Multimedia Systems 2011/2012

Size: px
Start display at page:

Download "Multimedia Systems 2011/2012"

Transcription

1 Multimedia Systems 2011/2012 Perception Prof. Dr. Paul Müller University of Kaiserslautern Department of Computer Science Integrated Communication Systems ICSY

2 Outline Multimedia and Sense Enabling Multimedia Sense of Vision Sense of Hearing Other Senses 2

3 Sitemap 3

4 Perception without Multimedia Systems 4

5 Senses and their Artificial Replacements Vision Audition Olfaction Gustation Vestibular 5

6 Multimedia and Sense Sense of Mode of Sense Display vision hear smell taste balance "5-sense" visual auditory olfactory gustatory vestibular optical acoustic pressure vibration cold warmth pain skin touch tactile haptic position power proprioception kinesthetic 6

7 Perception with Multimedia Systems 7

8 Enabling Multimedia Not all signals of the real environment have to be reproduced. only those signals which cause the same perception in the sense organs as the original signals must be reproduced. Limited resolution of the human sensory system artificial signals only have to be transmitted in a proper resolution. Limitation of intensity Stimuli exceeding a certain limit of intensity cause damage The system of senses is widely modular. For example, text only needs pictures; a speaker needs voice and picture 8

9 Limitations of Sense Organs All human sensory systems have a limited spectrum of perception. Signals beyond this spectrum cannot be perceived or lead to damage of the sense organ. Examples: Audio: sound between 20 and Hertz Visual: electromagnetic waves between 380 and 720 nm Vibration: oscillations between 10 and 500 Hertz The precondition to realize multimedia systems is digitization of the environmental signals 9

10 Example: digitization of sound tone = physical phenomena vibration of material compression spread out around the material approaching the ear = perceiving tone pattern of compression is a wave waves reiterate in regularly intervals = period (T) amplitude = absolute value of the highest intensity 10

11 Example: digitization of sound A A = Amplitude T =period 11

12 Example: digitization of sound periodic tones = sound of wind non-periodic tones = sound of water sound analog signal = infinite number of values continuous curve of tone direct digital representation signal digitization => limited number of values 12

13 Example: digitization of sound steps to digitize: sampling, quantization, encoding measurement of the amplitude per time step = sample capturing of continuous signal in a discrete interval 13

14 Example: digitization of sound (a) time-continuous signal (b) sequence of 256 samples 14

15 Example: digitization of sound inverse value of period = frequency frequency = number of periods per second (Hz) measurement of sampling in Hertz Nyquist-Shannon theorem: A signal with a maximum frequency f max has to be sampled with a minimal frequency of f a =2*f max to allow an accurate reconstruction of the original signal. signal must be sampled twice as often as highest frequency 15

16 Nyquist-Shannon-Theorem maximum frequency f max = 150 Hz sample with minimal frequency of f a =2*150 Hz = 300 Hz Amplitude s 100 Time 16

17 Nyquist-Shannon-Theorem enables correct reconstruction violation of the theorem: Oversampling Disadvantages: no quality gain, more storage space & higher data rates are required Undersampling Signal cannot be reconstructed 17

18 Nyquist-Shannon-Theorem quantization: Example: The voice signal in the telephone system is limited to Hertz. With a sampling rate of 8.000Hz (i.e. one sample each 125µs) and a quantization of 8 bit we get 64 kbit/s: (1/s) x 8 bit = bit/s = 64 kbit/s 18

19 Quantization continuous values into discrete values 19

20 Sense of Vision interior surface of eyeball - approx. 65% - retina photosensitive cells in retina - rods and cones - photoreceptors convert incident light energy into signals signals send via optic nerve to brain middle of the retina = blind spot 20

21 Rods more numerous ( million) - more sensitive than cones responsible for dark-adapted or scotopic vision scotopic vision no color vision light response peak in blue, minimum response in red 21

22 Cones 6-7 million less sensitive to light responsible for high resolution vision color vision - photopic vision blue (~2%) highest sensitive cones located outside blind spot red (~66%) and green (~32 %) sensitive cones mainly located in the blind spot 22

23 Cones blue red and green sensitive cones at about 445nm, 535nm, and 575nm. 23

24 Spectral Sensitivity of Brightness photopic vision = rod + cones vision scotopic vision = rod vision 24

25 Dynamic of See Sense Candela per square meter 25

26 Range of Visibility 26

27 Chromatic Aberration distinct vision = focusing light in blind spot blue light refractive index different from red and green blue = short wavelength red = long wavelength => blue lightly out of focus rays with different wavelengths focused at different positions at the retina 27

28 Chromatic Aberration maximum of energy of the red and blue phosphor of a screen are relatively apart from each other optical depiction error by blue-red contours error is called chromatic aberration amount of chromatic aberration depends on dispersion of glass (or eye) 28

29 Chromatic Aberration 29

30 Chromatic Aberration refraction power of the eye wavelength (nm) color description refraction difference 687 dark red < medium red cannot be reference point --> 589 yellow 0 focused 527 yellow-green simultaneously 486 blue blue-violet <-- 30

31 Red/Green-System: Search for Food Find the fruit faster than your competitor View of a blue/yellow-being. 31

32 Red/Green-System: Search for Food Find the fruit faster than your competitor View of a blue/yellow/red/green-being. 32

