The imaging findings of acute vertebral artery dissection

Size: px
Start display at page:

Download "The imaging findings of acute vertebral artery dissection"

Transcription

1 Published January 22, 2009 as /ajnr.A1455 ORIGINAL RESEARCH C. Lum S. Chakraborty M. Schlossmacher M. Santos R. Mohan J. Sinclair M. Sharma Vertebral Artery Dissection with a Normal- Appearing Lumen at Multisection CT Angiography: The Importance of Identifying Wall Hematoma BACKGROUND AND PURPOSE: CT angiography (CTA) is widely used and may be the only vascular imaging technique ordered for emergent evaluation of neurovascular disease. With thin-section multisection CTA, the resolution of vessel wall imaging has improved. We describe cases of acute vertebral artery dissection (VAD) in which the only abnormality on CTA was a characteristic thickening of the wall of the V3 portion of the vertebral artery (VA). The arterial lumen at the dissection site was normal in caliber. This type of dissection is easily overlooked if only lumen-opacifying studies such as contrast MR angiography (MRA) or conventional angiography are performed. We highlight the importance of recognizing this finding, the suboccipital rind sign, in the V3 portion, a segment commonly affected in VAD. The purpose of our study was to review the CTA imaging characteristics of patients with VAD in the V3 portion compared with normal controls. MATERIALS AND METHODS: Our imaging data base was reviewed for cases of acute VAD and the presence of a suboccipital rind sign. A control group of 50 patients was randomly recruited from a group of patients undergoing CTA. The VA luminal diameter, the wall thickness (total diameter luminal diameter), and the ratio of luminal diameter/total diameter were measured along 5 adjacent V3 segments and were compared between the 2 groups. RESULTS: There was no evidence of luminal tapering or narrowing in the dissected VAs compared with controls (P.1). The average wall thickness of the dissection group was 2.96 mm greater than that for the control group (P.001; 95% confidence interval, ). There was a significant difference in the ratio of lumen diameter/lumen wall diameter in dissected segments compared with controls (P.001). The imaging findings of acute vertebral artery dissection (VAD) are well known. Conventional angiography has long been considered the gold standard for imaging of vertebral artery dissections. 1 This can demonstrate the typical angiographic findings of an intimal flap: irregularity and/or stenosis of the vessel, the string sign (arising as a result of a dissection that extends circumferentially around the lumen over a long segment), the double lumen sign, pseudoaneurysm formation, or complete occlusion. 2-4 Stenosis is by far the most common finding resulting in luminal narrowing by subintimal hematoma formation. 4 In our center and many others, noninvasive imaging for suspected dissections has complemented or even replaced conventional angiography. This may consist of MR imaging, Received October 3, 2008; accepted after revision November 8. From the Department of Diagnostic Imaging Diagnostic and Interventional Neuroradiology Section (C.L., S.C., M. Santos, R.M.), Ottawa Hospital, Ottawa, Ontario, Canada; and Departments of Medicine Division of Neurology (M. Schlossmacher, M. Sharma) and Surgery-Neurosurgery Division (J.S.), The University of Ottawa, Ottawa, Ontario, Canada. Please address correspondence to Cheemun Lum, MD, Associate Professor of Radiology, Interventional and Diagnostic Neuroradiology, Neuroradiology Fellowship Director, University of Ottawa, Ottawa Hospital-Civic Campus, 1053 Carling Ave, Ottawa, ON, Canada, K1Y 4E9; chlum@ottawahospital.on.ca DOI /ajnr.A1455 CONCLUSIONS: Cross-sectional vascular imaging is often performed with multisection helical CTA for a variety of concerns, some without neurologic symptoms. Our study confirms that in cases of the suboccipital rind sign, the lumen appears normal in caliber, with wall thickening as the only imaging sign of VAD. In our center, this clinically occult VAD would influence management, with patients usually treated with antiplatelet agents. We caution against using only luminal-opacifying techniques such as contrast-enhanced MRA or conventional angiography to exclude VAD because they are limited in the evaluation of mural hematoma. MR angiography (MRA), and/or multisection helical CT angiography. 5 The relative advantage of cross-sectional imaging over conventional angiography is that it may better demonstrate extraluminal abnormalities. Additionally, it has the ability to further evaluate patients for a variety of clinical conditions associated with VAD, including stroke, subarachnoid hemorrhage, and cervical spine abnormalities. In our center, CT angiography (CTA) has become the primary technique for evaluation of suspected acute neurologic vascular disorders. VADs may often encroach on the arterial lumen, narrowing it and drawing one s attention to the area of abnormality. Occasionally, expansion of the lumen and wall from a pseudoaneurysm can occur. We have encountered cases of VAD in the segment between the C2 foramen transversaria and foramen magnum (V3 segment), in which the lumen diameter was normal in caliber. The only visible abnormality was a dorsal thickening of the arterial wall against the adjacent fat, the suboccipital rind sign (Figs 1 3). These findings resolved completely on follow-up imaging. The purpose of our study was to review the CTA imaging characteristics of patients with VAD in the V3 portion compared with healthy controls. We sought to evaluate the normal relationship between the lumen and wall in the V3 portion of HEAD & NECK ORIGINAL RESEARCH Copyright 2009 by American Society of Neuroradiology. AJNR Am J Neuroradiol :

