membrane of this epithelium. Although some studies noted the presence of a basement membrane (2,6,7)' the staining quality (contrast) or magnification was not sufficient for accurate morphologic assessment. Recently, a technique has been developed that permits the selective removal of epithelium from its underlying basement membrane (8-10) and the visualization of the latter by scanning electron microscopy. This approach (11) has demonstrated that the underlying basement membrane of intestinal epithelium contains numerous pores of variable size, and that these pores are numerically increased within basement membranes overlying lymphoid follicles. This increased porosity appears to be a morphologic adaptation to the lymphoid follicle, and thus may play an important role in antigen-to-cell and cell-tocell interactions during an immune response in the gut wall. This paper presents a scanning electron microscopic study of the pores within the basement membrane of the follicle epithelium. Materials and Methods Male and female Sprague-Dawley rats, 6 wk to 6 mo of age, were used for this study. These animals were housed in cages and fed standard laboratory food. Two pieces of terminal ileum were obtained from owl monkeys (Aotus trivirgatus) to compare the morphology of their basement membranes with those of rats. The methodology for observing, by scanning electron microscopy, the exposed epithelial basement membrane of the intestine has been reported in detail in an earlier communication (10). Briefly, selected pieces of terminal ileum from Sprague-Dawley rats or owl monkeys were immersed in 1% aqueous boric acid overnight. Boric acid acts as a tissue softener and produces complete dissociation of epithelium from its underlying basement mem-

2 November 1986 PEYER'S PATCH BASEMENT MEMBRANE 1129 Figure 1. Small intestine, rat. Epithelial removal is complete in all figures. Several lymphoid follicles (LF) are located within a Peyer's patch surrounded by villus cores (Ve). The porosity of the basement membrane overlying the follicles is greater than that of the villus cores. Ostia (0) of crypts of Lieberkuhn are also evident. brane (10,12). The tissues were then dehydrated in ascending percentages of acetone (25%, 50%, 75%, 95%, 100%) for at least 10 min each, except for the final step, which requires at least 30 min in pure acetone. Although boric acid usually provides adequate removal of epithelium (i 1), further microdissection of the tissue was usually carried out by placing the tissues in a sonicator (disontegrator, Ultrasonic Industries, Inc., Engineers Hill, Long Island City, N.Y.) at 80,000 cycles/s for 10 min. This treatment completely removed the epithelium but left the basement membrane intact. After sonication, routine preparatory methods were used for scanning electron microscopy. To prepare the specimens for transmission electron microscopy, selected scanning electron microscopic preparations were removed from their studs, immersed in propylene oxide, and embedded in either Epon-Araldite or Spurr's low viscosity embedding medium. Thin sections were stained with uranyl acetate and lead citrate before examination in an AEI-6B electron microscope. Results Removal of the epithelium overlying the lymphoid follicles of a Peyer's patch reveals an underlying basement membrane that exhibits a marked porosity, as demonstrated by scanning electron microscopy (Figure 1). The porosity of the Peyer's patches within the terminal ileal segments of all animals was similar. Such porosity is also evident in solitary lymphoid follicles located in the gut wall (Figure 2). The porosity of the basement membrane overlying the follicles can be easily contrasted with that of the adjacent villus cores, which consist of a basement membrane encircling an interstitial space (Figures 1-3). Occasionally, a villus core is observed sitting directly on the luminal surface of a lymphoid follicle, thereby demonstrating the marked reduction in porosity of the basement membrane as it reflects onto the surface of the villus core (Figure 3). The porosity of each follicle increases centrifugally from the cap to the periphery of the follicle, where the porous basement membrane continues into the cul-de-sacs of the crypts of Lieberkuhn (Figures 1 and 4). The porosity within the basement membrane of the upper edges of the crypts of Lieberkuhn surrounding the follicle is markedly greater than that of the crypts at the base of the villus cores (Figure 4); however, further studies into the deeper parts of the crypts were not performed. Closer examination of the population of pores within the basement membrane from various areas demonstrates much morphologic heterogeneity (Figure 5). Pores have also been demonstrated by transmission electron microscopy (Figure 6). In addition to their obvious differences in size, the ultrastructure of each pore is distinctly different, possibly due to different stages of pore formation or repair, or both. These

3 1130 McCLUGAGE ET AL. GASTROENTEROLOGY Vol. 91, No.5 Figure 2. Small intestine, rat. An isolated lymphoid follicle (LF) between several villus cores (VC). The porosity of the basement membrane is markedly increased on the lymphoid follicles. Ostia (0) of crypts of Lieberkuhn are also evident. Figure 3. Small intestine, owl monkey. A single villus core (VC) projects from an isolated lymphoid follicle (LF). Note that the basement membrane is less porous over the villus core even though it is sitting in the center of a follicle.

4 November 1986 PEYER'S PATCH BASEMENT MEMBRANE 1131 Figure 4. Small intestine, rat. The porosity of basement membrane overlying a lymphoid follicle increases centrifugally from the cap (C) to the periphery, and continues into the ostia (0) of the crypts of Lieberkuhn that surround the follicle. Figure 5. Small intestine, rat. The sizes of the pores within the basement membrane overlying a lymphoid follicle are quite heterogeneous, possibly connoting various stages of pore formation or repair, or both.

