Advantages of Ion Mobility QTOF for Characterization of Large Molecules

Size: px
Start display at page:

Download "Advantages of Ion Mobility QTOF for Characterization of Large Molecules"

Transcription

1 Advantages of Ion Mobility QTOF for Characterization of Large Molecules Add a New Dimension to your Research Capability with Agilent s New Drift Ion Mobility QTOF System Ning Tang, Ph.D. Application Scientist Anne Blackwell, Ph.D. Application Scientist 1

2 IM-QTOF Instrument Overview System sensitivity optimized using electrodynamic ion funnels to focus and transmit ions Ion Mobility resolution optimized while maintaining QTOF performance (mass resolution and accuracy) Ion Fragmentation can be selected using standard QTOF collision cell (CID) Bandwidth of QTOF data acquisition and processing channel was increased by 10 fold to match the ion mobility data rates 2

3 Ion Mobility System Design Ionization source: Ion generation (ESI, AJS, Nano ESI, ChipCube, APCI etc.) Front ion funnel: Efficient ion collection, desolvation and excess gas removal Trap funnel: Ion accumulation and introducing ion packets into drift cell Drift cell: Uniform low field ion mobility allows direct determination of accurate CCS (Ω) Rear funnel: Efficient ion refocusing and introduction into mass analyzer 3

4 Basic Operational Principle of Ion Mobility For Conventional DC Uniform Field IMS V H Ion Mobility Cell V L Analyte Ions Detector Gating Optics Electric Field Stacked ring ion guide gives linear field v = K E e E P T Ω 4

5 Resolution Is Important! Chromatographic Ion Mobility Mass ~seconds ~60 milli-seconds ~ 100 m seconds 5

6 Ion Mobility Resolution IMS Resolution R = t d t d = LEQ 16kTln

7 Ion Mobility Resolution - Continued Resolution = 84!

8 It s All About Separation Chromatography Ion Mobility Mass ~seconds ~60 milli-seconds ~ 100 m seconds 8

9 It s All About Separation Chromatography Ion Mobility Mass Peak Capacity = IM Resolution x Mass Resolution x Orthogonality Peak Capacity = 60 x 40,000 x 14% = 336,600 ~ 8-fold increase Dwivedi P, Schultz AJ, Hill HH, Metabolic profiling of human blood by high-resolution ion mobility mass spectrometry (IM-MS). Int J Mass Spectrom 298:

10 Separation of Isobaric Pesticides Theoretical Plot Aldicarb-sulfone (C 7 H 14 N 2 O 4 S) [M+Na] + = Acetamiprid (C 10 H 11 ClN 4 ) [M+Na] + = D mass is 0.2 mda requires ~ 2,000,000 resolution! IMS Drift Separation 4 x x Acetamiprid Aldicarb-sulfone Drift Time (ms) x10 4 +IMS DriftSpec (m/z: ) (rt: min) Aldicarbsulfone_A 5.5 * * Drift Time (ms) 10

11 Resolving Structural Sugar Isomers C 18 H 32 O 16 Raffinose Melezitose Resolving two isobaric tri-saccharides 11

12 Mobility Drift Time (ms) Crude Bacterial Extract Mass (Da) Mass (Da) siamycin II Ion Mobility Drift Time (ms) 12

13 IMS-MS for Proteomics: Transmembrane Spanning Peptides Drift Time (ms) vs. m/z Drift Time (ms) vs. m/z Characteristics: Large hydrophobic peptides X-ray: 7-helical domains Confirmation impacts function of membrane Membrane proteins are drug targets Working Hypothesis: α-helical membrane spanning domains stay intact, and differ in drift-time from denatured peptides Drift Time (ms) vs. m/z 13

14 IMS-MS for Proteomics: Transmembrane Spanning Peptides A B Drift Time (ms) vs. m/z Drift Time (ms) vs. m/z C D Drift Time (ms) vs. m/z Drift Time (ms) vs. m/z Figure Seq. Loc. Chg. State Helix A 1-40 [M+3H] 3+ A B 1-82 [M+6H] 6+ A-B C [M+5H] 5+ C-D-E D [M+4H] 4+ F-G 14

15 LC Ion Mobility QTOF Protein Isoform Analysis Cry34AB Drift Time (ms) vs. m/z

16 Resolving Isoforms of IgG2 16

17 Resolving Isoforms of IgG Drift Time (ms) vs. m/z x IMS Drift Spectrum ( ms) Counts vs. Drift Time (ms) Publication Paul Schnier, Synapt: 3uM direct infusion in 160 mm NH 4 Ac Drift Time (ms) vs. m/z 17

18 Why Ion Mobility? Separation! Protein Digest, Erin Baker, PNNL 18

19 Lipid Analysis: Mixture of L-α-phosphotidylethanolamine (PE) Lipids Ion Mobility Drift Time (ms) PE 92:N PE 90:N +1 lipids PE 19:N PE 48:N PE 46:N PE 44:N PE 40:N PE 38:N PE 37:N PE 36:N PE 34:N PE 33:N PE 29:N PE 63:N PE 61:N PE 59:N +2 lipids +3 lipids +4 lipids PE 38:8 PE 38:6 PE 38:4 PE 38:2 PE 38:0 PE 38:7 PE 38:5 PE 38:3 PE 38:1 PE 37:1 19

20 Mobility Drift Time (ms) Why Ion Mobility? Specificity! Integrated Mass Spectrum: Mobility-Filtered Mass Spectrum: Mass (Da) Mass (Da) Crude bacterial extract, John McLean, Vanderbilt Mass (Da) 20

21 single pulse 1 ms trapping single pulse 4 ms trapping multi-pulse 4x1 ms trapping single pulse 8 ms trap time multi-pulse 8x1 ms trapping Area Response Signal intensity (A.U.) Why Ion Mobility? Sensitivity! Linear Dynamic Range y = 59060x R² = E+06 5E+06 4E+06 3E+06 2E+06 1E Sample Amount (pg) 0E+00 Sensitivity: ~ 50 fg of Reserpine Dynamic range: ~ 3-4 orders Integrated signal intensity for tetrakis decyl ammonium bromide ion versus ion trapping time for single pulse and multi-pulse experiments. These data indicate that for the same amount of trapping time, multiplexing experiments result in at least 10X higher signal intensity possibly due to less space charge effects and detector saturation issues. 21

22 Why Ion Mobility? Selectivity! Data browser can be used to isolate a group of glycans from matrix Isolation of RNAseB native Glycans, Cathy Costello, Boston University 22

23 Why Ion Mobility? Selectivity! RNaseB native glycans Simplified view of RNaseB native glycan Glycan obscured by matrix is identified after cleaning up background chemical noise using ion mobility 23

