Electrodiagnosis of Neuromuscular Junction Disorders

Size: px
Start display at page:

Download "Electrodiagnosis of Neuromuscular Junction Disorders"

Transcription

1 NMT overview Electrodiagnosis of Neuromuscular Junction Disorders Motor NAP arrives at nerve terminal Voltage-gated calcium channels open Ca +2 moves into presynaptic nerve terminal SNARE proteins elicit ACh vesicle exocytosis Vern C. Juel, M.D. OHSU Colloquium on Neuromuscular Disorders February 9, 2019 ACh diffuses across 50 nm cleft, binds with AChR Na + channels open Endplate depolarizes, producing EPP EPP reaching threshold elicit MFAP Merriggioli M, Sanders DB. Lancet Neurol 2009;8: ACh storage ACh is stored in vesicles Vesicles contain ~6-10K ACh molecules ACh storage pools Primary or Immediate Secondary or Mobilization Tertiary or Reserve Influences on ACh release 1. Depletion of primary ACh stores Each NAP depletes by ~20% Firing rates >0.1 Hz produce serial decline of ACh release for initial 4-5 impulses Subsequent mobilization of secondary ACh stores EPP amplitudes stabilize 2. Presynaptic [Ca +2 ] ACh release probability proportional to presynaptic [Ca +2 ] Ca +2 removed from motor nerve terminals over ms If firing rate >10 Hz, presynaptic [Ca +2 ] increases, and ACh release is potentiated Stalberg E, Sanders DB. J Clin Neurophysiol 1993;10: Fukunaga H, Engel AG, Osame M, Lambert EH. Muscle Nerve 1982;5:

2 The EPP The Safety Factor When EPP reaches threshold, a MFAP results Jitter derives from the temporal variability in MFAP latencies due to variable times when EPP reaches threshold Blocking occurs when a NAP fails to generate a MFAP Excess EP depolarization beyond threshold needed to produce a MFAP Ensures that for each motor NAP, a MFAP is produced Determined by: 1. Amount ACh released 2. Responsiveness of EP to ACh (Number and density of functional AChR) Sanders DB. J Clin Neurophysiol 1993;10: Safety factor Depletion of immediate ACh stores is of no consequence when safety factor is normal RNS Testing Most commonly used neurophysiologic test for NMT disorders When NMJ disease reduces safety factor, depletion of immediate ACh stores may elicit blocking with failure to produce a MFAP Technically-demanding Quality control is essential to avoid artifact, misinterpretation, and misdiagnosis 2

3 RNS principles Slow firing rates (<5 Hz) reduce safety factor in all cases High firing rates (>10 Hz) may improve the safety factor if there is a disorder of ACh release Surface CMAPs are a summation of individual MFAPs after motor/mixed nerve stimulation Decremental responses may be seen in all NMT disorders with low frequency RNS In presynaptic disorders, high stimulation rates or brief exercise may increase quantal ACh release with CMAP facilitation RNS testing: General technique Recording/stimulating electrodes as with motor NCS Stimulus duration 0.05 or 0.1 ms Use supramaximal stimulus (max amplitude %) Electrodes must be well secured Movement of stimulating electrodes causes abrupt changes in CMAP Movement of recording electrodes/leads/body causes baseline instability Immobilize joint/limb RNS testing: Stimulation frequency RNS testing: Pseudofacilitation Low frequency (2-3 Hz) optimal for decremental responses in MG and LEMS 5-10 stimuli in each 2-3 Hz train High frequency/tetanic (>10 Hz) should be avoided Painful (more Hz hurts!) Movement artifact Pseudofacilitation 10 s isometric exercise at MVC is equivalent to high frequency RNS Reserved for patients unable to perform exercise (infants, altered consciousness, severely paretic) Sanders DB. J Clin Neurophysiol 1993;10: Seen with high frequency RNS CMAP amplitude increasesup to 50% CMAP duration decreases No change in CMAP negative peak area Reflects synchronization of MFAP propagation velocities or muscle shortening DB Sanders 3

4 RNS testing: Temperature RNS testing: Activation methods Hand and foot muscles should be warmed to C Warming increases AChE activity and reduces presynaptic [Ca +2 ] In MG, no decrement may be seen in cool muscles In LEMS, resting CMAP is much smaller with warming No need to warm proximal or craniobulbar muscles 3 Hz RNS in APB in MG with warming. DB Sanders Resting ADQ CMAP in LEMS with warming DB Sanders Exercise Postactivation exhaustion (PAE) 2-5 min after s MVC Increased sensitivity for MG Postactivation facilitation (PAF) Immediately after brief, 10 s MVC A more specific finding in LEMS Ischemia Curare infusions PAF in LEMS. Resting APB CMAP is 50% normal w/ 500% PAF VC Juel RNS: Muscle selection Test clinically weak muscles In MG, bulbar and proximal muscles are most sensitive In LEMS, hand muscles are most sensitive Data analysis: Decrement % Decrement = [(CMAP n CMAP 1 )/CMAP 1 ] x th or 5 th CMAP will be lowest due to depletion of primary ACh stores CMAP amplitude increases after the 5 th CMAP due to mobilization of secondary ACh stores Hand and foot muscles require warming; proximal and bulbar muscles do not Hand muscles are best tolerated and easiest to immobilize That s where the money is. ADQ, 3 Hz stimulation with 34% decrement 1 4 4