2 Fig 1. Patient 3. A 32-year-old woman who presented with headache. A, CTA demonstrates abnormal thickening of the wall of the vertebral artery, the suboccipital rind sign (arrows). B, Time-of-flight MRA source image shows subacute blood in the area of wall thickening. C and D, Anteroposterior and lateral catheter angiograms demonstrate relatively normal lumen with no significant narrowing of the vessel (arrows). E, Follow-up CTA 7 months later shows resolution, compared with A, of soft tissue around the VA and re-appearance of normal fat planes (arrows). F, Follow-up MRA shows resolution, compared with B, of the intramural hematoma (arrows). the vertebral artery. In VAD cases, we aimed to verify that the subjective appearance of a normal arterial caliber was no different from that in controls. In normal arteries, the ratio of the lumen diameter/lumen wall diameter should approach unity because the normal wall has minimal thickness. We propose that in the rind sign cases, this ratio should significantly diminish, as a consequence of the wall hematoma thickness proportional to the lumen diameter. Materials and Methods This study received approval from our institutional review board. Our prospectively collected electronic data base was reviewed for cases categorized under suboccipital rind sign on CTA. The scans were obtained on a 16- or 64-section volume CT (VCT) scanner (LightSpeed; GE Healthcare, Milwaukee, Wis). On the VCT, 1.25-mm images were obtained by using a helical acquisition of mm and an interval of 0.4 mm. The helical pitch was 0.516:1 with a table speed of mm/rotation. The technique was 120 KV, 0.4- second gantry rotation, by using Smart ma (GE Healthcare) dose modulation set at a maximum of 550 ma and a noise index of 16. On the LightSpeed 16, 1.25-mm images were obtained with an interval of 0.6 mm. The pitch was 0.93:1 and the table speed was 3.37 mm/ rotation. The technique was 100 KV, 0.8-second rotation and an automated ma dose modulation set at a maximum of 350 ma and a noise index of 12. Seventy milliliters of iodinated contrast medium was injected, and scanning commenced after SmartPrep (GE Healthcare) bolus tracking indicated an increase of 100 HU measured at the aortic arch. Coronal, sagittal, and axial multiplanar reformats were created in maximum intensity projections of either 5 mm (VCT) or 25 mm (16-section CT) at 3-mm intervals. The presenting symptoms, presence of wall hematoma, presence of luminal narrowing, and follow-up images were reviewed (Table). A control group of 50 patients was randomly recruited from a group of patients undergoing CTA for the evaluation of intracranial and extracranial carotid disease and/or unruptured cerebral aneurysms. The V3 portion of the abnormal arteries was divided into the following 5 segments: C1 transverse foramen, proximal horizontal, midhorizontal, distal horizontal, and distal vertical before penetrating the dura. The total diameter, luminal diameter, and wall thickness (total diameter-luminal diameter) were measured. Mathematically, the relationship between vessel lumen and wall can be expressed as a ratio (Fig 4). We propose that the ratio of luminal diameter/total diameter should decrease between patients with the rind sign compared with controls. Statistical Analysis The means of the 5 segments of each measured variable were analyzed. An independent samples t test was performed to estimate the average difference in the measurements between the 2 groups. Results were expressed as means SD (range) in the Table. All analyses were performed in SAS, Version 9.1 (SAS Institute, Cary, NC). Results Between November 2005 and July 2006 (9 months), 6 patients were identified with the suboccipital rind sign, accounting for a possible 12 vertebral artery (VA) measurements in the dissected cohort. One patient had bilateral suboccipital rind signs, whereas another patient had only 1 artery measured, because the contralateral VA was occluded. This accounted for 7 abnormal arteries from a total of 11 measurable arteries. These 7 abnormal arteries constituted the dissection group. In the control group, there were 50 patients accounting for Lum AJNR

3 Fig 2. Patient 6. A 46-year-old woman with a history of cocaine abuse who presented with left neck pain, Horner syndrome, ataxia, and left facial droop. A, CTA image through the lower cervical spine level shows a hypoplastic left vertebral artery (arrow). B, CTA shows the abnormal suboccipital rind sign (arrows) and relatively normal caliber of a hypoplastic VA. C, Curved planar reformatted image demonstrates the entire length of a uniform-caliber hypoplastic left VA. D, Diffusion-weighted MR imaging shows an acute lateral medullary infarct (arrow). E, T2-weighted MR imaging image shows slow-flow or clot (arrow). VAs plus 4 normal VAs from the group of patients with dissection, totaling 104 arteries in the control group. Two of 6 (33%) patients presented with only neck pain or headache, without neurologic symptoms or occipital pain. Three of 6 (50%) presented with posterior circulation strokes. At imaging follow-up, 5 of 7 arteries (71%) returned to normal caliber. Seven of 7 (100%) of the rind signs resolved at follow-up (Table). The lumen diameter at the 5 V3 segments in the VAD cohort was constant without evidence of tapering. Although there is variability in the vessel diameter within and between normal patients, there was no significant difference in the arterial lumen diameter between dissected VAs and controls (P.1). The average wall thickness (Fig 5) of the dissection group was 2.96 mm greater than that for the control group (P.001, 95% confidence interval, ). There was a significant difference in the ratio of lumen diameter/ lumen wall diameter in dissected segments compared with controls (P.001). Discussion The vertebral artery can be classified into segments V1-V4. 2 The V3 segment initially courses vertically between the C2 and C1 transverse foramina, then traverses horizontally over the atlas groove and finally obliquely upwards to pierce the dura. Extracranial vertebral artery dissection can be spontaneous or traumatic. Most of the traumatic dissections involve the atlanto-occipital (V3) segment, which represents the segment of interest in our series. This may be secondary to the relative anchoring of the vessel at the C2 foramen transversarium and the dura. 6 Clinically, 70% of patients with VAD may present with occipital headache and neck pain, whereas 60% of patients have symptoms of vertebrobasilar circulation ischemia. 1,7 Although vertebral artery dissection accounts for only 0.4% 2.5% of the overall cases of cerebrovascular accident, it accounts for 4% of cases of ischemic stroke in patients younger than 45 years of age and 14% of cases of lower brain stem infarction. 8 Two patients (33%) in our series underwent CTA for work-up of isolated suboccipital headaches. Because CTA is being widely used, recognition of the rind sign is helpful in imaging patients without clinical suspicion of dissection. In our center, this finding would influence clinical management. Patients with the rind sign, even without neurologic symptoms, would usually be treated with antiplatelet agents. Both subjectively and objectively, our results demonstrated AJNR Am J Neuroradiol :