24 Ion Mobility of Polymeric Ink Dispersants 24

25 Determining Cross Sectional Areas Charge state of the analyte ion Charge on an electron Electric field Ω = (18π)1/2 16 ze [ ] 1 (kbt) 1/2 2 t E d m i m B L 760 P T N Boltzmann constant Reduced mass of the ion and neutral Number density of the drift gas K 0 = 273 K T P 760 Torr L 2 Vt d Molecular size K 0 = Reduced Ion Mobility T = Temperature P = Pressure L = Drift length V = Voltage Drop across drift region t d = Drift time X-ray crystallography Ion mobility (using Helium) 25

26 Standard Procedure for Calculating CCS (Auto Charting, Curve Fitting and Calculating the CCS) Time segments with different drift fields 26

27 Collision Cross Section Benchmark --- Vanderbilt University Mobility Drift Time (ms) TAA-5 N-(CH 2 CH 2 CH 2 CH 2 CH 3 ) 4 Tetraalkylammonium salts (TAA) Proposed as an ideal ion mobility standard Wide CCS range (TAA-4 to TAA-18; 100 to 400 Å 2 ) TAA salts do not form clusters Literature CCS values exist N 2 drift gas TAA-8 TAA-7 TAA-6 TAA-5 TAA-4 TAA-10 TAA-12 TAA-16 TAA ions +2 ions +3 ions Mass-to-Charge (m/z)

28 Tetraalkylammonium Salts --- CCS Values Compared to Literature Analyte Measured Cross-Section [Å 2 ] TAA ± 0.5% TAA ± 0.6% TAA ± 0.3% TAA ± 0.2% TAA ± 0.1% TAA ± 0.1% TAA ± 0.2% TAA ± 0.2% TAA ± 0.3% Literature Cross-Section [Å 2 ] ± 0.3% ± 0.1% ± 0.3% ± 0.2% ± 0.4% Relative Standard Deviation [%] High experimental precision (< 0.5% relative deviation) Agreement with literature (most < 0.5% deviation) 28

29 Cross Section Calculation of Ubiquitin Charge States m/z 612.8, [M+14H] 14+ m/z 659.8, [M+13H] 13+ Automated collision cross section calculation without the use of calibration curves approximate region for compact structures approximate region for elongated structures m/z 714.7, [M+12H] 12+ m/z 779.6, [M+11H] 11+ m/z 857.5, [M+10H] 10+ m/z 952.6, [M+9H] 9+ m/z , [M+8H] 8+ m/z , [M+7H] 7+ m/z , [M+6H] 6+ m/z , [M+5H] (Å) Reference: Koeniger and Clemmer J Am Soc Mass Spectrom 2007, 18,

30 Cross Section Calculation of Ubiquitin Charge States Ion Charge State CCS experimental (Å 2 ) [M+5H] [M+6H] , 1658 CCS literature (Å 2 ) [M+7H] , [M+8H] [M+9H] [M+10H] , [M+11H] , [M+12H] , [M+13H] , [M+14H] , 2726 Automated collision cross section calculation without the use of calibration curves Reference: Bush et al., Anal Chem. 2010, 82,

31 Carbohydrates -- Great complexity by linkage Source: Blixt et al., PNAS, 2004 Current dominant strategies: MS n or Library searches 31

32 Carbohydrates IM-MS Ion Mobility Drift Time (ms) Lacto-N-difucohexaose I 60 Mixture of Lacto-N-difucohexaose I & II Fuc Fuc Gal 50 GlcNAc Gal Glc Lacto-N-difucohexaose 40 II Mass (Da) 30 Fuc Fuc Gal GlcNAc Gal Glc Lacto-N difucohexaose I Drift Time (ms) 10 Lacto-Ndifucohexaose II Mass (Da) Drift Time (ms) 32

33 IM Drift Spectrum on Cytochrome C at various RFs: S1: Native S2-S5: Denatured S3 Waters Synapt G2 IM data RF 90V RF 110V RF 130V RF 150V RF 180V S1? S2 S4 S5 Preserve protein native structures better! Due to the much lower ions heating. 33

34 IMS-MS for Proteomics: Transmembrane Spanning Peptides of HeLa digest All Ions Fragmentation Low dt High dt Low dt Drift Time (ms) vs. m/z Drift Time (ms) vs. m/z High dt Low dt 34

35 A Word About Instrument Design LC Drift IMS MS and MS/MS High Resolution Accurate Mass Feature Agilent Waters Drift Mobility Advantage Mobility Resolution Highest (can be > 80) 80cm drift tube (L) higher voltage (E) No RF fields, Uniform low DC field Generally around 30 25cm drift TriWave, Multi-section device RF fields Over 2X the IM resolution of T-wave Sensitivity High efficiency ion funnels - trapping and rear Step wave lens Pressure barrier between Q and TriWave 10X to 50X better than T-wave Collision Cross Section (CCS) measurement (Ω) Direct determination of Ω Low electric field and constant drift tube pressure Ω cannot be directly determined from drift time. Need calibration tables. 1-2% precision Much better than Synapt (5-10%) Molecular structures Lower RF fields, less ion heating. Higher RF fields, tendency for higher fragmentation and ion heating Lower RF allows preservation of molecular structures LC Q IMS MS High Resolution Accurate Mass 35

36 Summary Next generation of IM Q-TOF Technology Added dimension of separation based on size, charge and molecular conformation Resolve and characterize the complex samples -- Increased peak capacity Direct determination collision cross sections Preservation of molecular structures 36

37 Acknowledgments Ruwan Kurulugama Alex Mordehai Mark Werlich Chris Klein Tom Knotts Ed Darland Gregor Overney Bill Barry Nathan Sanders Lane Howard Mikhail Ugarov Gene Wong Yergeny Kaplun George Stafford Bill Frazier Bruce Wang Huy Bui Crystal Cody John Fjelsted Ken Imatani Robert Kincaid Robin Scheiderer Collaborators: PNNL NIH Texas A&M Vanderbilt University Boston University 37

38 38

39 Drift time (ms) Standard Procedure for Calculating CCS (Drift Time versus P/V Curves) Colchicine Reserpine Ondansetron t D = experimental drift time t 0 = time ions spend out side the drift cell t d = corrected drift time y = 8,019x R² = y = 6258x Ondansetron R² = y = 5,410x R² = Reserpine Colchicine P/V (Torr/V) Compound Drift time (ms) Slope Intercept t 0 (ms) Ondansetron Colchicine Reserpine

40 Standard Procedure for Calculating CCS - Auto Stepping the Low Field Gradient Time segments with different drift fields 40

41 Collision Cross Section (Å 2 ) Conformational Space Occupancy of Biomolecules Hypothetical Ordering of Biomolecular Classes lipids peptides carbohydrates oligonucleotides Mass (Da) 41

42 Ion Mobility System Design Uniform DC electric field (no RF voltage applied) Desolvation chamber at 0 V ~1700 V on chamber Ion source maintained at ground potential (no voltage offset) Uniform low static electric field across drift cell 80 cm long, approximately 20 V/cm with 4 Torr Nitrogen buffer gas Mobility resolution approaches theoretical limit Minimizes ion excitation or heating (helps to maintain ion structures and conformations) Uniform low field ion mobility allows direct determination of accurate CCS (Ω) 42

