CLINICAL SCIENCES. The Microperimetry of Resolved Cotton-Wool Spots in Eyes of Patients With Hypertension and Diabetes Mellitus

Size: px
Start display at page:

Download "CLINICAL SCIENCES. The Microperimetry of Resolved Cotton-Wool Spots in Eyes of Patients With Hypertension and Diabetes Mellitus"

Transcription

1 CLINICAL SCIENCES The Microperimetry of Resolved Cotton-Wool Spots in Eyes of Patients With Hypertension and Diabetes Mellitus Jae Suk Kim, MD; Anjali S. Maheshwary, MD; Dirk-Uwe G. Bartsch, PhD; Lingyun Cheng, MD; Maria Laura Gomez, MD; Kathrin Hartmann, MD; William R. Freeman, MD Background: Retinal cotton-wool spots (CWSs) are an important manifestation of retinovascular disease in hypertension (HTN) and diabetes mellitus (DM). Conventional automated perimetry data have suggested relative scotomas in resolved CWSs; however, this has not been well delineated using microperimetry. This study evaluates the retinal sensitivity in documented resolved CWSs using microperimetry. Methods: Retinal CWSs that resolved after 10 to 119 months (median, 51 months) and normal control areas were photographed to document baseline lesions. Eyetracking, image-stabilized microperimetry with simultaneous scanning laser ophthalmoscopy was performed over resolved CWSs, adjacent uninvolved areas near the lesion, and in location-matched normal patients (age-matched). Results: A total of eyes in patients with DM or HTN (34 resolved CWSs) and normal control eyes (34 areas) were imaged. The mean (SD) sensitivity of resolved CWSs in the eyes of patients with HTN and DM was (3.88) db and 7.21 (5.48) db, respectively. For adjacent control areas in the eyes of patients with HTN and DM, the mean (SD) sensitivity was.00 (2.89) db and (3.45) db, respectively. Retinal sensitivity was significantly lower in areas of resolved CWSs than in the surrounding controls for patients with HTN (P=.01) and those with DM (P.001). Scotomas in patients with DM were denser than those of patients with HTN (P.05). Conclusions: Cotton-wool spots in patients with DM and HTN leave permanent relative scotomas detected by microperimetry. Scotomas are denser in eyes of patients with DM than in those with HTN. In addition, among patients with DM, adjacent retinas not involved with CWSs have lower retinal sensitivity than in age-matched controls. Arch Ophthalmol. 2011;129(7): Author Affiliations: Departments of Ophthalmology, Jacobs Retina Center at Shiley Eye Center, University of California, San Diego, La Jolla (Drs Kim, Maheshwary, Bartsch, Cheng, Gomez, Hartmann, and Freeman), and Sanggye Paik Hospital, Inje University, Seoul, South Korea (Dr Kim). THE COTTON-WOOL SPOT (CWS) is a commonly encountered retinal lesion. These yellowish white areas are associated with multiple disease processes but are most commonly found in patients with diabetes mellitus (DM) and hypertension (HTN). 1-3 Although controversial, the CWS has been shown to be a localized accumulation of axoplasmic debris found in the retinal nerve fiber layer. This debris results from interruptions of organelle transport in ganglion cell axons. There are many factors that can cause focal interruption of axonal flow; however, clinically the commonest cause is ischemia. An alternative theory suggests that CWSs are merely sentinels of retinal nerve fiber layer disease. 4,5 Clinically, CWSs disappear in 4 to 12 weeks and for the most part are asymptomatic. However, there have been reports that describe the development of scotomas at the site of these resolved CWSs as well as studies that suggest that signal transmission failures occur in the ganglion cell axons that pass through these regions. 6,7 Previously, our group has shown that an acute CWS on time-domain and spectral-domain optical coherence tomography (OCT) is hyperreflective in the inner retina with a dramatically increased average decibel reflectivity As the lesions resolve, a slightly hyperreflective nodular area can be identified at the sites of the lesions for up to 3 months from the time they were identified. With time, the reflectivity of the inner retina in the area of the CWS become closer to normal. 9,10 The CWS-induced destruction of the nerve fiber layer leads to a small focal defect in the area of the CWS as well as damages the axons of the more peripheral ganglion cells. This can result in an additional, more diffuse defect in retinal sensitivity

2 Figure 1. The custom 9-4 pattern that we used to test cotton-wool spots is illustrated. The lesion is placed at the center. All points are Goldman III size, the duration is 150 milliseconds, and a stepladder intensity change (4-2 strategy) is used. The 4 peripheral test spots are 950 µm from the center and are used as control areas. Microperimetry has become a common way to measure macular function and assess the natural history and treatment outcome in macular disease. Microperimetry incorporates an eye tracker, allows automated follow-up examination at the same retinal loci, and is combined with a color fundus camera for image registration. It has become an important tool in gathering data about retinal function in patients with a variety of diseases. 11 Our purpose in this study was to evaluate retinal sensitivity using microperimetry after documented CWS regression in patients with HTN or DM. Since it has been shown that permanent structural changes can be imaged with OCT after resolution of these lesions, it seems logical that retinal function, as might be measured by microperimetric sensitivity, may be abnormal as well. Detection of retinal damage from these lesions may allow understanding of why patients with a seemingly normal fundus examination have persistent scotomas and decreased acuity in 2 commonly encountered diseases. METHODS This study evaluated 12 patients identified as having CWSs from 1999 through Six of the patients had HTN, and 6 of the patients had DM. One of the patients had both HTN and DM, but fluorescein angiography changes were predominantly diabetic; thus, this patient was classified as having a diabetic CWS. None of these patients had other concurrent ocular disease that could affect vision. The mean (SD) hemoglobin level of our patients was (1.78) g/dl (124.4 [17.8] g/l). There was no history of sleep apnea in any patient. We also recruited 9 patients ( eyes) who were used as matched normal patients without retinal disease or systemic HTN or DM. Overall, 34 lesions and the surrounding retinas were evaluated with the microperimeter. Microperimetry testing provides a subjective measure of a patient s visual function in a relatively small area of their retina (10-20 ). With the use of the Spectral OCT scanning laser ophthalmoscope (SLO) combination imaging system (OPKO Instrumentation, Miami, Florida), providing confocal fundus images for alignment, orientation, and registration, the map produced by this testing modality allows the operator to know precisely what fundus location is being stimulated. 880