4 Fig 3. Patient 4. A 41-year-old man who presented with occipital headache. A and B, CTAs demonstrate a bilateral suboccipital rind sign (arrows). C, CEMRA demonstrates normal VA caliber in the suboccipital portion (arrows). More proximally, there is narrowing of the right VA at the C2 vertical portion. D, Axial maximum-intensity-projection image shows a normal caliber of the left vertebral artery (arrow). E, T1-weighted MR image demonstrates subacute blood within the mural hematoma (arrow). F, Follow-up CEMRA shows both vertebral arteries after resolution of the hematoma (arrows). Note the normal lumen diameter especially in the suboccipital portion. The focal narrowing at the C2 level on the right has persisted. Baseline patient characteristics Patient Sex Presenting Symptoms VAD Imaging Follow-up 1 M Trauma, neck pain Left Rind sign resolved, lumen normal 2 F Posterior circ. stroke Left Narrowing of VAs bilateral 3 F Headache, vertigo, occipital h/a Left Rind sign resolved, lumen normal 4 M Occipital headache Bilateral Rind sign resolved, lumens normal 5 M Posterior circ. stroke Right Rind sign resolved, lumen normal 6 F Horner syndrome, posterior circ. stroke, neck pain Left Occlusion LVA Note: circ. indicates circulation; h/a, headache; LVA, left vertebral artery; VAD, vertebral artery dissection; VA, vertebral artery. Fig 4. Diagram depicts a normal artery versus an artery with a rind sign. The lumen (x) in normal and dissected arteries is similar in caliber. The vessel wall (y) is thickened in patients with rind sign. The ratio of (x / x y) will decrease in patients with rind sign as a result of wall thickening. that there was no significant difference in the arterial lumen diameter in patients with rind sign compared with controls (P.1). Thus, the more frequent finding of luminal tapering and narrowing seen in dissections was not evident in our series. There was, however, a significant thickening of the dissected vessel walls in our patients with rind sign compared with controls (P.001). When the lumen and vessel wall were taken into account, there was a significant difference in the patients with rind sign compared with controls (P.001). Therefore, the data support the subjective impression that in some cases of VAD, the vessel lumen is of normal caliber. Measurement of the vessel caliber in our dissected cohort was Fig 5. The wall thickness is plotted at 5 V3 segments. There is a difference in mean wall thickness between the patients with rind sign and controls (P.001). intended to further demonstrate to readers the true normal lumen diameter. However, in practice, recognition of the wall hematoma without direct lumen measurements is likely sufficient for diagnosis of VAD. We believe that the horizontal course of the V3 portion of the VA as it passes behind the C1 superior articular facet and in 4 Lum AJNR

5 the sulcus arteriosus of C1 posterior arch renders detection of luminal narrowing more difficult because the horizontal course of the VA is parallel to the axially acquired imaging plane. Without complete cross-sectional imaging of the arterial wall, it is more difficult to identify the classic crescentic wall hematoma, which is normally perpendicular to the axial plane of noninvasive imaging techniques. Awareness of the typical location and appearance of the suboccipital rind sign may increase detection on multiplanar reformatted CTA images. This is especially true when the lumen is normal or imperceptibly reduced in caliber. The MR imaging findings of VAD include an intramural hematoma, an intimal flap, and the enhancement of the arterial wall and septum. On the basis of the T1 and T2 signal intensity, the intramural hematoma can be characterized. 9,10 Flow void within the true lumen signifies patency. Gradientecho images show increased signal intensity in the true lumen when patent. 11,12 MR imaging may be performed in cases in which VAD is highly suspected and can demonstrate the wall hematoma. However, in our center, CTA is more readily available and is the primary noninvasive vascular imaging technique in the emergent setting. Thus patients without a clinical suspicion of VAD may never undergo MR imaging. Contrast-enhanced MRA (CEMRA) is now used in many centers for evaluation of carotid artery stenosis and vascular imaging. However, the vascular wall is poorly imaged because of the inherent strong background suppression. Other lumen imaging techniques such as digital subtraction conventional angiography provide high intraluminal spatial resolution; however, they have the same limitation as CEMRA, with limited evaluation of the vessel wall (Fig 3). With time-of-flight MRA in diagnosing VAD, some issues include confusing high signal intensity caused by the venous plexus or fat surrounding the VAs, the isointensity of an intramural hematoma in the acute phase, and the low resolution of visualizing relatively small VAs. 11,13 Review of imaging should also consider the normal soft tissue and venous anatomy in the suboccipital region below the foramen magnum. The anatomy of the normal suboccipital cavernous sinus and its communications (VA venous plexus, anterior condylar vein, posterior condylar vein, internal vertebral venous plexus, and marginal sinus) requires adequate understanding to correctly interpret vascular abnormalities of the V3 portion of the VA. The VA venous plexus and suboccipital cavernous sinus intimately surround the V3 and should not be confused with abnormal VA wall thickening. The suboccipital cavernous sinus and its surrounding venous structures should enhance with contrast, whereas wall hematoma will typically not enhance. 14,15 Several studies have highlighted the classic imaging features of VAD at MRA and CTA. Chen et al 16 found that CTA was sensitive and accurate for diagnosis of VAD when compared with conventional angiography. However, in their series, the VA lumen was either stenotic or expanded. In other reports of VAD, the classic signs are discussed; however, there was little discussion around cases presenting with normal-appearing luminal caliber, as in our series Our study has several limitations. In most cases, we did have MR imaging confirmation as a gold standard for demonstrating the intramural blood products. We recognize that the wall thickening could be secondary to some unknown disease. However, all patients, when further questioned, had clinical symptoms entirely compatible with VAD. We also believed, because of the typical location in the suboccipital portion where there are high rotational stresses and because of wall hematoma resolution on follow-up CTA, that these cases were true dissections. Bias during measurement of abnormal arteries may have been introduced because there was no blinding of the dissected-versus-normal arteries. Therefore, the relative normalcy of lumen caliber in the dissected cohort may be potentially overstated. Our study is one with relatively small numbers. A larger study population may be helpful in further verifying the suboccipital rind sign. Caution must be exercised when abnormalities are detected in the V3 portion of the artery because the course of the obliquus capitis inferioris muscle passes directly posterior to the artery at the posterolateral aspect of the C1 arch. The proximity of the anterior aspect of the muscle to the posterior arterial wall could potentially lead to inaccuracies regarding arterial wall diameter in this location. 6 We have seen a biopsyproved case of giant cell arteritis in which there was extensive circumferential thickening of the vertebral arterial wall bilaterally. Therefore, a diffuse vasculitis is also a consideration in patients with wall thickening at CTA. The relative focality of VAD and the typical location and corroborating symptoms, if any, may help distinguish these entities. Conclusions Cross-sectional vascular imaging is often performed with multisection helical CTA for a variety of concerns. We highlight a characteristic CTA imaging sign of vessel wall hematoma in the V3 portion, in which the imaging plane is parallel to the course of the VA. Awareness of this finding in its characteristic location may help in identifying clinically unsuspected VAD cases in which there is no visible narrowing of the lumen. We caution against using only luminal-opacifying techniques (lumenogram) such as CEMRA or conventional angiography to exclude VAD because they are limited for the evaluation of mural hematoma. References 1. Mokri B, Houser OW, Sandok BA, et al. Spontaneous dissections of the vertebral arteries. Neurology 1988;38: Provenzale JM, Morgenlander JC, Gress D. Spontaneous vertebral dissection: clinical, conventional angiographic, CT, and MR findings. J Comput Assist Tomogr 1996;20: Hinse P, Thie A, Lachenmayer L. Dissection of the extracranial vertebral artery: report of four cases and review of the literature. J Neurol Neurosurg Psychiatry 1991;54: Nakagawa K, Touho H, Morisako T, et al. Long-term follow-up study of unruptured vertebral artery dissection: clinical outcomes and serial angiographic findings. J Neurosurg 2000;93: Truwit C. CT angiography versus MR angiography in the evaluation of acute neurovascular disease. Radiology 2007;245: Bruneau M, Cornelius JF, George B. Anterolateral approach to the V1 segment of the vertebral artery. Neurosurgery 2006;58(4 suppl 2):ONS , discussion ONS Schievink WI, Mokri B, O Fallon WM. Recurrent spontaneous cervical-artery dissection. N Engl J Med 1994;330: Hart RG, Miller VT. Cerebral infarction in young adults: a practical approach. Stroke 1983;14: Mascalchi M, Bianchi MC, Mangiafico S, et al. MRI and MR angiography of vertebral artery dissection. Neuroradiology 1997;39: Vieco PT, Maurin EE 3rd, Gross CE. Vertebrobasilar dolichoectasia: evaluation with CT angiography. AJNR Am J Neuroradiol 1997;18: AJNR Am J Neuroradiol :