43 Ion Mobility Hardware Design Drift Cell Uniform field drift cell 80 cm Front funnel Trapping funnel Drift Cell (80 cm) Rear funnel Ion funnel technology improves sensitivity 43

Advantages of Ion Mobility Q-TOF for Characterization of Diverse Biological Molecules

Advantages of Ion Mobility Q-TOF for Characterization of Diverse Biological Molecules Advantages of Ion Mobility Q-TOF for Characterization of Diverse Biological Molecules Add a New Dimension to your Research Capability with Agilent s New Drift Ion Mobility Q-TOF System Overview: 6560 IM

More information

Targeted and untargeted metabolic profiling by incorporating scanning FAIMS into LC-MS. Kayleigh Arthur

Targeted and untargeted metabolic profiling by incorporating scanning FAIMS into LC-MS. Kayleigh Arthur Targeted and untargeted metabolic profiling by incorporating scanning FAIMS into LC-MS Kayleigh Arthur K.Arthur@lboro.ac.uk Introduction LC-MS is a highly used technique for untargeted profiling analyses

More information

Integrating omics for systems biology

Integrating omics for systems biology Structural mass spectrometry for the analysis of complex biological samples: ion mobility-mass spectrometry for broad-scale systems and synthetic biology John A. McLean Laboratory for Structural Mass Spectrometry

More information

New Developments in LC-IMS-MS Proteomic Measurements and Informatic Analyses

New Developments in LC-IMS-MS Proteomic Measurements and Informatic Analyses New Developments in LC-IMS-MS Proteomic Measurements and Informatic Analyses Erin Shammel Baker Kristin E. Burnum-Johnson, Xing Zhang, Cameron P. Casey, Yehia M. Ibrahim, Matthew E. Monroe, Tao Liu, Brendan

More information

SYNAPT G2-S High Definition MS (HDMS) System

SYNAPT G2-S High Definition MS (HDMS) System SYNAPT G2-S High Definition MS (HDMS) System High performance, versatility, and workflow efficiency of your MS system all play a crucial role in your ability to successfully reach your scientific and business

More information

Applying a Novel Glycan Tagging Reagent, RapiFluor-MS, and an Integrated UPLC-FLR/QTof MS System for Low Abundant N-Glycan Analysis

Applying a Novel Glycan Tagging Reagent, RapiFluor-MS, and an Integrated UPLC-FLR/QTof MS System for Low Abundant N-Glycan Analysis Applying a Novel Glycan Tagging Reagent, RapiFluor-MS, and an Integrated UPLC-FLR/QTof MS System for Low Abundant N-Glycan Analysis Ying Qing Yu Waters Corporation, Milford, MA, USA APPLICATION BENEFITS

More information

Profiling Flavonoid Isomers in Highly Complex Citrus Juice Samples Using UPLC Ion Mobility Time-of-Flight Mass Spectrometry

Profiling Flavonoid Isomers in Highly Complex Citrus Juice Samples Using UPLC Ion Mobility Time-of-Flight Mass Spectrometry Profiling Flavonoid Isomers in Highly Complex Citrus Juice Samples Using UPLC Ion Mobility Time-of-Flight Mass Spectrometry Michael McCullagh, 1 Kieran Neeson, 2 and Antonietta Gledhill 1 Waters Corporation,

More information

Increasing Molecular Coverage in Complex Biological and Environmental Samples by Using IMS-MS

Increasing Molecular Coverage in Complex Biological and Environmental Samples by Using IMS-MS Increasing Molecular Coverage in Complex Biological and Environmental Samples by Using IMS-MS Erin Shammel Baker Kristin E. Burnum-Johnson, Jon M. Jacobs, Yehia M. Ibrahim, Daniel J. Orton, William F.

More information

FOURIER TRANSFORM MASS SPECTROMETRY

FOURIER TRANSFORM MASS SPECTROMETRY FOURIER TRANSFORM MASS SPECTROMETRY https://goo.gl/vx3ogw FT-ICR Theory Ion Cyclotron Motion Inward directed Lorentz force causes ions to move in circular orbits about the magnetic field axis Alan G. Marshall,

More information

Challenges in Separation Technologies

Challenges in Separation Technologies Challenges in Separation Technologies Erin Shammel Baker Xing Zhang, Yehia Ibrahim, Matthew Monroe, Dennis Mehinagic, Justin Teeguarden, Thomas Metz and Richard D. Smith Pacific Northwest National Laboratory

More information

Mass Spectrometry at the Laboratory of Food Chemistry. Edwin Bakx Laboratory of Food Chemistry Wageningen University

Mass Spectrometry at the Laboratory of Food Chemistry. Edwin Bakx Laboratory of Food Chemistry Wageningen University Mass Spectrometry at the Wageningen University Mass Spectrometry at the 3 UPLC/CE - ESI - Ion trap MS systems UPLC Thermo Acella with a Velos or VelosPro CE Beckman PA800 with a Thermo VelosPro 1 UPLC-

More information

Data Independent MALDI Imaging HDMS E for Visualization and Identification of Lipids Directly from a Single Tissue Section

Data Independent MALDI Imaging HDMS E for Visualization and Identification of Lipids Directly from a Single Tissue Section Data Independent MALDI Imaging HDMS E for Visualization and Identification of Lipids Directly from a Single Tissue Section Emmanuelle Claude, Mark Towers, and Kieran Neeson Waters Corporation, Manchester,

More information

Considerations of the use of Triple Quadrupoles or Ion Traps in Quantitative Applications

Considerations of the use of Triple Quadrupoles or Ion Traps in Quantitative Applications Considerations of the use of Triple Quadrupoles or Ion Traps in Quantitative Applications Triple Stage Quadrupole API MS / MS Full Scan Products / - IONS AND NEUTRALS FORMED IN API SOURCE Q0 LENS TRANSPORTS

More information

LECTURE 3. Ionization Techniques for Mass Spectrometry

LECTURE 3. Ionization Techniques for Mass Spectrometry LECTURE 3 Ionization Techniques for Mass Spectrometry Jack Henion, Ph.D. Emeritus Professor, Analytical Toxicology Cornell University Ithaca, NY 14850 Lecture 3, Page 1 Contents Electron ionization (EI)

More information

A NOVEL METHOD OF M/Z DRIFT CORRECTION FOR OA-TOF MASS SPECTROMETERS BASED ON CONSTRUCTION OF LIBRARIES OF MATRIX COMPONENTS.

A NOVEL METHOD OF M/Z DRIFT CORRECTION FOR OA-TOF MASS SPECTROMETERS BASED ON CONSTRUCTION OF LIBRARIES OF MATRIX COMPONENTS. A NOVEL METHOD OF M/Z DRIFT CORRECTION FOR OA-TOF MASS SPECTROMETERS BASED ON CONSTRUCTION OF LIBRARIES OF MATRIX COMPONENTS. Martin R Green*, Keith Richardson, John Chipperfield, Nick Tomczyk, Martin

More information

Time (min) Supplementary Figure 1: Gas decomposition products of irradiated DMC.