33 Invariant of Lighting The light check in the shadow is the same gray as the dark checks outside the shadow. 33

34 Invariant of Lighting 34

35 Knowledge versus Shadow Videoclip Source: Max Planck Institute for Biological Cybernetics 35

36 Artificial Retina 36

37 Sense of Hearing eardrum receives vibrations traveling up the auditory canal and transfers them through the tiny ossicle to oval window eardrum fifteen times larger than oval window of inner ear The tympanic membrane is very thin, about 0.1 mm, but it is resilient and strong. 37

38 Sense of Hearing receptors (hair cells) in a human inner ear inner cells outer hair cells hearing range 20 Hz to Hz number of fibers in auditory nerve detection threshold watts/m 2 Dynamic range 120 db (12 orders of magnitude) 38

39 Human Aural Properties Human ear can detect sounds between ~20Hz and 20kHz: Total audio range: 5Hz - 50kHz 39

40 Hearing Range 40

41 Decibel decibel (db) is a common unit of measurement for the relative loudness of a sound or, in electronics, for the relative difference between two power levels. decibels measure ratio of given intensity I to threshold of hearing intensity I 0, so that this threshold takes the value 0 decibels (0 db). 41

42 Decibel In sound, decibels measure a scale from the threshold of human hearing, 0 db, upward towards the threshold of pain, about db. 42

43 Audio-Frequency Limitations 43

44 Dynamic of Hearing rocket launching 180 wind channel 160 jet take off 140 threshold of pain 150 rifle fire 130 propeller-aircraft take off 120 subway permanent damages Niagara falls 90 damages old vacuum cleaner 80 traffic noise 70 chat between two persons 60 quiet restaurant 50 residential district by night 40 empty cinema 30 sound of leaves in the wind 20 breath 10 threshold of hearing 0 Values in db 44

45 The Physics of Acoustics Sound can be considered in one of two ways: Fourier: in the time domain in the frequency domain transformation is accomplished by a Fourier transform Any waveform can be created by a series of sine waves summed together 45

46 Other Senses Sense of smell e.g. "telesmell", see article in "Spiegel" about smell in movie theaters Electronic Nose Analysis of smells Synthesis of smells 46

47 Other Senses Sense of Touch mechanics of electronic touch devices are neither purely electronic nor simply mechanical, they're both. they translate digital information into physical sensations push on a mouse or a joystick, the device pushes back using magnetic actuators and sensors built into the device technically, this process is called force feedback resistance is only one of the hundreds of sensations like springs, liquids, textures, vibrations... 47

48 Other Senses Sense of taste Sense of balance (e.g. balance board) Vestibulum in the inner ear is sensor for balance, register changes of position in 3D, stimulated by electric signals One can simulate senses, as long as it can be translated into a mathematical equation 48

49 Perception with Multimedia Systems 49

50 Interesting Links (1) MIT encyclopedia of cognitive science Mark Newbold's Animated Necker Cube Perception Artificial Retina Development 50

51 Interesting Links (2) The Human Body's Senses: Hearing Theme Page The Human Body's Senses: Sight Theme Page The Human Body's Senses: Smell Theme Page The Human Body's Senses: Taste Theme Page The Human Body's Senses: Touch Theme Page 51

52 Interesting Links (3) That's Tasty Touching

53 Interesting Links (4) Retina reference Rotating mask and other visual illusions Optical illusions and visual phenomena 53

54 Prof. Dr. Paul Müller Integrated Communication Systems ICSY University of Kaiserslautern Department of Computer Science P.O. Box 3049 D Kaiserslautern Phone: +49(0)

Ganglion Cells Blind Spot Cornea Pupil Visual Area of the Bipolar Cells Thalamus Rods and Cones Lens Visual cortex of the occipital lobe

Ganglion Cells Blind Spot Cornea Pupil Visual Area of the Bipolar Cells Thalamus Rods and Cones Lens Visual cortex of the occipital lobe How We See How We See Cornea Ganglion Cells whose axons form the optic nerve Blind Spot the exit point at the back of the retina Pupil which is controlled by the iris Bipolar Cells Visual Area of the Thalamus

More information

Psychology Chapter 4. Sensation and Perception. Most amazing introduction ever!! Turn to page 77 and prepare to be amazed!

Psychology Chapter 4. Sensation and Perception. Most amazing introduction ever!! Turn to page 77 and prepare to be amazed! Psychology Chapter 4 Sensation and Perception Most amazing introduction ever!! Turn to page 77 and prepare to be amazed! Chapter 4 Section 1 EQ: Distinguish between sensation and perception, and explain

More information

Consciousness and Blindsight

Consciousness and Blindsight Consciousness and Blindsight Blindsight: The ability to respond appropriately to visual inputs while lacking the feeling of having seen them These patients are unable to see, but are able to reach for

More information

Vision and Audition. This section concerns the anatomy of two important sensory systems, the visual and the auditory systems.