6 11. Bloem BR, Van Buchem GJ. Magnetic resonance imaging and vertebral artery dissection. J Neurol Neurosurg Psychiatry 1999;67: Soper JR, Parker GD, Hallinan JM. Vertebral artery dissection diagnosed with CT. AJNR Am J Neuroradiol 1995;16: Kitanaka C, Tanaka J, Kuwahara M, et al. Magnetic resonance imaging study of intracranial vertebrobasilar artery dissections. Stroke 1994;25: Caruso RD, Rosenbaum AE, Chang JK, et al. Craniocervical junction venous anatomy on enhanced MR images: the suboccipital cavernous sinus. AJNR Am J Neuroradiol 1999;20: Arnautovic KI, al-mefty O, Pait TG, et al. The suboccipital cavernous sinus. J Neurosurg 1997;86: Chen CJ, Tseng YC, Lee TH, et al. Multisection CT angiography compared with catheter angiography in diagnosing vertebral artery dissection. AJNR Am J Neuroradiol 2004;25: Shin H, Suh DC, Choi CG, et al. Vertebral artery dissection: spectrum of imaging findings with emphasis on angiography and correlation with clinical presentation. Radiographics 2000;20: Provenzale J. Dissection of the internal carotid and vertebral arteries. AJR Am J Roentgenol 1995;165: Vertinsky AT, Schwartz NE, Fischbein NJ, et al. Comparison of multidetector CT angiography and MR imaging of cervical artery dissection. AJNR Am J Neuroradiol 2008;29: Lum AJNR

Multisection CT Angiography Compared with Catheter Angiography in Diagnosing Vertebral Artery Dissection

Multisection CT Angiography Compared with Catheter Angiography in Diagnosing Vertebral Artery Dissection AJNR Am J Neuroradiol 25:769 774, May 2004 Multisection CT Angiography Compared with Catheter Angiography in Diagnosing Vertebral Artery Dissection Chi-Jen Chen, Ying-Chi Tseng, Tsong-Hai Lee, Hui-Ling

More information

Internal Carotid Artery Dissection

Internal Carotid Artery Dissection May 2011 Internal Carotid Artery Dissection Carolyn April, HMS IV Agenda Presentation of a clinical case Discussion of the clinical features of ICA dissection Discussion of the imaging modalities used

More information

Michael Horowitz, MD Pittsburgh, PA

Michael Horowitz, MD Pittsburgh, PA Michael Horowitz, MD Pittsburgh, PA Introduction Cervical Artery Dissection occurs by a rupture within the arterial wall leading to an intra-mural Hematoma. A possible consequence is an acute occlusion

More information

Essentials of Clinical MR, 2 nd edition. 99. MRA Principles and Carotid MRA

Essentials of Clinical MR, 2 nd edition. 99. MRA Principles and Carotid MRA 99. MRA Principles and Carotid MRA As described in Chapter 12, time of flight (TOF) magnetic resonance angiography (MRA) is commonly utilized in the evaluation of the circle of Willis. TOF MRA allows depiction

More information

Long-term Observation of Lateral Medullary Infarction due to Vertebral Artery Dissection Assessed with Multimodal Neuroimaging

Long-term Observation of Lateral Medullary Infarction due to Vertebral Artery Dissection Assessed with Multimodal Neuroimaging Case Reports Long-term Observation of Lateral Medullary Infarction due to Vertebral Artery Dissection Assessed with Multimodal Neuroimaging Koichi Nomura 1, Masahiro Mishina 1,SeijiOkubo 1, Satoshi Suda

