First Detector News. A Quarterly Pest Update for WPDN First Detectors. In this Issue. Spring 2015 edition, volume 8, number 2.

Size: px
Start display at page:

Download "First Detector News. A Quarterly Pest Update for WPDN First Detectors. In this Issue. Spring 2015 edition, volume 8, number 2."

Transcription

1 Western Plant Diagnostic Network 1 First Detector News A Quarterly Pest Update for WPDN First Detectors Spring 2015 edition, volume 8, number 2 In this Issue Page 1: Editor s Note Pages 2 3: Intro to Plant Viruses Page 4: Virus nomenclature Page 5 Most Serious World Plant Viruses & Symptoms Pages 6 7: Plant Virus Vectors Pages 7-10: Grapevine Viruses Page 10: Pest Alerts Contact us at the WPDN Regional Center at UC Davis: Phone: rwhoenisch@ucdavis.edu Web: Editor: Richard W. Regents of the University of California All Rights Reserved Dear First Detectors, Plant viruses cause many important plant diseases and are responsible for huge losses in crop production and quality in all parts of the world. Plant viruses can spread very quickly because many are vectored by insects such as aphids and whitefly. They are a major pest of crop production as well as major pests of home gardens. By mid-summer many fields, vineyards, orchards, and gardens will see the effects of plant viruses. The focus of this edition is the origin, discovery, taxonomy, vectors, and the effects of virus infection in plants. There is also a feature article on grapevine viruses. And, as usual, there are some pest updates from the West. On June 16 18, the WPDN is sponsoring the second Invasive Snail and Slug workshop at UC Davis. The workshop will be recorded and will be posted on the WPDN and NPDN home pages. Have a great summer and here s hoping for rain! Please find the NPDN family of newsletters at: Newsletters

2 Image courtesy of APS Photo by Giovanni Martelli, U of Bari Grapevine Fanleaf Virus Plant Viruses Peanut leaf with tomato spotted wilt virus Photo courtesy of APS 2 Squash Mosaic Virus Manitoba Ag,Food, and Rural Initiatives Viruses are infectious pathogens that are too small to be seen with a light microscope, but despite their small size they can cause chaos. The simplest viruses are composed of a small piece of nucleic acid surrounded by a protein coat. As is the case with other organisms, viruses carry genetic information in their nucleic acid which typically specifies three or more proteins. All viruses are obligate parasites that depend on the cellular machinery of their hosts to reproduce. Viruses are not active outside of their hosts, and this has led some people to suggest that they are not alive. All types of living organisms including animals, plants, fungi, and bacteria are hosts for viruses, but most viruses infect only one type of host. Viruses cause many important plant diseases and are responsible for losses in crop yield and quality in all parts of the world. Photo courtesy of APS Electron micrograph of the actual TMV virus TMV in action in tobacco Most viruses are restricted to a particular type of host. Some infect bacteria, and are known as bacteriophages, whereas others are known that infect algae, protozoa, fungi (mycoviruses), invertebrates, vertebrates or vascular plants. However, some viruses that are transmitted between vertebrate or plant hosts by feeding insects (vectors) can replicate within both their host and their vector. This web site is mostly concerned with those viruses that infect plants but we also provide some taxonomic and genome information about viruses of fungi, protozoa, vertebrates and invertebrates where these are related to plant viruses. Viruses cause many diseases of international importance. Amongst the human viruses, smallpox, polio, influenza, hepatitis, human immunodeficiency virus (HIV-AIDS), measles and the SARS coronavirus are particularly well known. While antibiotics can be very effective against diseases caused by bacteria, these treatments are ineffective against viruses and most control measures rely on vaccines (antibodies raised against some component of the virus) or relief of the symptoms to encourage the body's own defense system.

3 Viruses also cause many important plant diseases and are responsible for huge losses in crop production and quality in all parts of the world. Infected plants may show a range of symptoms depending on the disease but often there is leaf yellowing (either of the whole leaf or in a pattern of stripes or blotches), leaf distortion (e.g. curling) and/or other growth distortions (e.g. stunting of the whole plant, abnormalities in flower or fruit formation). Some important animal and human viruses can be spread through aerosols. The viruses have the "machinery" to enter the animal cells directly by fusing with the cell membrane (e.g. in the nasal lining or gut). By contrast, plant cells have a robust cell wall and viruses cannot penetrate them unaided. Most plant viruses are therefore transmitted by a vector organism that feeds on the plant or (in some diseases) are introduced through wounds made, for example, during cultural operations (e.g. pruning). A small number of viruses can be transmitted through pollen to the seed (e.g. barley stripe mosaic virus, genus Hordeivirus) while many that cause systemic infections accumulate in vegetatively-propagated crops. 3 Tobacco Mosaic Virus: A Virus with a History.. Adolf Mayer Martinus Beijerinck Dmitri Ivanovsky The discovery of plant viruses causing disease is often accredited to Adolf Mayer (1886) working in the Netherlands demonstrated that the sap of mosaic obtained from tobacco leaves developed mosaic symptom when injected in healthy plants. However the infection of the sap was destroyed when it was boiled. He thought that the causal agent was the bacteria. However, after larger inoculation with a large number of bacteria, he failed to develop a mosaic symptom. In 1898, Martinus Beijerinck, who was a Professor of Microbiology at the Technical University the Netherlands, and at the same time Dmitri Ivanovsky in the Crimea put forth their concepts that viruses were small and determined that the "mosaic disease" remained infectious when passed through a Chamberland filter. This was in contrast to bacteria microorganisms, which were retained by the filter. Beijerinck referred to the infectious filtrate as a Contagium vivum fluidum ", thus the coinage of the modern term "virus". Plant pathologists are always very proud that the discovery of tobacco mosaic virus was the first virus in all biology to be so identified. The investigations of tobacco mosaic disease and subsequent discovery of its viral nature were instrumental in the establishment of the general concepts of virology. TMV was the first virus to be crystalized in 1935 by Wendell Meredith Stanley at UC Berkeley, for which he won the Nobel Prize. Stanley found that TMV remained infectious even after crystallization! Wendell Meredith Stanley

4 Virus Naming and Classification Binomial nomenclature, with genus and species, is standard in the world of biology except with common 4 virus names. Most plant viruses are named by their hosts and symptoms, such as tobacco mosaic virus, eggplant yellow mosaic, grapevine fan leaf virus, barley yellow dwarf, and peanut stunt virus. However, there is a method behind this possible confusion. The common names originated from the first plant the virus symptoms were noted, such as tobacco mosaic virus. However as the science of virology advanced, similarities and a tremendous diversity among viruses were noted and they were assigned to orders and family groups, as in binomial nomenclature. Starting in 1971, International Committee on Taxonomy of Viruses (ICTV) began to standardize virus taxonomy, thus organizing the confusion brought about by only common names. See also Virus family groups for all the known plant, animal, and human viruses. Chart courtesy of the Australian Ministry of Agriculture Note the different symptoms on the same plant cultivar