5 Data analysis: Facilitation % Facilitation = [(CMAP n CMAP 1 )/CMAP 1 ] x 100 n = Initial postexercise CMAP with 10 s isometric MVC or Highest CMAP in a train with high frequency RNS Quality Control Inspect actual CMAP waveforms Verify stable baseline Look for abrupt changes in CMAP morphology and/or amplitude Document pseudofacilitation in high frequency RNS testing Findings should be reproducible after appropriate rest periods 3 Hz: 15% decrement 1 4 at baseline with 100% PAF Sanders DB. J Clin Neurophysiol 1993;10: RNS in MG Use low frequency (2-3 Hz) RNS in MG: PAE Assess an affected muscle and/or one hand and one proximal/bulbar muscle Initial train of 5-10 stimuli If significant decrement (>10%), repeat to verify reproducibility after at least 1 minute rest Isometric exercise with MVC for s Train of 5 stimuli immediately after exercise and every s for 5 minutes to assess for PAE (usually 2-4 min after MVC) PAF is rare and usually less than 50% 22% baseline decrement 1 4 Decrement repair immediately postexercise 34% decrement 1 5 post-exercise Proximal and bulbar muscles are most likely to be abnormal About 75% MG patients have abnormal RNS in a hand or shoulder muscle 2 Hz RNS, recording ADQ 5

6 RNS in LEMS Use low frequency (2-3 Hz) 5 rest RNS in LEMS Baseline 3 Hz RNS 2 mv amplitude, ADM Assess at least one hand muscle and one foot muscle Rest muscle for 5 minutes before testing 10 post-exercise 1800% facilitation After 10 exercise 5mV (>100% facilitation) Obtain initial CMAP, exercise for 10 s, then obtain postexercise CMAP w/i 5 s Rest muscle, then give train of 5-10 stimuli and follow MG protocol Most specific finding is >100% PAF Most sensitive finding is decrement to low frequency RNS ADM, 35 C (2 mv/div) 30 post-exercise 950% facilitation 60 post-exercise 500% facilitation 90 post-exercise 260% facilitation 20 Hz RNS RNS in Botulism Perform in clinically weak muscles RNS in CMS Use low frequency RNS if possible Specific finding is sustained PAF lasting for minutes without PAE PAF is typically more than 40%, but not as striking as in LEMS Mild cases may exhibit normal RNS testing 50 Hz RNS in ADQ in infant botulism with sustained 50% amplitude facilitation. CMAP duration decreased by 15% with only 40% CMAP area facilitation Decremental responses with low frequency stimulation Prolonged low frequency stimulation may be necessary in endplate CHAT deficiency with prolonged PAE lasting minutes Repetitive discharges in slow channel CMS, congenital AChE deficiency, MuSK, cholinesterase intoxication Punga AR, et al. Muscle Nerve 2006;34: VC Juel 6

7 RNS Testing: Summary Widely available, but technically demanding Abnormal findings not specific to primary NMJ disorders Motor neuron disease Severe peripheral neuropathy Myotonic disorders Should be performed in context of history, physical findings, and EDx findings on motor and sensory NCS SFEMG Record individual MFAPs w/i single MU 25 µm dia recording surface Filter settings: LFF 500 Hz, HFF 10K Hz Sweep: 0.5 ms/div Gain: µv/div Muscle fiber is < 300 µm from recording surface if SF potential is > 200 µv and has < 300 µs rise time Recording electrode comparison Recording field Surface area Needle positioning for jitter vs. fiber density analysis Best for FD Reduced FD Single fiber mm 2 Concentric 0.07 mm 2 Monopolar 0.34 mm 2 Increased FD Best for jitter 7

8 Acceptable MFAP parameters Rise time < 300 µsec Amplitude > 200 µv Well defined peaks with constant shape Clear separation between potentials No notches or shoulders on rising phase MCD 28 µsec MCD 118 µsec 20% blocking Jitter measurement parameters Number of fiber pairs assessed Mean MCD Median MCD % normal pairs % pairs with increased jitter, no blocking % pairs with increased jitter and blocking w/ voluntary activation 8

9 Abnormal jitter Voluntary vs. Stimulated SFEMG MSD used to decrease variability related to slow trends or fluctuating firing rate (when MCD:MSD > 1.25) Assess 20 fiber pairs per muscle Abnormal study if: >3 pairs with increased jitter (> 10% of 20 pairs) Any impulse blocking Voluntary activated jitter Pro Easiest to perform Second needle insertion avoided Fewer artifacts Blocking more easily assessed Con Requires cooperation Variable firing rates may influence MCD Injury potential Split fiber w/ low jitter False triggers Stimulated jitter No cooperation required Can assess effect of firing rate Technical artifacts Difficult to assess blocking Cannot test FD Cannot test all muscles Jitter measurements with CN electrodes ASFAPs (apparent single fiber action potentials) Disposable CN electrodes are sterile, single-use, sharp, do not require maintenance Composite potentials in CN jitter studies Look for shoulders, notches, poor superimposition Reduced selectivity for single muscle fibers (recording surface area mm 2 versus SF electrode recording surface area mm 2, about 40 times larger) Cannot distinguish between single MFAP and composite MFAPs More review and editing required to remove composite spikes Increase LFF to 1 khz Use smallest CN electrode available (DCF-25) Mild increases in jitter may be missed with CN electrodes Stalberg E et al. Muscle Nerve 53: ,

10 Normal jitter values (voluntary activation) Note: Lower with concentric needles Muscle EDC Frontalis OOC ULN Mean MCD (µsec) ULN Pair MCD (µsec) Concentric needle measurements in italics SFEMG: Summary Requires special expertise, technically demanding Concentric needle jitter studies are more time consuming SF electrodes must be maintained Abnormal findings not specific to primary NMJ disorders Immature reinnervation, some myopathies Should be performed in context of history, physical findings, and other EDx findings Summary: RNS testing and SFEMG Require attention to technical detail to prevent misdiagnosis Can confirm abnormal NMT in real time to establish dx Seronegative MG and LEM patients CMS Botulism Prolonged effects of NMBAs Can assess the degree of abnormal NMT in patients with known NMT disorders as a marker of disease activity 10

Neuromuscular Junction Testing ELBA Y. GERENA MALDONADO, MD ACTING ASSISTANT PROFESSOR UNIVERSITY OF WASHINGTON MEDICAL CENTER