3 During a microperimetry test, a patient is shown visual stimuli at specific light intensities at specific locations on his or her retina. The patient uses a handheld button/clicker to notify the system if the stimulus is seen. That feedback (or lack thereof) determines the next intensity of the subsequent stimulus. This process is repeated for all of the stimuli in a predetermined pattern and predetermined area. At the end of the test the operator is given a fundus image with the stimulus pattern overlaid showing the dimmest intensity at which each stimulus was seen by the patient. The intensity level of the stimulus is displayed in decibels. We designed a custom pattern of 13 test points, which we term the 9-4 pattern (Figure 1). This was designed to have symmetrical group of 9 test spots to be used in the area of resolved CWSs surrounded by 4 adjoining points that were 950 µm from the center of grid, which we used as controls for uninvolved retina. We chose a Goldmann III spot size with at starting stimulus of 10 db and 150 milliseconds duration. These parameters allowed for detection of the lesion without triggering eye movements. The use of the 9-4 pattern resulted in a short test time and helped eliminate patient fatigue. Our goal was to determine retinal sensitivity but to avoid patient fatigue. We therefore used a 4-2 strategy as recommended by Convento and Barbaro. 12 The fixation target was a white cross. The mobility of the fixation target allows for testing beyond the arcades and at specific designated locations. We used the 8-frame-per-second eyetracking software, which tracked and adjusted for eye movement. We used the 4-spot pattern in each eye for the patient to practice. This was done to correct for the learning effect known to occur with computerized perimetry. 13 Prior to testing, the patients color photographs were reviewed to ensure that the correct area of the retina, corresponding to the CWSs, was being tested. The test was administered 5 minutes after the practice session, and a 15-minute rest period was given between testing of the right and left eyes. The test was performed on the eye with better vision first in order for the patient to become familiar with the testing method. To confirm the test point hit the CWS lesion exactly, the microperimetry map was overlaid onto the color fundus photograph using photoediting software (version ; Adobe Photoshop CS3, San Jose, California) (Figure 2). The deepest scotoma in the central 9-point field in the area of the CWS was the value used for the scotoma. For the adjacent control retina, we averaged the adjacent points around the grid to determine non-cws retina sensitivity. Any test spot overlying a vessel was discarded because blood vessels reduce retinal sensitivity when testing with microperimetry. For statistical analysis, we used a paired t test and JUMP software (version 8.0; SAS Institute Inc, Cary, North Carolina). RESULTS We evaluated 28 retinal CWSs in 12 patients. There were 6 hypertensive lesions in 6 patients with HTN, and there were 28 diabetic CWSs in a total of 6 patients with DM (Table 1). For normal controls, there were 34 areas tested in eyes of 9 patients. For each CWS in the study population we chose 1 age- and location-matched area in normal patients as controls. Microperimetric sensitivity showed that the mean (SD) sensitivity of HTN CWSs was (3.88) db. The mean sensitivity of surrounding controls from HTN CWSs was.00 (2.89) db (Figure 3). The mean sensitivity of ageand location-matched normal controls was (3.27) db. Sensitivity of HTN CWSs was statistically different from the surrounding control area (P=.01), but not from age- and location-matched normal control regions (P=.26). There was no significant difference between the surrounding control in the hypertensive eyes and that of the age- and location-matched normal eyes (P=.64). Microperimetric sensitivity showed that the mean (SD) sensitivity of DM CWSs was 7.21 (5.48) db. The mean sensitivity of surrounding control areas from DM CWSs was (3.45) db (Figure 3). The mean sensitivity of age- and location-matched normal control regions was (2.45) db (Figure 4). Among patients with DM, A C G Figure 2. Example of microperimetry testing and overlay in a patient with diabetes mellitus who had also undergone panretinal photocoagulation 4 years prior to optical coherence tomography (OCT) imaging. A, Color fundus photograph of a retinal cotton-wool spot (CWS) seen along the superotemporal artery. B, A resolved CWS. The patient had received panretinal photocoagulation after the previous photograph was taken. C, Infrared OCT scanning laser ophthalmoscope image with scotomas seen in the grid (inset). The inferior scotomas (red circles) indicate a reduction in sensitivity in the area of the CWS. The more superior scotoma was due to a laser burn and was not used in the statistical analysis. D, The overlay (inset) of the infrared fundus view of the microperimeter onto the original fundus photograph. The retinal CWS was marked as a solid pink lesion for the purpose of the overlay process. B D Table 1. The Characteristics of Tested People No. Condition Lesions Eyes Patients Age, Mean, y Male/Female Ratio HTN :2 DM :1 Normal :5 Abbreviations: DM, diabetes mellitus; HTN, hypertension. 881

4 A B Figure 3. Examples of reduced sensitivity in a resolved cotton-wool spot (CWS) in patients with hypertension (A) and diabetes mellitus (B). In each panel, the inset shows microperimetry values overlying corresponding retinal coordinates and is overlaid onto the color retinal image. The inset also shows reduced retinal sensitivity at the area of resolved CWS (pink area). Table 2. Sensitivity for Patients With Hypertension (HTN) and Diabetes Mellitus (DM) Across Conditions Mean (SD) Condition Normal Cotton-Wool Spots Surrounding Control HTN (3.27) (3.88)*,.00 (2.89)* DM (2.45), 7.21 (5.48),, (3.45), a Group differences were tested by paired t test; the values that are labeled with the same symbol are significantly different from one another (P.05). Figure 4. An example of reduced sensitivity over a large retinal vessel in a normal patient. We found that reduction in sensitivity by 4 to 8 db was common over large retinal vessels. In this case there was a 10-dB reduction. The inset shows normal sensitivity at the normal retina but reduced sensitivity at the point of retinal blood vessel (value 10). the retinal sensitivity over resolved CWSs was decreased compared with adjacent control areas (P.001). Not surprisingly, the retinal sensitivity overlying resolved CWSs in patients with DM was decreased compared with age- and location-matched normal control retinal areas (P.001). However, the adjacent control areas among patients with DM were decreased compared with age- and location-matched normal controls. This difference implies that the diabetic retina not visibly involved with CWSs has lower retinal sensitivity. In addition, there was a statistically significant difference between the mean sensitivity of hypertensive CWSs and the mean sensitivity of diabetic CWSs (P=.045) (Table 2). The difference in mean retinal sensitivity between our control groups was not found to be statistically significant (P.10). The difference is likely due to the fact that we used age- and location-matched normal controls to correspond to our patients with HTN and DM and CWSs (Figure 5). COMMENT Systemic vascular disease such as DM or HTN can cause inner retinal disease by damaging the retinal circulation. One of the obvious clinical signs of such damage is the retinal CWS, which represents axoplasmic debris in the retinal nerve fiber layer following an inner retinal infarction. Without microperimetry technology, it is difficult to assess the amount of vision loss and functional retinal damage due to these lesions. It has been shown that resolved CWS lesions have permanent structural consequences that have been documented by spectral domain OCT. Subsequent visual sensitivity consequences would be expected It is likely that these lesions produce a combination of focal relative scotoma (owing to loss of ganglion cells in the region of the ischemic in- 882

5 12 10 Figure 5. Microperimetry of a resolved cotton-wool spot (CWS) away from major retinal vessels located approximately 7.5 superonasal to the fovea. The scotoma shows retinal sensitivity 10 db compared with a mean of 15 db in the surrounding uninvolved tissue. The inset shows microperimetry values overlying corresponding retinal coordinates and is overlaid onto the color retinal image. The inset also shows reduced retinal sensitivity at the area of resolved CWS (pink area). sult) and more diffuse vision loss owing to damage to the retinal nerve fiber layer that courses from the more peripheral retina through the area of infarctions. We note that whether CWSs were seen in the macular area, near or peripheral to the major vascular arcades, a central scotoma remained. We did not perform peripheral retina distant perimetry (ie, 4-10 disc diameters peripheral to the lesion) because of a technical problem in doing this and the longer examination time period that would be needed. Our study took advantage of several features of combined SLO/microperimetry (OPKO Instrumentation). Primarily, a simultaneous infrared SLO image of the retina allowed precise microperimetry localization over the lesions in question. Also, we could customize programs and select targets outside the macula in areas peripheral to the major vascular arcades. Finally, eye movement is stabilized using an eye tracker that ensures that the microperimetry target is consistently over the retinal area of interest. To confirm reproducibility of microperimetry data, we evaluated 72 eyes in 36 patients using 2 separate microperimetry sessions. We found that 95% of the retinal sensitivity value between the 2 examinations was within 4 db (repeatability coefficiency=4) using Bland- Altman plot (Amini et al ). The eye tracker is not completely ideal, however, because the 8-Hz tracker can cause some small positional errors during microperimetry. This may explain why there are different depths of scotomas and residual positional inaccuracy when studying CWSs. One concern with the use of any microperimetry technology is related to fixation eye movements. There are 3 different fixation eye movements: high-frequency smallamplitude tremor, slow drifts, and fast microsaccades (duration of about 25 milliseconds). The OTI has a frame rate of 8 frames/s or about 125 milliseconds/image. In our opinion, owing to the pixel size of about 20 µm/ pixel, we will not see any effect of microtremor. Slow drift can be corrected owing to the slow speed of the movement. Microsaccades are so fast that they may fall within a frame or in between 2 frames. Each frames takes 125 milliseconds from top to bottom. Microsaccades are 25 milliseconds in length. Thus, our biggest concern of positional inaccuracy is microsaccades To our knowledge, this is the first study to examine focal vision loss in areas of resolved retinal CWSs using microperimetry. We have shown that permanent damage exists for years after ophthalmoscopic resolution of the lesion. Interestingly, irrespective of the etiology of the CWS (DM or HTN), damage is present, but in patients with DM there is also reduced sensitivity in areas that we chose as adjoining control regions. It is for this reason that we chose similar areas in normal agematched eyes to test retinal sensitivity. There is evidence of retinal function damage in areas not visibly involved by CWS, particularly in diabetic eyes. This is not unexpected as the same inner retinal damage from microvascular disease seen as a CWS also causes retinal damage in areas without CWS formation. This is likely due to small areas of nonperfusion or other ischemic or edematous insults. Fluorescein angiography of our lesions does show vascular change, and this may contribute to the reduction in sensitivity that we have demonstrated. In addition, it is interesting to note that there seems to be more diffuse retinal damage in patients with DM than in those with HTN. In the hypertensive eyes, the areas adjoining the retinal CWS are closer to normal in terms of microperimetric vision sensitivity than is the case in the adjoining areas of patients with DM. There are many reasons why the lesions may be different. One possibility is that patients with DM have a more impaired retinal circulation prior to the arteriolar infarction causing the CWS; however, it is also possible that there is inability of the retinal circulation in the patient with DM to revascularize or the presence of more severe pericytic injury in those with DM. What is also possible is that patients with HTN have less severe retinovascular disease than those with DM or compensate better after microinfarctions. In conclusion, our study has shown that there are focal areas of retinal vision loss in patients with DM and HTN. The vision loss in diabetic eyes seems to be more severe than in hypertensive eyes both in areas of old CWSs as well as in the adjoining apparently uninvolved areas. The use of microperimetry is an important tool in evaluating the functional correlates of structural retinal changes. Accepted for Publication: September 20, Correspondence: William R. Freeman, MD, Jacobs Retina Center, 0946, University of California, San Diego, 9415 Campus Point Dr, No. 0946, La Jolla, CA (freeman@eyecenter.ucsd.edu). Financial Disclosure: None reported. Funding/Support: Support was provided by the Inje Research and Scholarship Foundation 2009 (to Dr Kim), EY0323 (to Dr Bartsch), National Institutes of Health grant EY07366 (to Dr Freeman), the Foundation for Fighting Blindness Inc, and an unrestricted grant from the Jacobs Retina Center. 883