Time (min) Supplementary Figure 1: Gas decomposition products of irradiated DMC. 200000 C 2 CH 3 CH 3 DMC 180000 160000 140000 Intensity 120000 100000 80000 60000 40000 C 2 H 6 CH 3 CH 2 CH 3 CH 3 CCH 3 EMC DEC 20000 C 3 H 8 HCCH 3 5 10 15 20 25 Time (min) Supplementary Figure 1: Gas

More information

O O H. Robert S. Plumb and Paul D. Rainville Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL. LC /MS conditions

O O H. Robert S. Plumb and Paul D. Rainville Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL. LC /MS conditions Simplifying Qual/Quan Analysis in Discovery DMPK using UPLC and Xevo TQ MS Robert S. Plumb and Paul D. Rainville Waters Corporation, Milford, MA, U.S. INTRODUCTION The determination of the drug metabolism

More information

Advances in Hybrid Mass Spectrometry

Advances in Hybrid Mass Spectrometry The world leader in serving science Advances in Hybrid Mass Spectrometry ESAC 2008 Claire Dauly Field Marketing Specialist, Proteomics New hybrids instruments LTQ Orbitrap XL with ETD MALDI LTQ Orbitrap

More information

Quadrupole and Ion Trap Mass Analysers and an introduction to Resolution

Quadrupole and Ion Trap Mass Analysers and an introduction to Resolution Quadrupole and Ion Trap Mass Analysers and an introduction to Resolution A simple definition of a Mass Spectrometer A Mass Spectrometer is an analytical instrument that can separate charged molecules according

More information

[ APPLICATION NOTE ] High Sensitivity Intact Monoclonal Antibody (mab) HRMS Quantification APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS

[ APPLICATION NOTE ] High Sensitivity Intact Monoclonal Antibody (mab) HRMS Quantification APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS Yun Wang Alelyunas, Henry Shion, Mark Wrona Waters Corporation, Milford, MA, USA APPLICATION BENEFITS mab LC-MS method which enables users to achieve highly sensitive bioanalysis of intact trastuzumab

More information

1. Sample Introduction to MS Systems:

1. Sample Introduction to MS Systems: MS Overview: 9.10.08 1. Sample Introduction to MS Systems:...2 1.1. Chromatography Interfaces:...3 1.2. Electron impact: Used mainly in Protein MS hard ionization source...4 1.3. Electrospray Ioniztion:

More information

Biological Mass Spectrometry. April 30, 2014

Biological Mass Spectrometry. April 30, 2014 Biological Mass Spectrometry April 30, 2014 Mass Spectrometry Has become the method of choice for precise protein and nucleic acid mass determination in a very wide mass range peptide and nucleotide sequencing

More information

[ APPLICATION NOTE ] APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS

[ APPLICATION NOTE ] APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS [ APPLICATI TE ] Ion Mobility-enabled Data-dependent Experiments Distinguishing Co-eluting Isomeric Metabolites Using an IMS-QTof Mass Spectrometer Jayne Kirk, 1 Russell Mortishire Smith, 1 Robert Beecher,

More information

New Mass Spectrometry Tools to Transform Metabolomics and Lipidomics

New Mass Spectrometry Tools to Transform Metabolomics and Lipidomics New Mass Spectrometry Tools to Transform Metabolomics and Lipidomics July.3.13 Ken Miller Vice President of Marketing, Life Sciences Mass Spectrometry 1 The world leader in serving science Omics & the

More information

2. Ionization Sources 3. Mass Analyzers 4. Tandem Mass Spectrometry

2. Ionization Sources 3. Mass Analyzers 4. Tandem Mass Spectrometry Dr. Sanjeeva Srivastava 1. Fundamental of Mass Spectrometry Role of MS and basic concepts 2. Ionization Sources 3. Mass Analyzers 4. Tandem Mass Spectrometry 2 1 MS basic concepts Mass spectrometry - technique

More information

The New 6495 Triple Quadrupole LC/MS

The New 6495 Triple Quadrupole LC/MS The New 6495 Triple Quadrupole LC/MS Experience A New Level of Confidence Martin Haex Product Specialist MS and Automation 1 Overview of Topics The New 6495 QQQ LC/MS Technology Innovations Quantitation

More information

Characterization of an Unknown Compound Using the LTQ Orbitrap

Characterization of an Unknown Compound Using the LTQ Orbitrap Characterization of an Unknown Compound Using the LTQ rbitrap Donald Daley, Russell Scammell, Argenta Discovery Limited, 8/9 Spire Green Centre, Flex Meadow, Harlow, Essex, CM19 5TR, UK bjectives unknown

More information

MASS SPECTROMETRY BASED METABOLOMICS. Pavel Aronov. ABRF2010 Metabolomics Research Group March 21, 2010

MASS SPECTROMETRY BASED METABOLOMICS. Pavel Aronov. ABRF2010 Metabolomics Research Group March 21, 2010 MASS SPECTROMETRY BASED METABOLOMICS Pavel Aronov ABRF2010 Metabolomics Research Group March 21, 2010 Types of Experiments in Metabolomics targeted non targeted Number of analyzed metabolites is limited

More information

Analysis of N-Linked Glycans from Coagulation Factor IX, Recombinant and Plasma Derived, Using HILIC UPLC/FLR/QTof MS

Analysis of N-Linked Glycans from Coagulation Factor IX, Recombinant and Plasma Derived, Using HILIC UPLC/FLR/QTof MS Analysis of N-Linked Glycans from Coagulation Factor IX, Recombinant and Plasma Derived, Using HILIC UPLC/FLR/QTof MS Ying Qing Yu Waters Corporation, Milford, MA, U.S. A P P L I C AT ION B E N E F I T

More information

Mass spectrometry Technologies in Lipid chemistry

Mass spectrometry Technologies in Lipid chemistry Mass spectrometry Technologies in Lipid chemistry Rabah Soliymani University Of Helsinki Protein Chemistry Unit Biomedicum Helsinki Rabah.soliymani@helsinki.fi Complex_&_dynamic_mixtures (few copies to

More information

Agilent s LC/MS Portfolio and Applications Examples

Agilent s LC/MS Portfolio and Applications Examples Agilent s LC/MS Portfolio and Applications Examples Sean Orlowicz LC/MS Product Specialist Agilent Technologies 31August Agilent s > 40 year heritage in mass spectrometry 1971, 5930A GC/MS 1971-2011 2005,

More information

SCS Mass Spectrometry Laboratory

SCS Mass Spectrometry Laboratory SCS Mass Spectrometry Laboratory Contact Information Staff 31 Noyes Laboratory (8:00-5:00 M-F) 217-333-2545 http://scs.illinois.edu/massspec/ Furong Sun (frs@illinois.edu) Furong Sun Director Training