Neuromuscular Junction Testing ELBA Y. GERENA MALDONADO, MD ACTING ASSISTANT PROFESSOR UNIVERSITY OF WASHINGTON MEDICAL CENTER Neuromuscular Junction Testing ELBA Y. GERENA MALDONADO, MD ACTING ASSISTANT PROFESSOR UNIVERSITY OF WASHINGTON MEDICAL CENTER Objectives Neurophysiology Electrodiagnostic Evaluation Clinical Application

More information

Stanley Iyadurai, PhD MD. Assistant Professor of Neurology/Neuromuscular Medicine Nationwide Children s Hospital Myology Course 2015

Stanley Iyadurai, PhD MD. Assistant Professor of Neurology/Neuromuscular Medicine Nationwide Children s Hospital Myology Course 2015 1 Stanley Iyadurai, PhD MD Assistant Professor of Neurology/Neuromuscular Medicine Nationwide Children s Hospital Myology Course 2015 Motor unit motor neuron, its axon, and nerve terminals, and muscle

More information

CONCENTRIC NEEDLE JITTER ON STIMULATED FRONTALIS AND EXTENSOR DIGITORUM IN 20 MYASTHENIA GRAVIS PATIENTS

CONCENTRIC NEEDLE JITTER ON STIMULATED FRONTALIS AND EXTENSOR DIGITORUM IN 20 MYASTHENIA GRAVIS PATIENTS CONCENTRIC NEEDLE JITTER ON STIMULATED FRONTALIS AND EXTENSOR DIGITORUM IN 20 MYASTHENIA GRAVIS PATIENTS JOÃO ARIS KOUYOUMDJIAN, MD, PhD, 1 ADRIANA CRISTINA DA SILVA FANANI, MD, 1 and ERIK V. STÅLBERG,

More information

Index. Note: Page numbers of article titles are in boldface type.

Index. Note: Page numbers of article titles are in boldface type. Neurol Clin N Am 20 (2002) 605 617 Index Note: Page numbers of article titles are in boldface type. A ALS. See Amyotrophic lateral sclerosis (ALS) Amyotrophic lateral sclerosis (ALS) active denervation

More information

Nerve Conduction Studies NCS

Nerve Conduction Studies NCS Nerve Conduction Studies NCS Nerve conduction studies are an essential part of an EMG examination. The clinical usefulness of NCS in the diagnosis of diffuse and local neuropathies has been thoroughly

More information

Nerve Conduction Studies NCS

Nerve Conduction Studies NCS Nerve Conduction Studies NCS Nerve conduction studies are an essential part of an EMG examination. The clinical usefulness of NCS in the diagnosis of diffuse and local neuropathies has been thoroughly

More information

Conventional needle electromyography

Conventional needle electromyography 3 rd Congress of the European Academy of Neurology Amsterdam, The Netherlands, June 24 27, 2017 Hands-on Course 5 Electromyography: Surface, needle conventional and single fiber - Level 1-2 Conventional

More information

Alterations in Synaptic Strength Preceding Axon Withdrawal

Alterations in Synaptic Strength Preceding Axon Withdrawal Alterations in Synaptic Strength Preceding Axon Withdrawal H. Colman, J. Nabekura, J.W. Lichtman presented by Ana Fiallos Synaptic Transmission at the Neuromuscular Junction Motor neurons with cell bodies

More information

Pediatric Aspects of EDX

Pediatric Aspects of EDX Pediatric Aspects of EDX Albert C. Clairmont, MD Associate Professor-Clinical The Ohio State University February 25, 2013 Objectives Overview of Pediatric Electrodiagnosis (EDX) Understand the different

More information

CHAPTER 44: Neurons and Nervous Systems

CHAPTER 44: Neurons and Nervous Systems CHAPTER 44: Neurons and Nervous Systems 1. What are the three different types of neurons and what are their functions? a. b. c. 2. Label and list the function of each part of the neuron. 3. How does the

More information

Neurophysiology of Nerve Impulses

Neurophysiology of Nerve Impulses M52_MARI0000_00_SE_EX03.qxd 8/22/11 2:47 PM Page 358 3 E X E R C I S E Neurophysiology of Nerve Impulses Advance Preparation/Comments Consider doing a short introductory presentation with the following

More information

PSK4U THE NEUROMUSCULAR SYSTEM

PSK4U THE NEUROMUSCULAR SYSTEM PSK4U THE NEUROMUSCULAR SYSTEM REVIEW Review of muscle so we can see how the neuromuscular system works This is not on today's note Skeletal Muscle Cell: Cellular System A) Excitation System Electrical

More information

Automated Measurement of Neuromuscular Jitter Based on EMG Signal Decomposition

Automated Measurement of Neuromuscular Jitter Based on EMG Signal Decomposition Automated Measurement of Neuromuscular Jitter Based on EMG Signal Decomposition By KUN HE A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master

More information

Role of concentric needle Single Fiber Electromyography in detection of subclinical motor involvement in carpal tunnel syndrome

Role of concentric needle Single Fiber Electromyography in detection of subclinical motor involvement in carpal tunnel syndrome Tawfeek et al. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery (2018) 54:2 https://doi.org/10.1186/s41983-018-0004-4 The Egyptian Journal of Neurology, Psychiatry and Neurosurgery RESEARCH

More information

BIONB/BME/ECE 4910 Neuronal Simulation Assignments 1, Spring 2013

BIONB/BME/ECE 4910 Neuronal Simulation Assignments 1, Spring 2013 BIONB/BME/ECE 4910 Neuronal Simulation Assignments 1, Spring 2013 Tutorial Assignment Page Due Date Week 1/Assignment 1: Introduction to NIA 1 January 28 The Membrane Tutorial 9 Week 2/Assignment 2: Passive

More information

SINGLE FIBER EMG AND MACRO EMG

SINGLE FIBER EMG AND MACRO EMG AANEM WORKSHOP SINGLE FIBER EMG AND MACRO EMG Erik V. Stålberg, MD, PhD AMERICAN ASSOCIATION OF NEUROMUSCULAR & ELECTRODIAGNOSTIC MEDICINE Workshop handouts are prepared as background didactic material

More information

Quantal Analysis Problems

Quantal Analysis Problems Quantal Analysis Problems 1. Imagine you had performed an experiment on a muscle preparation from a Drosophila larva. In this experiment, intracellular recordings were made from an identified muscle fibre,

More information

Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells

Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells CHAPTER 7 The Nervous System: Neurons and Synapses Chapter 7 Outline Neurons and Supporting Cells Activity in Axons The Synapse Acetylcholine as a Neurotransmitter Monoamines as Neurotransmitters Other

More information

1) Drop off in the Bi 150 box outside Baxter 331 or to the head TA (jcolas).