5 1132 McCLUGAGE ET AL. GASTROENTEROLOGY Vol. 91, No.5 6.5pm Figure 6. Small intestine, rat. The epithelium covering a lymphoid follicle has been removed, exposing its underlying basement membrane (BM) to the metal coating (MC), a small fragment of which lies within what appears to be the edge of a pore (P). The thickness of the fibrillar substratum is bracketed. The underlying connective tissue fibrils (C) are typical of interstitial tissue in the tunica propria. pores also appear to penetrate the underlying fibrillar substratum (interstitial space). Discussion Basement membranes are found outside the plasmalemma of all histologic cell types except connective tissue cells and their derivatives. Epithelium, central nervous system tissue, muscle, peripheral nerve, and fat each very likely manufactures its own basement membrane composed of collagen, glycoproteins, and proteoglycans. This report demonstrates face-on views of pores within epithelial basement membranes overlying lymphoid follicles in rats and monkeys. Their occurrence is evident in fixed and unfixed, sonicated and unsonicated, tissue samples (11). This porosity increases centrifugally from the apex of the follicle to its periphery, and continues into the upper edges of the cul-de-sacs of the crypts of Lieberkuhn. The porosity of the basement membranes of the surrounding villus cores and their associated crypts of Lieberkuhn is markedly less (11). The biologic significance of the porous epithelial basement membrane overlying lymphoid follicles within the gut wall is of special interest. In the human intestinal epithelium, 20% of the total intraepithelial cell population is composed of nonepithelial cells, mostly lymphocytes (13), and this percentage is even greater within the mucosa overlying lymphoid follicles than anywhere over villi (14). As Peyer's patches are known to be sites of antigen sampling with the overlying epithelium heavily infiltrated by lymphocytes (14), such increased porosity of the basement membrane in these areas is not surprising. The pores are probably formed by migrating lymphocytes inasmuch as similar pores have been described during passage of lymphocytes through the basement membrane of normal skin (15) and of rat intestinal villi (16). The scanning electron micrographs illustrated in this report compare the differences in porosity between the epithelial basement membrane of an intestinal villus core and that of a lymphoid follicle. Such quantitative morphologic differences suggest concomitant differences in mucosal permeability of various parts of the small intestine. In this regard, piglet jejunal mucosal segments containing Peyer's patches demonstrate greater transport of horseradish peroxidase than adjacent patch-free segments (17). The increased transport of the Peyer's patch segments may be due to decreased numbers of goblet cells, thus reducing the mucous barrier, or to the pinocytotic activity of M cells (7). However, the increased transport may also be due to porosity differences between the basement membranes of the patch and patch-free segments. The morphologic heterogeneity of the pore population demonstrated in this report suggests that pores at anyone time are in different stages of repair or

6 November 1986 PEYER'S PATCH BASEMENT MEMBRANE 1133 formation. The epithelial basement membrane of rat intestine is an integral part of the extracellular matrix and may have the ability to flow back together after penetration by cells, cell processes, or various molecular aggregates such as chylomicrons. To maintain its own integrity, the basement membrane most likely closes over the patencies that occur during passage of various substances. In this regard, migrating lymphocytes passing through cutaneous basement membranes produce a sequence of deformations in the basement membrane that is followed after passage by a gradual disappearance of a pore and the eventual repair of the defect (15). The physical and chemical properties of basement membranes that possibly permit pore formation to occur have been discussed in an earlier communication (11). The regional differences in porosity of the intestinal epithelial basement membrane demonstrated in this report and an earlier one (11) support the current belief that basement membranes are important structural components of the extracellular matrix. This report and others (11,18) demonstrate that basement membranes can display a morphologic adaptation by a specific tissue or organ. This adaptation may play an integral role in the physiologic response of an organism. For example, the porous basement membrane overlying lymphoid follicles described in this report probably plays a part in the immune response of the organism. One might speculate that such porosity could facilitate passage of luminal antigens into the follicle and movement of chemical mediators from the follicle into the epithelium. This role heretofore has been largely unrecognized because of the difficulty encountered in adequately studying epithelial basement membranes. References 1. Owen RL, Bhalla DK. Lymphoepithelial organs and lymph nodes. In: Hodges GM, Carr KE, eds. Biomedical research applications of SEM. New York: Academic, 1983: Bhalla DK, Owen RL. Cell renewal and migration in lymphoid follicles of Peyer's patches and cecum-an autoradiographic study in mice. Gastroenterology 1982;82: Owen RL, Nemanic P. Antigen processing structures of the mammalian intestinal tract: an SEM study of Iymphoepithelial organs. In: Becker RP, Johari 0, eds. Scanning electron microscopy. Chicago: SEM Inc" 1978: Owen RL, Jones AL. Epithelial cell specialization within human Peyer's patches: an ultrastructural study of intestinal lymphoid follicles. Gastroenterology 1974;66: Abe K, Ito T. A qualitative and quantitative morphologic study of Peyer's patches of the mouse. Arch Histol Jpn 1977;40: Chin KN, Hudson G. Ultrastructure of Peyer's patches in the normal mouse. Acta Anat (Basel) 1971;78: Owen RL. Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer's patches in the normal unobstructed mouse intestine: an ultrastructural study. Gastroenterology 1977;72: Highison GL, Low FN. Microdissection by ultrasonication after prolonged OS04 fixation: a technique for scanning electron microscopy. J Submicrosc CytoI1982;14: McClugage SG, Low FN. Porosity of the intestinal basal lamina demonstrated by microdissection. J Cell BioI 1982: 95:113a. 10. Low FN, McClugage SG. Microdissection by ultrasonication: scanning electron microscopy of the epithelial basal lamina of the alimentary canal in the rat. Am J Anat 1984;169: McClugage SG, Low FN. Microdissection by ultrasonication: porosity of the intestinal epithelial basal lamina. Am J Anat 1984;171: Vial J, Porter KR. Scanning microscopy of dissociated tissue cells. J Cell BioI 1975;67: Toner PG, Ferguson A. Intraepithelial cells in the human intestinal mucosa. J Ultrastruct Res 1971;34: Owen RL, Allen CL, Stevens DP. Phagocytosis of Giardia muris by macrophages in Peyer's patch epithelium in mice. Infect Immunol 1981;33: Warfel KA, Hull MT. Migration of lymphocytes through the cutaneous basal lamina in normal skin: an ultrastructural study. Anat Rec 1984;208: Komuro T. Fenestrations of the basal lamina of intestinal villi of the rat. Scanning and transmission electron microscopy. Cell Tissue Res 1985;239: Keljo DJ, Hamilton JR. Quantitative determination of macromolecular transport rate across intestinal Peyer's patches. Am J PhysioI1983;244:G Carlson EC, Kenney Me. An ultrastructural analysis of isolated basement membrane in the acellular renal cortex: a comparative study of human and laboratory animals. J MorphoI1982;171:

Distribution of the Pores of Epithelial Basement Membrane in the Rat Small Intestine

Distribution of the Pores of Epithelial Basement Membrane in the Rat Small Intestine FULL PAPER Anatomy Distribution of the Pores of Epithelial Basement Membrane in the Rat Small Intestine Takashi TAKEUCHI 1) and Tatsuo GONDA 1) 1) Institute of Experimental Animals, Shimane Medical University,

More information

General Structure of Digestive Tract

General Structure of Digestive Tract Dr. Nabil Khouri General Structure of Digestive Tract Common Characteristics: Hollow tube composed of a lumen whose diameter varies. Surrounded by a wall made up of 4 principal layers: Mucosa Epithelial

More information

Flow Cytometry. Hanan Jafar (2017)