More information

Application of LC/Electrospray Ion Trap Mass Spectrometry for Identification and Quantification of Pesticides in Complex Matrices

Application of LC/Electrospray Ion Trap Mass Spectrometry for Identification and Quantification of Pesticides in Complex Matrices Application ote #LCMS-2 esquire series Application of LC/Electrospray Ion Trap Mass Spectrometry for Identification and Quantification of Pesticides in Complex Matrices Introduction The simple monitoring

More information

Fundamentals of Soft Ionization and MS Instrumentation

Fundamentals of Soft Ionization and MS Instrumentation Fundamentals of Soft Ionization and MS Instrumentation Ana Varela Coelho varela@itqb.unl.pt Mass Spectrometry Lab Analytical Services Unit Index Mass spectrometers and its components Ionization methods:

More information

Towards High Resolution MS in Regulated Bioanalysis

Towards High Resolution MS in Regulated Bioanalysis Towards High Resolution MS in Regulated Bioanalysis Benno Ingelse MSD 3 rd EB focus meeting June 12 th 13 th Brussels, Belgium Contributors Gary Adamson Ken Anderson Kevin Bateman Cynthia Chavez-Eng Inhou

More information

Ion Source. Mass Analyzer. Detector. intensity. mass/charge

Ion Source. Mass Analyzer. Detector. intensity. mass/charge Proteomics Informatics Overview of spectrometry (Week 2) Ion Source Analyzer Detector Peptide Fragmentation Ion Source Analyzer 1 Fragmentation Analyzer 2 Detector b y Liquid Chromatography (LC)-MS/MS

More information

Extended Mass Range Triple Quadrupole for Routine Analysis of High Mass-to-charge Peptide Ions

Extended Mass Range Triple Quadrupole for Routine Analysis of High Mass-to-charge Peptide Ions Extended Mass Range Triple Quadrupole for Routine Analysis of High Mass-to-charge Peptide Ions Application Note Targeted Proteomics Authors Linfeng Wu, Christine A. Miller, Jordy Hsiao, Te-wei Chu, Behrooz

More information

Biotherapeutics. Biopharmaceutical Sciences Group Waters Corporation Waters Corporation 1

Biotherapeutics. Biopharmaceutical Sciences Group Waters Corporation Waters Corporation 1 Characterization of the Higher-Order Structure of Biotherapeutics Biopharmaceutical Sciences Group Waters Corporation 2011 Waters Corporation 1 FDA desire for specific innovations in biotherapeutic analysis

More information

Metabolomics: quantifying the phenotype

Metabolomics: quantifying the phenotype Metabolomics: quantifying the phenotype Metabolomics Promises Quantitative Phenotyping What can happen GENOME What appears to be happening Bioinformatics TRANSCRIPTOME What makes it happen PROTEOME Systems

More information

Flow-Through Electron Capture Dissociation in a novel Branched RF Ion Trap

Flow-Through Electron Capture Dissociation in a novel Branched RF Ion Trap Flow-Through Electron Capture Dissociation in a novel Branched RF Ion Trap Takashi Baba, J. Larry Campbell, Yves Le Blanc, Jim. W. Hager and Bruce A. Thomson ASMS, June 18 / 2014 1 2014 AB SCIEX Trapping

More information

ION MOBILITY COUPLED TO HIGH RESOLUTION MASS SPECTROMETRY: THE POSSIBILITIES, THE LIMITATIONS

ION MOBILITY COUPLED TO HIGH RESOLUTION MASS SPECTROMETRY: THE POSSIBILITIES, THE LIMITATIONS ION MOBILITY COUPLED TO HIGH RESOLUTION MASS SPECTROMETRY: THE POSSIBILITIES, THE LIMITATIONS Anton Kaufmann Official Food Control Authority of the Canton of Zurich (Kantonales Labor Zürich) Switzerland

More information

Chemical Analysis Business Operations Waters Corporation Milford MA

Chemical Analysis Business Operations Waters Corporation Milford MA The Detection and Identification of Unknown Contaminants During ToF Screening and Structural Elucidation for Pesticides in River Water Using an Integrated Software Approach Chemical Analysis Business Operations

More information

Ultra High Definition Optimizing all Analytical Dimensions

Ultra High Definition Optimizing all Analytical Dimensions Ultra High Definition Optimizing all Analytical Dimensions Sensitivity Dynamic Range Signal Response Linearity Separation Speed Peak Capacity Chromatogram Mass Spectrum Mass Accuracy Resolving Power Acquisition

More information

AB Sciex QStar XL. AIMS Instrumentation & Sample Report Documentation. chemistry

AB Sciex QStar XL. AIMS Instrumentation & Sample Report Documentation. chemistry Mass Spectrometry Laboratory AIMS Instrumentation & Sample Report Documentation AB Sciex QStar XL chemistry UNIVERSITY OF TORONTO AIMS Mass Spectrometry Laboratory Department of Chemistry, University of

More information

The use of mass spectrometry in lipidomics. Outlines

The use of mass spectrometry in lipidomics. Outlines The use of mass spectrometry in lipidomics Jeevan Prasain jprasain@uab.edu 6-2612 utlines Brief introduction to lipidomics Analytical methodology: MS/MS structure elucidation of phospholipids Phospholipid

More information

Introduction to LC/MS/MS

Introduction to LC/MS/MS Trends in 2006 Introduction to LC/MS/MS By Crystal Holt, LC/MS Product Specialist, Varian Inc. Toxicology laboratories Increased use of LC/MS Excellent LD Cheaper (still expensive) Much more robust Solves

More information

More structural information with MS n

More structural information with MS n PRODUCT SPECIFICATIONS The LTQ XL linear ion trap mass spectrometer More structural information with MS n The LTQ XL linear ion trap mass spectrometer delivers more structural information faster and with

More information

2013 Waters Corporation 1

2013 Waters Corporation 1 High Definition Mass Spectrometry (HDMS) application of ion mobility in oil and petroleum analysis Patrice Lemire Waters Corporation WCTOW Vancouver, May 13, 2013 2013 Waters Corporation 1 Introduction

More information

SUPPORTING INFORMATION. Lysine Carbonylation is a Previously Unrecognized Contributor. to Peroxidase Activation of Cytochrome c by Chloramine-T

SUPPORTING INFORMATION. Lysine Carbonylation is a Previously Unrecognized Contributor. to Peroxidase Activation of Cytochrome c by Chloramine-T Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2019 SUPPORTING INFORMATION Lysine Carbonylation is a Previously Unrecognized Contributor to

More information

Comprehensive Two-Dimensional HPLC and Informative Data Processing for Pharmaceuticals and Lipids