5 Photos by EP Rybicki The Top World Plant Viruses 5 1. Tobacco mosaic virus 2. Tomato spotted wilt virus 3. Tomato yellow leaf curl virus 4. Cucumber mosaic virus 5. Potato virus Y 6. Cauliflower mosaic virus 7. African cassava mosaic virus 8. Plum pox virus 9. Brome mosaic virus 10. Potato virus X 11. Citrus tristeza virus 12. Barley yellow dwarf virus 13. Potato leafroll virus 14. Tomato bushy stunt virus 15. Grapevine leafroll virus complex 16. Grapevine fanleaf virus 17. Rose rosette virus The common names of viruses came from the plant species in which a virus was first observed. However, this doesn t necessarily mean the virus is limited just to that one particular plant. Cauliflower mosaic virus (CaMV) (notice the shorthand) was first found on cauliflower, CaMV infects mostly plants of the Brassicaceae family, but some CaMV strains (D4 and W260) are also able to infect Solanaceae species of the genera Datura and Nicotiana. Barley yellow dwarf is a plant disease caused by the barley yellow dwarf virus (BYDV), and is the most widely distributed viral disease of cereals. It affects the economically important crop species barley, oats, wheat, maize, triticale and rice. As you click on each virus group, notice the crops each virus infects and the very modern virology nomenclature used. Photo courtesy APS Left, barley yellow dwarf virus affected plant; right a resistant variety Potato leafroll virus Photo courtesy of FarmingUK Potato Y virus Photo courtesy APS Photos courtesy APS Photo courtesy APS African cassava mosaic virus: Severe leaf distortion and mosaic and leaf loss in cassava in western Kenya Tomato yellow leaf curl virus affected tomato Plum pox virus: Leaves and fruit showing chlorotic and necrotic ring patterns, and chlorotic blotches. A) Chlorotic ring patterns in peach fruit; B) Chlorotic blotches in peach leaves; C) Chlorotic ring patterns in plum leaves D) Necrotic ring patterns on apricot fruit.

6 Plant Virus Vectors 6 The three forms of viruses. Viruses are shaped like rods or spheres or have twenty sides (icosahedral). Diagram courtesy of The Gale Group A virus remains totally inactive until it attaches itself to and infects a host cell. Once that happens, the virus may follow one of two paths. First, the virus may insert its genetic material (it is always DNA in this case) into the DNA of the host cell. The combined host-viral DNA is then carried along in the host cell as it lives and reproduces, generation after generation. Viruses are at the borderline between living and nonliving matter. When they infect a host cell, they are able to carry on many life functions, such as metabolism and reproduction. But outside a host cell, they are as inactive as a grain of sand. Viruses cause disease by infecting a host cell and taking over its biochemical functions. In order to produce new copies of itself, a virus must use the host cell's reproductive "machinery." The newly made viruses then leave the host cell, sometimes killing it in the process, and proceed to infect other cells within the organism. Read more about viruses at Science Clarified and Descriptions of Plant Viruses. A plant virus usually needs a vector to get from plant to plant and over evolution has made partners with several species. Sap Transmission: viruses can be spread by direct transfer of sap by contact of a wounded plant with a healthy one. Such contact may occur during agricultural practices, as by damage caused by tools or hands, or naturally, as by an animal feeding on the plant. A snail, Oxychilus draparnaudi, can spread TMV. Generally TMV, potato viruses and cucumber mosaic viruses are transmitted via sap. Insects: plant viruses vectored by insects are in three categories; 1) non-persistent, only short-lived on the stylet of the insect; 2) semi-persistent involves the virus entering the foregut of the insect and remaining until the foregut is emptied; and 3) Those viruses that manage to pass through the gut into the haemolymph and then to the salivary glands are known as persistent. There are two sub-classes of persistent viruses: propagative and circulative. Propagative viruses are able to replicate in both the plant and the insect (and may have originally been insect viruses), whereas circulative cannot. One class of viruses, the Rhabdoviridae, has been proposed to actually be insect viruses that have evolved to replicate in plants. Vectors include aphids, whitefly, plant-and treehoppers, thrips, and beetles. Plant-feeding mites, an acari arachnid, transmit viruses in the general family Tritimovirus, causing several virus diseases of cereals, such as wheat streak mosaic virus. Nematodes: Soil-borne nematodes have been shown to transmit viruses. They acquire and transmit them by feeding on infected roots. Viruses can be transmitted both non-persistently and persistently, but there is no evidence of viruses being able to replicate in nematodes. The virions attach to the stylet (feeding organ) or to the gut when they feed on an infected plant and can then detach during later feeding to infect other plants. Examples of viruses that can be transmitted by nematodes include tobacco ringspot virus and tobacco rattle virus. Grapevine fanleaf virus is transmitted by Xiphinema index.

7 Seed and pollen borne viruses: Many plants species can be infected through seeds including but not limited to the families Fabaceae, Solanaceae, Asteraceae, Rosaceae, Cucurbitaceae, and Poaceae. When viruses are transmitted by seeds, the seed is infected in the generative cells and the virus is maintained in the germ cells and sometimes, but less often, in the seed coat. Lettuce mosaic virus is one major example of a seed-borne virus, controlled by a certified seed program and the removal of alternate weedy hosts in the area. Blackline disease in walnut is a pollen-borne cherry leafroll virus (CLRV). Because it is pollenborne, it spread very quickly in California after it was first noticed in the 1980s. It continues to spread. Vegetative propagation: If the mother plant is infected with virus, then any material taken from that plant is also infected, because virus persists in the plant. This type of transmission is very common with commercial cultivars of potato, sweet potato, strawberry, wine and table grapes, roses, fruit and nut trees, etc. The commercial nursery industry in heavily regulated for this reason. The National Clean Plant Network (NCPN) and Foundation Plant Services (FPS) at UC Davis provide methods for elimination of virus from cultivars and maintaining virus-free propagation material. 7 Grapevine Virus Problems in California grapes By Maher Al Rwahnih University of California Davis/Foundation Plant Services malrwahnih@ucdavis.edu Times are changing in the Napa Valley. The picturesque vineyards still grow their renowned varietal grapes, and the world-class wineries there producing their famous vintages. But growers are now challenged with a leafroll virus epidemic that has been slowly spreading across the valley for the last hundred years. The virus is prevalent in older established vineyards, but the infections there can be asymptomatic. However, new vines on more modern rootstocks, which when planted were free of the virus, are now becoming diseased. In the past tending the vines was simpler. The growers could grow their own replacement stock by grafting cuttings of their choice cultivars, and use that material to renew their vineyards and maximize productivity. But latent leafroll Grapevine leafroll-associated virus 3 (GLRaV-3) infection can become symptomatic and damaging if grafted onto some of the modern rootstocks. Healthy-looking, home-grafted propagation stock may turn up infected after the plantings have become established. Our author, Dr. Maher Al Rwahnih, is a project scientist at Foundation Plant Services, UC Davis

8 Foliage of red grape varieties turn red between the veins in the fall (white grape varieties turn chlorotic) and the edges of the leaves roll under. Those vines prematurely loose vigor and suffer a reduction in yield, irregular ripening, and lower berry sugar content. Furthermore, an infected plant among the rows is a source of disease proliferation. Mealybug larval instars crawl or blow from one vine to the next carrying the virus. The focal point of the disease expands, spreading to ruin the productivity of the vineyard. 8 Grapevine leafroll virus infected Chardonnay vine Image from Ontario Grape IPM Photo by Maher Al Grapevine leafroll virus infected vine in red variety Leafroll disease is caused by old-world viruses that came to the U.S. in imported propagative plant material of the classic European varietal selections material that showed no symptoms when it was planted. When the infected propagation material was transplanted to California vineyards, the insect vectors of the disease picked up the virus and carried it into the hills overlooking the valleys. There it established further asymptomatic presence in the native wild Vitis californica grapevines. Now the disease is endemic across the area There are five main recognized GLRaV species. GLRaV-1, GLRaV-3, and GLRaV-4, are transmitted by mealybugs and scale insects in California. There is no known vector for GLRaV-2, so despite its adverse effect on grapevine health and wine quality, is not considered to be as much of a threat because it has not been seen to spread on its own. GLRaV-7 is a mild form of the virus, the potential of which is still under study. Among these, GLRaV-3 is the major concern, due to its wider distribution in our grape growing regions. Photo courtesy UCCE Photo courtesy UCCE Photo courtesy of UCCE An adult obscure mealybug and newly molted nymph before it has developed a waxy coating. Grape mealybug in adult and nymphal stages Vine mealybug female and winged male Zinfandel infected with grapevine leafroll virus Photo by Maher Al Rwahnih