1) Drop off in the Bi 150 box outside Baxter 331 or  to the head TA (jcolas). Bi/CNS/NB 150 Problem Set 3 Due: Tuesday, Oct. 27, at 4:30 pm Instructions: 1) Drop off in the Bi 150 box outside Baxter 331 or e-mail to the head TA (jcolas). 2) Submit with this cover page. 3) Use a

More information

Parameters to quantify. shape of individual MUPs jiggle fullness recruitment (early, reduced) dynamic changes with time (fatigue) 2 normal motor units

Parameters to quantify. shape of individual MUPs jiggle fullness recruitment (early, reduced) dynamic changes with time (fatigue) 2 normal motor units 2 normal motor units STÅLBERG Reinnervated motor unit STÅLBERG STÅLBERG Muscle membrane function - spontaneous Muscle fibre characteristics; diameter MU organisation number of fibres grouping N-M transmission

More information

Activity Dependent Changes At the Developing Neuromuscular Junction

Activity Dependent Changes At the Developing Neuromuscular Junction Activity Dependent Changes At the Developing Neuromuscular Junction (slides 16, 17 and 18 have been slightly modified for clarity) MCP Lecture 2-3 9.013/7.68 04 Neuromuscular Junction Development 1. Muscle

More information

What effect would an AChE inhibitor have at the neuromuscular junction?

What effect would an AChE inhibitor have at the neuromuscular junction? CASE 4 A 32-year-old woman presents to her primary care physician s office with difficulty chewing food. She states that when she eats certain foods that require a significant amount of chewing (meat),

More information

NATIONAL COMPETENCY SKILL STANDARDS FOR PERFORMING NERVE CONDUCTION STUDIES

NATIONAL COMPETENCY SKILL STANDARDS FOR PERFORMING NERVE CONDUCTION STUDIES NATIONAL COMPETENCY SKILL STANDARDS FOR PERFORMING NERVE CONDUCTION STUDIES Nerve Conduction Study (NCS) providers practice in accordance with the facility policy and procedure manual which details every

More information

What is Anatomy and Physiology?

What is Anatomy and Physiology? Introduction BI 212 BI 213 BI 211 Ecosystems Organs / organ systems Cells Organelles Communities Tissues Molecules Populations Organisms Campbell et al. Figure 1.4 Introduction What is Anatomy and Physiology?

More information

Introduction to Neurobiology

Introduction to Neurobiology Biology 240 General Zoology Introduction to Neurobiology Nervous System functions: communication of information via nerve signals integration and processing of information control of physiological and

More information

EDX in Myopathies Limitations. EDX in Myopathies Utility Causes of Myopathy. Myopathy: Issues for Electromyographers

EDX in Myopathies Limitations. EDX in Myopathies Utility Causes of Myopathy. Myopathy: Issues for Electromyographers Electrodiagnostic Assessment of Myopathy Myopathy: Issues for Electromyographers Often perceived as challenging Ian Grant Division of Neurology QEII Health Sciences Centre Halifax NS CNSF EMG Course June

More information

Homeostatic regulation of synaptic strength and the safety factor for neuromuscular transmission

Homeostatic regulation of synaptic strength and the safety factor for neuromuscular transmission The Life Cycle of Neuromuscular Synapses Homeostatic regulation of synaptic strength and the safety factor for neuromuscular transmission 1. Synaptic transmission, safety factor and sizestrength relationships

More information

Making sense of Nerve conduction & EMG

Making sense of Nerve conduction & EMG Making sense of Nerve conduction & EMG Drs R Arunachalam Consultant Clinical Neurophysiologist Wessex Neurological Centre Southampton University Hospital EMG/NCS EMG machine For the assessment of patients

More information

Compound Action Potential, CAP

Compound Action Potential, CAP Stimulus Strength UNIVERSITY OF JORDAN FACULTY OF MEDICINE DEPARTMENT OF PHYSIOLOGY & BIOCHEMISTRY INTRODUCTION TO NEUROPHYSIOLOGY Spring, 2013 Textbook of Medical Physiology by: Guyton & Hall, 12 th edition

More information

Neurophysiology. Corresponding textbook pages: ,

Neurophysiology. Corresponding textbook pages: , Neurophysiology Corresponding textbook pages: 436-440, 442-455 Organization Helps maintain homeostasis in the body Nervous system and endocrine system Nervous system is faster due to nerve impulses 1 Fig.

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Thursday, January 22, Nerve impulse

Thursday, January 22, Nerve impulse Nerve impulse Transmembrane Potential caused by ions moving through cell membrane at different rates Two main ions of concern Na + - Sodium K + - potassium Cell membrane not freely permeable therefore

More information

Neuroscience 201A (2016) - Problems in Synaptic Physiology

Neuroscience 201A (2016) - Problems in Synaptic Physiology Question 1: The record below in A shows an EPSC recorded from a cerebellar granule cell following stimulation (at the gap in the record) of a mossy fiber input. These responses are, then, evoked by stimulation.