Flow Cytometry. Hanan Jafar (2017) 1 Flow Cytometry Flow cytometry is a popular laser-based technology to analyze the characteristics of cells or particles. It is predominantly used to measure fluorescence intensity produced by fluorescent-labeled

More information

DIGESTIVE TRACT ESOPHAGUS

DIGESTIVE TRACT ESOPHAGUS DIGESTIVE TRACT From the lower esophagus to the lower rectum four fundamental layers comprise the wall of the digestive tube: mucosa, submucosa, muscularis propria (externa), and adventitia or serosa (see

More information

Anatomy & Histology of The Small intestine

Anatomy & Histology of The Small intestine Anatomy & Histology of The Small intestine Prof. Abdulameer Al-Nuaimi E-mail: a.al-nuaimi@sheffield.ac.uk E. mail: abdulameerh@yahoo.com Jejunum Ileum Histology: Duodenum, jejunum, and ileum

More information

Scanning Electron Microscopy of the Small Intestine of a Normal Unsuckled Calf and a Calf with Enteric Colibacillosis

Scanning Electron Microscopy of the Small Intestine of a Normal Unsuckled Calf and a Calf with Enteric Colibacillosis Vet. Pathol. 15; 400-406 (1978) Scanning Electron Microscopy of the Small Intestine of a Normal Unsuckled Calf and a Calf with Enteric Colibacillosis G. R. PEARSON. E. F. LOGAN and G. P. BRENNAN Departmcnt

More information

Localization of Vibrio cho/erae 01 In the Intestinal Tissue

Localization of Vibrio cho/erae 01 In the Intestinal Tissue Asian Pacific Journal of Allergy and Immunology (1993) 11 : 155 165 Localization of Vibrio cho/erae 01 In the Intestinal Tissue Rujipom Sincharoenkul, Wanpen Chalctmpa, Emsri Pongponratn 1, Jirapom Umpananont

More information

the structure of their ducts has been

the structure of their ducts has been Tza JOURNAL 0? INVEa'riGATrVN DEBMATOLOOT Copyright t 1966 by The Williams & Wilkins Co. Vol. 46, No. I Printed in U.S.A. AN ELECTRON MICROSCOPIC STUDY OF THE ADULT HUMAN APOCRINE DUCT* KEN HASHIMOTO,

More information

Small intestine. Small intestine

Small intestine. Small intestine General features Tubular organ longest part; 5-6 m most of chemical digestion absorption of nutrients reabsorption of H2O occurs. Two structural features; maximize the lumenal surface area villi microvilli

More information

Histological and Ultrastructural studies of Caecal tonsil in Chicken (Gallus domesticus)

Histological and Ultrastructural studies of Caecal tonsil in Chicken (Gallus domesticus) ISSN: 2319-7706 Volume 4 Number 6 (2015) pp. 63-68 http://www.ijcmas.com Original Research Article Histological and Ultrastructural studies of Caecal tonsil in Chicken (Gallus domesticus) T.A.Kannan 1*,

More information

PBS Class #2 Introduction to the Immune System part II Suggested reading: Abbas, pgs , 27-30

PBS Class #2 Introduction to the Immune System part II Suggested reading: Abbas, pgs , 27-30 PBS 803 - Class #2 Introduction to the Immune System part II Suggested reading: Abbas, pgs. 15-25, 27-30 Learning Objectives Compare and contrast the maturation of B and T lymphocytes Compare and contrast

More information

LECTURE 12: MUCOSAL IMMUNITY GUT STRUCTURE

LECTURE 12: MUCOSAL IMMUNITY GUT STRUCTURE LECTURE 12: MUCOSAL IMMUNITY GUT STRUCTURE - Small intestine in humans is around 3-4 metres long - Internal surface of the small intestines are lined by villi o Villi are composed of absorptive cells (epithelial/enterocytes)

More information

The Digestive System Laboratory

The Digestive System Laboratory The Digestive System Laboratory 1 The Digestive Tract The alimentary canal is a continuous tube stretching from the mouth to the anus. Liver Gallbladder Small intestine Anus Parotid, sublingual, and submaxillary

More information

Human Anatomy and Physiology - Problem Drill 20: Immunity and the Lymphatic System

Human Anatomy and Physiology - Problem Drill 20: Immunity and the Lymphatic System Human Anatomy and Physiology - Problem Drill 20: Immunity and the Lymphatic System Question No. 1 of 10 The lymphatic system is formed early during human development. Which of the following statements

More information

HISTOLOGY VIRTUAL LABORATORY GASTROINTESTINAL SYSTEM

HISTOLOGY VIRTUAL LABORATORY GASTROINTESTINAL SYSTEM HISTOLOGY VIRTUAL LABORATORY GASTROINTESTINAL SYSTEM LIP (Slides GI 1, 2) Identify the outer portion lined by stratified squamous (keratinized) epithelium. Note the hair follicles and sebaceous glands

More information

Yara Saddam. Amr Alkhatib. Ihsan

Yara Saddam. Amr Alkhatib. Ihsan 1 Yara Saddam Amr Alkhatib Ihsan NOTE: Yellow highlighting=correction/addition to the previous version of the sheet. Histology (micro anatomy) :- the study of tissues and how they are arranged into organs.

More information

A Scanning Electron Microscope Study of the Effect of an Enterotoxin from Clostridium perfringens 8-6 on Mice of Different Ages

A Scanning Electron Microscope Study of the Effect of an Enterotoxin from Clostridium perfringens 8-6 on Mice of Different Ages ~ Journal of General Microbiology (1986), 132, 2893-2898. Printed in Great Britain 2893 A Scanning Electron Microscope Study of the Effect of an Enterotoxin from Clostridium perfringens 8-6 on Mice of

More information

The peripheral (secondary) lymphoid tissues

The peripheral (secondary) lymphoid tissues The peripheral (secondary) lymphoid tissues The peripheral (secondary) lymphoid tissues : are the lymph nodes, spleen, Mucosal associated lymphoid tissue (MALT). All secondary lymphoid organs have one

More information

Dr Nadine Gravett School of Anatomical Sciences Room 2B10B

Dr Nadine Gravett School of Anatomical Sciences Room 2B10B Dr Nadine Gravett School of Anatomical Sciences Room 2B10B Nadine.Gravett@wits.ac.za Oral cavity Mechanical breakdown Formation of bolus Oesophagus Conduit from mouth to stomach Stomach Digestion Temporary