9 The Grapevine fanleaf virus epidemic of decades past was addressed by the use of vines carrying genetic resistance to the disease. But there is no genetic resistance in grape to leafroll virus or to its insect vector. Insects that carry infections from plant to plant are sometimes controlled by spraying insecticides. But insecticidal control of mealybugs can be difficult due to the biology of the bug. Mealybugs are waxy and hard to wet. They retire into cracks in the bark where the spray does not penetrate. And they have developed resistance to the insecticides. Spraying kills the highly-susceptible parasitic insects that would otherwise control native mealybug populations. And in a further complication, exotic species such as the vine mealybug and the obscure mealybug have been introduced to California. They appear to have left their parasites behind, and have no natural controls in their new range. These are aggressive mealybugs with multiple, overlapping generations, for which insecticidal treatments may be the only control measures, but then those treatments release the native mealybugs from their own natural enemies. The economics of managing the GLRaV-3 epidemic have been studied recently. Kate Binzen Fuller, Julian Ashton, and Deborah Golino wrote: The Economic Benefits from Virus Screening: A Case Study, analyzed the costs vs. benefits of a clean planting stock program for GLRaV-3 covering all grape varieties. They modeled the consequences of gradually replacing all vineyard nursery stock in the entire north coastal region with certified virus-tested material. Costs that would be added for such a program were found to be in the millions of dollars. But the benefits in productivity of disease-free vineyards, and the savings of the costs of replacing diseased vines as they appear, out-weighed the certified nursery stock costs. The calculated net productivity improvement per year for the area was found to be on the order of fifty million dollars. A similar conclusion was reached by Ricketts et al wrote: Reducing the Economic Impact of Grapevine Leafroll Disease in California: Identifying Optimal Disease Management Strategies, in a study of the Cabernet Sauvignon grapevine. Some of the calculated benefit would arise from the removal of infection sources located at a distance from each vineyard. The leafroll virus does not respect property lines. The insect vectors that carry infectious virus can blow into previously uninfected vineyards from sources that may be miles away. Replacement of the infected vines with virus-free plants, in addition to the spraying of insecticides for exotic mealybug control, reduces the potential spread of GLRaV-3 from inoculum sources within the vineyard, and returns profitability to the enterprise. Commercial nurseries carry registered planting stock, certified in accordance with the California Department of Food and the California Grapevine Registration and Certification Program. But the successful management of this disease will also advance through collaborative involvements among the stakeholders. GLRaV-3 management groups have formed in many parts of the Napa Valley, as well as in other grape-growing regions. Those groups meet to discuss the successes of their management strategies and share information with other growers who are dealing with the leafroll disease. Growers who want to adopt a virus management program learn of the successes of their peers. In this way, they are collectively developing a solution to their collective challenge with this virus epidemic in California grapes. For more information on grapevine leafroll virus management: Grapevine Leafroll Disease: Management Strategies Which mealybug is it, why should you care? Mealybugs in California Vineyards Vine Mealybug: What You Should Know 9 Leafroll grapevine virus is found the world. With infected vines, sugar production is slowed and fruit maturity can be delayed for weeks. Photo courtesy of the Constellation Academy of Wine

10 Pest Updates Arboreal Camel Cricket in Napa County CA Gammarotettix bilabatus (Orthoptera: Rhaphidophoridae) 10 Monica Cooper and Lucia Varela UC Cooperative Extension in Napa and the North CA Coast respectively, have found arboreal camel cricket infesting select hillside vineyards immediately adjacent to oak woodlands in Napa County CA. Both Drs. Cooper and Varela are quite experience and well-known in the fields of viticulture and entomology. Grape is not recognized as a major host for this cricket, although vineyards surrounded by suitable cricket habitat may experience some damage annually. However drought conditions in their arboreal range could have resulted in more widespread damage. For more on the arboreal camel cricket and the vine, click on: Napa UCCE Newsletter - Arboreal Camel Cricket European Chafer found in Washington State Rhizotrogus majalis (Coleoptera: Scarabaeidae) The European chafer, commonly called June bugs, is a beetle that causes damage to turf and cereal crops. The damage caused by chafer infestation to residential lawns is exacerbated by the fact that its grubs are an attractive food source for local fauna such as crows and raccoons, who relentlessly dig up the turf in search of the morsels. Homeowners often find themselves bewildered by the speed and extent of the destruction which may ensue. Because it is now confirmed as a problem in southwest British Columbia, Canada, it is important that Washington State First Detectors, gardeners, and horticultural professionals be aware of this pest, recognize it various like stages, and know how to report new infestations. The European chafer was introduced to the US in the 1940s on the East Coast. States currently infested with the pest include NY, MI, OH, MD, WV, and IN. The life cycle and damage are similar to the Japanese beetle. The name chafer is similar to the German word Käfer (beetle) coming into Middle English as cheaffer, finally chafer. Life cycle of R. majalis "Eurchaferlifecycle" by Art Cushman, USDA The larva of the European chafer Photo by David Cappaert, Michigan State University Adult European Chafer For more photos and means of control, read the WSU Extension Pest Watch: European Chafer Photo by Mike Reding & Betsy Anderson, USDA ARS

Lab Tuesday: Virus Diseases

Lab Tuesday: Virus Diseases Lab Tuesday: Virus Diseases Quiz for Bacterial Pathogens lab (pp 67-73) and Biocontrol of Crown Gall (p. 113-117), Observation of Viral Movement in Plants (p. 119), and Intro section for Viruses (pp. 75-77).

More information

Lab Tuesday: Virus Diseases

Lab Tuesday: Virus Diseases Lab Tuesday: Virus Diseases Quiz for Bacterial Pathogens lab (pp 69-75) and Biocontrol of Crown Gall (p. 115-119), Observation of Viral Movement in Plants (p. 121), and Intro section for Viruses (pp. 77-79).