6 REFERENCES 1. Brown GC, Brown MM, Hiller T, Fischer D, Benson WE, Magargal LE. Cottonwool spots. Retina. 1985;5(4): Kohner EM, Dollery CT, Bulpitt CJ. Cotton-wool spots in diabetic retinopathy. Diabetes. 1969;18(10): Mansour AM, Rodenko G, Dutt R. Half-life of cotton-wool spots in the acquired immunodeficiency syndrome. Int J STD AIDS. 1990;1(2): McLeod D. Why cotton wool spots should not be regarded as retinal nerve fibre layer infarcts. Br J Ophthalmol. 2005;89(2): McLeod D, Marshall J, Kohner EM, Bird AC. The role of axoplasmic transport in the pathogenesis of retinal cotton-wool spots. Br J Ophthalmol. 1977;61(3): Bek T, Lund-Andersen H. Cotton-wool spots and retinal light sensitivity in diabetic retinopathy. Br J Ophthalmol. 1991;75(1): Alencar LM, Medeiros FA, Weinreb R. Progressive localized retinal nerve fiber layer loss following a retinal cotton wool spot. Semin Ophthalmol. 2007;22 (2): Gomez ML, Mojana F, Bartsch DU, Freeman WR. Imaging of long-term retinal damage after resolved cotton wool spots. Ophthalmology. 2009;1(12): Kozak I, Bartsch DU, Cheng L, Freeman WR. In vivo histology of cotton-wool spots using high-resolution optical coherence tomography. Am J Ophthalmol. 2006;1(4): Kozak I, Bartsch DU, Cheng L, Freeman WR. Hyperreflective sign in resolved cotton wool spots using high-resolution optical coherence tomography and optical coherence tomography ophthalmoscopy. Ophthalmology. 2007;1(3): Chen FK, Patel PJ, Xing W, et al. Test-retest variability of microperimetry using the Nidek MP1 in patients with macular disease. Invest Ophthalmol Vis Sci. 2009; 50(7): Convento E, Barbaro G. Technical insights in the interpretation of automatic microperimetry. In: Midena E, ed. Perimetry and the Fundus: An Introduction to Microperimetry. Thorofare, NJ: Slack Inc; 2007: Heijl A, Bengtsson B. The effect of perimetric experience in patients with glaucoma. Arch Ophthalmol. 1996;1(1): Amini P, Cheng L, Hartmann K, et al. Reproducibility and Determination of Normative Values of Scanning Laser Ophthalmoscope Imaging Stabilized Microperimetry. Fort Lauderdale, FL: Association for Research in Vision and Ophthalmology (ARVO); ARVO program Spauschus A, Marsden J, Halliday DM, Rosenberg JR, Brown P. The origin of ocular microtremor in man. Exp Brain Res. 1999;126(4): Møller F, Laursen ML, Tygesen J, Sjølie AK. Binocular quantification and characterization of microsaccades. Graefes Arch Clin Exp Ophthalmol. 2002;240 (9): Rolfs M. Microsaccades: small steps on a long way. Vision Res. 2009;49(20): Archives Web Quiz Winner C ongratulations to the winner of our February quiz, Arun Lakshmanan, MS, DNB, FRCS, MRCOphth, Department of Ophthalmology, Queens Medical Centre, Nottingham, England. The correct answer to our February challenge was acute macular outer retinopathy. For a complete discussion of this case, see the Small Case Series section in the March Archives (Yeh S, Hwang TS, Weleber RG, Watzke RC, Francis PJ. Acute macular outer retinopathy [AMOR]: a reappraisal of acute macular neuroretinopathy using multimodality diagnostic testing. Arch Ophthalmol. 2011; 129[3]: ). 200 µm 200 µm Be sure to visit the Archives of Ophthalmology Web site ( and try your hand at our Clinical Challenge Interactive Quiz. We invite visitors to make a diagnosis based on selected information from a case report or other feature scheduled to be published in the following month s print edition of the Archives. The first visitor to our Web editors with the correct answer will be recognized in the print journal and on our Web site and will also be able to choose one of the following books published by AMA Press: Clinical Eye Atlas, Clinical Retina,orUsers Guides to the Medical Literature. 884

The New Frontier of Microperimetry

The New Frontier of Microperimetry Macular Integrity Assessment The New Frontier of Microperimetry Index 4 Company Profile Microperimetry is attracting our attention more and more as a method that is superior to standard automated perimetry

More information

The New Frontier of Microperimetry

The New Frontier of Microperimetry Macular Integrity Assessment The New Frontier of Microperimetry Microperimetry is attracting our attention more and more as a method that is superior to standard automated perimetry for visual function

More information

The Evolution of Fundus Perimetry

The Evolution of Fundus Perimetry The Evolution of Fundus Perimetry Company Profile CenterVue designs and manufactures highly automated medical devices for the diagnosis and management of ocular pathologies, including those that represent

More information

Reappraisal of the retinal cotton-wool spot: a discussion paper

Reappraisal of the retinal cotton-wool spot: a discussion paper 682 Journal of the Royal Society of Medicine Volume 74 September 1981 Reappraisal of the retinal cotton-wool spot: a discussion paper David McLeod BSC FRCS Moorfields Eye Hospital, London EC] V 2PD In

More information

What You Should Know About Acute Macular Neuroretinopathy

What You Should Know About Acute Macular Neuroretinopathy What You Should Know About Acute Macular Neuroretinopathy David J. Browning MD, PhD Chong Lee BS Acute macular neuroretinopathy is a condition characterized by the sudden, painless onset of paracentral

More information

Clinical Trial Endpoints for Macular Diseases

Clinical Trial Endpoints for Macular Diseases Clinical Trial Endpoints for Macular Diseases Developed in collaboration Learning Objective Upon completion, participants should be able to: Summarize types of biomarkers of progression and treatment response

More information

Il contributo dell'angio-oct: valutazione integrata della componente nervosa e vascolare della malattia glaucomatosa

Il contributo dell'angio-oct: valutazione integrata della componente nervosa e vascolare della malattia glaucomatosa SIMPOSIO G.O.A.L. - LE NUOVE FRONTIERE DIAGNOSTICHE E LE LINEE DI INDIRIZZO AMBULATORIALI DEL GLAUCOMA Coordinatore e moderatore: D. Mazzacane Presidente: L. Rossetti Il contributo dell'angio-oct: valutazione

More information

The ideal tool for early detection and monitoring of AMD.