Comprehensive Two-Dimensional HPLC and Informative Data Processing for Pharmaceuticals and Lipids PO-CON1576E Comprehensive Two-Dimensional HPLC and Informative Data Processing for Pharmaceuticals and Lipids HPLC 2015 PSB-MULTI-06 Yoshiyuki WATABE, Tetsuo IIDA, Daisuke NAKAYAMA, Kanya TSUJII, Saki

More information

Rapid, Simple Impurity Characterization with the Xevo TQ Mass Spectrometer

Rapid, Simple Impurity Characterization with the Xevo TQ Mass Spectrometer Robert Plumb, Michael D. Jones, and Marian Twohig Waters Corporation, Milford, MA, USA INTRODUCTION The detection and characterization of impurities and degradation products of an active pharmaceutical

More information

Amadeo R. Fernández-Alba

Amadeo R. Fernández-Alba % of compounds % of compounds % of compounds % of compounds Amadeo R. Fernández-Alba LC-Orbitrap QExactive Focus Instrumental LOQ 1% 9% 8% 7% 6% 5% 4% 3% 2% 1% %.1 mg/g.2 mg/g Tomato.5 mg/g ddms2 Target

More information

OMCL Network of the Council of Europe QUALITY MANAGEMENT DOCUMENT

OMCL Network of the Council of Europe QUALITY MANAGEMENT DOCUMENT OMCL Network of the Council of Europe QUALITY MANAGEMENT DOCUMENT PA/PH/OMCL (10) 86 2R QUALIFICATION OF EQUIPMENT ANNEX 7: QUALIFICATION OF MASS SPECTROMETERS Full document title and reference Document

More information

Automating Mass Spectrometry-Based Quantitative Glycomics using Tandem Mass Tag (TMT) Reagents with SimGlycan

Automating Mass Spectrometry-Based Quantitative Glycomics using Tandem Mass Tag (TMT) Reagents with SimGlycan PREMIER Biosoft Automating Mass Spectrometry-Based Quantitative Glycomics using Tandem Mass Tag (TMT) Reagents with SimGlycan Ne uaca2-3galb1-4glc NAcb1 6 Gal NAca -Thr 3 Ne uaca2-3galb1 Ningombam Sanjib

More information

MS/MS Library Creation of Q-TOF LC/MS Data for MassHunter PCDL Manager

MS/MS Library Creation of Q-TOF LC/MS Data for MassHunter PCDL Manager MS/MS Library Creation of Q-TOF LC/MS Data for MassHunter PCDL Manager Quick Start Guide Step 1. Calibrate the Q-TOF LC/MS for low m/z ratios 2 Step 2. Set up a Flow Injection Analysis (FIA) method for

More information

Comparison of mass spectrometers performances

Comparison of mass spectrometers performances Comparison of mass spectrometers performances Instrument Mass Mass Sensitivity resolution accuracy Quadrupole 1 x 10 3 0.1 Da* 0.5-1.0 pmol DE-MALDI 2 x 10 4 20 ppm 1-10 fmol peptide 1-5 pmol protein Ion

More information

Structural Elucidation of N-glycans Originating From Ovarian Cancer Cells Using High-Vacuum MALDI Mass Spectrometry

Structural Elucidation of N-glycans Originating From Ovarian Cancer Cells Using High-Vacuum MALDI Mass Spectrometry PO-CON1347E Structural Elucidation of N-glycans Originating From Ovarian Cancer Cells Using High-Vacuum MALDI Mass Spectrometry ASMS 2013 TP-708 Matthew S. F. Choo 1,3 ; Roberto Castangia 2 ; Matthew E.

More information

Simple Method (IS-MRM) to Monitor Lysophospholipids and Phospholipids During LC-MS Method Development via In-Source CID

Simple Method (IS-MRM) to Monitor Lysophospholipids and Phospholipids During LC-MS Method Development via In-Source CID Simple Method (IS-MRM) to Monitor Lysophospholipids and Phospholipids During LC-MS Method Development via In-Source CID James Little, Eastman Chemical Company, Kingsport, TN Overview Phospholipids and

More information

ACHIEVEMENTS ARE LIMITED ONLY BY ASPIRATIONS.

ACHIEVEMENTS ARE LIMITED ONLY BY ASPIRATIONS. ACHIEVEMENTS ARE LIMITED ONLY BY ASPIRATIONS. BE FIRST TO DISCOVER, TO PUBLISH, TO DEVELOP, TO SUCCEED. ENTER A NEW DIMENSION OF PERFORMANCE. Your success depends on your ability to optimize laboratory

More information

Latest Innovations in LC/MS/MS from Waters for Metabolism and Bioanalytical Applications

Latest Innovations in LC/MS/MS from Waters for Metabolism and Bioanalytical Applications Latest Innovations in LC/MS/MS from Waters for Metabolism and Bioanalytical Applications Ignatius J. Kass Senior Field Marketing Manager Pharmaceutical MS Challenges in Pharmaceutical Sample Analysis Quantitative

More information

4th Multidimensional Chromatography Workshop Toronto (January, 2013) Herman C. Lam, Ph.D. Calibration & Validation Group

4th Multidimensional Chromatography Workshop Toronto (January, 2013) Herman C. Lam, Ph.D. Calibration & Validation Group 4th Multidimensional Chromatography Workshop Toronto (January, 2013) Herman C. Lam, Ph.D. Calibration & Validation Group MDLC for Shotgun Proteomics Introduction General concepts Advantages Challenges

More information

Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS

Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS Jenny Chen, Hongxia Wang, Zhiqi Hao, Patrick Bennett, and Greg Kilby Thermo Fisher

More information

Advancing your Forensic Toxicology Analyses; Adopting the Latest in Mass Spectrometry Innovations

Advancing your Forensic Toxicology Analyses; Adopting the Latest in Mass Spectrometry Innovations Advancing your Forensic Toxicology Analyses; Adopting the Latest in Mass Spectrometry Innovations For Research Use Only. Not for use in diagnostic procedures. 1 2015 AB Sciex RUO-MKT-11-1018-A For research

More information

Moving from targeted towards non-targeted approaches

Moving from targeted towards non-targeted approaches Gesundheitsdirektion Moving from targeted towards non-targeted approaches Anton Kaufmann Official Food Control Authority of the Canton of Zurich () Switzerland 2 Overview I From single residue to multi

More information

Mass Spectrometry Infrastructure

Mass Spectrometry Infrastructure Mass Spectrometry Infrastructure Todd Williams, Ph.D. Director KU Mass Spectrometry and Analytical Proteomics Laboratory Mass Spectrometry Lab B025 Malott Hall Mission The Mass Spectrometry and analytical

More information

LOCALISATION, IDENTIFICATION AND SEPARATION OF MOLECULES. Gilles Frache Materials Characterization Day October 14 th 2016

LOCALISATION, IDENTIFICATION AND SEPARATION OF MOLECULES. Gilles Frache Materials Characterization Day October 14 th 2016 LOCALISATION, IDENTIFICATION AND SEPARATION OF MOLECULES Gilles Frache Materials Characterization Day October 14 th 2016 1 MOLECULAR ANALYSES Which focus? LOCALIZATION of molecules by Mass Spectrometry