More information

Unit 4 Student Guided Notes

Unit 4 Student Guided Notes Structure of Viruses Discovery of the Virus Unit 4 Student Guided Notes Many human epidemics were well documented and observed in history, but. The following 3 discoveries shaped our knowledge of viruses

More information

LEC 2, Medical biology, Theory, prepared by Dr. AYAT ALI

LEC 2, Medical biology, Theory, prepared by Dr. AYAT ALI General Characteristics, Structure and Taxonomy of Viruses Viruses A virus is non-cellular organisms made up of genetic material and protein that can invade living cells. They are considered both a living

More information

A REVIEW OF AFRICAN CASSAVA MOSAIC VIRUS (ACMV) IRDA SAFNI, SP, MCP. FAKULTAS PERTANIAN Jurusan Hama dan Penyakit Tumbuhan UNIVERSITAS SUMATERA UTARA

A REVIEW OF AFRICAN CASSAVA MOSAIC VIRUS (ACMV) IRDA SAFNI, SP, MCP. FAKULTAS PERTANIAN Jurusan Hama dan Penyakit Tumbuhan UNIVERSITAS SUMATERA UTARA A REVIEW OF AFRICAN CASSAVA MOSAIC VIRUS (ACMV) IRDA SAFNI, SP, MCP. FAKULTAS PERTANIAN Jurusan Hama dan Penyakit Tumbuhan UNIVERSITAS SUMATERA UTARA 1. INTRODUCTION Cassava (Manihot esculenta Crantz)

More information

AN UNUSUAL VIRUS IN TREES WITH CITRUS BLIGHT RON BRLANSKY UNIVERSITY OF FLORIDA, CREC

AN UNUSUAL VIRUS IN TREES WITH CITRUS BLIGHT RON BRLANSKY UNIVERSITY OF FLORIDA, CREC AN UNUSUAL VIRUS IN TREES WITH CITRUS BLIGHT RON BRLANSKY UNIVERSITY OF FLORIDA, CREC CITRUS BLIGHT KNOWN IN FLORIDA FOR OVER 100 YEARS; FIRST DESCRIBED IN 1874 PROBLEM IN FLORIDA IN THE 1970 S WITH INCREASE

More information

Emergence of a resistance breaking strain of Tomato spotted wilt virus (TSWV) in California

Emergence of a resistance breaking strain of Tomato spotted wilt virus (TSWV) in California Emergence of a resistance breaking strain of Tomato spotted wilt virus (TSWV) in California Maria R. Rojas Department of Plant Pathology University of California Davis A diversity of viruses affect processing

More information

Possible Impacts of the Whitefly Q Biotype on Viral Diseases in Tomato. Jane E. Polston Dept. Plant Pathology Univ. Of Florida

Possible Impacts of the Whitefly Q Biotype on Viral Diseases in Tomato. Jane E. Polston Dept. Plant Pathology Univ. Of Florida Possible Impacts of the Whitefly Q Biotype on Viral Diseases in Tomato Jane E. Polston Dept. Plant Pathology Univ. Of Florida The Whitefly, Bemisia tabaci, is a complex of 12 clades (soon to be 12 separate

More information

Final Report Aphid monitoring and virus testing in strawberries

Final Report Aphid monitoring and virus testing in strawberries Final Report Aphid monitoring and virus testing in strawberries 15 February 2017 Prepared for: Horticulture Nova Scotia 32 Main St Kentville, NS B4N 1J5 Prepared by: Jennifer Haverstock Small Fruit Specialist

More information

Unit 13.2: Viruses. Vocabulary capsid latency vaccine virion

Unit 13.2: Viruses. Vocabulary capsid latency vaccine virion Unit 13.2: Viruses Lesson Objectives Describe the structure of viruses. Outline the discovery and origins of viruses. Explain how viruses replicate. Explain how viruses cause human disease. Describe how

More information

Arkansas Fruit and Nut News Volume 5, Issue 6, 13 July 2015

Arkansas Fruit and Nut News Volume 5, Issue 6, 13 July 2015 Arkansas Fruit and Nut News Volume 5, Issue 6, 13 July 2015 Upcoming Events Texas Pecan Growers Association Annual Conference online registration (Link): July 12-15, 2015, Frisco, TX; Contact (979) 846-3285

More information

Project Title: Development of a method for conducting tests for resistance to tombusviruses and lettuce dieback in the greenhouse.

Project Title: Development of a method for conducting tests for resistance to tombusviruses and lettuce dieback in the greenhouse. I. Abstract. Project Title: Development of a method for conducting tests for resistance to tombusviruses and lettuce dieback in the greenhouse. Project Investigators: Drs. William M. Wintermantel and Ivan

More information

PHYTOSANITARY PROCEDURES

PHYTOSANITARY PROCEDURES EPPO Standards PHYTOSANITARY PROCEDURES OTHER VIRUSES OF MALUS AND PRUNUS INSPECTION AND TEST METHODS PM 3/33(1) English oepp eppo Organisation Européenne et Méditerranéenne pour la Protection des Plantes

More information

Enhancing Biological Control to Stabilize Western Orchard IPM Systems

Enhancing Biological Control to Stabilize Western Orchard IPM Systems Enhancing Biological Control to Stabilize Western Orchard IPM Systems A collaborative project between Washington State University, University of California at Berkeley, Oregon State University, USDA-ARS,

More information

PHYTOSANITARY PROCEDURES

PHYTOSANITARY PROCEDURES EPPO Standards PHYTOSANITARY PROCEDURES OTHER VIRUSES OF MALUS AND PRUNUS INSPECTION AND TEST METHODS PM 3/33(1) English oepp eppo Organisation Européenne et Méditerranéenne pour la Protection des Plantes

More information

Discovery of. 1892: Russian biologist Dmitri Ivanovsky publishes. 1931: first images of viruses obtained using

Discovery of. 1892: Russian biologist Dmitri Ivanovsky publishes. 1931: first images of viruses obtained using Discovery of (1884: invention of the Chamberland filter with pores smaller than bacteria) 1892: Russian biologist Dmitri Ivanovsky publishes a paper in which shows that extracts from diseased tobacco plants

More information

Viruses. Objectives At the end of this sub section students should be able to:

Viruses. Objectives At the end of this sub section students should be able to: Name: 3.5 Responses to Stimuli Objectives At the end of this sub section students should be able to: 3.5.4 Viruses 1. Explain the problem of defining what a virus is - living or non-living? 2. show you

More information

KPCS target organisms, controls and symptom guide

KPCS target organisms, controls and symptom guide KPCS target organisms, controls and symptom guide 1. Virus Virus included: I. Cherry leafroll virus (CLRV) II. Actinidia seed-borne latent virus (ASBLV) III. Monitor for other unusual symptoms n 2017,

More information

Structure & Function of Viruses

Structure & Function of Viruses Structure & Function of Viruses Discovery of Viruses Louis Pasteur- looks for a causative agent for rabies, says too small, can not find it 1892 Dimitry Ivanosky- studies tobacco disease, can not find

More information

How effective is sharpshooter control at limiting Pierce s disease spread? Matt Daugherty, Department of Entomology, UC Riverside

How effective is sharpshooter control at limiting Pierce s disease spread? Matt Daugherty, Department of Entomology, UC Riverside How effective is sharpshooter control at limiting Pierce s disease spread? Matt Daugherty, Department of Entomology, UC Riverside (mattd@ucr.edu) vector Disease management 1. Eliminate pathogen sources

More information

Chapter 13 Viruses, Viroids, and Prions. Biology 1009 Microbiology Johnson-Summer 2003

Chapter 13 Viruses, Viroids, and Prions. Biology 1009 Microbiology Johnson-Summer 2003 Chapter 13 Viruses, Viroids, and Prions Biology 1009 Microbiology Johnson-Summer 2003 Viruses Virology-study of viruses Characteristics: acellular obligate intracellular parasites no ribosomes or means