The ideal tool for early detection and monitoring of AMD. The ideal tool for early detection and monitoring of AMD. presenting maia 1 MAIA, the new frontier of Fundus Perimetry (microperimetry) assesses the function of the macula representing an effective clinical

More information

Use of Scanning Laser Ophthalmoscope Microperimetry in Clinically Significant Macular Edema in Type 2 Diabetes Mellitus

Use of Scanning Laser Ophthalmoscope Microperimetry in Clinically Significant Macular Edema in Type 2 Diabetes Mellitus Use of Scanning Laser Ophthalmoscope Microperimetry in Clinically Significant Macular Edema in Type 2 Diabetes Mellitus Fumihiko Mori, Satoshi Ishiko, Norihiko Kitaya, Taiichi Hikichi, Eiichi Sato, Akira

More information

The MP-1 Microperimeter Clinical Applications in Retinal Pathologies

The MP-1 Microperimeter Clinical Applications in Retinal Pathologies The MP-1 Microperimeter Clinical Applications in Retinal Pathologies Nelson R. Sabates, MD Director, Retina/Vitreous Service Vice-Chairman Department of Ophthalmology University of Missouri Kansas City

More information

Science & Technologies

Science & Technologies STANDARD COMPUTERIZED PERIMETRY IN FUNCTION OF DIAGNOSTIC GLAUCOMA Iljaz Ismaili, 1 Gazepov Strahil, 2, Goshevska Dashtevska Emilija 1 1 University Eye Clinic,Skopje 2 Clinical Hospital, Shtip Abstract

More information

Retinal Nerve Fiber Layer Measurements in Myopia Using Optical Coherence Tomography

Retinal Nerve Fiber Layer Measurements in Myopia Using Optical Coherence Tomography Original Article Philippine Journal of OPHTHALMOLOGY Retinal Nerve Fiber Layer Measurements in Myopia Using Optical Coherence Tomography Dennis L. del Rosario, MD and Mario M. Yatco, MD University of Santo

More information

ZEISS AngioPlex OCT Angiography. Clinical Case Reports

ZEISS AngioPlex OCT Angiography. Clinical Case Reports Clinical Case Reports Proliferative Diabetic Retinopathy (PDR) Case Report 969 PROLIFERATIVE DIABETIC RETINOPATHY 1 1-year-old diabetic female presents for follow-up of proliferative diabetic retinopathy

More information

Why Is Imaging Critical in My Uveitis Practice?

Why Is Imaging Critical in My Uveitis Practice? Why Is Imaging Critical in My Uveitis Practice? Dilraj S. Grewal, MD Developed in collaboration Imaging Is the Backbone of Uveitis Workup and Monitoring Treatment Response FP FAF B- scan Multimodal Imaging

More information

Case Report Optic Disk Pit with Sudden Central Visual Field Scotoma

Case Report Optic Disk Pit with Sudden Central Visual Field Scotoma Case Reports in Ophthalmological Medicine Volume 2016, Article ID 1423481, 4 pages http://dx.doi.org/10.1155/2016/1423481 Case Report Optic Disk Pit with Sudden Central Visual Field Scotoma Nikol Panou

More information

Clinical Study Choroidal Thickness in Eyes with Unilateral Ocular Ischemic Syndrome

Clinical Study Choroidal Thickness in Eyes with Unilateral Ocular Ischemic Syndrome Hindawi Publishing Corporation Journal of Ophthalmology Volume 215, Article ID 62372, 5 pages http://dx.doi.org/1.1155/215/62372 Clinical Study Choroidal Thickness in Eyes with Unilateral Ocular Ischemic

More information

Quantitative analysis of central visual field defects in macular edema using three-dimensional computer-automated threshold Amsler grid testing

Quantitative analysis of central visual field defects in macular edema using three-dimensional computer-automated threshold Amsler grid testing Graefes Arch Clin Exp Ophthalmol (2009) 247:165 170 DOI 10.1007/s00417-008-0971-8 RETINAL DISORDERS Quantitative analysis of central visual field defects in macular edema using three-dimensional computer-automated

More information

OCT Angiography in Primary Eye Care

OCT Angiography in Primary Eye Care OCT Angiography in Primary Eye Care An Image Interpretation Primer Julie Rodman, OD, MS, FAAO and Nadia Waheed, MD, MPH Table of Contents Diabetic Retinopathy 3-6 Choroidal Neovascularization 7-9 Central

More information

Optic Disk Pit with Sudden Central Visual Field Scotoma

Optic Disk Pit with Sudden Central Visual Field Scotoma Optic Disk Pit with Sudden Central Visual Field Scotoma The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Published Version

More information

PART 1: GENERAL RETINAL ANATOMY

PART 1: GENERAL RETINAL ANATOMY PART 1: GENERAL RETINAL ANATOMY General Anatomy At Ora Serrata At Optic Nerve Head Fundoscopic View Of Normal Retina What Is So Special About Diabetic Retinopathy? The WHO definition of blindness is

More information

Clement C. Chow 1. Mohamed A. Genead 1. Anastasios Anastasakis 1. Felix Y. Chau¹. Gerald A. Fishman¹. Jennifer I. Lim¹

Clement C. Chow 1. Mohamed A. Genead 1. Anastasios Anastasakis 1. Felix Y. Chau¹. Gerald A. Fishman¹. Jennifer I. Lim¹ 1 Structural and Functional Correlation in Sickle Cell Retinopathy Using Spectral- Domain Optical Coherence Tomography and Scanning Laser Ophthalmoscope Microperimetry Clement C. Chow 1 Mohamed A. Genead

More information

The Measure of Confidence

The Measure of Confidence Heidelberg_936357.qxd:Layout 1 5/9/08 12:01 PM 12:02 Page 1 (Cyan (Magenta (Yellow (Black (UV Five Powerful Solutions to Fit Your Practice PowerCheck Glaucoma FastCheck+ GPS Software and Retina Edema Index

More information

optic disc neovascularisation

optic disc neovascularisation British Journal of Ophthalmology, 1979, 63, 412-417 A comparative study of argon laser and krypton laser in the treatment of diabetic optic disc neovascularisation W. E. SCHULENBURG, A. M. HAMILTON, AND

More information

Ultrahigh Speed Imaging of the Rat Retina Using Ultrahigh Resolution Spectral/Fourier Domain OCT

Ultrahigh Speed Imaging of the Rat Retina Using Ultrahigh Resolution Spectral/Fourier Domain OCT Ultrahigh Speed Imaging of the Rat Retina Using Ultrahigh Resolution Spectral/Fourier Domain OCT The MIT Faculty has made this article openly available. Please share how this access benefits you. Your

More information

OCT in the Diagnosis and Follow-up of Glaucoma

OCT in the Diagnosis and Follow-up of Glaucoma OCT in the Diagnosis and Follow-up of Glaucoma Karim A Raafat MD. Professor Of Ophthalmology Cairo University Hmmmm! Do I have Glaucoma or not?! 1 Visual Function 100% - N Gl Structure : - 5000 axon /