More information

Choosing the metabolomics platform

Choosing the metabolomics platform Choosing the metabolomics platform Stephen Barnes, PhD Department of Pharmacology & Toxicology University of Alabama at Birmingham sbarnes@uab.edu Challenges Unlike DNA, RNA and proteins, the metabolome

More information

An Alternative Approach: Top-Down Bioanalysis of Intact Large Molecules Can this be part of the future? Lecture 8, Page 27

An Alternative Approach: Top-Down Bioanalysis of Intact Large Molecules Can this be part of the future? Lecture 8, Page 27 An Alternative Approach: Top-Down Bioanalysis of Intact Large Molecules Can this be part of the future? Lecture 8, Page 27 Top-down HRAM Bioanalysis of Native Proteins/Molecules Relative Abundance 100

More information

Methods in Mass Spectrometry. Dr. Noam Tal Laboratory of Mass Spectrometry School of Chemistry, Tel Aviv University

Methods in Mass Spectrometry. Dr. Noam Tal Laboratory of Mass Spectrometry School of Chemistry, Tel Aviv University Methods in Mass Spectrometry Dr. Noam Tal Laboratory of Mass Spectrometry School of Chemistry, Tel Aviv University Sample Engineering Chemistry Biology Life Science Medicine Industry IDF / Police Sample

More information

REDOX PROTEOMICS. Roman Zubarev.

REDOX PROTEOMICS. Roman Zubarev. REDOX PROTEOMICS Roman Zubarev Roman.Zubarev@ki.se Physiological Chemistry I, Department for Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm What is (RedOx) Proteomics? Proteomics -

More information

Automated Lipid Identification Using UPLC/HDMS E in Combination with SimLipid

Automated Lipid Identification Using UPLC/HDMS E in Combination with SimLipid Automated Lipid Identification Using UPLC/HDMS E in Combination with SimLipid Giorgis Isaac, Stephen McDonald, Giuseppe Astarita Waters Corporation, Milford, MA, USA A P P L I C AT ION B E N E F I T S

More information

Sue D Antonio Application Chemist Cedar Creek, TX

Sue D Antonio Application Chemist Cedar Creek, TX Sue D Antonio Application Chemist Cedar Creek, TX What is Hemp Oil? CBD hemp oil is a natural botanical extract of the common hemp plant. CBD hemp oil is derived from the seeds and stem of the Cannabis

More information

Agilent 6410 Triple Quadrupole LC/MS. Sensitivity, Reliability, Value

Agilent 6410 Triple Quadrupole LC/MS. Sensitivity, Reliability, Value Agilent 64 Triple Quadrupole LC/MS Sensitivity, Reliability, Value Sensitivity, Reliability, Value Whether you quantitate drug metabolites, measure herbicide levels in food, or determine contaminant levels

More information

Robust extraction, separation, and quantitation of structural isomer steroids from human plasma by SPE-UHPLC-MS/MS

Robust extraction, separation, and quantitation of structural isomer steroids from human plasma by SPE-UHPLC-MS/MS TECHNICAL NOTE 21882 Robust extraction, separation, and quantitation of structural isomer steroids human plasma by SPE-UHPLC-MS/MS Authors Jon Bardsley 1, Kean Woodmansey 1, and Stacy Tremintin 2 1 Thermo

More information

Application Note # LCMS-89 High quantification efficiency in plasma targeted proteomics with a full-capability discovery Q-TOF platform

Application Note # LCMS-89 High quantification efficiency in plasma targeted proteomics with a full-capability discovery Q-TOF platform Application Note # LCMS-89 High quantification efficiency in plasma targeted proteomics with a full-capability discovery Q-TOF platform Abstract Targeted proteomics for biomarker verification/validation

More information

Solving practical problems. Maria Kuhtinskaja

Solving practical problems. Maria Kuhtinskaja Solving practical problems Maria Kuhtinskaja What does a mass spectrometer do? It measures mass better than any other technique. It can give information about chemical structures. What are mass measurements

More information

SUPPORTING INFORMATION FOR: CONCENTRATIONS OF POLYBROMINATED DIPHENYL ETHERS, HEXABROMOCYCLODODECANES AND TETRABROMOBISPHENOL-A IN BREAST MILK FROM

SUPPORTING INFORMATION FOR: CONCENTRATIONS OF POLYBROMINATED DIPHENYL ETHERS, HEXABROMOCYCLODODECANES AND TETRABROMOBISPHENOL-A IN BREAST MILK FROM SUPPORTING INFORMATION FOR: CONCENTRATIONS OF POLYBROMINATED DIPHENYL ETHERS, HEXABROMOCYCLODODECANES AND TETRABROMOBISPHENOL-A IN BREAST MILK FROM UNITED KINGDOM WOMEN DO NOT DECREASE OVER TWELVE MONTHS

More information

Matrix Assisted Laser Desorption Ionization Time-of-flight Mass Spectrometry

Matrix Assisted Laser Desorption Ionization Time-of-flight Mass Spectrometry Matrix Assisted Laser Desorption Ionization Time-of-flight Mass Spectrometry Time-of-Flight Mass Spectrometry. Basic principles An attractive feature of the time-of-flight (TOF) mass spectrometer is its

More information

Comparison of Full Scan MS2 and MS3 Linear Ion Trap Approaches for Quantitation of Vitamin D

Comparison of Full Scan MS2 and MS3 Linear Ion Trap Approaches for Quantitation of Vitamin D Comparison of Full Scan MS2 and MS3 Linear Ion Trap Approaches for Quantitation of Vitamin D Julie A. Horner 1, Marta Kozak 1, Subodh Nimkar 1, and August A. Specht 1 1 Thermo Fisher Scientific, San Jose,

More information

Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System

Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System Marta Kozak Clinical Research Applications Group Thermo Fisher Scientific San Jose CA Clinical Research use only, Not for

More information

UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes

UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes Catalin E. Doneanu, Weibin Chen, and Jeffrey R. Mazzeo Waters Corporation, Milford, MA, U.S. A P P L I C AT ION B E N E F

More information

Development of a Bioanalytical Method for Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid

Development of a Bioanalytical Method for Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid Development of a Bioanalytical Method for Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid Joanne ( 乔安妮 ) Mather Senior Scientist Waters Corporation Data courtesy of Erin Chambers and Mary

More information

Dr. Erin E. Chambers Waters Corporation. Presented by Dr. Diego Rodriguez Cabaleiro Waters Europe Waters Corporation 1

Dr. Erin E. Chambers Waters Corporation. Presented by Dr. Diego Rodriguez Cabaleiro Waters Europe Waters Corporation 1 Development of an SPE-LC/MS/MS Assay for the Simultaneous Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid in Support of Alzheimer s Research Dr. Erin E. Chambers Waters Corporation Presented