More information

PHARMACEUTICAL MICROBIOLOGY JIGAR SHAH INSTITUTE OF PHARMACY NIRMA UNIVERSITY

PHARMACEUTICAL MICROBIOLOGY JIGAR SHAH INSTITUTE OF PHARMACY NIRMA UNIVERSITY PHARMACEUTICAL MICROBIOLOGY JIGAR SHAH INSTITUTE OF PHARMACY NIRMA UNIVERSITY VIRUS - HISTORY In 1886, the Dutch Chemist Adolf Mayer showed TMD In 1892, the Russian Bactriologist Dimtri Iwanowski isolate

More information

Calendar. Drought Conditions in Ohio as of Oct 23th. Volume 3, No. 40 October 29, In This Issue:

Calendar. Drought Conditions in Ohio as of Oct 23th. Volume 3, No. 40 October 29, In This Issue: Volume 3, No. 40 October 29, 1999 In This Issue: Calendar Drought Conditions in Ohio as of Oct 23th Plum Pox Virus Alert Terminal Market Wholesale Fruit Prices October 28, 1999 Calendar November 3: Ohio

More information

Lec. 5 Virus Transmission Dr. Ahmed K. Ali

Lec. 5 Virus Transmission Dr. Ahmed K. Ali Lec. 5 Virus Transmission Dr. Ahmed K. Ali In order not to die out, viruses must be propagated and transmitted to new hosts in which more virions can be produced. The only other way for the survival of

More information

Some living things are made of ONE cell, and are called. Other organisms are composed of many cells, and are called. (SEE PAGE 6)

Some living things are made of ONE cell, and are called. Other organisms are composed of many cells, and are called. (SEE PAGE 6) Section: 1.1 Question of the Day: Name: Review of Old Information: N/A New Information: We tend to only think of animals as living. However, there is a great diversity of organisms that we consider living

More information

CONTENTS. 1. Introduction. 4. Virology. 2. Virus Structure. 5. Virus and Medicine. 3. Virus Replication. 6. Review

CONTENTS. 1. Introduction. 4. Virology. 2. Virus Structure. 5. Virus and Medicine. 3. Virus Replication. 6. Review CONTENTS 1. Introduction 4. Virology 2. Virus Structure 5. Virus and Medicine 3. Virus Replication 6. Review We have all gotten viruses from bacteria, plants to animals. Viruses cause colds, flu, warts

More information

Developing a First Detector Network for Utah. Cooperative A g Pest Sur vey Coordinator

Developing a First Detector Network for Utah. Cooperative A g Pest Sur vey Coordinator Developing a First Detector Network for Utah Lori Spears Cooperative A g Pest Sur vey Coordinator Utah State Univer sity Utah s First Detector Program is a response to the need to address the growing threat

More information

Chapter 6- An Introduction to Viruses*

Chapter 6- An Introduction to Viruses* Chapter 6- An Introduction to Viruses* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. 6.1 Overview of Viruses

More information

Lessons Learned on the Use of Antibiotics in Fruit Tree Disease Control

Lessons Learned on the Use of Antibiotics in Fruit Tree Disease Control Lessons Learned on the Use of Antibiotics in Fruit Tree Disease Control Megan M. Dewdney Associate Professor of Plant Pathology and Extension Specialist University of Florida, IFAS Citrus Research and

More information

Bacteria and Viruses

Bacteria and Viruses CHAPTER 13 LESSON 3 Bacteria and Viruses What are viruses? Key Concepts What are viruses? How do viruses affect human health? What do you think? Read the two statements below and decide whether you agree

More information

Starting with MICROBIOLOGY

Starting with MICROBIOLOGY Starting with MICROBIOLOGY Micro means very small and biology is the study of living things. Microbes are the oldest form of life on Earth. They've been here for 3.8 billion years! Microbes live everywhere.

More information

Warts are a skin virus!

Warts are a skin virus! Viruses Warts are a skin virus! Herpes mouth virus: Other Viral Diseases Measles Polio Smallpox Influenza Hepatitis B Virus Viruses & Cancer Human Papilloma Virus HPV Tree Man - HPV Is a Virus a Living

More information

Overview: Chapter 19 Viruses: A Borrowed Life

Overview: Chapter 19 Viruses: A Borrowed Life Overview: Chapter 19 Viruses: A Borrowed Life Viruses called bacteriophages can infect and set in motion a genetic takeover of bacteria, such as Escherichia coli Viruses lead a kind of borrowed life between

More information

BMSB impact on vegetable and field crops in the Mid- Atlantic and research plans for 2011

BMSB impact on vegetable and field crops in the Mid- Atlantic and research plans for 2011 BMSB impact on vegetable and field crops in the Mid- Atlantic and research plans for 2011 Galen P. Dively Department of Entomology DE - Joanne Whalen, Bill Cissel VA - Ames Herbert, Tom Kuhar, Kathy Kamminga,

More information

Dr. Gary Mumaugh. Viruses

Dr. Gary Mumaugh. Viruses Dr. Gary Mumaugh Viruses Viruses in History In 1898, Friedrich Loeffler and Paul Frosch found evidence that the cause of foot-and-mouth disease in livestock was an infectious particle smaller than any

More information

Kelly Young Horticulture Agent University of Arizona Cooperative Extension, Maricopa County

Kelly Young Horticulture Agent University of Arizona Cooperative Extension, Maricopa County Kelly Young Horticulture Agent University of Arizona Cooperative Extension, Maricopa County 1. Yes 2. No 50% 50% 1 2 1. Determine what is normal for the plant 2. Inquire about irrigation practices 3. Identify

More information

Pesticide Residues and the Glassy-winged Sharpshooter. Rick Redak Department of Entomology University of California, Riverside

Pesticide Residues and the Glassy-winged Sharpshooter. Rick Redak Department of Entomology University of California, Riverside Pesticide Residues and the Glassy-winged Sharpshooter Rick Redak Department of Entomology University of California, Riverside Eggs Weeks to months 10-12 days Two Generations Per year Adult GWSS 40-45 days

More information

Virology. Virology: virus replications, ssrna viruses, Plant viruses, Sanitation

Virology. Virology: virus replications, ssrna viruses, Plant viruses, Sanitation Virology Virology: virus replications, ssrna viruses, Plant viruses, Sanitation VIRUSES-definition A virus is a non-cellular, obligate intracellular parasite which has two phases in its life cycle: 1.

More information

GAINES COUNTY IPM NEWSLETTER Manda G. Cattaneo, Extension Agent - IPM 101 S. Main RM B-8. Seminole, TX 79360

GAINES COUNTY IPM NEWSLETTER Manda G. Cattaneo, Extension Agent - IPM 101 S. Main RM B-8.  Seminole, TX 79360 GAINES COUNTY IPM NEWSLETTER Manda G. Cattaneo, Extension Agent - IPM 101 S. Main RM B-8 http://gaines-co.tamu.edu Seminole, TX 79360 http://www.tpma.org (432)758-6669 office http://ipm.tamu.edu (432)758-6662

More information

Hands-on identification of vegetable diseases: Roses

Hands-on identification of vegetable diseases: Roses Hands-on identification of vegetable diseases: Roses Theme: How to diagnose a specific disease from diseases or disorders with similar symptoms. Mathews Paret, Susannah Da Silva, Binoy Babu, Fanny Iriarte,

More information

Ch. 19 Viruses & Bacteria: What Is a Virus?

Ch. 19 Viruses & Bacteria: What Is a Virus? Ch. 19 Viruses & Bacteria: What Is a Virus? A virus is an invective agent consisting of a nucleic acid in a protein coat, able to multiply only within the living cells of a host. A bacteriophage ( bacteria

More information

Viruses are extremely small in size and are invisible even under the most powerful light microscopes. An electron microscope is used to study them.