More information

Small Intestine, Large Intestine and anal cannel

Small Intestine, Large Intestine and anal cannel Small Intestine, Large Intestine and anal cannel 32409 Small intestine Large intestine Small intestine General Structure of the Digestive Tract rat 32409 Epithelium with goblet cells and absorptive cells

More information

ULTRASTRUCTURAL CHANGES IN THE INFECTIVE LARVAE OF NIPPOSTRONGYLUS BRASILIENSIS IN THE SKIN OF IMMUNE MICE

ULTRASTRUCTURAL CHANGES IN THE INFECTIVE LARVAE OF NIPPOSTRONGYLUS BRASILIENSIS IN THE SKIN OF IMMUNE MICE ULTRASTRUCTURAL CHANGES IN THE INFECTIVE LARVAE OF NIPPOSTRONGYLUS BRASILIENSIS IN THE SKIN OF IMMUNE MICE by D. L. Lee ABSTRACT Infective stage larvae of Nippostrongylus brasiliensis are immobilized within

More information

HDF Case Whipple s disease

HDF Case Whipple s disease HDF Case 952556 Whipple s disease 63 yo female complaining of a diarrhea for 2 months, weigth loss (12 Kg in 3 months), and joint pains. Duodenal biopsy performed. Scanning view, enlarged intestinal villi,

More information

Lab activity manual - Histology of the digestive system. Lab activity 1: esophagus stomach - small intestines

Lab activity manual - Histology of the digestive system. Lab activity 1: esophagus stomach - small intestines Lab activity manual - Histology of the digestive system Jeanne Adiwinata Pawitan Prerequisite: Histology of the 4 basic tissues In this module we learn about the histology of the digestive system, from

More information

A Rough look at the tonsils and adenoids, for Bonny Peppa!

A Rough look at the tonsils and adenoids, for Bonny Peppa! A Rough look at the tonsils and adenoids, for Bonny Peppa! tonsils (two oval masses in the back of the throat) Lymphoid organs include: adenoids (two glands located at the back of the nasal passage) appendix

More information

Some Observations on the Fine Structure of the Goblet Cells. Special Reference to the Well-Developed Agranular Endoplasmic Reticulum

Some Observations on the Fine Structure of the Goblet Cells. Special Reference to the Well-Developed Agranular Endoplasmic Reticulum Okajimas Folia Anat. Jpn., 58(4-6) : 583-594, March 1982 Some Observations on the Fine Structure of the Goblet Cells in the Nasal Respiratory Epithelium of the Rat, with Special Reference to the Well-Developed

More information

Lymphoid Organs. Dr. Sami Zaqout. Dr. Sami Zaqout IUG Faculty of Medicine

Lymphoid Organs. Dr. Sami Zaqout. Dr. Sami Zaqout IUG Faculty of Medicine Lymphoid Organs Dr. Sami Zaqout Cells of the Immune System Lymphocytes Plasma cells Mast cells Neutrophils Eosinophils Cells of the mononuclear phagocyte system Distribution of cells of the immune system

More information

Dr. Heba Kalbouneh. Dr. Heba Kalbouneh. Dr. Heba Kalbouneh

Dr. Heba Kalbouneh. Dr. Heba Kalbouneh. Dr. Heba Kalbouneh Dr. Heba Kalbouneh Dr. Heba Kalbouneh Dr. Heba Kalbouneh Tissue: is a group of cells that serve the same function, they are surrounded by extra cellular matrix. The 4 basic types of tissue: 1. epithelial

More information

Anatomy of the Intes.ne: Epithelium, Lympha.cs, Vessels and Nerves

Anatomy of the Intes.ne: Epithelium, Lympha.cs, Vessels and Nerves Master Course Gastroenterology 2015 Anatomy of the Intes.ne: Epithelium, Lympha.cs, Vessels and Nerves Dr. Stephanie Ganal Department Klinische Forschung University of Bern stephanie.ganal@dkf.unibe.ch

More information

Dr. Heba Kalbouneh. Dr. Heba Kalbouneh. Dr. Heba Kalbouneh

Dr. Heba Kalbouneh. Dr. Heba Kalbouneh. Dr. Heba Kalbouneh Dr. Heba Kalbouneh Dr. Heba Kalbouneh Dr. Heba Kalbouneh Basement membrane: What is the basement membrane? - It is a layer of ECM separating the epithelial cells from the underlying connective tissue Basement

More information

Glandular Epithelium. Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology

Glandular Epithelium. Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology Glandular Epithelium Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology Glands Glandular epithelia are tissues formed by cells specialized to produce secretion. Secretion: if substances produced

More information

African Trypanosomes

African Trypanosomes African Trypanosomes Giemsa-stained blood smear of African trypanosomes viewed under the 100X objective lens. The block arrows denote trypomastigote forms of the African trypanosomes found within the blood

More information

Esophagus. Transport is achieved by peristaltic contractions and relaxation of the esophageal sphincters (upper and lower)

Esophagus. Transport is achieved by peristaltic contractions and relaxation of the esophageal sphincters (upper and lower) GI Histology 2 Esophagus is a muscular tube whose function is to transport foodstuffs from the mouth to the stomach and to prevent the retrograde flow of gastric contents Transport is achieved by peristaltic

More information

Lower Respiratory Tract (Trachea, Bronchi, Bronchioles) & the Lung

Lower Respiratory Tract (Trachea, Bronchi, Bronchioles) & the Lung Lower Respiratory Tract (Trachea, Bronchi, Bronchioles) & the Lung Color code: Important Extra & Doctor notes Editing file Objectives: By the end of this lecture, the student should be able to describe:

More information

The Lymphatic System

The Lymphatic System The Lymphatic System The Lymphatic Systems Overview General Functions Organization Components Lymphatic System General Functions Transportation Excess fluid from capillary exchange Fats & fat soluble vitamins

More information

Glandular Epithelium. Dr. Heba Kalbouneh Assistant Professor of Anatomy and Histology

Glandular Epithelium. Dr. Heba Kalbouneh Assistant Professor of Anatomy and Histology Glandular Epithelium Dr. Heba Kalbouneh Assistant Professor of Anatomy and Histology Glands Gla dular epithelia are tissues for ed y ells spe ialized to produ e se retio. Secretion: if substances produced

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION b 350 300 250 200 150 100 50 0 E0 E10 E50 E0 E10 E50 E0 E10 E50 E0 E10 E50 Number of organoids per well 350 300 250 200 150 100 50 0 R0 R50 R100 R500 1st 2nd 3rd Noggin 100 ng/ml Noggin 10 ng/ml Noggin