More information

Imaging in the Diagnosis and Follow-up Evaluation of Vertebral Artery Dissection

Imaging in the Diagnosis and Follow-up Evaluation of Vertebral Artery Dissection Imaging in the Diagnosis and Follow-up Evaluation of Vertebral Artery Dissection Chien-Jung Lu, MD, Yu Sun, MD, Jiann-Shing Jeng, MD, Kou-Mou Huang, MD, Bao-Show Hwang, Win-Hwan Lin, Rong-Chi Chen, MD,

More information

Two cases of spontaneous middle cerebral arterial dissection causing ischemic stroke

Two cases of spontaneous middle cerebral arterial dissection causing ischemic stroke Journal of the Neurological Sciences 250 (2006) 162 166 www.elsevier.com/locate/jns Short communication Two cases of spontaneous middle cerebral arterial dissection causing ischemic stroke Jin Soo Lee

More information

Case Report 1. CTA head. (c) Tele3D Advantage, LLC

Case Report 1. CTA head. (c) Tele3D Advantage, LLC Case Report 1 CTA head 1 History 82 YEAR OLD woman with signs and symptoms of increased intra cranial pressure in setting of SAH. CT Brain was performed followed by CT Angiography of head. 2 CT brain Extensive

More information

Anatomic Evaluation of the Circle of Willis: MR Angiography versus Intraarterial Digital Subtraction Angiography

Anatomic Evaluation of the Circle of Willis: MR Angiography versus Intraarterial Digital Subtraction Angiography Anatomic Evaluation of the Circle of Willis: MR Angiography versus Intraarterial Digital Subtraction Angiography K. W. Stock, S. Wetzel, E. Kirsch, G. Bongartz, W. Steinbrich, and E. W. Radue PURPOSE:

More information

Bilateral blunt carotid artery injury: A case report and review of the literature

Bilateral blunt carotid artery injury: A case report and review of the literature CASE REPORT Bilateral blunt carotid artery injury: A case report and review of the literature S Cheddie, 1 MMed (Surg), FCS (SA); B Pillay, 2 FCS (SA), Cert Vascular Surgery; R Goga, 2 FCS (SA) 1 Department

More information

Subtraction CT Angiography with Controlled- Orbit Helical Scanning for Detection of Intracranial Aneurysms

Subtraction CT Angiography with Controlled- Orbit Helical Scanning for Detection of Intracranial Aneurysms AJNR Am J Neuroradiol 19:291 295, February 1998 Subtraction CT Angiography with Controlled- Orbit Helical Scanning for Detection of Intracranial Aneurysms Satoshi Imakita, Yoshitaka Onishi, Tokihiro Hashimoto,

More information

CT Imaging of Blunt and Penetrating Vascular Trauma DENNIS FOLEY MEDICAL COLLEGE WISCONSIN

CT Imaging of Blunt and Penetrating Vascular Trauma DENNIS FOLEY MEDICAL COLLEGE WISCONSIN CT Imaging of Blunt and Penetrating Vascular Trauma DENNIS FOLEY MEDICAL COLLEGE WISCONSIN THORACO ABDOMINAL TRAUMA 0 10 20 30 40 50 60 5 cc/sec 30 secs 1.25 mm/ 55 mm Z1.375 2.5 mm/ 55 mm Z 1.375 Grade

More information

Multidetector CTA for Diagnosing Blunt Cerebrovascular Injuries

Multidetector CTA for Diagnosing Blunt Cerebrovascular Injuries Multidetector CTA for Diagnosing Blunt Cerebrovascular Injuries 4 th Nordic Trauma Course 2006 Stuart E. Mirvis, M.D., FACR Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland

More information

Role of the Radiologist

Role of the Radiologist Diagnosis and Treatment of Blunt Cerebrovascular Injuries NORDTER Consensus Conference October 22-24, 2007 Clint W. Sliker, M.D. University of Maryland Medical Center R Adams Cowley Shock Trauma Center

More information

Spontaneous Dissection of the Cervical Internal Carotid Artery: Correlation of Arteriography,

Spontaneous Dissection of the Cervical Internal Carotid Artery: Correlation of Arteriography, 1053 Spontaneous Dissection of the Cervical Internal Carotid Artery: Correlation of Arteriography, CT, and Pathology George R. Petro 1 Gordon A. Witwer1 Edwin D. Cacayorin 1 Charles J. Hodge 2 Carl E.

More information

Surface Appearance of the Vertebrobasilar Artery Revealed on Basiparallel Anatomic Scanning (BPAS) MR Imaging: Its Role for Brain MR Examination

Surface Appearance of the Vertebrobasilar Artery Revealed on Basiparallel Anatomic Scanning (BPAS) MR Imaging: Its Role for Brain MR Examination AJNR Am J Neuroradiol 26:2508 2513, November/December 2005 Surface Appearance of the Vertebrobasilar Artery Revealed on Basiparallel Anatomic Scanning (BPAS) MR Imaging: Its Role for Brain MR Examination

More information

Treatment of Unruptured Vertebral Artery Dissecting Aneurysms

Treatment of Unruptured Vertebral Artery Dissecting Aneurysms 33 Treatment of Unruptured Vertebral Artery Dissecting Aneurysms Isao NAITO, M.D., Shin TAKATAMA, M.D., Naoko MIYAMOTO, M.D., Hidetoshi SHIMAGUCHI, M.D., and Tomoyuki IWAI, M.D. Department of Neurosurgery,

More information

Methods. Yahya Paksoy, Bülent Oğuz Genç, and Emine Genç. AJNR Am J Neuroradiol 24: , August 2003

Methods. Yahya Paksoy, Bülent Oğuz Genç, and Emine Genç. AJNR Am J Neuroradiol 24: , August 2003 AJNR Am J Neuroradiol 24:1364 1368, August 2003 Retrograde Flow in the Left Inferior Petrosal Sinus and Blood Steal of the Cavernous Sinus Associated with Central Vein Stenosis: MR Angiographic Findings

More information

Management of cervicocephalic arterial dissection. Ciro G. Randazzo, MD, MPH Thomas Jefferson University Hospital, Department of Neurosurgery