Viruses are extremely small in size and are invisible even under the most powerful light microscopes. An electron microscope is used to study them. VIRUSES by Michael Harrison. At the October meeting last year, Mike Harrison, A.N.O.S. Sydney Group's Research Officer presented a report on viruses and virus infection, as commissioned by the Committee.

More information

1. Virus 2. Capsid 3. Envelope

1. Virus 2. Capsid 3. Envelope VIRUSES BIOLOGY II VOCABULARY- VIRUSES (22 Words) 1. Virus 2. Capsid 3. Envelope 4. Provirus 5. Retrovirus 6. Reverse transcriptase 7. Bacteriophage 8. Lytic Cycle 9. Virulent 10. Lysis 11. Lysogenic Cycle

More information

Funky Leaf Spot, Viruses, and Xylella Update Winter Phillip M. Brannen University of Georgia Plant Pathology Department

Funky Leaf Spot, Viruses, and Xylella Update Winter Phillip M. Brannen University of Georgia Plant Pathology Department Funky Leaf Spot, Viruses, and Xylella Update Winter 2011 Phillip M. Brannen University of Georgia Plant Pathology Department Background: Systemic Blueberry Diseases At least nine species of plant viruses

More information

Part 3- Biology Paper 1 Infection and Response Application Questions Triple Science

Part 3- Biology Paper 1 Infection and Response Application Questions Triple Science Part 3- Biology Paper 1 Infection and Response Application Questions Triple Science 1 AQA Biology (8461) from 2016 Topic B4.3 Infection and response Topic Student Checklist R A G Explain what a pathogen

More information

علم األحياء الدقيقة Microbiology Introduction to Virology & Immunology

علم األحياء الدقيقة Microbiology Introduction to Virology & Immunology علم األحياء الدقيقة Microbiology Introduction to Virology & Immunology What is a virus? Viruses may be defined as acellular organisms whose genomes consist of nucleic acid (DNA or RNA), and which obligatory

More information

Virus Infections and Hosts

Virus Infections and Hosts OpenStax-CNX module: m44597 1 Virus Infections and Hosts OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

New insect and mite pests in Kern County, a 2004 summary report

New insect and mite pests in Kern County, a 2004 summary report Cooperative Extension, University of California San Joaquin Valley Entomology Newsletter Kern County 1031 S. Mt. Vernon Avenue Bakersfield CA 93307 Telephone (661) 868-6200 Vol. 2, Issue 3 December, 2004

More information

Immune System. Before You Read. Read to Learn

Immune System. Before You Read. Read to Learn Immune System 37 section 1 Infectious Diseases Biology/Life Sciences 10.d Students know there are important differences between bacteria and viruses with respect to their requirements for growth and replication,

More information

Making codling moth mating disruption work in Michigan: Adopting an area-wide approach to managing codling moth in Michigan apple production

Making codling moth mating disruption work in Michigan: Adopting an area-wide approach to managing codling moth in Michigan apple production Fruit Crop Advisory Team Alert Vol. 20, No. 17, September 6, 2005 Making codling moth mating disruption work in Michigan: Adopting an area-wide approach to managing codling moth in Michigan apple production

More information

ONGOING PROJECT REPORT YEAR 1/3 WTFRC Project # CH

ONGOING PROJECT REPORT YEAR 1/3 WTFRC Project # CH ONGOING PROJECT REPORT YEAR 1/3 WTFRC Project # CH-6-63 Project title: Cherry Fruit Fly Control Options PI: Timothy J. Smith Organization: WSU Extension, North Central Washington Address, phone, e-mail:

More information

AP Biology. Viral diseases Polio. Chapter 18. Smallpox. Influenza: 1918 epidemic. Emerging viruses. A sense of size

AP Biology. Viral diseases Polio. Chapter 18. Smallpox. Influenza: 1918 epidemic. Emerging viruses. A sense of size Hepatitis Viral diseases Polio Chapter 18. Measles Viral Genetics Influenza: 1918 epidemic 30-40 million deaths world-wide Chicken pox Smallpox Eradicated in 1976 vaccinations ceased in 1980 at risk population?

More information

Lecture 2: Virology. I. Background

Lecture 2: Virology. I. Background Lecture 2: Virology I. Background A. Properties 1. Simple biological systems a. Aggregates of nucleic acids and protein 2. Non-living a. Cannot reproduce or carry out metabolic activities outside of a

More information

Part I. Content: History of Viruses. General properties of viruses. Viral structure. Viral classifications. Virus-like agents.

Part I. Content: History of Viruses. General properties of viruses. Viral structure. Viral classifications. Virus-like agents. Viruses Part I Content: History of Viruses. General properties of viruses. Viral structure. Viral classifications. Virus-like agents. History Through the 1800s, many scientists discovered that something

More information

General Virology I. Dr Esam Ibraheem Azhar (BSc, MSc, Ph.D Molecular Medical Virology) Asst. Prof. Medical Laboratory Technology Department

General Virology I. Dr Esam Ibraheem Azhar (BSc, MSc, Ph.D Molecular Medical Virology) Asst. Prof. Medical Laboratory Technology Department General Virology I Dr Esam Ibraheem Azhar (BSc, MSc, Ph.D Molecular Medical Virology) Asst. Prof. Medical Laboratory Technology Department ١ General Virology I Lecture Outline Introduction istory Definition

More information

Project Title: Evaluating the Distribution and Potential Impacts of Soybean Vein Necrosis Virus in Delaware

Project Title: Evaluating the Distribution and Potential Impacts of Soybean Vein Necrosis Virus in Delaware Delaware Soybean Board Report for Kleczewski, 2014 Project Title: Evaluating the Distribution and Potential Impacts of Soybean Vein Necrosis Virus in Delaware Background and Objectives: Soybeans are susceptible

More information

Section A: The Genetics of Viruses

Section A: The Genetics of Viruses CHAPTER 18 MICROBIAL MODELS: THE GENETICS OF VIRUSES AND BACTERIA Section A: The Genetics of Viruses 1. Researchers discovered viruses by studying a plant disease 2. A virus is a genome enclosed in a protective

More information

Sacramento Valley Olive Day. Doug Compton Tehama County Ag Dept (530)

Sacramento Valley Olive Day. Doug Compton Tehama County Ag Dept (530) Sacramento Valley Olive Day Doug Compton Tehama County Ag Dept (530) 527-4504 2 Hours Continuing Ed State-issued licenses: sign attendance sheet and return completed Continuing Ed Check Out Form (1/2 sheet).

More information

The Benefits of Insecticide Use: Walnuts

The Benefits of Insecticide Use: Walnuts Crop Protection Research Institute The Benefits of Insecticide Use: Walnuts Codling Moth Codling Moth Damage Spraying Walnut Trees Trichogramma Wasp Laying Egg in Codling Moth Egg March 2009 Leonard Gianessi

More information

Name Class Date. Infection in which a virus inserts its nucleic acid into the DNA of the host cell and is duplicated with the cell s DNA

Name Class Date. Infection in which a virus inserts its nucleic acid into the DNA of the host cell and is duplicated with the cell s DNA Name Class Date 20.1 Viruses Lesson Objectives Explain how viruses reproduce. Explain how viruses cause infection. BUILD Vocabulary A. The chart below shows key terms from the lesson with their definitions.