More information

Ganglion cell complex scan in the early prediction of glaucoma

Ganglion cell complex scan in the early prediction of glaucoma Original article in the early prediction of glaucoma Ganekal S Nayana Super Specialty Eye Hospital and Research Center, Davangere, Karnataka, India Abstract Objective: To compare the macular ganglion cell

More information

Study of clinical significance of optical coherence tomography in diagnosis & management of diabetic macular edema

Study of clinical significance of optical coherence tomography in diagnosis & management of diabetic macular edema Original Research Article Study of clinical significance of optical coherence tomography in diagnosis & management of diabetic macular edema Neha Kantilal Desai 1,*, Somesh Vedprakash Aggarwal 2, Sonali

More information

Fundus Autofluorescence. Jonathan A. Micieli, MD Valérie Biousse, MD

Fundus Autofluorescence. Jonathan A. Micieli, MD Valérie Biousse, MD Fundus Autofluorescence Jonathan A. Micieli, MD Valérie Biousse, MD The retinal pigment epithelium (RPE) has many important functions including phagocytosis of the photoreceptor outer segments Cone Rod

More information

STANDARD AUTOMATED PERIMETRY IS A GENERALLY

STANDARD AUTOMATED PERIMETRY IS A GENERALLY Comparison of Long-term Variability for Standard and Short-wavelength Automated Perimetry in Stable Glaucoma Patients EYTAN Z. BLUMENTHAL, MD, PAMELA A. SAMPLE, PHD, LINDA ZANGWILL, PHD, ALEXANDER C. LEE,

More information

Diabetic Retinopathy. Barry Emara MD FRCS(C) Giovanni Caboto Club October 3, 2012

Diabetic Retinopathy. Barry Emara MD FRCS(C) Giovanni Caboto Club October 3, 2012 Diabetic Retinopathy Barry Emara MD FRCS(C) Giovanni Caboto Club October 3, 2012 Outline Statistics Anatomy Categories Assessment Management Risk factors What do you need to do? Objectives Summarize the

More information

measure of your overall performance. An isolated glucose test is helpful to let you know what your sugar level is at one moment, but it doesn t tell you whether or not your diabetes is under adequate control

More information

Multi-Modal Longitudinal Evaluation of Subthreshold Laser Lesions in Human Retina, Including Scanning Laser Ophthalmoscope-Adaptive Optics Imaging

Multi-Modal Longitudinal Evaluation of Subthreshold Laser Lesions in Human Retina, Including Scanning Laser Ophthalmoscope-Adaptive Optics Imaging EXPERIMENTAL SCIENCE Multi-Modal Longitudinal Evaluation of Subthreshold Laser Lesions in Human Retina, Including Scanning Laser Ophthalmoscope-Adaptive Optics Imaging Edward H. Wood, MD; Theodore Leng,

More information

Yasser R. Serag, MD Tamer Wasfi, MD El- Saied El-Dessoukey, MD Magdi S. Moussa, MD Anselm Kampik, MD

Yasser R. Serag, MD Tamer Wasfi, MD El- Saied El-Dessoukey, MD Magdi S. Moussa, MD Anselm Kampik, MD Microperimetric Evaluation of Brilliant Blue G- assisted Internal Limiting Membrane Peeling By Yasser R. Serag, MD Tamer Wasfi, MD El- Saied El-Dessoukey, MD Magdi S. Moussa, MD Anselm Kampik, MD The internal

More information

Diagnosis and treatment of diabetic retinopathy. Blake Cooper MD Ophthalmologist Vitreoretinal Surgeon Retina Associates Kansas City

Diagnosis and treatment of diabetic retinopathy. Blake Cooper MD Ophthalmologist Vitreoretinal Surgeon Retina Associates Kansas City Diagnosis and treatment of diabetic retinopathy Blake Cooper MD Ophthalmologist Vitreoretinal Surgeon Retina Associates Kansas City Disclosures Consulted for Novo Nordisk 2017,2018. Will be discussing

More information

Non-arteritic anterior ischemic optic neuropathy (NAION) with segmental optic disc edema. Jonathan A. Micieli, MD Valérie Biousse, MD

Non-arteritic anterior ischemic optic neuropathy (NAION) with segmental optic disc edema. Jonathan A. Micieli, MD Valérie Biousse, MD Non-arteritic anterior ischemic optic neuropathy (NAION) with segmental optic disc edema Jonathan A. Micieli, MD Valérie Biousse, MD A 75 year old white woman lost vision in the inferior part of her visual

More information

STRUCTURE & FUNCTION An Integrated Approach for the Detection and Follow-up of Glaucoma. Module 3a GDx

STRUCTURE & FUNCTION An Integrated Approach for the Detection and Follow-up of Glaucoma. Module 3a GDx STRUCTURE & FUNCTION An Integrated Approach for the Detection and Follow-up of Glaucoma Module 3a GDx Educational Slide Deck Carl Zeiss Meditec, Inc. November 2005 1 Structure & Function Modules Module

More information

Clinically Significant Macular Edema (CSME)

Clinically Significant Macular Edema (CSME) Clinically Significant Macular Edema (CSME) 1 Clinically Significant Macular Edema (CSME) Sadrina T. Shaw OMT I Student July 26, 2014 Advisor: Dr. Uwaydat Clinically Significant Macular Edema (CSME) 2

More information

Advances in OCT Murray Fingeret, OD

Advances in OCT Murray Fingeret, OD Disclosures Advances in OCT Murray Fingeret, OD Consultant Alcon, Allergan, Bausch & Lomb, Carl Zeiss Meditec, Diopsys, Heidelberg Engineering, Reichert, Topcon Currently Approved OCT Devices OCT Devices

More information

The Human Eye. Cornea Iris. Pupil. Lens. Retina

The Human Eye. Cornea Iris. Pupil. Lens. Retina The Retina Thin layer of light-sensitive tissue at the back of the eye (the film of the camera). Light rays are focused on the retina then transmitted to the brain. The macula is the very small area in

More information

Method for comparing visual field defects to local RNFL and RGC damage seen on frequency domain OCT in patients with glaucoma.

Method for comparing visual field defects to local RNFL and RGC damage seen on frequency domain OCT in patients with glaucoma. Method for comparing visual field defects to local RNFL and RGC damage seen on frequency domain OCT in patients with glaucoma. Donald C. Hood 1,2,* and Ali S. Raza 1 1 Department of Psychology, Columbia

More information

Dr/ Marwa Abdellah EOS /16/2018. Dr/ Marwa Abdellah EOS When do you ask Fluorescein angiography for optic disc diseases???

Dr/ Marwa Abdellah EOS /16/2018. Dr/ Marwa Abdellah EOS When do you ask Fluorescein angiography for optic disc diseases??? When do you ask Fluorescein angiography for optic disc diseases??? 1 NORMAL OPTIC DISC The normal optic disc on fluorescein angiography is fluorescent due to filling of vessels arising from the posterior

More information

Non-commercial use only

Non-commercial use only Microperimetry: a review of fundus related perimetry Michael D. Crossland, 1 Mary-Lou Jackson, 2 William H. Seiple 3 1 UCL Institute of Ophthalmology and Moorfields Eye Hospital NHS Foundation Trust, London,

More information

EyePACS Grading System (Part 2): Detecting Presence and Severity of Background (Non-Proliferative) Diabetic Retinopathy Lesion

EyePACS Grading System (Part 2): Detecting Presence and Severity of Background (Non-Proliferative) Diabetic Retinopathy Lesion EyePACS Grading System (Part 2): Detecting Presence and Severity of Background (Non-Proliferative) Diabetic Retinopathy Lesion George Bresnick MD MPA Jorge Cuadros OD PhD Anatomy of the eye: 3 Normal Retina

More information

OtticaFisiopatologica

OtticaFisiopatologica Anno quindicesimo dicembre 2010 How to assess the retinal nerve fiber layer thickness Antonio Ferreras Miguel Servet University Hospital, Zaragoza. Aragón Health Sciences Institute University of Zaragoza