More information

CHAPTER 05 Histology: EPITHELIUM

CHAPTER 05 Histology: EPITHELIUM BIO 211: ANATOMY & PHYSIOLOGY I 1 CHAPTER 05 Histology: EPITHELIUM Part 01: Brief Introduction Part 02: Survey of Types Dr. Lawrence G. G. Altman www.lawrencegaltman.com Some illustrations are courtesy

More information

TISSUES TYPES. CHAPTER 05 Histology: EPITHELIUM BIO 211: ANATOMY & PHYSIOLOGY I. HISTOLOGY = the study of tissues

TISSUES TYPES. CHAPTER 05 Histology: EPITHELIUM BIO 211: ANATOMY & PHYSIOLOGY I. HISTOLOGY = the study of tissues BIO 211: ANATOMY & PHYSIOLOGY I 1 CHAPTER 05 Histology: EPITHELIUM Part 01: Brief Introduction Part 02: Survey of Types Dr. Lawrence G. G. Altman www.lawrencegaltman.com Some illustrations are courtesy

More information

Molecular and Cellular Basis of Immune Protection of Mucosal Surfaces

Molecular and Cellular Basis of Immune Protection of Mucosal Surfaces Molecular and Cellular Basis of Immune Protection of Mucosal Surfaces Department of Biologic & Materials Sciences School of Dentistry University of Michigan Ann Arbor, Michigan 48109-1078 1 Image quality

More information

Gastrointestinal System!

Gastrointestinal System! Gastrointestinal System! Assoc. Prof. Prasit Suwannalert, Ph.D. (Email: prasit.suw@mahidol.ac.th)! Objectives: After learning, student should be able to describe and discuss in topics of! 1. Anatomical

More information

Dana Alrafaiah. Dareen Abu Shalbak. Mohammad Almuhtaseb. 1 P a g e

Dana Alrafaiah. Dareen Abu Shalbak. Mohammad Almuhtaseb. 1 P a g e 2 Dana Alrafaiah Dareen Abu Shalbak Mohammad Almuhtaseb 1 P a g e Esophagus: A muscular tube that is 25 cm long, but if measured from the incisors it would be 45cm long. Extends from C6 of cervical vertebra,

More information

Lecture Overview. Chapter 4 Epithelial Tissues Lecture 9. Introduction to Tissues. Epithelial Tissues. Glandular Epithelium

Lecture Overview. Chapter 4 Epithelial Tissues Lecture 9. Introduction to Tissues. Epithelial Tissues. Glandular Epithelium Visual Anatomy & Physiology First Edition Martini & Ober Chapter 4 Lecture 9 Lecture Overview Introduction to Tissues Location General characteristics Functions Classification Glandular Epithelium 2 Where

More information

The Lymphatic System and Body Defenses

The Lymphatic System and Body Defenses 12 PART A The Lymphatic System and Body Defenses PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB

More information

Mucosal Immunology Sophomore Dental and Optometry Microbiology Section I: Immunology. Robin Lorenz

Mucosal Immunology Sophomore Dental and Optometry Microbiology Section I: Immunology. Robin Lorenz Mucosal Immunology Sophomore Dental and Optometry Microbiology Section I: Immunology Robin Lorenz rlorenz@uab.edu Why do we Need to Understand How the Mucosal Immune System Works? The mucosa is the major

More information

Unit I Problem 9 Histology: Basic Tissues of The Body

Unit I Problem 9 Histology: Basic Tissues of The Body Unit I Problem 9 Histology: Basic Tissues of The Body - What is the difference between cytology and histology? Cytology: it is the study of the structure and functions of cells and their contents. Histology:

More information

Lecture Overview. Marieb s Human Anatomy and Physiology. Chapter 4 Tissues: The Living Fabric Epithelial Tissues Lecture 9. Introduction to Tissues

Lecture Overview. Marieb s Human Anatomy and Physiology. Chapter 4 Tissues: The Living Fabric Epithelial Tissues Lecture 9. Introduction to Tissues Marieb s Human Anatomy and Physiology Marieb Hoehn Chapter 4 Tissues: The Living Fabric Epithelial Tissues Lecture 9 Lecture Overview Introduction to Tissues Epithelial Tissues Location General characteristics

More information

MICROSTRUCTURES SMALL INTESTIN LARGE INTESTIN PANCREAS LIVER GALLBLADDER SALIVARY GLANDS ADRENALS THYROID AND PARATHYROID GLANDS

MICROSTRUCTURES SMALL INTESTIN LARGE INTESTIN PANCREAS LIVER GALLBLADDER SALIVARY GLANDS ADRENALS THYROID AND PARATHYROID GLANDS MICROSTRUCTURES SMALL INTESTIN LARGE INTESTIN PANCREAS LIVER GALLBLADDER SALIVARY GLANDS ADRENALS THYROID AND PARATHYROID GLANDS HUMAN ANATOMY: MICROSTRUCTURES CLASSIFICATION: LOCATION AND BOUNDARIES,

More information

Antigen handling by the gut

Antigen handling by the gut Archives of Disease in Childhood, 1978, 53, 527-531 Antigen handling by the gut The epithelial surface of the gastrointestinal tract represents an extensive surface area exposed to a hostile intraluminal

More information

Silver-Impregnation of the Golgi Complex in Epididymal Epithelial Cells of Mice

Silver-Impregnation of the Golgi Complex in Epididymal Epithelial Cells of Mice CELL STRUCTURE AND FUNCTION 8, 339-346 (1984) C by Japan Society for Cell Biology Silver-Impregnation of the Golgi Complex in Epididymal Epithelial Cells of Mice Ikuo Yamaoka, Sumie Katsuta and Yoshimi

More information

MAST-CELLS are present in the digestive tract of all classes of vertebrates

MAST-CELLS are present in the digestive tract of all classes of vertebrates The Distribution of Mast-Cells in the Digestive Tract of Laboratory Animals: Its Bearings on the Problem of the Location of Histamine in Tissues By I. MOTA, A. G. FERRI, AND S. YONEDA 251 (From the Laboratory

More information

HISTOLOGY OF THE RESPIRATORY SYSTEM I. Introduction A. The respiratory system provides for gas exchange between the environment and the blood. B.