More information

Small Molecule Science: Experimental designs for achieving ultra trace analysis

Small Molecule Science: Experimental designs for achieving ultra trace analysis Small Molecule Science: Experimental designs for achieving ultra trace analysis Michael P. Balogh Principal scientist Waters Corporation 211 Waters Corporation 1 www.cosmoscience.org The Society for Small

More information

Identification of Ginsenosides Using the SCIEX X500R QTOF System

Identification of Ginsenosides Using the SCIEX X500R QTOF System Identification of Ginsenosides Using the SCIEX X500R QTOF System Wang Sha, Cheng Haiyan, Liu Ting, Li Lijun, Jin Wenhai[Author] SCIEX, Pacific Applications Support Center (Beijing). China Background Ginseng

More information

Benefits and Characteristic Applications of High Resolution GC/MS and LC/MS. Frank David RIC and Ghent University

Benefits and Characteristic Applications of High Resolution GC/MS and LC/MS. Frank David RIC and Ghent University Benefits and Characteristic Applications of High Resolution GC/MS and LC/MS. Frank David RIC and Ghent University Mass Spectrometry Structure Elucidation Selective and Sensitive Detection Identification

More information

Rapid Lipid Profiling of Serum by Reverse Phase UPLC-Tandem Quadrupole MS

Rapid Lipid Profiling of Serum by Reverse Phase UPLC-Tandem Quadrupole MS Rapid Lipid Profiling of Serum by Reverse Phase UPLC-Tandem Quadrupole MS Mark Ritchie and Evelyn Goh Waters Pacific Pte Ltd., Singapore A P P L I C AT ION B E N E F I T S Delivers a rapid 10-min MRM method

More information

NIH Public Access Author Manuscript J Proteome Res. Author manuscript; available in PMC 2014 July 05.

NIH Public Access Author Manuscript J Proteome Res. Author manuscript; available in PMC 2014 July 05. NIH Public Access Author Manuscript Published in final edited form as: J Proteome Res. 2013 July 5; 12(7): 3071 3086. doi:10.1021/pr3011588. Evaluation and Optimization of Mass Spectrometric Settings during

More information

High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. R. J. Rose, E. Damoc, E. Denisov, A. Makarov, A. J. R.

High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. R. J. Rose, E. Damoc, E. Denisov, A. Makarov, A. J. R. High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies R. J. Rose, E. Damoc, E. Denisov, A. Makarov, A. J. R. Heck SUPPLEMENTARY INFORMATION HCD multipole C -trap Transport octapole

More information

MALDI-TOF. Introduction. Schematic and Theory of MALDI

MALDI-TOF. Introduction. Schematic and Theory of MALDI MALDI-TOF Proteins and peptides have been characterized by high pressure liquid chromatography (HPLC) or SDS PAGE by generating peptide maps. These peptide maps have been used as fingerprints of protein

More information

Metabolite identification in metabolomics: Database and interpretation of MSMS spectra

Metabolite identification in metabolomics: Database and interpretation of MSMS spectra Metabolite identification in metabolomics: Database and interpretation of MSMS spectra Jeevan K. Prasain, PhD Department of Pharmacology and Toxicology, UAB jprasain@uab.edu utline Introduction Putative

More information

Technical Note # TN-31 Redefining MALDI-TOF/TOF Performance

Technical Note # TN-31 Redefining MALDI-TOF/TOF Performance Bruker Daltonics Technical Note # TN-31 Redefining MALDI-TOF/TOF Performance The new ultraflextreme exceeds all current expectations of MALDI-TOF/TOF technology: A proprietary khz smartbeam-ii TM MALDI

More information

Metabolite identification in metabolomics: Metlin Database and interpretation of MSMS spectra

Metabolite identification in metabolomics: Metlin Database and interpretation of MSMS spectra Metabolite identification in metabolomics: Metlin Database and interpretation of MSMS spectra Jeevan K. Prasain, PhD Department of Pharmacology and Toxicology, UAB jprasain@uab.edu Outline Introduction

More information

Quantitative Analysis of Drugs of Abuse in Urine using UHPLC Coupled to Accurate Mass AxION 2 TOF Mass Spectrometer

Quantitative Analysis of Drugs of Abuse in Urine using UHPLC Coupled to Accurate Mass AxION 2 TOF Mass Spectrometer application Note Liquid Chromatography/ Mass Spectrometry Authors Sharanya Reddy Blas Cerda PerkinElmer, Inc. Shelton, CT USA Quantitative Analysis of Drugs of Abuse in Urine using UHPLC Coupled to Accurate

More information

Rapid Analysis of Water-Soluble Vitamins in Infant Formula by Standard-Addition

Rapid Analysis of Water-Soluble Vitamins in Infant Formula by Standard-Addition Rapid Analysis of Water-Soluble Vitamins in Infant Formula by Standard-Addition Evelyn Goh Waters Pacific, Singapore APPLICATION BENEFITS This method allows for the simultaneous analysis of 12 water-soluble

More information

The J105 SIMS. A New Instrument for 3-Dimensional Imaging and Analysis. Paul Blenkinsopp, Ionoptika Ltd

The J105 SIMS. A New Instrument for 3-Dimensional Imaging and Analysis. Paul Blenkinsopp, Ionoptika Ltd The J105 SIMS A New Instrument for 3-Dimensional Imaging and Analysis Paul Blenkinsopp, Ionoptika Ltd The J105 SIMS Why a new ToF Mass Spectrometer? The J105 ToF has been designed to allow us to separate

More information

Shotgun Proteomics MS/MS. Protein Mixture. proteolysis. Peptide Mixture. Time. Abundance. Abundance. m/z. Abundance. m/z 2. Abundance.

Shotgun Proteomics MS/MS. Protein Mixture. proteolysis. Peptide Mixture. Time. Abundance. Abundance. m/z. Abundance. m/z 2. Abundance. Abundance Abundance Abundance Abundance Abundance Shotgun Proteomics Protein Mixture 1 2 3 MS/MS proteolysis m/z 2 3 Time µlc m/z MS 1 m/z Peptide Mixture m/z Block Diagram of a Mass Spectrometer Sample

More information

Lecture 3. Tandem MS & Protein Sequencing

Lecture 3. Tandem MS & Protein Sequencing Lecture 3 Tandem MS & Protein Sequencing Nancy Allbritton, M.D., Ph.D. Department of Physiology & Biophysics 824-9137 (office) nlallbri@uci.edu Office- Rm D349 Medical Science D Bldg. Tandem MS Steps:

More information

Impurity Identification using a Quadrupole - Time of Flight Mass Spectrometer QTOF

Impurity Identification using a Quadrupole - Time of Flight Mass Spectrometer QTOF Impurity Identification using a Quadrupole - Time of Flight Mass Spectrometer QTOF PUSHER TOF DETECTOR ZSPRAY TM Ion Source SAMPLING CONE SKIMMER RF HEXAPOLE RF HEXAPOLE QUADRUPOLE IN NARROW BANDPASS MODE

More information