More information

ORIGINS, ACQUISITION, AND IMPLICATIONS

ORIGINS, ACQUISITION, AND IMPLICATIONS ORIGINS, ACQUISITION, AND IMPLICATIONS Ruple S. Laughlin MD Department of Neurology Rochester, MN Mayo Clinic Overview Nerve conduction studies (NCS) are utilized to evaluate large myelinated motor and

More information

Spatial Distribution of Calcium Entry Evoked by Single Action Potentials within the Presynaptic Active Zone

Spatial Distribution of Calcium Entry Evoked by Single Action Potentials within the Presynaptic Active Zone Spatial Distribution of Calcium Entry Evoked by Single Action Potentials within the Presynaptic Active Zone Elliot S. Wachman,, Robert E. Poage,, Joel R. Stiles, Daniel L. Farkas,, and Stephen D. Meriney

More information

Omar Sami. Muhammad Abid. Muhammad khatatbeh

Omar Sami. Muhammad Abid. Muhammad khatatbeh 10 Omar Sami Muhammad Abid Muhammad khatatbeh Let s shock the world In this lecture we are going to cover topics said in previous lectures and then start with the nerve cells (neurons) and the synapses

More information

Motor and sensory nerve conduction studies

Motor and sensory nerve conduction studies 3 rd Congress of the European Academy of Neurology Amsterdam, The Netherlands, June 24 27, 2017 Hands-on Course 2 Assessment of peripheral nerves function and structure in suspected peripheral neuropathies

More information

Wrist, Elbow Hand. Surface Recording Technique, Study from Median Thenar (MT) Muscle

Wrist, Elbow Hand. Surface Recording Technique, Study from Median Thenar (MT) Muscle Surface ecording Technique, Study from Median Thenar (MT) Muscle Original Settings Sensitivity, duration of pulse, sweep speed, low-frequency filter, high- frequency filter, and the machine used were not

More information

3) Most of the organelles in a neuron are located in the A) dendritic region. B) axon hillock. C) axon. D) cell body. E) axon terminals.

3) Most of the organelles in a neuron are located in the A) dendritic region. B) axon hillock. C) axon. D) cell body. E) axon terminals. Chapter 48 Neurons, Synapses, and Signaling Multiple-Choice Questions 1) A simple nervous system A) must include chemical senses, mechanoreception, and vision. B) includes a minimum of 12 ganglia. C) has

More information

Chapter 10: Muscles. Vocabulary: aponeurosis, fatigue

Chapter 10: Muscles. Vocabulary: aponeurosis, fatigue Chapter 10: Muscles 37. Describe the structural components of skeletal muscle tissue from the molecular to the organ level. 38. Describe the structure, function, and importance of sarcomeres. 39. Identify

More information

EE 791 Lecture 2 Jan 19, 2015

EE 791 Lecture 2 Jan 19, 2015 EE 791 Lecture 2 Jan 19, 2015 Action Potential Conduction And Neural Organization EE 791-Lecture 2 1 Core-conductor model: In the core-conductor model we approximate an axon or a segment of a dendrite

More information

Traumatic Nerve Injuries. Nerve Injuries and Repair as Seen Through Electrodiagnostic Medicine

Traumatic Nerve Injuries. Nerve Injuries and Repair as Seen Through Electrodiagnostic Medicine Nerve Injuries and Repair as Seen Through Electrodiagnostic Medicine Ultra EMG February 2013 William S. Pease, M.D. Traumatic Nerve Injuries An orderly sequence of degeneration and regeneration follows

More information

Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons. Chad Smurthwaite & Jordan Shellmire

Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons. Chad Smurthwaite & Jordan Shellmire Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons Chad Smurthwaite & Jordan Shellmire The Chemical Synapse The most common type of synapse used for signal transmission in the central

More information

Endocrine System Nervous System

Endocrine System Nervous System Cells Endocrine System Nervous System Tissues Controls Organs Nervous System vs Endocrine System Electrical signals (graded potentials and action potentials) and chemical signals (neurotransmitters) Fast

More information

NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES 34.3

NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES 34.3 NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES 34.3 NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES Neurons communicate with other neurons or target cells at synapses. Chemical synapse: a very narrow

More information

Stimulated jitter with concentric needle in 42 myasthenia gravis patients

Stimulated jitter with concentric needle in 42 myasthenia gravis patients DOI: 10.1590/0004-282X20130008 ARTICLE Stimulated jitter with concentric needle in 42 myasthenia gravis patients Jitter estimulado obtido com agulha concêntrica em 42 pacientes com miastenia gravis João

More information

Endocrine System Nervous System

Endocrine System Nervous System Cells Endocrine System Nervous System Tissues Controls Organs Nervous System vs Endocrine System Electrical signals (graded potentials and action potentials) and chemical signals (neurotransmitters) Fast

More information

Ameen Alsaras. Ameen Alsaras. Mohd.Khatatbeh

Ameen Alsaras. Ameen Alsaras. Mohd.Khatatbeh 9 Ameen Alsaras Ameen Alsaras Mohd.Khatatbeh Nerve Cells (Neurons) *Remember: The neural cell consists of: 1-Cell body 2-Dendrites 3-Axon which ends as axon terminals. The conduction of impulse through

More information

The mammalian cochlea possesses two classes of afferent neurons and two classes of efferent neurons.

The mammalian cochlea possesses two classes of afferent neurons and two classes of efferent neurons. 1 2 The mammalian cochlea possesses two classes of afferent neurons and two classes of efferent neurons. Type I afferents contact single inner hair cells to provide acoustic analysis as we know it. Type

More information

SECTION II: ILLUSTRATIONS OF SELECTED WAVEFORMS

SECTION II: ILLUSTRATIONS OF SELECTED WAVEFORMS SECTION II: ILLUSTRATIONS OF SELECTED WAVEFORMS FIGURE 1 COMPOUND SENSORY NERVE ACTION POTENTIALS FIGURE 2 SHORT-LATENCY SOMATOSENSORY EVOKED POTENTIALS MEDIAN NERVE FIGURE 3 SHORT-LATENCY SOMATOSENSORY

More information

Skeletal Muscle and the Molecular Basis of Contraction. Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry

Skeletal Muscle and the Molecular Basis of Contraction. Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry Skeletal Muscle and the Molecular Basis of Contraction Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry Like neurons, all muscle cells can be excited chemically, electrically, and

More information

Is the Stimulation Frequency of the Repetitive Nerve Stimulation Test that You Choose Appropriate?