HISTOLOGY OF THE RESPIRATORY SYSTEM I. Introduction A. The respiratory system provides for gas exchange between the environment and the blood. B. HISTOLOGY OF THE RESPIRATORY SYSTEM I. Introduction A. The respiratory system provides for gas exchange between the environment and the blood. B. The human respiratory system may be subdivided into two

More information

A classification of epithelial tissues

A classification of epithelial tissues A classification of epithelial tissues Ramray Bhat Molecular Reproduction Development and Genetics ramray@iisc.ac.in Textbooks for my portion Molecular Biology of the Cell (Bruce Alberts) 6 th Edition

More information

Human Structure and Function GI Tract Exercises

Human Structure and Function GI Tract Exercises GI Tract Exercises Study Exercises. Review of the Elements of the Alimentary Tube. On the following two pages is a chart or matrix of blank spaces. Each space is the intersection of a horizontal row and

More information

(b) Stomach s function 1. Dilution of food materials 2. Acidification of food (absorption of dietary Fe in small intestine) 3. Partial chemical digest

(b) Stomach s function 1. Dilution of food materials 2. Acidification of food (absorption of dietary Fe in small intestine) 3. Partial chemical digest (1) General features a) Stomach is widened portion of gut-tube: between tubular and spherical; Note arranged of smooth muscle tissue in muscularis externa. 1 (b) Stomach s function 1. Dilution of food

More information

Lymph I: The Peripheral Lymph System

Lymph I: The Peripheral Lymph System Lymph I: The Peripheral Lymph System Peripheral = Secondary Primary Immune Organs = bone marrow, thymus Site of maturation of cells of the immune system Secondary Immune Organs = Nodes, MALT, spleen Filter

More information

Tissues. tissue = many cells w/ same structure and function. cell shape aids its function tissue shape aids its function

Tissues. tissue = many cells w/ same structure and function. cell shape aids its function tissue shape aids its function Tissues tissue = many cells w/ same structure and function cell shape aids its function tissue shape aids its function Histology = study of tissues 4 types of tissues Epithelial coverings contact openings

More information

Tissue: The Living Fabric: Part A

Tissue: The Living Fabric: Part A PowerPoint Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R 4 Tissue: The Living Fabric: Part A Tissues Groups of cells similar in structure and function Types of tissues Epithelial

More information

This is the second learning component (Learning Component 2) in our first learning module (Learning Module 1). In this component we review a very

This is the second learning component (Learning Component 2) in our first learning module (Learning Module 1). In this component we review a very This is the second learning component (Learning Component 2) in our first learning module (Learning Module 1). In this component we review a very basic response to injury inflammation. We ll look at examples

More information

Histology Urinary system

Histology Urinary system Histology Urinary system Urinary system Composed of two kidneys, two ureters, the urinary bladder, and the urethra, the urinary system plays a critical role in: 1- Blood filtration,(filtration of cellular

More information

Study of different tissues Abnormal cells and tissues can be compared to normal tissues to identify disease, such as cancer Being able to know and

Study of different tissues Abnormal cells and tissues can be compared to normal tissues to identify disease, such as cancer Being able to know and CHAPTER 4 Study of different tissues Abnormal cells and tissues can be compared to normal tissues to identify disease, such as cancer Being able to know and recognize normal tissues under the microscope

More information

8: Lymphatic vessels and lymphoid tissue. nur

8: Lymphatic vessels and lymphoid tissue. nur 8: Lymphatic vessels and lymphoid tissue nur Lymphatic vascular system Functions return to the blood extracellular fluid (Lymph) from connective tissue spaces. ensures the return of water, electrolytes

More information

HISTOLOGY Lecture TWO DR. ASHRAF SAID

HISTOLOGY Lecture TWO DR. ASHRAF SAID HISTOLOGY Lecture TWO DR. ASHRAF SAID Start Of this lecture TISSUES TISSUE: A DEFINITION A group of connected and interdependent cells that cooperate to perform a specific function CONNECTIVE TISSUE The

More information

Histology = the study of tissues. Tissue = a complex of cells that have a common function

Histology = the study of tissues. Tissue = a complex of cells that have a common function { EPITHELIAL TISSUE Histology = the study of tissues Tissue = a complex of cells that have a common function The Four Primary Tissue Types: Epithelium (epithelial tissue) covers body surfaces, lines body

More information

Reports. Ocular vascular and epithelial barriers to

Reports. Ocular vascular and epithelial barriers to Reports Ocular vascular and epithelial barriers to microperoxidase. RICHARD S. SMITH AND LINDA A. RUDT. Microperoxida.se (MP) is an ultrastructural tracer of small molecular weight (1,900) derived from

More information

Immunology 2017: Lecture 12 handout. Secondary lymphoid organs. Dr H Awad

Immunology 2017: Lecture 12 handout. Secondary lymphoid organs. Dr H Awad Immunology 2017: Lecture 12 handout Secondary lymphoid organs Dr H Awad INTRODUCTION So far we discussed the cells of the immune system and how they recognize their antigens and get stimulated. The number

More information

The Lymphatic System and Body Defenses

The Lymphatic System and Body Defenses Essentials of Human Anatomy & Physiology Elaine N. Marieb Seventh Edition Chapter 12 The Lymphatic System and Body Defenses Slides 12.1 12.22 Lecture Slides in PowerPoint by Jerry L. Cook The Lymphatic

More information

Organs Histology D. Sahar AL-Sharqi. Respiratory system

Organs Histology D. Sahar AL-Sharqi. Respiratory system Respiratory system The respiratory system provides for exchange of O2 and CO2 to and from the blood. Respiratory organs include the lungs and a branching system of bronchial tubes that link the sites of

More information

Epithelia will be discussed according to the following scheme: Type Number of layers Shape Line drawing. Squamous Cuboidal Columnar

Epithelia will be discussed according to the following scheme: Type Number of layers Shape Line drawing. Squamous Cuboidal Columnar Epithelia Epithelia will be discussed according to the following scheme: Type Number of layers Shape Line drawing Simple Squamous Cuboidal Columnar Covering and Lining epithelium Pseudostratified Stratified

More information

Elastic Skeleton of Intracranial Cerebral Aneurysms in Rats

Elastic Skeleton of Intracranial Cerebral Aneurysms in Rats 1722 Elastic Skeleton of Intracranial Cerebral Aneurysms in Rats Naohiro Yamazoe, MD, Nobuo Hashimoto, MD, Haruhiko Kikuchi, MD, and Fumitada Hazama, MD In an attempt to clarify the developmental mechanism

More information

Tissues. Definition. A group of similar cells and their intercellular substances specialized to perform a specific function.