Vision and Audition. This section concerns the anatomy of two important sensory systems, the visual and the auditory systems. Vision and Audition Vision and Audition This section concerns the anatomy of two important sensory systems, the visual and the auditory systems. The description of the organization of each begins with

More information

Sensation and Perception. 8.2 The Senses

Sensation and Perception. 8.2 The Senses Sensation and Perception 8.2 The Senses I. Introduction A. You probably think that you have just five senses: vision, hearing, taste, smell, and touch. In addition, people have two more internal senses:

More information

Practice Test Questions

Practice Test Questions Practice Test Questions Multiple Choice 1. Which term is most descriptive of the process of sensation? a. transportation c. selection b. interpretation d. transduction 2. Which terms are most descriptive

More information

Definition Slides. Sensation. Perception. Bottom-up processing. Selective attention. Top-down processing 11/3/2013

Definition Slides. Sensation. Perception. Bottom-up processing. Selective attention. Top-down processing 11/3/2013 Definition Slides Sensation = the process by which our sensory receptors and nervous system receive and represent stimulus energies from our environment. Perception = the process of organizing and interpreting

More information

= add definition here. Definition Slide

= add definition here. Definition Slide = add definition here Definition Slide Definition Slides Sensation = the process by which our sensory receptors and nervous system receive and represent stimulus energies from our environment. Perception

More information

Senses and Sense Organs

Senses and Sense Organs Senses and Sense Organs SENSORY SYSTEMS Human experience is effected by both internal and external stimuli. Humans are able to distinguish among many different types of stimuli by means of a highly developed

More information

Sensation and Perception. Chapter 6

Sensation and Perception. Chapter 6 Sensation and Perception Chapter 6 1 Sensation & Perception How do we construct our representations of the external world? Text To represent the world, we must detect physical energy (a stimulus) from

More information

l3;~~?~~~,'0~'~~t~t:~:~~~~~~~~~~!,1

l3;~~?~~~,'0~'~~t~t:~:~~~~~~~~~~!,1 112 Sensation and Perception Line A should look longer, even though both lines are actually the same length. People who come from noncarpentered cultures that do not use right angles and corners often

More information

A. Acuity B. Adaptation C. Awareness D. Reception E. Overload

A. Acuity B. Adaptation C. Awareness D. Reception E. Overload Unit 4 Review #1 The longer an individual is exposed to a strong odor, the less aware of the odor the individual becomes. This phenomenon is known as sensory A. Acuity B. Adaptation C. Awareness D. Reception

More information

Unit 4: Sensation and Perception

Unit 4: Sensation and Perception Unit 4: Sensation and Perception Sensation a process by which our sensory receptors and nervous system receive and represent stimulus (or physical) energy and encode it as neural signals. Perception a

More information

Hearing. istockphoto/thinkstock

Hearing. istockphoto/thinkstock Hearing istockphoto/thinkstock Audition The sense or act of hearing The Stimulus Input: Sound Waves Sound waves are composed of changes in air pressure unfolding over time. Acoustical transduction: Conversion

More information

Chapter 4: Sensation and Perception The McGraw-Hill Companies, Inc.

Chapter 4: Sensation and Perception The McGraw-Hill Companies, Inc. Chapter 4: Sensation and Perception Sensation and Perception Sensation The process by which our sense organs receive information from the environment Perception The sorting out, interpretation, analysis,

More information

SUBJECT: Physics TEACHER: Mr. S. Campbell DATE: 15/1/2017 GRADE: DURATION: 1 wk GENERAL TOPIC: The Physics Of Hearing

SUBJECT: Physics TEACHER: Mr. S. Campbell DATE: 15/1/2017 GRADE: DURATION: 1 wk GENERAL TOPIC: The Physics Of Hearing SUBJECT: Physics TEACHER: Mr. S. Campbell DATE: 15/1/2017 GRADE: 12-13 DURATION: 1 wk GENERAL TOPIC: The Physics Of Hearing The Physics Of Hearing On completion of this section, you should be able to:

More information

Sensation and Perception

Sensation and Perception Sensation and Perception Sensation & Perception The interplay between the external world, physiological systems, and psychological experience How the external world makes impressions on our nervous system

More information

Sound Waves. Sensation and Perception. Sound Waves. Sound Waves. Sound Waves

Sound Waves. Sensation and Perception. Sound Waves. Sound Waves. Sound Waves Sensation and Perception Part 3 - Hearing Sound comes from pressure waves in a medium (e.g., solid, liquid, gas). Although we usually hear sounds in air, as long as the medium is there to transmit the

More information

Sensation and Perception

Sensation and Perception Sensation and Perception Sensation & Perception The interplay between the external world, physiological systems, and psychological experience How the external world makes impressions on our nervous system

More information

SENSATION & PERCEPTION

SENSATION & PERCEPTION SENSATION & PERCEPTION Sensation and perception result from a symphony of sensory receptors and the neurons those receptors communicate with. The receptors and neurons fire in different combinations and

More information

Sensation and Perception. A. Sensation: awareness of simple characteristics B. Perception: making complex interpretations

Sensation and Perception. A. Sensation: awareness of simple characteristics B. Perception: making complex interpretations I. Overview Sensation and Perception A. Sensation: awareness of simple characteristics B. Perception: making complex interpretations C. Top-Down vs Bottom-up Processing D. Psychophysics -- thresholds 1.

More information

Linguistic Phonetics Fall 2005

Linguistic Phonetics Fall 2005 MIT OpenCourseWare http://ocw.mit.edu 24.963 Linguistic Phonetics Fall 2005 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 24.963 Linguistic Phonetics

More information

Presentation On SENSATION. Prof- Mrs.Kuldeep Kaur

Presentation On SENSATION. Prof- Mrs.Kuldeep Kaur Presentation On SENSATION Prof- Mrs.Kuldeep Kaur INTRODUCTION:- Sensation is a specialty area within Psychology that works at understanding how are senses work and how we perceive stimuli in the environment.