Is the Stimulation Frequency of the Repetitive Nerve Stimulation Test that You Choose Appropriate? 186 Is the Stimulation Frequency of the Repetitive Nerve Stimulation Test that You Choose Appropriate? Yuan-Ting Sun and Thy-Sheng Lin Abstract- The repetitive nerve stimulation test (RNST) has been a

More information

Action potentials in nerve and muscle. Erik Stålberg Uppsala University Hospital Sweden. Kimura, Intracellular recording

Action potentials in nerve and muscle. Erik Stålberg Uppsala University Hospital Sweden. Kimura, Intracellular recording Action potentials in nerve and muscle Erik Stålberg Uppsala University Hospital Sweden Kimura, 2001 Intracellular recording 1 Electrical field around the dipole Muscle fibre and unmyelinated axon (continous

More information

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Module 11.1 Overview of the Nervous System (Figures 11.1-11.3) A. The nervous system controls our perception and experience

More information

The Nervous System. Dr. ZHANG Xiong Dept. of Physiology ZJU School of Medicine.

The Nervous System. Dr. ZHANG Xiong Dept. of Physiology ZJU School of Medicine. The Nervous System Dr. ZHANG Xiong Dept. of Physiology ZJU School of Medicine Http://10.10.10.151 Part 1. Summary of the nervous system The Nervous System Central Nervous System Brain + Spinal Cord Peripheral

More information

Basic Electrophysiology, the Electroretinogram (ERG) and the Electrooculogram (EOG) - Signal origins, recording methods and clinical applications

Basic Electrophysiology, the Electroretinogram (ERG) and the Electrooculogram (EOG) - Signal origins, recording methods and clinical applications Basic Electrophysiology, the Electroretinogram (ERG) and the Electrooculogram (EOG) - Signal origins, recording methods and clinical applications The body is a complex machine consisting of the central

More information

SUPPLEMENTARY INFORMATION. Supplementary Figure 1

SUPPLEMENTARY INFORMATION. Supplementary Figure 1 SUPPLEMENTARY INFORMATION Supplementary Figure 1 The supralinear events evoked in CA3 pyramidal cells fulfill the criteria for NMDA spikes, exhibiting a threshold, sensitivity to NMDAR blockade, and all-or-none

More information

浙江大学医学院基础医学整合课程 各论 III. The Nervous System. Dr. ZHANG Xiong Dept. of Physiology ZJU School of Medicine

浙江大学医学院基础医学整合课程 各论 III. The Nervous System. Dr. ZHANG Xiong Dept. of Physiology ZJU School of Medicine The Nervous System Dr. ZHANG Xiong Dept. of Physiology ZJU School of Medicine xiongzhang@zju.edu.cn http://10.202.77.12/ 1 Part 1. Summary of the nervous system 2 The Nervous System Central Nervous System

More information

Guide to the use of nerve conduction studies (NCS) & electromyography (EMG) for non-neurologists

Guide to the use of nerve conduction studies (NCS) & electromyography (EMG) for non-neurologists Guide to the use of nerve conduction studies (NCS) & electromyography (EMG) for non-neurologists What is NCS/EMG? NCS examines the conduction properties of sensory and motor peripheral nerves. For both

More information

! What is electrophysiological characterization. ! Brief review of quantitative EMG. ! Principles of decomposition EMG. ! Basic overview of DQEMG

! What is electrophysiological characterization. ! Brief review of quantitative EMG. ! Principles of decomposition EMG. ! Basic overview of DQEMG Electrophysiological Characterization of Muscle Using Quantitative EMG Measures Daniel W. Stashuk, PhD Department of Systems Design Engineering University of Waterloo Objectives! What is electrophysiological

More information

Cellular Bioelectricity

Cellular Bioelectricity ELEC ENG 3BB3: Cellular Bioelectricity Notes for Lecture 22 Friday, February 28, 2014 10. THE NEUROMUSCULAR JUNCTION We will look at: Structure of the neuromuscular junction Evidence for the quantal nature

More information

Outline. Neuron Structure. Week 4 - Nervous System. The Nervous System: Neurons and Synapses

Outline. Neuron Structure. Week 4 - Nervous System. The Nervous System: Neurons and Synapses Outline Week 4 - The Nervous System: Neurons and Synapses Neurons Neuron structures Types of neurons Electrical activity of neurons Depolarization, repolarization, hyperpolarization Synapses Release of

More information

QUIZ/TEST REVIEW NOTES SECTION 7 NEUROPHYSIOLOGY [THE SYNAPSE AND PHARMACOLOGY]

QUIZ/TEST REVIEW NOTES SECTION 7 NEUROPHYSIOLOGY [THE SYNAPSE AND PHARMACOLOGY] QUIZ/TEST REVIEW NOTES SECTION 7 NEUROPHYSIOLOGY [THE SYNAPSE AND PHARMACOLOGY] Learning Objectives: Explain how neurons communicate stimulus intensity Explain how action potentials are conducted along

More information

1/22/2019. Nerve conduction studies. Learning objectives: Jeffrey Allen MD University of Minnesota Minneapolis, MN

1/22/2019. Nerve conduction studies. Learning objectives: Jeffrey Allen MD University of Minnesota Minneapolis, MN Jeffrey Allen MD University of Minnesota Minneapolis, MN February 9, 2019 Learning objectives: Describe electrophysiologic features of peripheral nerve demyelination Identify electrophysiology findings

More information

Neurophysiology scripts. Slide 2

Neurophysiology scripts. Slide 2 Neurophysiology scripts Slide 2 Nervous system and Endocrine system both maintain homeostasis in the body. Nervous system by nerve impulse and Endocrine system by hormones. Since the nerve impulse is an

More information

Chapter 11: Functional Organization of Nervous Tissue

Chapter 11: Functional Organization of Nervous Tissue Chapter 11: Functional Organization of Nervous Tissue I. Functions of the Nervous System A. List and describe the five major nervous system functions: 1. 2. 3. 4. 5. II. Divisions of the Nervous System

More information

1) Drop off in the Bi 150 box outside Baxter 331 or to the head TA (jcolas).