Tissues. Definition. A group of similar cells and their intercellular substances specialized to perform a specific function. Chapter 4 - Tissues Tissues Definition A group of similar cells and their intercellular substances specialized to perform a specific function. Tissues Epithelial covers exposed surfaces, lines internal

More information

DIGESTIVE. CHAPTER 17 Lecture: Part 1 Part 2 BIO 212: ANATOMY & PHYSIOLOGY II

DIGESTIVE. CHAPTER 17 Lecture: Part 1 Part 2 BIO 212: ANATOMY & PHYSIOLOGY II BIO 212: ANATOMY & PHYSIOLOGY II CHAPTER 17 Lecture: DIGESTIVE Part 1 Part 2 Dr. Lawrence G. Altman www.lawrencegaltman.com Some illustrations are courtesy of McGraw-Hill. SMALL INTESTINE DUODENUM > JEJUNUM

More information

Section 1.1: What is the function of digestion?

Section 1.1: What is the function of digestion? Section 1.1: What is the function of digestion? When you have completed this section, you should be able to: Describe the overall function of the GI tract. Describe the processes involved in digestion.

More information

SCPA602 Respiratory System

SCPA602 Respiratory System SCPA602 Respiratory System Associate Professor Dr. Wannee Jiraungkoorskul Department of Pathobiology, Faculty of Science, Mahidol University Tel: 02-201-5563, E-mail: wannee.jir@mahidol.ac.th 1 Objectives

More information

CELLS CONTAINING LANGERHANS GRANULES IN HUMAN LYMPH NODES OF DERMATOPATHIC LYMPHADENOPATHY*

CELLS CONTAINING LANGERHANS GRANULES IN HUMAN LYMPH NODES OF DERMATOPATHIC LYMPHADENOPATHY* THS JOURNAL OF INVEBTIOATIVR DERMATOLOGY Copyright 1969 by The Williams & Wilkins Co. Vol. 93, No. 4 Printed in U.S.A. CELLS CONTAINING LANGERHANS GRANULES IN HUMAN LYMPH NODES OF DERMATOPATHIC LYMPHADENOPATHY*

More information

A adipose cells. B capillary. C epithelium

A adipose cells. B capillary. C epithelium EPITHELIA Objective The objective of this class is to observe how different epithelia vary in terms of cell shape, size and number of cell layers enabling them to be well adapted for functions in different

More information

Mucosal immunity Reddy April Deveshni Reddy Allergy Meeting 13 April 2012

Mucosal immunity Reddy April Deveshni Reddy Allergy Meeting 13 April 2012 Deveshni Reddy Allergy Meeting 13 April First recorded by Hippocrates over 2000 years ago. 1921: Prausnitz and Kustner demonstrated that substance responsible for Kustner s fish allergy was present in

More information

Sinusoids and venous sinuses

Sinusoids and venous sinuses LYMPHOID SYSTEM General aspects Consists of organs that are made of lymphoid tissue; Immune defense Breakdown of red blood cells. 1 Sinusoids In place of capillaries Endothelium; often fenestrated More

More information

LYMPH GLAND. By : Group 1

LYMPH GLAND. By : Group 1 LYMPH GLAND By : Group 1 ANATOMY LYMPH NODE Lymphatic Organs Red bone marrow Thymus gland Lymph nodes Lymph nodules Spleen Primary organs Secondary organs Lymph Nodes Firm, smooth-surfaced, bean-shaped

More information

Fine Structure of the Normal Trigeminal Ganglion in the Cat and Monkey*

Fine Structure of the Normal Trigeminal Ganglion in the Cat and Monkey* Fine Structure of the Normal Trigeminal Ganglion in the Cat and Monkey* DAVID S. MAXWELL, PH.D. Principal Contributor and Leader of Discussion HE inclusion of animal material m a y be justified as a means

More information

Initially, the patients did not receive extra vitamin E except for a very

Initially, the patients did not receive extra vitamin E except for a very EFFECT OF VITAMIN E ON MEMBRANES OF THE INTESTINAL CELL BY I. MOLENAAR, F. A. HOMMES, W. G. BRAAMS, AND H. A. POLMAN CENTER FOR MEDICAL ELECTRON MICROSCOPY AND DEPARTMENT OF PEDIATRICS, UNIVERSITY OF GRONINGEN,

More information

Alimentary Canal (I)

Alimentary Canal (I) Alimentary Canal (I) Esophagus and Stomach (Objectives) By the end of this lecture, the student should be able to discuss the microscopic structure in correlation with the function of the following organs:

More information

Histochemical Studies On the Peyers Patches of Sheep Ovis aries. Keywords : Sheep, Peyer s patches, Histochemistry.

Histochemical Studies On the Peyers Patches of Sheep Ovis aries. Keywords : Sheep, Peyer s patches, Histochemistry. Global Journal of Medical Research Volume 12 Issue 6 Version 1.0 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4618 Print ISSN:0975-5888

More information

Chapter 4 Opener Pearson Education, Inc.

Chapter 4 Opener Pearson Education, Inc. Chapter 4 Opener Introduction The integumentary system is composed of: Skin Hair Nails Sweat glands Oil glands Mammary glands The skin is the most visible organ of the body Clinicians can tell a lot about

More information

Lymphoid System: cells of the immune system. Answer Sheet

Lymphoid System: cells of the immune system. Answer Sheet Lymphoid System: cells of the immune system Answer Sheet Q1 Which areas of the lymph node have most CD3 staining? A1 Most CD3 staining is present in the paracortex (T cell areas). This is towards the outside

More information

Epithelial Lecture Test Questions

Epithelial Lecture Test Questions Epithelial Lecture Test Questions 1. Which of the following free surfaces lack(s) epithelia: a. lung alveoli (air sacs) b. hard palate c. joint cavities d. abdominal cavity e. salivary gland ducts 2. Which

More information

LIST OF ORGANS FOR HISTOPATHOLOGICAL ANALYSIS:!! Neural!!!!!!Respiratory:! Brain : Cerebrum,!!! Lungs and trachea! Olfactory, Cerebellum!!!!Other:!