More information

Dikran J. Martin. Psychology 110. Name: Date: Making Contact with the World around Us. Principal Features

Dikran J. Martin. Psychology 110. Name: Date: Making Contact with the World around Us. Principal Features Dikran J. Martin Psychology 110 Name: Date: Lecture Series: Chapter 3 Sensation and Perception: Pages: 31 Making Contact with the World around Us TEXT: Baron, Robert A. (2001). Psychology (Fifth Edition).

More information

Ch. 9 Sensory Systems. Steps of sensation and perception

Ch. 9 Sensory Systems. Steps of sensation and perception Ch. 9 Sensory Systems Sensation = information about environmental conditions (inside or outside of the body) is detected and sent to CNS Vs. perception = consciously aware of sensation (only ~1% of sensations

More information

Intro to Audition & Hearing

Intro to Audition & Hearing Intro to Audition & Hearing Lecture 16 Chapter 9, part II Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Fall 2017 1 Sine wave: one of the simplest kinds of sounds: sound for which pressure

More information

Biology. Slide 1 of 49. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 49. End Show. Copyright Pearson Prentice Hall Biology 1 of 49 2 of 49 Sensory Receptors Neurons that react directly to stimuli from the environment are called sensory receptors. Sensory receptors react to stimuli by sending impulses to other neurons

More information

Sound and its characteristics. The decibel scale. Structure and function of the ear. Békésy s theory. Molecular basis of hair cell function.

Sound and its characteristics. The decibel scale. Structure and function of the ear. Békésy s theory. Molecular basis of hair cell function. Hearing Sound and its characteristics. The decibel scale. Structure and function of the ear. Békésy s theory. Molecular basis of hair cell function. 19/11/2014 Sound A type of longitudinal mass wave that

More information

Discrete Signal Processing

Discrete Signal Processing 1 Discrete Signal Processing C.M. Liu Perceptual Lab, College of Computer Science National Chiao-Tung University http://www.cs.nctu.edu.tw/~cmliu/courses/dsp/ ( Office: EC538 (03)5731877 cmliu@cs.nctu.edu.tw

More information

-Detect heat or cold and help maintain body temperature

-Detect heat or cold and help maintain body temperature Sensory Receptors -Transduce stimulus energy and transmit signals to the central nervous system -Reception occurs when a receptor detectd a stimulus -Perception occurs in the brain as this information

More information

Linguistic Phonetics. Basic Audition. Diagram of the inner ear removed due to copyright restrictions.

Linguistic Phonetics. Basic Audition. Diagram of the inner ear removed due to copyright restrictions. 24.963 Linguistic Phonetics Basic Audition Diagram of the inner ear removed due to copyright restrictions. 1 Reading: Keating 1985 24.963 also read Flemming 2001 Assignment 1 - basic acoustics. Due 9/22.

More information

Introduction to Physiological Psychology

Introduction to Physiological Psychology Introduction to Physiological Psychology Vision ksweeney@cogsci.ucsd.edu cogsci.ucsd.edu/~ksweeney/psy260.html This class n Sensation vs. Perception n How light is translated into what we see n Structure

More information

Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction

Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction Sarah L. Chollar University of California, Riverside sarah.chollar@gmail.com Sensory Systems How the brain allows us to see, hear,

More information

Outline. The ear and perception of sound (Psychoacoustics) A.1 Outer Ear Amplifies Sound. Introduction

Outline. The ear and perception of sound (Psychoacoustics) A.1 Outer Ear Amplifies Sound. Introduction The ear and perception of sound (Psychoacoustics) 1 Outline A. Structure of the Ear B. Perception of Pitch C. Perception of Loudness D. Timbre (quality of sound) E. References Updated 01Aug0 Introduction

More information

Answer: B difficulty: 2 conceptual Goal 3: Critical Thinking Skills in Psychology

Answer: B difficulty: 2 conceptual Goal 3: Critical Thinking Skills in Psychology Chapter Test 1. The concepts of sensation and perception are different because a. perception is something that happens to your sense organs and neurons; sensation is something that happens to you b. sensation

More information

17.4 Sound and Hearing

17.4 Sound and Hearing You can identify sounds without seeing them because sound waves carry information to your ears. People who work in places where sound is very loud need to protect their hearing. Properties of Sound Waves

More information

The Basic Senses and What They Detect. Energy senses Vision (electromagnetic energy light waves)

The Basic Senses and What They Detect. Energy senses Vision (electromagnetic energy light waves) The Basic Senses and What They Detect Energy senses Vision (electromagnetic energy light waves) LP 4B Color Perception 1 Hearing (sound waves) LP 4B Color Perception 2 Chemical senses Smell (airborne chemical

More information

The lowest level of stimulation that a person can detect. absolute threshold. Adapting one's current understandings to incorporate new information.