Management of cervicocephalic arterial dissection. Ciro G. Randazzo, MD, MPH Thomas Jefferson University Hospital, Department of Neurosurgery Management of cervicocephalic arterial dissection Ciro G. Randazzo, MD, MPH Thomas Jefferson University Hospital, Department of Neurosurgery Definition Disruption of arterial wall, either at level of intima-media

More information

Spontaneous cervicocephalic arterial dissection with headache and neck pain as the only symptom

Spontaneous cervicocephalic arterial dissection with headache and neck pain as the only symptom J Headache Pain (2012) 13:247 253 DOI 10.1007/s10194-012-0420-2 BRIEF REPORT Spontaneous cervicocephalic arterial dissection with headache and neck pain as the only symptom Hajime Maruyama Harumitsu Nagoya

More information

NON-ATHEROSCLEROTIC PATHOLOGY OF THE CAROTID ARTERIES

NON-ATHEROSCLEROTIC PATHOLOGY OF THE CAROTID ARTERIES NON-ATHEROSCLEROTIC PATHOLOGY OF THE CAROTID ARTERIES Leslie M. Scoutt, MD, FACR Professor of Diagnostic Radiology & Surgery Vice Chair, Dept of Radiology & Biomedical Imaging Chief, Ultrasound Section

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Endovascular Therapies for Extracranial Vertebral Artery Disease File Name: Origination: Last CAP Review: Next CAP Review: Last Review: endovascular_therapies_for_extracranial_vertebral_artery_disease

More information

S pontaneous dissection of the internal

S pontaneous dissection of the internal Pictorial Essay Dissections of the Internal Carotid Artery: Th ree- Dimensional Time-of-Flight M R Angiography and MR Imaging Features S pontaneous dissection of the internal carotid artery is now recognized

More information

TRAUMATIC CAROTID &VERTEBRAL ARTERY INJURIES

TRAUMATIC CAROTID &VERTEBRAL ARTERY INJURIES TRAUMATIC CAROTID &VERTEBRAL ARTERY INJURIES ALBERTO MAUD, MD ASSOCIATE PROFESSOR TEXAS TECH UNIVERSITY HEALTH SCIENCES CENTER EL PASO PAUL L. FOSTER SCHOOL OF MEDICINE 18TH ANNUAL RIO GRANDE TRAUMA 2017

More information

Screening and Management of Blunt Cereberovascular Injuries (BCVI)

Screening and Management of Blunt Cereberovascular Injuries (BCVI) Grady Memorial Hospital Trauma Service Guidelines Screening and Management of Blunt Cereberovascular Injuries (BCVI) BACKGROUND Blunt injury to the carotid or vertebral vessels (blunt cerebrovascular injury

More information

Reduced Caliber of the Internal Carotid Artery: A Normal Finding with Ipsilateral Absence or Hypoplasia of the A1 Segment

Reduced Caliber of the Internal Carotid Artery: A Normal Finding with Ipsilateral Absence or Hypoplasia of the A1 Segment Reduced Caliber of the Internal Carotid Artery: A Normal Finding with Ipsilateral Absence or Hypoplasia of the A1 Segment Arthur G. Kane, William P. Dillon, A. James Barkovich, David Norman, Christopher

More information

Blunt Carotid Injury- CT Angiography is Adequate For Screening. Kelly Knudson, M.D. UCHSC April 3, 2006

Blunt Carotid Injury- CT Angiography is Adequate For Screening. Kelly Knudson, M.D. UCHSC April 3, 2006 Blunt Carotid Injury- CT Angiography is Adequate For Screening Kelly Knudson, M.D. UCHSC April 3, 2006 CT Angiography vs Digital Subtraction Angiography Blunt carotid injury screening is one of the very

More information

Essentials of Clinical MR, 2 nd edition. 14. Ischemia and Infarction II

Essentials of Clinical MR, 2 nd edition. 14. Ischemia and Infarction II 14. Ischemia and Infarction II Lacunar infarcts are small deep parenchymal lesions involving the basal ganglia, internal capsule, thalamus, and brainstem. The vascular supply of these areas includes the

More information

NIH Public Access Author Manuscript J Am Coll Radiol. Author manuscript; available in PMC 2013 June 24.

NIH Public Access Author Manuscript J Am Coll Radiol. Author manuscript; available in PMC 2013 June 24. NIH Public Access Author Manuscript Published in final edited form as: J Am Coll Radiol. 2010 January ; 7(1): 73 76. doi:10.1016/j.jacr.2009.06.015. Cerebral Aneurysms Janet C. Miller, DPhil, Joshua A.

More information

Detectability of unruptured intracranial aneurysms on thinslice non-contrast-enhanced CT

Detectability of unruptured intracranial aneurysms on thinslice non-contrast-enhanced CT Detectability of unruptured intracranial aneurysms on thinslice non-contrast-enhanced CT Poster No.: C-9 Congress: ECR 5 Type: Scientific Exhibit Authors: M. Nakadate, Y. Iwasa, M. Kishino, U. Tateishi;

More information

ISPUB.COM. Vertebrobasilar Artery Dissection. A Mohammadi, M Ahmad, D Wolfson CASE REPORT

ISPUB.COM. Vertebrobasilar Artery Dissection. A Mohammadi, M Ahmad, D Wolfson CASE REPORT ISPUB.COM The Internet Journal of Pathology Volume 6 Number 1 Vertebrobasilar Artery Dissection A Mohammadi, M Ahmad, D Wolfson Citation A Mohammadi, M Ahmad, D Wolfson. Vertebrobasilar Artery Dissection.

More information

CT of Acute Thoracic Aortic Syndromes Stuart S. Sagel, M.D.