More information

18.2. Viral Structure and Reproduction. Viruses differ in shape and in ways of entering

18.2. Viral Structure and Reproduction. Viruses differ in shape and in ways of entering 18.2 Viral Structure and Reproduction VOCABULARY bacteriophage lytic infection lysogenic infection prophage compare the structures of viruses to cells, describe viral reproduction, and describe the role

More information

Immune System Review. 1. State one way white blood cells protect the body from foreign microbes.

Immune System Review. 1. State one way white blood cells protect the body from foreign microbes. Name Immune System Review Date 1. State one way white blood cells protect the body from foreign microbes. 2. Cells of the immune system are able to respond to the presence of invading organisms because

More information

University of California Cooperative Extension Tulare County. Grape Notes. Volume II, Issue 5 October 05

University of California Cooperative Extension Tulare County. Grape Notes. Volume II, Issue 5 October 05 University of California Cooperative Extension Tulare County Grape Notes Volume II, Issue 5 October 05 Mild Magnesium Deficiency Widespread This Year Mild symptoms of magnesium (Mg) deficiency are common

More information

A virus consists of a nucleic acid surrounded by a protein coat. [2]

A virus consists of a nucleic acid surrounded by a protein coat. [2] GUIDED READING - Ch. 19 - VIRUSES NAME: Please print out these pages and HANDWRITE the answers directly on the printouts. Typed work or answers on separate sheets of paper will not be accepted. Importantly,

More information

Viral diseases and their management in potato production

Viral diseases and their management in potato production Viral diseases and their management in potato production Ravinder Kumar Division of Plant Protection, CPRI, Shimla-171001 (H.P.) The potato (Solanum tuberosum L.) is an important crop worldwide. Potato

More information

Insect Pests of Canola. Dale Whaley

Insect Pests of Canola. Dale Whaley Insect Pests of Canola Dale Whaley dwhaley@wsu.edu What We Want! (2) Groups of Canola Pests 1) Insects Pests: - Cabbage Seedpod Weevil - Flea Beetle - Aphids - Cabbage Aphid - Turnip Aphid - Lygus Bug

More information

Citrus Disease ID and Control. Ben Faber UC Cooperative Extension

Citrus Disease ID and Control. Ben Faber UC Cooperative Extension Citrus Disease ID and Control Ben Faber UC Cooperative Extension bafaber@ucanr.edu Disease Biotic (Abiotic) ENVIRONMENT Predisposing TIME HOST Susceptible PATHOGEN Virulence ABIOTIC environmental factors

More information

Global Catastrophic Biological Risks

Global Catastrophic Biological Risks Global Catastrophic Biological Risks Working Definition of Global Catastrophic Biological Risks (GCBRs) Events in which biological agents whether naturally emerging or reemerging, deliberately created

More information

Virology. *Viruses can be only observed by electron microscope never by light microscope. The size of the virus: nm in diameter.

Virology. *Viruses can be only observed by electron microscope never by light microscope. The size of the virus: nm in diameter. Virology We are going to start with general introduction about viruses, they are everywhere around us; in food; within the environment; in direct contact to etc.. They may cause viral infection by itself

More information

Nutrition Essentials Improving your PKU diet through balanced nutrition

Nutrition Essentials Improving your PKU diet through balanced nutrition Nutrition Essentials Improving your PKU diet through balanced nutrition Sharon L Ernst, MPH, RD, CSP, FAND Associate Professor Chief Metabolic Dietitian Division of Medical Genetics Department of Pediatrics

More information

Volume XII, Number 14 August 6, Late Blight Management in the Columbia Basin. Updates on Potato Psyllid and Zebra Chip (ZC)

Volume XII, Number 14 August 6, Late Blight Management in the Columbia Basin. Updates on Potato Psyllid and Zebra Chip (ZC) Research & Extension for the Potato Industry of Idaho, Oregon, & Washington Andrew Jensen, Editor. ajensen@potatoes.com; 509-760-4859 www.nwpotatoresearch.com Volume XII, Number 14 August 6, 2012 Late

More information

OLEANDER LEAF SCORCH: THE SCOURGE OF PHOENIX XERISCAPES

OLEANDER LEAF SCORCH: THE SCOURGE OF PHOENIX XERISCAPES OLEANDER LEAF SCORCH: THE SCOURGE OF PHOENIX XERISCAPES Prized for their evergreen foliage and showy tropical blooms, oleanders (Nerium oleander) found a home in Phoenix landscapes during the home building

More information

Viruses. Rotavirus (causes stomach flu) HIV virus

Viruses. Rotavirus (causes stomach flu) HIV virus Viruses Rotavirus (causes stomach flu) HIV virus What is a virus? A virus is a microscopic, infectious agent that may infect any type of living cell. Viruses must infect living cells in order to make more

More information

Tree and Shrub Disease

Tree and Shrub Disease n t h r a A n t h r a c n o s e A number of different trees are affected by anthracnose disease. This fungal disease can cause severe leaf blighting and deformation, but in many cases the damage to the

More information

19 2 Viruses Slide 1 of 34

19 2 Viruses Slide 1 of 34 1 of 34 What Is a Virus? What Is a Virus? Viruses are particles of nucleic acid, protein, and in some cases, lipids. Viruses can reproduce only by infecting living cells. 2 of 34 What Is a Virus? Viruses

More information

Update from Israel on the Polyphagous Shot Hole Borer and its Fusarium fungal symbiont

Update from Israel on the Polyphagous Shot Hole Borer and its Fusarium fungal symbiont Update from Israel on the Polyphagous Shot Hole Borer and its Fusarium fungal symbiont Mary Lu Arpaia (Extension Specialist, UC Riverside) and David Obenland (Plant Physiologist, USDA ARS) We recently

More information

Date. Student Name. Prompt: This passage is called Characteristics of Viruses. It is about viruses.

Date. Student Name. Prompt: This passage is called Characteristics of Viruses. It is about viruses. Student Name Characteristics of Viruses--Part I Level High School - Science Date _ Prompt: This passage is called Characteristics of Viruses. It is about viruses. Similarities and Differences Between Viruses

More information

Scouting Horseradish for IPM

Scouting Horseradish for IPM Instructions for Scouting Scouting Horseradish for IPM Always: To prevent the transport of Verticillium or other organisms from field to field, wear disposable plastic boot covers and change them before

More information

bacteria review 1. Which of the following structures is not found in bacteria?

bacteria review 1. Which of the following structures is not found in bacteria? Name: Date: 1. Which of the following structures is not found in bacteria? 5. How do human diseases caused by bacteria and diseases caused by viruses react to antibiotics? A. ribosome B. cytoplasm C. cell

More information

LESSON 1.4 WORKBOOK. Viral sizes and structures. Workbook Lesson 1.4

LESSON 1.4 WORKBOOK. Viral sizes and structures. Workbook Lesson 1.4 Eukaryotes organisms that contain a membrane bound nucleus and organelles. Prokaryotes organisms that lack a nucleus or other membrane-bound organelles. Viruses small, non-cellular (lacking a cell), infectious

More information

Saskatoon fruitinfesting

Saskatoon fruitinfesting Saskatoon fruitinfesting insects Northwest Michigan Orchard & Vineyard Show January 18, 2017 Dr. Duke Elsner, Small Fruit Educator Michigan State University Extension elsner@msu.edu 231-922-4822 Sampling

More information

Infection, Detection, Prevention...