The lowest level of stimulation that a person can detect. absolute threshold. Adapting one's current understandings to incorporate new information. absolute threshold The lowest level of stimulation that a person can detect accommodation Adapting one's current understandings to incorporate new information. acuity Sharp perception or vision audition

More information

4. Which letter in figure 9.1 points to the fovea centralis? Ans: b

4. Which letter in figure 9.1 points to the fovea centralis? Ans: b Chapter 9: The Sensory System 1. Proprioceptors are involved in the sense of A) pain. B) temperature. C) pressure. D) movement of limbs. 2. Which are chemoreceptors? A) taste B) olfactory C) proprioceptors

More information

! Can hear whistle? ! Where are we on course map? ! What we did in lab last week. ! Psychoacoustics

! Can hear whistle? ! Where are we on course map? ! What we did in lab last week. ! Psychoacoustics 2/14/18 Can hear whistle? Lecture 5 Psychoacoustics Based on slides 2009--2018 DeHon, Koditschek Additional Material 2014 Farmer 1 2 There are sounds we cannot hear Depends on frequency Where are we on

More information

is the clear, transparent part at the front of the eye. It allows light to enter the eye and it also refracts (focuses) the light onto the retina.

is the clear, transparent part at the front of the eye. It allows light to enter the eye and it also refracts (focuses) the light onto the retina. Senses- Vision Light is a small part (1/70th) of the total electromagnetic (EM) spectrum. The EM band extends from radio waves at one extreme to x-rays at the other. The eye detects light and converts

More information

Sound and Hearing. Decibels. Frequency Coding & Localization 1. Everything is vibration. The universe is made of waves.

Sound and Hearing. Decibels. Frequency Coding & Localization 1. Everything is vibration. The universe is made of waves. Frequency Coding & Localization 1 Sound and Hearing Everything is vibration The universe is made of waves db = 2log(P1/Po) P1 = amplitude of the sound wave Po = reference pressure =.2 dynes/cm 2 Decibels

More information

TASTE: Taste buds are the sense organs that respond to gustatory stimuli. Chemoreceptors that respond to chemicals broken down from food in the saliva

TASTE: Taste buds are the sense organs that respond to gustatory stimuli. Chemoreceptors that respond to chemicals broken down from food in the saliva UNIT 5: Nervous System- Senses Somatic Senses Somatic senses are associated with receptors in the skin, muscles, joints, and viscera (organs of the body) Include senses of touch, pressure, temperature,

More information

Senses Other Than Vision. Hearing (Audition) Transmission of Vibrations

Senses Other Than Vision. Hearing (Audition) Transmission of Vibrations Senses Other Than Vision Hearing The Kinesthetic Senses Touch The Chemical Senses Hearing (Audition) Sound begins as pressure waves in a medium (usually air). The frequency of the pressure waves corresponds

More information

Chapter 3. Sounds, Signals, and Studio Acoustics

Chapter 3. Sounds, Signals, and Studio Acoustics Chapter 3 Sounds, Signals, and Studio Acoustics Sound Waves Compression/Rarefaction: speaker cone Sound travels 1130 feet per second Sound waves hit receiver Sound waves tend to spread out as they travel

More information

Hearing Sound. The Human Auditory System. The Outer Ear. Music 170: The Ear

Hearing Sound. The Human Auditory System. The Outer Ear. Music 170: The Ear Hearing Sound Music 170: The Ear Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) November 17, 2016 Sound interpretation in the auditory system is done by

More information

Music 170: The Ear. Tamara Smyth, Department of Music, University of California, San Diego (UCSD) November 17, 2016

Music 170: The Ear. Tamara Smyth, Department of Music, University of California, San Diego (UCSD) November 17, 2016 Music 170: The Ear Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) November 17, 2016 1 Hearing Sound Sound interpretation in the auditory system is done by

More information

The Perceptual Experience

The Perceptual Experience Dikran J. Martin Introduction to Psychology Name: Date: Lecture Series: Chapter 5 Sensation and Perception Pages: 35 TEXT: Lefton, Lester A. and Brannon, Linda (2003). PSYCHOLOGY. (Eighth Edition.) Needham

More information

Topics in Linguistic Theory: Laboratory Phonology Spring 2007

Topics in Linguistic Theory: Laboratory Phonology Spring 2007 MIT OpenCourseWare http://ocw.mit.edu 24.91 Topics in Linguistic Theory: Laboratory Phonology Spring 27 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Chapter 5 Test Review. Try the practice questions in the Study Guide and on line

Chapter 5 Test Review. Try the practice questions in the Study Guide and on line Chapter 5 Test Review Try the practice questions in the Study Guide and on line Printing game plan Put six slides on a page Select pure black and white as the printing option Okay, now wade into the answers>>>>

More information

Sensing and Perceiving Our World

Sensing and Perceiving Our World PSYCHOLOGY: Perspectives & Connections 2 nd Edition GREGORY J. FEIST ERIKA L. ROSENBERG Sensing and Perceiving Our World Chapter Four Chapter Preview The Long Strange Trip From Sensation to Perception

More information

Systems Neuroscience Oct. 16, Auditory system. http:

Systems Neuroscience Oct. 16, Auditory system. http: Systems Neuroscience Oct. 16, 2018 Auditory system http: www.ini.unizh.ch/~kiper/system_neurosci.html The physics of sound Measuring sound intensity We are sensitive to an enormous range of intensities,

More information

The Sense Organs 10/13/2016. The Human Eye. 1. Sclera 2. Choroid 3. Retina. The eye is made up of three layers:

The Sense Organs 10/13/2016. The Human Eye. 1. Sclera 2. Choroid 3. Retina. The eye is made up of three layers: The human body gathers information from the outside world by using the five senses of: The Sense Organs 12.3 Sight Hearing Taste Smell Touch This information is essential in helping the body maintain homeostasis.

More information

Copyright 2009 Pearson Education, Inc.