CT of Acute Thoracic Aortic Syndromes Stuart S. Sagel, M.D. CT of Acute Thoracic Aortic Syndromes Stuart S. Sagel, M.D. Thoracic Aortic Aneurysms Atherosclerotic Dissection Penetrating ulcer Mycotic Inflammatory (vasculitis) Traumatic Aortic Imaging Options Catheter

More information

Subclavian artery Stenting

Subclavian artery Stenting Subclavian artery Stenting Etiology Atherosclerosis Takayasu s arteritis Fibromuscular dysplasia Giant Cell Arteritis Radiation-induced Vascular Injury Thoracic Outlet Syndrome Neurofibromatosis Incidence

More information

Arterial Dissections Complicating Cerebral Angiography and Cerebrovascular Interventions

Arterial Dissections Complicating Cerebral Angiography and Cerebrovascular Interventions AJNR Am J Neuroradiol 21:541 545, March 2000 Arterial Dissections Complicating Cerebral Angiography and Cerebrovascular Interventions Harry J. Cloft, Mary E. Jensen, David F. Kallmes, and Jacques E. Dion

More information

Pearls and Pitfalls in Neuroradiology of Cerebrovascular Disease The Essentials with MR and CT

Pearls and Pitfalls in Neuroradiology of Cerebrovascular Disease The Essentials with MR and CT Pearls and Pitfalls in Neuroradiology of Cerebrovascular Disease The Essentials with MR and CT Val M. Runge, MD Wendy R. K. Smoker, MD Anton Valavanis, MD Control # 823 Purpose The focus of this educational

More information

Neuroradiology MR Protocols

Neuroradiology MR Protocols Neuroradiology MR Protocols Brain protocols N 1: Brain MRI without contrast N 2: Pre- and post-contrast brain MRI N 3 is deleted N 4: Brain MRI without or pre-/post-contrast (seizure protocol) N 5: Pre-

More information

Magnetic Resonance Angiography

Magnetic Resonance Angiography Magnetic Resonance Angiography 1 Magnetic Resonance Angiography exploits flow enhancement of GR sequences saturation of venous flow allows arterial visualization saturation of arterial flow allows venous

More information

Sciences, Sri Ramachandra Medical College and Research Institute, Chennai, India.

Sciences, Sri Ramachandra Medical College and Research Institute, Chennai, India. IMAGES in PAEDIATRIC CARDIOLOGY Devara K V A, 1 Joseph S, 2 Uppu S C. 3 Spontaneous Subarachnoid Haemorrhage Due to Coarctation of Aorta and 1 Department of Radiology, Medall Healthcare Private Ltd, King

More information

Case 37 Clinical Presentation

Case 37 Clinical Presentation Case 37 73 Clinical Presentation The patient is a 62-year-old woman with gastrointestinal (GI) bleeding. 74 RadCases Interventional Radiology Imaging Findings () Image from a selective digital subtraction

More information

Acute Aortic Syndromes

Acute Aortic Syndromes Acute Aortic Syndromes Carole J. Dennie, MD Acute Thoracic Aortic Syndromes Background Non-Traumatic Acute Thoracic Aortic Syndromes Carole Dennie MD FRCPC Associate Professor of Radiology and Cardiology

More information

Department of Radiology University of California San Diego. MR Angiography. Techniques & Applications. John R. Hesselink, M.D.

Department of Radiology University of California San Diego. MR Angiography. Techniques & Applications. John R. Hesselink, M.D. Department of Radiology University of California San Diego MR Angiography Techniques & Applications John R. Hesselink, M.D. Vascular Imaging Arterial flow void Flow enhancement Gadolinium enhancement Vascular

More information

Posterior Cerebral Artery Aneurysms with Common Carotid Artery Occlusion: A Report of Two Cases

Posterior Cerebral Artery Aneurysms with Common Carotid Artery Occlusion: A Report of Two Cases Journal of Neuroendovascular Therapy 2017; 11: 371 375 Online March 3, 2017 DOI: 10.5797/jnet.cr.2016-0114 Posterior Cerebral Artery Aneurysms with Common Carotid Artery Occlusion: A Report of Two Cases

More information

Brain AVM with Accompanying Venous Aneurysm with Intracerebral and Intraventricular Hemorrhage

Brain AVM with Accompanying Venous Aneurysm with Intracerebral and Intraventricular Hemorrhage Cronicon OPEN ACCESS EC PAEDIATRICS Case Report Brain AVM with Accompanying Venous Aneurysm with Intracerebral and Intraventricular Hemorrhage Dimitrios Panagopoulos* Neurosurgical Department, University

More information

Spontaneous Recanalization after Complete Occlusion of the Common Carotid Artery with Subsequent Embolic Ischemic Stroke

Spontaneous Recanalization after Complete Occlusion of the Common Carotid Artery with Subsequent Embolic Ischemic Stroke Original Contribution Spontaneous Recanalization after Complete Occlusion of the Common Carotid Artery with Subsequent Embolic Ischemic Stroke Abstract Introduction: Acute carotid artery occlusion carries

More information

Magnetic Resonance Imaging. Basics of MRI in practice. Generation of MR signal. Generation of MR signal. Spin echo imaging. Generation of MR signal

Magnetic Resonance Imaging. Basics of MRI in practice. Generation of MR signal. Generation of MR signal. Spin echo imaging. Generation of MR signal Magnetic Resonance Imaging Protons aligned with B0 magnetic filed Longitudinal magnetization - T1 relaxation Transverse magnetization - T2 relaxation Signal measured in the transverse plane Basics of MRI

More information

MR Advance Techniques. Vascular Imaging. Class II

MR Advance Techniques. Vascular Imaging. Class II MR Advance Techniques Vascular Imaging Class II 1 Vascular Imaging There are several methods that can be used to evaluate the cardiovascular systems with the use of MRI. MRI will aloud to evaluate morphology

More information

Occlusion of All Four Extracranial Vessels With Minimal Clinical Symptomatology. Case Report

Occlusion of All Four Extracranial Vessels With Minimal Clinical Symptomatology. Case Report Occlusion of All Four Extracranial Vessels With Minimal Clinical Symptomatology. Case Report BY JIRI J. VITEK, M.D., JAMES H. HALSEY, JR., M.D., AND HOLT A. McDOWELL, M.D. Abstract: Occlusion of All Four