1) Drop off in the Bi 150 box outside Baxter 331 or  to the head TA (jcolas). Bi/CNS/NB 150 Problem Set 3 Due: Tuesday, Oct. 27, at 4:30 pm Instructions: 1) Drop off in the Bi 150 box outside Baxter 331 or e-mail to the head TA (jcolas). 2) Submit with this cover page. 3) Use a

More information

UNIVERSITY OF JORDAN FACULTY OF MEDICINE DEPARTMENT OF PHYSIOLOGY & BIOCHEMISTRY NEUROPHYSIOLOGY (MEDICAL) Spring, 2014

UNIVERSITY OF JORDAN FACULTY OF MEDICINE DEPARTMENT OF PHYSIOLOGY & BIOCHEMISTRY NEUROPHYSIOLOGY (MEDICAL) Spring, 2014 UNIVERSITY OF JORDAN FACULTY OF MEDICINE DEPARTMENT OF PHYSIOLOGY & BIOCHEMISTRY NEUROPHYSIOLOGY (MEDICAL) Spring, 2014 Textbook of Medical Physiology by: Guyton & Hall, 12 th edition 2011 Eman Al-Khateeb,

More information

Synapses. Excitatory synapses

Synapses. Excitatory synapses Synapses Sensory cells located at the periphery of the body, initiate and conduct signals to the brain and provide various sensory inputs such as vision, hearing, posture, and so on. Providing information

More information

BIOL Week 6. Nervous System. Transmission at Synapses

BIOL Week 6. Nervous System. Transmission at Synapses Collin County Community College BIOL 2401 Week 6 Nervous System 1 Transmission at Synapses Synapses are the site of communication between 2 or more neurons. It mediates the transfer of information and

More information

Neurons, Synapses and Signaling. Chapter 48

Neurons, Synapses and Signaling. Chapter 48 Neurons, Synapses and Signaling Chapter 48 Warm Up Exercise What types of cells can receive a nerve signal? Nervous Organization Neurons- nerve cells. Brain- organized into clusters of neurons, called

More information

Nerve Muscle Relationship and Neural Muscular Junction Quiz. Remember, you need to know the structure and the function!

Nerve Muscle Relationship and Neural Muscular Junction Quiz. Remember, you need to know the structure and the function! Nerve Muscle Relationship and Neural Muscular Junction Quiz Remember, you need to know the structure and the function! What is this called? What is this? Schwann cell What is this called? Basal lamina

More information

Chapter 11: Nervous System and Nervous Tissue

Chapter 11: Nervous System and Nervous Tissue Chapter 11: Nervous System and Nervous Tissue I. Functions and divisions of the nervous system A. Sensory input: monitor changes in internal and external environment B. Integrations: make decisions about

More information

Nervous System. Master controlling and communicating system of the body. Secrete chemicals called neurotransmitters

Nervous System. Master controlling and communicating system of the body. Secrete chemicals called neurotransmitters Nervous System Master controlling and communicating system of the body Interacts with the endocrine system to control and coordinate the body s responses to changes in its environment, as well as growth,

More information

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURE AND MAINTENANCE OF NEURONS (a) (b) Dendrites Cell body Initial segment collateral terminals (a) Diagrammatic representation of a neuron. The break in

More information

BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1

BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1 BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1 Terms you should know: synapse, neuromuscular junction (NMJ), pre-synaptic, post-synaptic, synaptic cleft, acetylcholine (ACh), acetylcholine

More information

Animal Physiology Study Guide

Animal Physiology Study Guide Animal Physiology Study Guide 1. Which of the following are an example of passive transport? 2. Which active transport? 3. How can you tell? 1. Which of the following are an example of passive transport?

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 12 Nervous Tissue Introduction The purpose of the chapter is to: 1. Understand how the nervous system helps to keep controlled conditions within

More information

Guidelines for Repetitive Nerve Stimulation recording (decrement study)

Guidelines for Repetitive Nerve Stimulation recording (decrement study) Guidelines for Repetitive Nerve Stimulation recording (decrement study) RNS recordings are performed in patients with muscular fatigue symptoms such as Myastenia Gravis (MG) or Myastenic syndrome (MyS

More information

Neurons. Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons.

Neurons. Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons. Neurons Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons. MBL, Woods Hole R Cheung MSc Bioelectronics: PGEE11106 1 Neuron

More information

Nervous System Review

Nervous System Review Nervous System Review Name: Block: 1. Which processes are involved in the movement of molecule Y from point X to point Z? A. exocytosis and diffusion B. endocytosis and diffusion C. exocytosis and facilitated

More information

Chapter 9 - Muscle and Muscle Tissue

Chapter 9 - Muscle and Muscle Tissue Chapter 9 - Muscle and Muscle Tissue I. Overview of muscle tissue A. Three muscle types in the body: B. Special characteristics 1. Excitability: able to receive and respond to a stimulus 2. Contractility:

More information

The Electrodiagnosis of Neuropathy: Basic Principles and Common Pitfalls

The Electrodiagnosis of Neuropathy: Basic Principles and Common Pitfalls Neurol Clin 25 (2007) 1 28 The Electrodiagnosis of Neuropathy: Basic Principles and Common Pitfalls Clifton L. Gooch, MD a, *, Louis H. Weimer, MD b a Columbia Neuropathy Research Center, Electromyography