More information

VISUAL FIELDS. Visual Fields. Getting the Terminology Sorted Out 7/27/2018. Speaker: Michael Patrick Coleman, COT & ABOC

VISUAL FIELDS. Visual Fields. Getting the Terminology Sorted Out 7/27/2018. Speaker: Michael Patrick Coleman, COT & ABOC VISUAL FIELDS Speaker: Michael Patrick Coleman, COT & ABOC Visual Fields OBJECTIVES: 1. Explain what is meant by 30-2 in regards to the Humphrey Visual Field test 2. Identify the difference between a kinetic

More information

Neovascular Glaucoma Associated with Cilioretinal Artery Occlusion Combined with Perfused Central Retinal Vein Occlusion

Neovascular Glaucoma Associated with Cilioretinal Artery Occlusion Combined with Perfused Central Retinal Vein Occlusion Neovascular Glaucoma Associated with Cilioretinal Artery Occlusion Combined with Perfused Central Retinal Vein Occlusion Man-Seong Seo,* Jae-Moon Woo* and Jeong-Jin Seo *Department of Ophthalmology, Chonnam

More information

CLINICAL SCIENCES. Repeatability and Reproducibility of Fast Macular Thickness Mapping With Stratus Optical Coherence Tomography

CLINICAL SCIENCES. Repeatability and Reproducibility of Fast Macular Thickness Mapping With Stratus Optical Coherence Tomography CLINICAL SCIENCES Repeatability and Reproducibility of Fast Macular Thickness Mapping With Stratus Optical Coherence Tomography Antonio Polito, MD; Michele Del Borrello, MD; Miriam Isola, MHS; Nicola Zemella,

More information

Translating data and measurements from stratus to cirrus OCT in glaucoma patients and healthy subjects

Translating data and measurements from stratus to cirrus OCT in glaucoma patients and healthy subjects Romanian Journal of Ophthalmology, Volume 60, Issue 3, July-September 2016. pp:158-164 GENERAL ARTICLE Translating data and measurements from stratus to cirrus OCT in glaucoma patients and healthy subjects

More information

EyePACS Grading System (Part 3): Detecting Proliferative (Neovascular) Diabetic Retinopathy. George Bresnick MD MPA Jorge Cuadros OD PhD

EyePACS Grading System (Part 3): Detecting Proliferative (Neovascular) Diabetic Retinopathy. George Bresnick MD MPA Jorge Cuadros OD PhD EyePACS Grading System (Part 3): Detecting Proliferative (Neovascular) Diabetic Retinopathy George Bresnick MD MPA Jorge Cuadros OD PhD Anatomy of the eye: 3 Normal Retina Retinal Arcades Macula Optic

More information

Diabetes mellitus: A risk factor affecting visual outcome in branch retinal vein occlusion

Diabetes mellitus: A risk factor affecting visual outcome in branch retinal vein occlusion European Journal of Ophthalmology / Vol. 13 no. 7, 2003 / pp. 648-652 Diabetes mellitus: A risk factor affecting visual outcome in branch retinal vein occlusion J. SWART 1,2, J.W. REICHERT-THOEN 1, M.S.

More information

Andrew J. Barkmeier, MD; Benjamin P. Nicholson, MA; Levent Akduman, MD

Andrew J. Barkmeier, MD; Benjamin P. Nicholson, MA; Levent Akduman, MD c l i n i c a l s c i e n c e Effectiveness of Laser Photocoagulation in Clinically Significant Macular Edema With Focal Versus Diffuse Parafoveal Thickening on Optical Coherence Tomography Andrew J. Barkmeier,

More information

Macular pseudoholes (MPHs) are well-demarcated, DEVELOPMENT OF MACULAR PSEUDOHOLES. A 36-Month Period of Follow-up

Macular pseudoholes (MPHs) are well-demarcated, DEVELOPMENT OF MACULAR PSEUDOHOLES. A 36-Month Period of Follow-up DEVELOPMENT OF MACULAR PSEUDOHOLES A 36-Month Period of Follow-up MONICA VARANO, MD,* CECILIA SCASSA, MD,* NICOLETTA CAPALDO, MD,* MARTA SCIAMANNA, MD,* VINCENZO PARISI, MD* Purpose: To assess the changes

More information

Cirrus TM HD-OCT. Details defi ne your decisions

Cirrus TM HD-OCT. Details defi ne your decisions Cirrus TM HD-OCT Details defi ne your decisions 2 With high-defi nition OCT Carl Zeiss Meditec takes you beyond standard spectral domain Built on 10 years experience at the vanguard of innovation, Carl

More information

Navigated Laser Therapy. A New Era in Retinal Disease Management

Navigated Laser Therapy. A New Era in Retinal Disease Management Navigated Laser Therapy A New Era in Retinal Disease Management Bringing Navigation to Retina Treatment Navilas Laser System To unleash the full potential of Retina Navigation, the Navilas Laser System

More information

PRIMUS 200 from ZEISS The essential OCT

PRIMUS 200 from ZEISS The essential OCT PRIMUS 200 from ZEISS The essential OCT Seeing beyond the surface. ZEISS PRIMUS 200 // INNOVATION MADE BY ZEISS Clear Visualization. Advanced Technology. Reliability. Essential elements of your first OCT.

More information

Sequential non-arteritic anterior ischemic optic neuropathy (NAION) Jonathan A. Micieli, MD Valérie Biousse, MD

Sequential non-arteritic anterior ischemic optic neuropathy (NAION) Jonathan A. Micieli, MD Valérie Biousse, MD Sequential non-arteritic anterior ischemic optic neuropathy (NAION) Jonathan A. Micieli, MD Valérie Biousse, MD A 68 year old white woman had a new onset of floaters in her right eye and was found to have

More information

Cirrus TM HD-OCT. Details define your decisions

Cirrus TM HD-OCT. Details define your decisions Cirrus TM HD-OCT Details define your decisions 2 With high-definition OCT Carl Zeiss Meditec takes you beyond standard spectral domain Built on 10 years experience at the vanguard of innovation, Carl Zeiss

More information

Retinal nerve fiber layer thickness in Indian eyes with optical coherence tomography

Retinal nerve fiber layer thickness in Indian eyes with optical coherence tomography Original articles in Indian eyes with optical coherence tomography Malik A, Singh M, Arya SK, Sood S, Ichhpujani P Department of Ophthalmology Government Medical College and Hospital, Sector 32, Chandigarh,

More information

Is OCT-A Needed As An Investigative Tool During The Management Of Diabetic Macular Edema

Is OCT-A Needed As An Investigative Tool During The Management Of Diabetic Macular Edema Is OCT-A Needed As An Investigative Tool During The Management Of Diabetic Macular Edema Ayman M Khattab MD, FRCS Professor of Ophthalmology Cairo University Diabetic Macular Edema (DME) Diabetic macular

More information

Macular Ganglion Cell Complex Measurement Using Spectral Domain Optical Coherence Tomography in Glaucoma

Macular Ganglion Cell Complex Measurement Using Spectral Domain Optical Coherence Tomography in Glaucoma Med. J. Cairo Univ., Vol. 83, No. 2, September: 67-72, 2015 www.medicaljournalofcairouniversity.net Macular Ganglion Cell Complex Measurement Using Spectral Domain Optical Coherence Tomography in Glaucoma

More information

MEDICAL POLICY. Proprietary Information of Excellus Health Plan, Inc. A nonprofit independent licensee of the BlueCross BlueShield Association

MEDICAL POLICY. Proprietary Information of Excellus Health Plan, Inc. A nonprofit independent licensee of the BlueCross BlueShield Association MEDICAL POLICY SUBJECT: OPHTHALMOLOGIC TECHNIQUES PAGE: 1 OF: 7 If the member's subscriber contract excludes coverage for a specific service it is not covered under that contract. In such cases, medical

More information

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW CHAPTER 2 LITERATURE REVIEW 2.1 Introduction The retina is a light-sensitive tissue lining the inner surface of the eye. The optics of the eye create an image of the visual world on the retina, which serves

More information

Available online at Pelagia Research Library. Advances in Applied Science Research, 2013, 4(6):

Available online at   Pelagia Research Library. Advances in Applied Science Research, 2013, 4(6): Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2013, 4(6):201-206 ISSN: 0976-8610 CODEN (USA): AASRFC Comparison of glaucoma diagnostic ability of retinal nerve

More information

New Concepts in Glaucoma Ben Gaddie, OD Moderator Murray Fingeret, OD Louis Pasquale, MD

New Concepts in Glaucoma Ben Gaddie, OD Moderator Murray Fingeret, OD Louis Pasquale, MD New Concepts in Glaucoma Ben Gaddie, OD Moderator Murray Fingeret, OD Louis Pasquale, MD New Concepts in Glaucoma Optical Coherence Tomography: Is it necessary and needed to diagnose and monitor glaucoma?