Copyright 2009 Pearson Education, Inc. Outline Nervous System Sensory Systems I. II. III. IV. V. VI. Biol 105 Lecture 11 Chapter 9 Senses Sensory receptors Touch Vision Hearing and balance Smell Senses Sensory receptor cells Sensory receptors

More information

Senses- Ch. 12. Pain receptors- respond to tissue damage in all tissues except in the brain

Senses- Ch. 12. Pain receptors- respond to tissue damage in all tissues except in the brain Senses- Ch. 12 5 general types of sensory neurons or receptors are known. These specialized neurons detect stimuli from the eyes, ears, nose, mouth, and skin. The stimuli are changed into electrical signals

More information

7. Sharp perception or vision 8. The process of transferring genetic material from one cell to another by a plasmid or bacteriophage

7. Sharp perception or vision 8. The process of transferring genetic material from one cell to another by a plasmid or bacteriophage 1. A particular shade of a given color 2. How many wave peaks pass a certain point per given time 3. Process in which the sense organs' receptor cells are stimulated and relay initial information to higher

More information

Hearing. and other senses

Hearing. and other senses Hearing and other senses Sound Sound: sensed variations in air pressure Frequency: number of peaks that pass a point per second (Hz) Pitch 2 Some Sound and Hearing Links Useful (and moderately entertaining)

More information

Stimulus any aspect of or change in the environment to which an organism responds. Sensation what occurs when a stimulus activates a receptor

Stimulus any aspect of or change in the environment to which an organism responds. Sensation what occurs when a stimulus activates a receptor Chapter 8 Sensation and Perception Sec 1: Sensation Stimulus any aspect of or change in the environment to which an organism responds Sensation what occurs when a stimulus activates a receptor Perception

More information

Chapter 11: Sound, The Auditory System, and Pitch Perception

Chapter 11: Sound, The Auditory System, and Pitch Perception Chapter 11: Sound, The Auditory System, and Pitch Perception Overview of Questions What is it that makes sounds high pitched or low pitched? How do sound vibrations inside the ear lead to the perception

More information

Sound. Audition. Physics of Sound. Properties of sound. Perception of sound works the same way as light.

Sound. Audition. Physics of Sound. Properties of sound. Perception of sound works the same way as light. Sound Audition Perception of sound works the same way as light. Have receptors to convert a physical stimulus to action potentials Action potentials are organized in brain structures You apply some meaning

More information

Audition. Sound. Physics of Sound. Perception of sound works the same way as light.

Audition. Sound. Physics of Sound. Perception of sound works the same way as light. Audition Sound Perception of sound works the same way as light. Have receptors to convert a physical stimulus to action potentials Action potentials are organized in brain structures You apply some meaning

More information

Guess: Correct or Incorrect. Trial (perform in random order)

Guess: Correct or Incorrect. Trial (perform in random order) AP Biology Senses Lab Names Per. Our senses are constantly bombarded with various stimuli from the environment, which are relayed to the central nervous system where the information is interpreted. In

More information

Our Senses & the World CHAPTER 4. Sensations & Senses. Characteristics (continued) Characteristics (continued) Characteristics of All Senses

Our Senses & the World CHAPTER 4. Sensations & Senses. Characteristics (continued) Characteristics (continued) Characteristics of All Senses CHAPTER 4 Sensations & Senses Our Senses & the World Characteristics of All Senses RECEPTION: Accessory Structures-modify the energy created by something in the person s environment Characteristics TRANSDUCTION:

More information

Chapter 18. The Senses SENSORY RECEPTION. Introduction: Superhuman Senses. Introduction: Superhuman Senses

Chapter 18. The Senses SENSORY RECEPTION. Introduction: Superhuman Senses. Introduction: Superhuman Senses Introduction: Superhuman Senses Chapter 18 The Senses! Three senses found in some animals but not humans Echolocation locating objects by detecting echoes of emitted sound waves Electroreception ability

More information

Chapter 13 Physics of the Ear and Hearing

Chapter 13 Physics of the Ear and Hearing Hearing 100 times greater dynamic range than vision Wide frequency range (20 ~ 20,000 Hz) Sense of hearing Mechanical system that stimulates the hair cells in the cochlea Sensors that produce action potentials

More information

SPECIAL SENSES PART I: OLFACTION & GUSTATION

SPECIAL SENSES PART I: OLFACTION & GUSTATION SPECIAL SENSES PART I: OLFACTION & GUSTATION 5 Special Senses Olfaction Gustation Vision Equilibrium Hearing Olfactory Nerves Extend through cribriform plate into nasal cavity on both sides of nasal septum

More information

Organs of the Nervous System: brain, spinal cord, and nerves

Organs of the Nervous System: brain, spinal cord, and nerves Nervous System The Nervous System functions as a control center and coordinates all actions and reactions, sending immediate and specific information as electrical impulses. Organs of the Nervous System:

More information

Taste buds Gustatory cells extend taste hairs through a narrow taste pore

Taste buds Gustatory cells extend taste hairs through a narrow taste pore The Special Senses Objectives Describe the sensory organs of smell, and olfaction. Identify the accessory and internal structures of the eye, and explain their function. Explain how light stimulates the

More information

Hearing. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 14. Hearing. Hearing

Hearing. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 14. Hearing. Hearing PSYCHOLOGY (8th Edition, in Modules) David Myers PowerPoint Slides Aneeq Ahmad Henderson State University Worth Publishers, 2007 1 Hearing Module 14 2 Hearing Hearing The Stimulus Input: Sound Waves The

More information

Hearing. Figure 1. The human ear (from Kessel and Kardon, 1979)