More information

Chapter 8 11/1/2012. Synaptic Components are Ancient. Syncytium or Synapses? Synapse Formation and Function. Early Calcium Spikes

Chapter 8 11/1/2012. Synaptic Components are Ancient. Syncytium or Synapses? Synapse Formation and Function. Early Calcium Spikes Chapter 8 Synaptic Components are Ancient Synapse Formation and Function Fig 8.1 Syncytium or Synapses? Electrical Development Synapses Improve in Function with Time Fig 8.2 Fig 8.3 Early Calcium Spikes

More information

INTRAOPERATIVE NEUROPHYSIOLOGICAL MONITORING FOR MICROVASCULAR DECOMPRESSION SURGERY IN PATIENTS WITH HEMIFACIAL SPASM

INTRAOPERATIVE NEUROPHYSIOLOGICAL MONITORING FOR MICROVASCULAR DECOMPRESSION SURGERY IN PATIENTS WITH HEMIFACIAL SPASM INTRAOPERATIVE NEUROPHYSIOLOGICAL MONITORING FOR MICROVASCULAR DECOMPRESSION SURGERY IN PATIENTS WITH HEMIFACIAL SPASM WILLIAM D. MUSTAIN, PH.D., CNIM, BCS-IOM DEPARTMENT OF OTOLARYNGOLOGY AND COMMUNICATIVE

More information

5-Nervous system II: Physiology of Neurons

5-Nervous system II: Physiology of Neurons 5-Nervous system II: Physiology of Neurons AXON ION GRADIENTS ACTION POTENTIAL (axon conduction) GRADED POTENTIAL (cell-cell communication at synapse) SYNAPSE STRUCTURE & FUNCTION NEURAL INTEGRATION CNS

More information

Version A. AP* Biology: Nervous System. Questions 1 and 2. Name: Period

Version A. AP* Biology: Nervous System. Questions 1 and 2. Name: Period Name: Period Version A AP* Biology: Nervous System Directions: Each of the questions or incomplete statements below is followed by four suggested answers or completions. Select the one that is best in

More information

Nerve. (2) Duration of the stimulus A certain period can give response. The Strength - Duration Curve

Nerve. (2) Duration of the stimulus A certain period can give response. The Strength - Duration Curve Nerve Neuron (nerve cell) is the structural unit of nervous system. Nerve is formed of large numbers of nerve fibers. Types of nerve fibers Myelinated nerve fibers Covered by myelin sheath interrupted

More information

Biol 219 Lec 12 Fall 2016

Biol 219 Lec 12 Fall 2016 Cell-to-Cell: Neurons Communicate at Synapses Electrical synapses pass electrical signals through gap junctions Signal can be bi-directional Synchronizes the activity of a network of cells Primarily in

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 10 Muscular Tissue Introduction The purpose of the chapter is to: 1. Learn about the structure and function of the 3 types of muscular tissue

More information

Membrane Potentials. (And Neuromuscular Junctions)

Membrane Potentials. (And Neuromuscular Junctions) Membrane Potentials (And Neuromuscular Junctions) Skeletal Muscles Irritability & contractility Motor neurons & motor units Muscle cells have two important and unique properties: They are irritable and

More information

Structure of a Neuron:

Structure of a Neuron: Structure of a Neuron: At the dendrite the incoming signals arrive (incoming currents) At the soma current are finally integrated. At the axon hillock action potential are generated if the potential crosses

More information

Synapses and Neurotransmitters

Synapses and Neurotransmitters Synapses and Neurotransmitters Action Potentials We have been talking about action potentials and how they allow an electrical impulse to travel from the dendrites to the end plates of a neuron. These

More information

Neurons! John A. White Dept. of Bioengineering

Neurons! John A. White Dept. of Bioengineering Neurons! John A. White Dept. of Bioengineering john.white@utah.edu What makes neurons different from cardiomyocytes? Morphological polarity Transport systems Shape and function of action potentials Neuronal

More information

SYNAPTIC TRANSMISSION 1

SYNAPTIC TRANSMISSION 1 SYNAPTIC TRANSMISSION 1 I. OVERVIEW A. In order to pass and process information and mediate responses cells communicate with other cells. These notes examine the two means whereby excitable cells can rapidly

More information

Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve

Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve impulses - Impulse may be blocked in its transmission

More information

Myasthenia gravis. David Hilton-Jones Oxford Neuromuscular Centre

Myasthenia gravis. David Hilton-Jones Oxford Neuromuscular Centre Myasthenia gravis David Hilton-Jones Oxford Neuromuscular Centre SWIM, Taunton, 2018 Myasthenia gravis Autoimmune disease Nature of Role of thymus Myasthenia gravis Autoimmune disease Nature of Role of

More information

Na + K + pump. The beauty of the Na + K + pump. Cotransport. The setup Cotransport the result. Found along the plasma membrane of all cells.

Na + K + pump. The beauty of the Na + K + pump. Cotransport. The setup Cotransport the result. Found along the plasma membrane of all cells. The beauty of the Na + K + pump Na + K + pump Found along the plasma membrane of all cells. Establishes gradients, controls osmotic effects, allows for cotransport Nerve cells have a Na + K + pump and

More information

Muscle velocity recovery cycles: comparison between surface and needle recordings

Muscle velocity recovery cycles: comparison between surface and needle recordings Muscle velocity recovery cycles: comparison between surface and needle recordings Werner J. Z Graggen MD 1*, Joël P. Trautmann 2, Delphine Boërio PhD 2, and Hugh Bostock PhD 3 1 Department of Neurosurgery,

More information

All questions below pertain to mandatory material: all slides, and mandatory homework (if any).

All questions below pertain to mandatory material: all slides, and mandatory homework (if any). ECOL 182 Spring 2008 Dr. Ferriere s lectures Lecture 6: Nervous system and brain Quiz Book reference: LIFE-The Science of Biology, 8 th Edition. http://bcs.whfreeman.com/thelifewire8e/ All questions below

More information