LIST OF ORGANS FOR HISTOPATHOLOGICAL ANALYSIS:!! Neural!!!!!!Respiratory:! Brain : Cerebrum,!!! Lungs and trachea! Olfactory, Cerebellum!!!!Other:! LIST OF ORGANS FOR HISTOPATHOLOGICAL ANALYSIS:!! Neural!!!!!!Respiratory:! Brain : Cerebrum,!!! Lungs and trachea! Olfactory, Cerebellum!!!!Other:! Spinal cord and peripheral nerves! Eyes, Inner ear, nasal

More information

International Journal of Science, Environment and Technology, Vol. 7, No 5, 2018,

International Journal of Science, Environment and Technology, Vol. 7, No 5, 2018, International Journal of Science, Environment and Technology, Vol. 7, No 5, 2018, 1608 1614 ISSN 2278-3687 (O) 2277-663X (P) COMPARATIVE HISTOLOGICAL STUDIES OF DUEODENUM IN CATTLE SHEEP AND GOATS Thete

More information

Prelab #4 BLOOD; BONE MARROW; RESPIRATORY; INTEGUEMENT Page 1

Prelab #4 BLOOD; BONE MARROW; RESPIRATORY; INTEGUEMENT Page 1 Prelab #4 BLOOD; BONE MARROW; RESPIRATORY; INTEGUEMENT Page 1 Blood Slide 101 This a classic slide of blood cells using a Wright stain. Inspect red blood cells and their appearance. Note the approximate

More information

Intestinal Microbiota in Health and Disease

Intestinal Microbiota in Health and Disease Intestinal Microbiota in Health and Disease February 27, 2015 Master s Course in Gastroenterology Prof. Kathy McCoy 1 Overview Overview of Gut Microbiota Microbiota in Health Microbiota in Disease 2 Gut

More information

Histology Notes -Part 1: Epithelial Tissues

Histology Notes -Part 1: Epithelial Tissues Introduction Group of cells w/ similar structure & function = TISSUE Four Basic Tissue Types 1. Epithelial-covers 2. Connective-supports 3. Muscular*-produces movement (will discuss in the muscular system

More information

FOR OPTIMAL GUT HEALTH KEMIN.COM/GUTHEALTH

FOR OPTIMAL GUT HEALTH KEMIN.COM/GUTHEALTH FOR OPTIMAL GUT HEALTH KEMIN.COM/GUTHEALTH ALETA A SOURCE OF 1,3-BETA GLUCANS Aleta is highly bioavailable, offering a concentration greater than 5% of 1,3-beta glucans. Aleta provides a consistent response

More information

Disorders of Cell Growth & Neoplasia. Histopathology Lab

Disorders of Cell Growth & Neoplasia. Histopathology Lab Disorders of Cell Growth & Neoplasia Histopathology Lab Paul Hanna April 2010 Case #84 Clinical History: 5 yr-old, West Highland White terrier. skin mass from axillary region. has been present for the

More information

INVESTIGATION OF THE ULTRAFINE STRUCTURE OF THE KIDNEY BY MEANS OF SCANNING ELECTRON MICROSCOPE

INVESTIGATION OF THE ULTRAFINE STRUCTURE OF THE KIDNEY BY MEANS OF SCANNING ELECTRON MICROSCOPE THE KURUME MEDICAL JOURNAL 1975 Vol.22, No.3, P.135-141 INVESTIGATION OF THE ULTRAFINE STRUCTURE OF THE KIDNEY BY MEANS OF SCANNING ELECTRON MICROSCOPE I. THE GLOMERULUS SHINSHI NODA Department of Urology,

More information

Copyright 2010 Pearson Education, Inc. Blood Vessel Structure

Copyright 2010 Pearson Education, Inc. Blood Vessel Structure Blood Vessel Structure Structure of Blood Vessel Walls Arteries and veins Tunica intima, tunica media, and tunica externa Lumen Central blood-containing space Capillaries Endothelium with sparse basal

More information

Gut Integrity of Neonatal Piglets: A Histomorphological Analysis

Gut Integrity of Neonatal Piglets: A Histomorphological Analysis DOI: 10.5958/2277-940X.2017.00167.X Journal of Animal Research: v.7 n.6, p. 1115-1121. December 2017 Gut Integrity of Neonatal Piglets: A Histomorphological Analysis Arup Kalita 1 *, Kabita Sarma 2, M.

More information

SAMs Guidelines DEVELOPING SELF-ASSESSMENT MODULES TEST QUESTIONS. Ver. #

SAMs Guidelines DEVELOPING SELF-ASSESSMENT MODULES TEST QUESTIONS. Ver. # SAMs Guidelines DEVELOPING SELF-ASSESSMENT MODULES TEST Ver. #5-02.12.17 GUIDELINES FOR DEVELOPING SELF-ASSESSMENT MODULES TEST The USCAP is accredited by the American Board of Pathology (ABP) to offer

More information

ON THE PRESENCE OF A CILIATED COLUMNAR EPITHELIAL CELL TYPE WITHIN THE BOVINE CERVICAL MUCOSA 1

ON THE PRESENCE OF A CILIATED COLUMNAR EPITHELIAL CELL TYPE WITHIN THE BOVINE CERVICAL MUCOSA 1 ON THE PRESENCE OF A CILIATED COLUMNAR EPITHELIAL CELL TYPE WITHIN THE BOVINE CERVICAL MUCOSA 1 R. I. Wordinger, 2 J. B. Ramsey, I. F. Dickey and I. R. Hill, Jr. Clemson University, Clemson, South Carolina

More information

SCANNING ELECTRON MICROSCOPY IN CHILDHOOD INFLAMMATORY BOWEL DISEASE

SCANNING ELECTRON MICROSCOPY IN CHILDHOOD INFLAMMATORY BOWEL DISEASE Scanning Microscopy Vol. 12, No. 3, 1998 (Pages 495-502) 0891-7035/98$5.00+.25 Scanning Microscopy International, Chicago (AMF Intestinal O Hare), mucosa IL 60666 in childhood USA IBD SCANNING ELECTRON

More information

2/19/2018. Lymphatic System and Lymphoid Organs and Tissues. What is Lymph?

2/19/2018. Lymphatic System and Lymphoid Organs and Tissues. What is Lymph? Lymphatic System and Lymphoid Organs and Tissues Lymphatic system a transport system for tissue fluids 1. elaborate network of one-way drainage vessels returning lymph to systemic circulation 2. Lymph:

More information

Most abundant and widely distributed tissues in the body Binds, support, and strengthen body tissues, protect and insulate internal organ, serve as

Most abundant and widely distributed tissues in the body Binds, support, and strengthen body tissues, protect and insulate internal organ, serve as Connective tissue Most abundant and widely distributed tissues in the body Binds, support, and strengthen body tissues, protect and insulate internal organ, serve as major transport system, compartmentalizes

More information