More information

MEDICAL POLICY. Proprietary Information of YourCare Healthcare

MEDICAL POLICY. Proprietary Information of YourCare Healthcare MEDICAL POLICY PAGE: 1 OF: 7 If the member's subscriber contract excludes coverage for a specific service it is not covered under that contract. In such cases, medical policy criteria are not applied.

More information

Retinal Nerve Fiber Layer Measurement Variability with Spectral Domain Optical Coherence Tomography

Retinal Nerve Fiber Layer Measurement Variability with Spectral Domain Optical Coherence Tomography pissn: 1011-8942 eissn: 2092-9382 Korean J Ophthalmol 2012;26(1):32-38 http://dx.doi.org/10.3341/kjo.2012.26.1.32 Retinal Nerve Fiber Layer Measurement Variability with Spectral Domain Optical Coherence

More information

Moving forward with a different perspective

Moving forward with a different perspective Moving forward with a different perspective The Leader In Vision Diagnostics Offers A New Perspective Marco has served the eyecare community by offering exceptional lane products and automated high tech

More information

Structural examina.on: Imaging

Structural examina.on: Imaging ManaMa: Glaucoma Structural examina.on: Imaging Luís Abegão Pinto, MD, PhD Department of Ophthalmology CHLC Lisbon Faculty of Medicine, Lisbon University 1 11-10- 2013 Structural changes Qualitative changes

More information

OCT Assessment of the Vitreoretinal Relationship in CSME

OCT Assessment of the Vitreoretinal Relationship in CSME December 2007 Sonia Rani John et al. - IFIS 375 ORIGINAL ARTICLE OCT Assessment of the Vitreoretinal Relationship in CSME Dr. Manoj S. DNB FRCS, Dr. Unnikrishnan Nair MS DO FRCS, Dr. Gargi Sathish MS Introduction

More information

Diabetic Management beyond traditional risk factors and LDL-C control: Can we improve macro and microvascular risks?

Diabetic Management beyond traditional risk factors and LDL-C control: Can we improve macro and microvascular risks? Retinopathy Diabetes has a negative effect on eyes in many ways, increasing the risk of cataracts for example, but the most common and serious ocular complication of diabetes is retinopathy. Diabetic retinopathy

More information

21st Century Visual Field Testing

21st Century Visual Field Testing Supplement to Supported by an educational grant from Carl Zeiss Meditec, Inc. Winter 2011 21st Century Visual Field Testing the Evolution Continues 21st Century Visual Field Testing 21st Century Visual

More information

Diabetic Retinopathy A Presentation for the Public

Diabetic Retinopathy A Presentation for the Public Diabetic Retinopathy A Presentation for the Public Ray M. Balyeat, MD The Eye Institute Tulsa, Oklahoma The Healthy Eye Light rays enter the eye through the cornea, pupil and lens. These light rays are

More information

QUANTIFICATION OF PROGRESSION OF RETINAL NERVE FIBER LAYER ATROPHY IN FUNDUS PHOTOGRAPH

QUANTIFICATION OF PROGRESSION OF RETINAL NERVE FIBER LAYER ATROPHY IN FUNDUS PHOTOGRAPH QUANTIFICATION OF PROGRESSION OF RETINAL NERVE FIBER LAYER ATROPHY IN FUNDUS PHOTOGRAPH Hyoun-Joong Kong *, Jong-Mo Seo **, Seung-Yeop Lee *, Hum Chung **, Dong Myung Kim **, Jeong Min Hwang **, Kwang

More information

Ganglion cell analysis by optical coherence tomography (OCT) Jonathan A. Micieli, MD Valérie Biousse, MD

Ganglion cell analysis by optical coherence tomography (OCT) Jonathan A. Micieli, MD Valérie Biousse, MD Ganglion cell analysis by optical coherence tomography (OCT) Jonathan A. Micieli, MD Valérie Biousse, MD Figure 1. Normal OCT of the macula (cross section through the line indicated on the fundus photo)

More information

A novel navigated laser system brings new efficacy to the treatment of retinovascular disorders

A novel navigated laser system brings new efficacy to the treatment of retinovascular disorders Review Article A novel navigated laser system brings new efficacy to the treatment of retinovascular disorders Jay Chhablani, Igor Kozak 1, Giulio Barteselli 2, Sharif El Emam 2 Vitreo-retina Services,

More information

Patterns of Subsequent Progression of Localized Retinal Nerve Fiber Layer Defects on Red-free Fundus Photographs in Normal-tension Glaucoma

Patterns of Subsequent Progression of Localized Retinal Nerve Fiber Layer Defects on Red-free Fundus Photographs in Normal-tension Glaucoma pissn: 1011-8942 eissn: 2092-9382 Korean J Ophthalmol 2014;28(4):330-336 http://dx.doi.org/10.3341/kjo.2014.28.4.330 Original Article Patterns of Subsequent Progression of Localized Retinal Nerve Fiber

More information

Case Report Increase in Central Retinal Edema after Subthreshold Diode Micropulse Laser Treatment of Chronic Central Serous Chorioretinopathy

Case Report Increase in Central Retinal Edema after Subthreshold Diode Micropulse Laser Treatment of Chronic Central Serous Chorioretinopathy Case Reports in Ophthalmological Medicine Volume 2015, Article ID 813414, 4 pages http://dx.doi.org/10.1155/2015/813414 Case Report Increase in Central Retinal Edema after Subthreshold Diode Micropulse

More information

Comparative evaluation of time domain and spectral domain optical coherence tomography in retinal nerve fiber layer thickness measurements

Comparative evaluation of time domain and spectral domain optical coherence tomography in retinal nerve fiber layer thickness measurements Original article Comparative evaluation of time domain and spectral domain optical coherence tomography in retinal nerve fiber layer thickness measurements Dewang Angmo, 1 Shibal Bhartiya, 1 Sanjay K Mishra,

More information

NERVE FIBER LAYER THICKNESS IN NORMALS AND GLAUCOMA PATIENTS

NERVE FIBER LAYER THICKNESS IN NORMALS AND GLAUCOMA PATIENTS Nerve fiber layer thickness in normals and glaucoma patients 403 NERVE FIBER LAYER THICKNESS IN NORMALS AND GLAUCOMA PATIENTS HIROTAKA SUZUMURA, KAYOKO HARASAWA, AKIKO KOBAYASHI and NARIYOSHI ENDO Department

More information

NO FINANCIAL INTERESTS ARE DISCLOSED BY THE AUTHORS

NO FINANCIAL INTERESTS ARE DISCLOSED BY THE AUTHORS OCULAR FINDINGS IN APLASTIC ANEMIA: MULTICENTER STUDY & LITERATURE REVIEW Ahmad M Mansour1, MD, Jong Wook Lee, MD, PhD, Seung Ah Yahng, MD, Kyu Seop Kim, MD, Maha Shahin, MD, Nelson Hamerschlak, MD, PhD,