Hearing. Figure 1. The human ear (from Kessel and Kardon, 1979) Hearing The nervous system s cognitive response to sound stimuli is known as psychoacoustics: it is partly acoustics and partly psychology. Hearing is a feature resulting from our physiology that we tend

More information

the human 1 of 3 Lecture 6 chapter 1 Remember to start on your paper prototyping

the human 1 of 3 Lecture 6 chapter 1 Remember to start on your paper prototyping Lecture 6 chapter 1 the human 1 of 3 Remember to start on your paper prototyping Use the Tutorials Bring coloured pencil, felts etc Scissor, cello tape, glue Imagination Lecture 6 the human 1 1 Lecture

More information

IV: Visual Organization and Interpretation

IV: Visual Organization and Interpretation Module 19 IV: Visual Organization and Interpretation Describe Gestalt psychologists understanding of perceptual organization, and explain how figure-ground and grouping principles contribute to our perceptions

More information

Essential questions. What are the structures of the sensory system? 3.03 Remember the structures of the sensory system 2

Essential questions. What are the structures of the sensory system? 3.03 Remember the structures of the sensory system 2 Essential questions What are the structures of the sensory system? 3.03 Remember the structures of the sensory system 2 The Senses Eyes Sight Ears Hearing Nose Smell Tongue Taste Skin Touch 3.03 Remember

More information

How Do Our Ears Work? Quiz

How Do Our Ears Work? Quiz The Marvelous Ear How Do Our Ears Work? Quiz 1. How do humans hear sounds? 2. How does human hearing work? Sketch and label the system. 3. Do you know any sensors that detect sound and how they might do

More information

LAB: SENSE AND SENSIBILITY TESTING YOUR SENSORY ORGANS

LAB: SENSE AND SENSIBILITY TESTING YOUR SENSORY ORGANS LAB: SENSE AND SENSIBILITY TESTING YOUR SENSORY ORGANS INTRODUCTION Have you ever wondered why many doctors wear pale green or blue scrub suits in the operating room? These colors are often chosen because

More information

Unit 4 Practice. PSYCHOLOGY SECTION I Time-- Minutes Questions, Unit 4 Practice/Quiz

Unit 4 Practice. PSYCHOLOGY SECTION I Time-- Minutes Questions, Unit 4 Practice/Quiz PSYCHOLOGY SECTION I Time-- Minutes Questions, Unit 4 Practice/Quiz Unit 4 Practice Directions: Each of the questions or incomplete statements below is followed by five suggested answers or completions.

More information

THE MECHANICS OF HEARING

THE MECHANICS OF HEARING CONTENTS The mechanics of hearing Hearing loss and the Noise at Work Regulations Loudness and the A weighting network Octave band analysis Hearing protection calculations Worked examples and self assessed

More information

Outline. 4. The Ear and the Perception of Sound (Psychoacoustics) A.1 Outer Ear Amplifies Sound. Introduction

Outline. 4. The Ear and the Perception of Sound (Psychoacoustics) A.1 Outer Ear Amplifies Sound. Introduction 4. The Ear and the Perception of Sound (Psychoacoustics) 1 Outline A. Structure of the Ear B. Perception of Loudness C. Perception of Pitch D. References Updated May 13, 01 Introduction 3 A. The Structure

More information

9.3 Sound. The frequency of sound. pitch - the perception of high or low that you hear at different frequencies of sound.

9.3 Sound. The frequency of sound. pitch - the perception of high or low that you hear at different frequencies of sound. 9.3 Sound Like other waves, sound has frequency, wavelength, amplitude, and speed. Because sound is part of your daily experience, you already know its properties but by different names. You may never

More information

Auditory Physiology PSY 310 Greg Francis. Lecture 29. Hearing

Auditory Physiology PSY 310 Greg Francis. Lecture 29. Hearing Auditory Physiology PSY 310 Greg Francis Lecture 29 A dangerous device. Hearing The sound stimulus is changes in pressure The simplest sounds vary in: Frequency: Hertz, cycles per second. How fast the

More information

PSY 310: Sensory and Perceptual Processes 1

PSY 310: Sensory and Perceptual Processes 1 Auditory Physiology PSY 310 Greg Francis Lecture 29 A dangerous device. Hearing The sound stimulus is changes in pressure The simplest sounds vary in: Frequency: Hertz, cycles per second. How fast the

More information

Chapter 1: Introduction to digital audio

Chapter 1: Introduction to digital audio Chapter 1: Introduction to digital audio Applications: audio players (e.g. MP3), DVD-audio, digital audio broadcast, music synthesizer, digital amplifier and equalizer, 3D sound synthesis 1 Properties

More information

Sensory Physiology. Sensory Range Varies. Introduction to the Special Senses. How do we sense the world around us?