Infection, Detection, Prevention... Infection, Detection, Prevention... A disease is any change that disrupts the normal function of one or more body systems. Non infectious diseases are typically caused by exposure to chemicals or are inherited.

More information

Chapter 19. Viruses. Concept 19.1 A virus consists of a nucleic acid surrounded by a protein coat.

Chapter 19. Viruses. Concept 19.1 A virus consists of a nucleic acid surrounded by a protein coat. Chapter 19 Viruses Lecture Outline Overview: A Borrowed Life Viruses are the simplest biological systems. Most viruses are little more than aggregates of nucleic acids and protein genes in a protein coat.

More information

The Influence of Climate Change on Insect. Director Australian Animal Health Laboratory, Geelong

The Influence of Climate Change on Insect. Director Australian Animal Health Laboratory, Geelong The Influence of Climate Change on Insect Borne Diseases (1) Professor Martyn Jeggo Professor Martyn Jeggo Director Australian Animal Health Laboratory, Geelong The problem the risk of infectious disease

More information

1/29/2013. Viruses and Bacteria. Infectious Disease. Pathogens cause disease by: Chapters 16 and 17

1/29/2013. Viruses and Bacteria. Infectious Disease. Pathogens cause disease by: Chapters 16 and 17 Viruses and Bacteria Chapters 16 and 17 Infectious Disease Caused by the invasion of a host by agents whose activities harm the host s tissues Can be transmitted to others Pathogen microorganisms that

More information

VIRUSES RECORDED IN PORTUGAL IN TOMATO PROTECTED CROPS. J. C. Sequeira Estaçâo Agronómica Nacional INIA 2780 OEIRAS Portugal

VIRUSES RECORDED IN PORTUGAL IN TOMATO PROTECTED CROPS. J. C. Sequeira Estaçâo Agronómica Nacional INIA 2780 OEIRAS Portugal VIRUSES RECORDED IN PORTUGAL IN TOMATO PROTECTED CROPS M. Lourdes V. Borges Estaçâo Agronómica Nacional INIA 2780 OEIRAS Portugal J. C. Sequeira Estaçâo Agronómica Nacional INIA 2780 OEIRAS Portugal Abstract

More information

Viruses 101., and concluded that living organisms do not crystallize. In other words,.

Viruses 101., and concluded that living organisms do not crystallize. In other words,. Viruses 101 In 1897, Dutch scientist called tiny particles in the liquid extracted from a plant disease, which is the Latin word for. In 1935, American biochemist isolated crystals of, and concluded that

More information

Cotton Comments OSU Southwest Oklahoma Research and Extension Center Altus, OK 2018 Current Situation

Cotton Comments OSU Southwest Oklahoma Research and Extension Center Altus, OK 2018 Current Situation Cotton Comments OSU Southwest Oklahoma Research and Extension Center Altus, OK July 26, 2018 Volume 8 No.7 2018 Current Situation The 2018 drought continues with 87.62 percent of the state in drought,

More information

Entomopathogenic Nematodes. Biological control of pests in: Horticulture Ornamentals Turf and Grassland Orchards Small Fruits Mushrooms

Entomopathogenic Nematodes. Biological control of pests in: Horticulture Ornamentals Turf and Grassland Orchards Small Fruits Mushrooms Entomopathogenic Nematodes Biological control of pests in: Horticulture Ornamentals Turf and Grassland Orchards Small Fruits Mushrooms Biology of nematodes Entomopathogenic nematodes occur naturally in

More information

IMMUNE RESPONSE OF PLANTS AND ANIMALS

IMMUNE RESPONSE OF PLANTS AND ANIMALS Immunity is an organisms ability to resist disease IMMUNE RESPONSE OF PLANTS AND ANIMALS Living organisms have evolved many defence mechanisms against disease Plants & animals are under threat of infection

More information

- Determining the Causes - Dr. Diana Cox-Foster Pennsylvania State University

- Determining the Causes - Dr. Diana Cox-Foster Pennsylvania State University Colony Collapse Disorder - Determining the Causes - Dr. Diana Cox-Foster Pennsylvania State University Honey Bees in US Agriculture and the Colony Collapse Disorder Essential for pollination of over 100

More information

Management of Fusarium and other Soil Borne Diseases in Tomatoes and Vegetables

Management of Fusarium and other Soil Borne Diseases in Tomatoes and Vegetables Management of Fusarium and other Soil Borne Diseases in Tomatoes and Vegetables Scott Stoddard, Farm Advisor, UCCE Merced County Pest Management Update Class, Nov. 3, 2015 Soil diseases Phytophthora Pythium

More information

KEY CONCEPT Germs cause many diseases in humans.

KEY CONCEPT Germs cause many diseases in humans. 31.1 40.1 Pathogens Infectious Diseases and Human Illness KEY CONCEPT Germs cause many diseases in humans. 31.1 40.1 Pathogens Infectious Diseases and Human Illness Germ theory states that microorganisms

More information

Environmental and Geographical Variables Associated with TYLCV Epidemics in Southwest Florida. Bill Turechek, USDA-ARS, Fort Pierce, FL

Environmental and Geographical Variables Associated with TYLCV Epidemics in Southwest Florida. Bill Turechek, USDA-ARS, Fort Pierce, FL Environmental and Geographical Variables Associated with TYLCV Epidemics in Southwest Florida Bill Turechek, USDA-ARS, Fort Pierce, FL Project began in summer of 2007 After a meeting w/ grower groups,

More information

Multiple Choice Questions

Multiple Choice Questions Multiple Choice Questions 1. Which one of the following is not a viral disease? (a) Dengue (b) AIDS (c) Typhoid (d) Influenza 2. Which one of the following is not a bacterial disease? (a) Cholera (b) Tuberculosis

More information

Developing a Management Strategy for Little Cherry Disease

Developing a Management Strategy for Little Cherry Disease Developing a Management Strategy for Little Cherry Disease Andrea Bixby-Brosi & Elizabeth Beers: Entomology, Wenatchee, WA Ken Eastwell: Plant pathology, Prosser, WA Karina Gallardo: Economic Sciences,

More information

SECTION 25-1 REVIEW STRUCTURE. 1. The diameter of viruses ranges from about a. 1 to 2 nm. b. 20 to 250 nm. c. 1 to 2 µm. d. 20 to 250 µm.

SECTION 25-1 REVIEW STRUCTURE. 1. The diameter of viruses ranges from about a. 1 to 2 nm. b. 20 to 250 nm. c. 1 to 2 µm. d. 20 to 250 µm. SECTION 25-1 REVIEW STRUCTURE VOCABULARY REVIEW Define the following terms. 1. virus 2. capsid 3. retrovirus 4. viroid 5. prion MULTIPLE CHOICE Write the correct letter in the blank. 1. The diameter of

More information

Job s tears (Coix lacryma-jobi) as host of Fiji disease virus and Perkinsiella vitiensis.

Job s tears (Coix lacryma-jobi) as host of Fiji disease virus and Perkinsiella vitiensis. Job s tears (Coix lacryma-jobi) as host of Fiji disease virus and Perkinsiella vitiensis N. S. Prasad *, B. Croft, S. Johnson and S. Work * Sugar Research Institute of Fiji, Drasa, Lautoka, Republic of

More information

BIOLOGY. Viruses CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick TENTH EDITION

BIOLOGY. Viruses CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick TENTH EDITION CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 19 Viruses Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 19.1 Are the viruses (red) budding from this

More information