More information

Glaucoma: Diagnostic Modalities

Glaucoma: Diagnostic Modalities Glaucoma: Diagnostic Modalities - Dr. Barun Kumar Nayak, Dr. Sarika Ramugade Glaucoma is a leading cause of blindness in the world, especially in older people. Early detection and treatment by ophthalmologist

More information

PRIMUS 200 from ZEISS The essential OCT

PRIMUS 200 from ZEISS The essential OCT EN 00_00I The contents of the brochure may differ from the current status of approval of the product in your country. Please contact your regional representative for more information. Subject to change

More information

Visual fields in diabetic retinopathy

Visual fields in diabetic retinopathy Brit. J. Ophthal. (I97I) 55, I83 Visual fields in diabetic retinopathy K. I. WISZNIA, T. W. LIEBERMAN, AND I. H. LEOPOLD From the Department of Ophthalmology, Mount Sinai School of Medicine, City University

More information

Neuropathy (NAION) and Avastin. Clinical Assembly of the AOCOO-HNS Foundation May 9, 2013

Neuropathy (NAION) and Avastin. Clinical Assembly of the AOCOO-HNS Foundation May 9, 2013 Non Arteritic Ischemic Optic Neuropathy (NAION) and Avastin Shalom Kelman, MD Clinical Assembly of the AOCOO-HNS Foundation May 9, 2013 Anterior Ischemic Optic Neuropathy Acute, painless, visual loss,

More information

LEE EYE CENTRE. YOUR VISION, OUR PASSION LEC EyeNews

LEE EYE CENTRE. YOUR VISION, OUR PASSION LEC EyeNews LEE EYE CENTRE YOUR VISION, OUR PASSION LEC EyeNews FOR INTERNAL CIRCULATION ONLY www.lec.com.my ISSUE 51/003 SEPT OCT 2017 The American Society of Cataract and Refractive Surgery is one of the leading

More information

Fluctuations on the Humphrey and Octopus Perimeters

Fluctuations on the Humphrey and Octopus Perimeters May 987 Vol. 28/ Investigative Ophthalmology & Visual Science A Journal of Dosic and Clinical Research Articles Fluctuations on the and Perimeters Randall S. Drenton and William A. Argus Fluctuation of

More information

Retinal Complications of Obstructive Sleep Apnea A Growing Concern!

Retinal Complications of Obstructive Sleep Apnea A Growing Concern! Retinal Complications of Obstructive Sleep Apnea A Growing Concern! Jay M. Haynie, OD, FAAO Financial Disclosure I have received honoraria or am on the advisory board for the following companies: Carl

More information

Oishi A, Miyamoto K, Yoshimura N. Etiology of carotid cavernous fistula in Japanese. Jpn J Ophthalmol. 2009;53:40-43.

Oishi A, Miyamoto K, Yoshimura N. Etiology of carotid cavernous fistula in Japanese. Jpn J Ophthalmol. 2009;53:40-43. Kimura T, Takagi H, Miyamoto K, Kita M, Watanabe D, Yoshimura N. Macular hole with epiretinal membrane after triamcinolone-assisted vitrectomy for proliferative diabetic retinopathy. Retinal Cases Brief

More information

The Role of the RNFL in the Diagnosis of Glaucoma

The Role of the RNFL in the Diagnosis of Glaucoma Chapter 1. The Role of the RNFL in the Diagnosis of Glaucoma Introduction Glaucoma is an optic neuropathy characterized by a loss of of retinal ganglion cells and their axons, the Retinal Nerve Fiber Layer

More information

Glaucoma research at Moorfields

Glaucoma research at Moorfields Recruiting Research Studies Glaucoma research at Moorfields Moorfields Eye Hospital wants to improve access to clinical research studies for all patients within the NHS and provide the opportunities for

More information

Case report 12/10/2014. Delphine Lam ; Dr Mayer Srour Service d ophtalmologie Professeur E.Souied Université Paris Est

Case report 12/10/2014. Delphine Lam ; Dr Mayer Srour Service d ophtalmologie Professeur E.Souied Université Paris Est Case report 12/10/2014 Delphine Lam ; Dr Mayer Srour Service d ophtalmologie Professeur E.Souied Medical history Man, 75 years old Complaint: Vision loss in left eye in June 2014 Past ophthalmologic history:

More information

3/16/2018. Perimetry

3/16/2018. Perimetry Perimetry The normal visual field extends further away from fixation temporally and inferiorly than superiorly and nasally. From the center of the retina this sensitivity decreases towards the periphery,

More information

Comparison of Retinal Nerve Fiber Layer Thickness between Stratus and Spectralis OCT

Comparison of Retinal Nerve Fiber Layer Thickness between Stratus and Spectralis OCT pissn: 1011-8942 eissn: 2092-9382 Korean J Ophthalmol 2011;25(3):166-173 DOI: 10.3341/kjo.2011.25.3.166 Original Article Comparison of Retinal Nerve Fiber Layer Thickness between Stratus and Spectralis

More information

To assess the glaucoma diagnostic ability of Fourier Domain Optical Coherence Tomography

To assess the glaucoma diagnostic ability of Fourier Domain Optical Coherence Tomography American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-02, Issue-11, pp-104-110 www.ajer.org Research Paper Open Access To assess the glaucoma diagnostic ability of

More information

Reproducibility of Nerve Fiber Layer Thickness Measurements by Use of Optical Coherence Tomography

Reproducibility of Nerve Fiber Layer Thickness Measurements by Use of Optical Coherence Tomography Reproducibility of Nerve Fiber Layer Thickness Measurements by Use of Optical Coherence Tomography Eytan Z. Blumenthal, MD, 1 Julia M. Williams, BS, 1 Robert N. Weinreb, MD, 1 Christopher A. Girkin, MD,

More information

CLINICAL SCIENCES. Comparison of Glaucoma Diagnostic Capabilities of Cirrus HD and Stratus Optical Coherence Tomography

CLINICAL SCIENCES. Comparison of Glaucoma Diagnostic Capabilities of Cirrus HD and Stratus Optical Coherence Tomography CLINICAL SCIENCES Comparison of Glaucoma Diagnostic Capabilities of Cirrus HD and Stratus Optical Coherence Tomography Seong Bae Park, MD; Kyung Rim Sung, MD, PhD; Sung Yong Kang, MD; Kyung Ri Kim, BS;

More information

CENTRAL SEROUS CHORIORETINOPATHY (CSR) IS A

CENTRAL SEROUS CHORIORETINOPATHY (CSR) IS A Imaging Polarimetry in Central Serous Chorioretinopathy MASAHIRO MIURA, MD, ANN E. ELSNER, PHD, ANKE WEBER, MD, MICHAEL C. CHENEY, MS, MASAHIRO OSAKO, MD, MASAHIKO USUI, MD, AND TAKUYA IWASAKI, MD PURPOSE:

More information

CHAPTER 11 KINETIC PERIMETRY WHAT IS KINETIC PERIMETRY? LIMITATIONS OF STATIC PERIMETRY LOW SPATIAL RESOLUTION

CHAPTER 11 KINETIC PERIMETRY WHAT IS KINETIC PERIMETRY? LIMITATIONS OF STATIC PERIMETRY LOW SPATIAL RESOLUTION 205 CHAPTER 11 KINETIC PERIMETRY WHAT IS KINETIC PERIMETRY? LIMITATIONS OF STATIC PERIMETRY LOW SPATIAL RESOLUTION Static perimetry is currently the most commonly used type of perimetry. With static perimetry,

More information

CLINICAL SCIENCES. optic neuropathy characterized

CLINICAL SCIENCES. optic neuropathy characterized CLINICAL SCIENCES Spectral-Domain Optical Coherence Tomography for Detection of Localized Retinal Nerve Fiber Layer Defects in Patients With Open-Angle Glaucoma Na Rae Kim, MD; Eun Suk Lee, MD, PhD; Gong

More information

Supplementary Appendix

Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Supplement to: Edwards TL, Jolly JK, MacLaren RE, et al.. N Engl J Med 206;374:996-8. DOI: 0.056/NEJMc50950

More information