Sensory Physiology. Sensory Range Varies. Introduction to the Special Senses. How do we sense the world around us? Sensory Physiology How do we sense the world around us? We do not see things as they are; we see things as we are. --Anais Nin Anais Nin, French author 1903-1977 Sensory Range Varies Introduction to the

More information

9.3 Sound The frequency of sound Frequency and pitch pitch Most sound has more than one frequency The frequency spectrum

9.3 Sound The frequency of sound Frequency and pitch pitch Most sound has more than one frequency The frequency spectrum 9.3 Sound Like other waves, sound has frequency, wavelength, amplitude, and speed. Because sound is part of your daily experience, you already know its properties but by different names. You may never

More information

Sensation Outline Chapter 5, Psychology, David G Meyers, 7 th Edition

Sensation Outline Chapter 5, Psychology, David G Meyers, 7 th Edition Sensation Outline Chapter 5, Psychology, David G Meyers, 7 th Edition Sensation the process by which our sensory receptors and nervous system receive and represent stimulus energies from our environment

More information

Chapter 29 The Senses

Chapter 29 The Senses Chapter 29 The Senses PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education, Inc. Lecture by Edward J. Zalisko

More information

Myers Psychology for AP*

Myers Psychology for AP* Myers Psychology for AP* David G. Myers PowerPoint Presentation Slides by Kent Korek Germantown High School Worth Publishers, 2010 *AP is a trademark registered and/or owned by the College Board, which

More information

2 Sensing the Environment

2 Sensing the Environment CHAPTER 17 2 Sensing the Environment SECTION Communication and Control California Science Standards 7.5.a, 7.5.b, 7.5.g, 7.6.b BEFORE YOU READ After you read this section, you should be able to answer

More information

Sense Organs. Chapter 38

Sense Organs. Chapter 38 Sense Organs Chapter 38 Chemical Senses Chemoreceptors are the receptors responsible for smell and taste. Because all members of the animal kingdom have developed a sense of taste and/or smell, chemoreceptors

More information

Mr. Silimperi Council Rock High School South Chapter 5 Sensation Sensation II

Mr. Silimperi Council Rock High School South Chapter 5 Sensation Sensation II Mr. Silimperi Council Rock High School South AP Psychology Name: Date: Chapter 5 Sensation Sensation II Psychophysics study of the relationship between physical characteristics of stimuli and our psychological

More information

Special Senses. Mechanoreception Electroreception Chemoreception Others

Special Senses. Mechanoreception Electroreception Chemoreception Others Special Senses Mechanoreception Electroreception Chemoreception Others Recall our receptor types Chemically regulated: Respond to particular chemicals Voltage regulated: respond to changing membrane potential

More information

The olfactory epithelium is located at the roof of the nasal cavity. Nasal conchae cause turbulance of incoming air

The olfactory epithelium is located at the roof of the nasal cavity. Nasal conchae cause turbulance of incoming air Special Senses I. Olfaction II. Gustation A. Anatomy and general info The olfactory epithelium is located at the roof of the nasal cavity Nasal conchae cause turbulance of incoming air Olfactory glands

More information

Receptors / physiology

Receptors / physiology Hearing: physiology Receptors / physiology Energy transduction First goal of a sensory/perceptual system? Transduce environmental energy into neural energy (or energy that can be interpreted by perceptual

More information

Laboratory Exercise in Sensory Physiology Student Lab Manual

Laboratory Exercise in Sensory Physiology Student Lab Manual Laboratory Exercise in Sensory Physiology Student Lab Manual Introduction Sensory organs allow us to perceive our environment by converting energy sources in the environment, like light or sound, to nerve

More information

Chapter 18 Senses SENSORY RECEPTION 10/21/2011. Sensory Receptors and Sensations. Sensory Receptors and Sensations. Sensory Receptors and Sensations

Chapter 18 Senses SENSORY RECEPTION 10/21/2011. Sensory Receptors and Sensations. Sensory Receptors and Sensations. Sensory Receptors and Sensations SENSORY RECEPTION Chapter 18 Senses s convert stimulus energy to action potentials s 1. Are specialized cells, or 2. Specialized endings that detect stimuli All stimuli are forms of energy s in eyes detect

More information

Sound Waves. Sound waves can only travel through matter. The energy carried by a sound wave is transferred by the collisions between the

Sound Waves. Sound waves can only travel through matter. The energy carried by a sound wave is transferred by the collisions between the Sound Waves Making Sound Waves How does the motion of a drummer s drumsticks produce sound waves? The impact of the sticks on the head of a drum causes the drum head to vibrate. These vibrations transfer

More information

Sound Workshop. What is sound Longitudinal Waves Frequency and pitch Hearing ranges Sounds in solids, liquids and gases Sound in a vacuum

Sound Workshop. What is sound Longitudinal Waves Frequency and pitch Hearing ranges Sounds in solids, liquids and gases Sound in a vacuum Sound Workshop a. b. c. d. e. f. g. h. i. j. k. l. What is sound Longitudinal Waves Frequency and pitch Hearing ranges Sounds in solids, liquids and gases Sound in a vacuum Echoes Ultrasound Loudspeakers

More information

College of Medicine Dept. of Medical physics Physics of ear and hearing /CH

College of Medicine Dept. of Medical physics Physics of ear and hearing /CH College of Medicine Dept. of Medical physics Physics of ear and hearing /CH 13 2017-2018 ***************************************************************** o Introduction : The ear is the organ that detects

More information

Physiology Unit 2 SENSORY PHYSIOLOGY

Physiology Unit 2 SENSORY PHYSIOLOGY Physiology Unit 2 SENSORY PHYSIOLOGY In Physiology Today Sensory System Sensory information Conscious sensations Unconscious sensations Sensory processing Transferring stimulus energy into a graded potential

More information

The white of the eye and the part that maintains its shape is know n as the:

The white of the eye and the part that maintains its shape is know n as the: Scrub In The white of the eye and the part that maintains its shape is know n as the: a. Cornea b. Pupil c. Retina d. Sclera The structure that is found in the ear and contains the organ of hearing is

More information