More information

Role of Three-Dimensional Rotational Angiography in the Treatment of Spinal Dural Arteriovenous Fistulas

Role of Three-Dimensional Rotational Angiography in the Treatment of Spinal Dural Arteriovenous Fistulas Open Access Case Report DOI: 10.7759/cureus.1932 Role of Three-Dimensional Rotational Angiography in the Treatment of Spinal Dural Arteriovenous Fistulas Yigit Ozpeynirci 1, Bernd Schmitz 2, Melanie Schick

More information

Anterior Spinal Artery and Artery of Adamkiewicz Detected by Using Multi-Detector Row CT

Anterior Spinal Artery and Artery of Adamkiewicz Detected by Using Multi-Detector Row CT AJNR Am J Neuroradiol 24:13 17, January 2003 Anterior Spinal Artery and Artery of Adamkiewicz Detected by Using Multi-Detector Row CT Kohsuke Kudo, Satoshi Terae, Takeshi Asano, Masaki Oka, Kenshi Kaneko,

More information

Imaging of Moya Moya Disease

Imaging of Moya Moya Disease Abstract Imaging of Moya Moya Disease Pages with reference to book, From 181 To 185 Rashid Ahmed, Hurnera Ahsan ( Liaquat National Hospital, Karachi. ) Moya Moya disease is a rare disease causing occlusion

More information

[(PHY-3a) Initials of MD reviewing films] [(PHY-3b) Initials of 2 nd opinion MD]

[(PHY-3a) Initials of MD reviewing films] [(PHY-3b) Initials of 2 nd opinion MD] 2015 PHYSICIAN SIGN-OFF (1) STUDY NO (PHY-1) CASE, PER PHYSICIAN REVIEW 1=yes 2=no [strictly meets case definition] (PHY-1a) CASE, IN PHYSICIAN S OPINION 1=yes 2=no (PHY-2) (PHY-3) [based on all available

More information

STROKE - IMAGING. Dr RAJASEKHAR REDDY 2nd Yr P.G. RADIODIAGNOSIS KIMS,Narkatpalli.

STROKE - IMAGING. Dr RAJASEKHAR REDDY 2nd Yr P.G. RADIODIAGNOSIS KIMS,Narkatpalli. STROKE - IMAGING Dr RAJASEKHAR REDDY 2nd Yr P.G. RADIODIAGNOSIS KIMS,Narkatpalli. STROKE Describes a clinical event that consists of sudden onset of neurological symptoms Types Infarction - occlusion of

More information

ANASTAMOSIS FOR BRAIN STEM ISCHEMIA/Khodadad et al.

ANASTAMOSIS FOR BRAIN STEM ISCHEMIA/Khodadad et al. ANASTAMOSIS FOR BRAIN STEM ISCHEMIA/Khodadad et al. visualization of the posterior inferior cerebellar artery. The patient, now 11 months post-operative, has shown further neurological improvement since

More information

Multisection CT Venography of the Dural Sinuses and Cerebral Veins by Using Matched Mask Bone Elimination

Multisection CT Venography of the Dural Sinuses and Cerebral Veins by Using Matched Mask Bone Elimination AJNR Am J Neuroradiol 25:787 791, May 2004 Case Report Multisection CT Venography of the Dural Sinuses and Cerebral Veins by Using Matched Mask Bone Elimination Charles B. L. M. Majoie, Marcel van Straten,

More information

PULMONARY EMBOLISM ANGIOCT (CTA) ASSESSMENT OF VASCULAR OCCLUSION EXTENT AND LOCALIZATION OF EMBOLI 1. BACKGROUND

PULMONARY EMBOLISM ANGIOCT (CTA) ASSESSMENT OF VASCULAR OCCLUSION EXTENT AND LOCALIZATION OF EMBOLI 1. BACKGROUND JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 11/2007, ISSN 1642-6037 Damian PTAK * pulmonary embolism, AngioCT, postprocessing techniques, Mastora score PULMONARY EMBOLISM ANGIOCT (CTA) ASSESSMENT

More information

Postoperative Assessment of Extracranial Intracranial Bypass by Time- Resolved 3D Contrast-Enhanced MR Angiography Using Parallel Imaging

Postoperative Assessment of Extracranial Intracranial Bypass by Time- Resolved 3D Contrast-Enhanced MR Angiography Using Parallel Imaging AJNR Am J Neuroradiol 26:2243 2247, October 2005 Postoperative Assessment of Extracranial Intracranial Bypass by Time- Resolved 3D Contrast-Enhanced MR Angiography Using Parallel Imaging Kazuhiro Tsuchiya,

More information

Association of Internal Carotid Artery Injury with Carotid Canal Fractures in Patients with Head

Association of Internal Carotid Artery Injury with Carotid Canal Fractures in Patients with Head Neuroradiology York et al. CT of Internal Carotid Artery Injury Gerald York 1,2 Daniel Barboriak 1 Jeffrey Petrella 1 David DeLong 1 James M. Provenzale 1 York G, Barboriak D, Petrella J, Delong D, Provenzale

More information

Oltre la terapia medica nelle dissezioni carotidee

Oltre la terapia medica nelle dissezioni carotidee Oltre la terapia medica nelle dissezioni carotidee Rodolfo Pini Chirurgia Vascolare Università di bologna Alma Mater Studiorum Carotid and Vertebral Artery Dissection What we know from the literature Epidemiology

More information

Relationship of the Optic Nerve to the Posterior Paranasal Sinuses: A CT Anatomic Study

Relationship of the Optic Nerve to the Posterior Paranasal Sinuses: A CT Anatomic Study Relationship of the Optic Nerve to the Posterior Paranasal Sinuses: A CT Anatomic Study Mark C. DeLano, F. Y. Fun, and S. James Zinreich PURPOSE: To delineate the relationship between the optic nerves

More information

Post traumatic vertebro basilar dissection: case report and review of literature

Post traumatic vertebro basilar dissection: case report and review of literature Romanian Neurosurgery Volume XXXI Number 3 2017 July-September Article Post traumatic vertebro basilar dissection: case report and review of literature Karthikeyan Y.R., Sanjeev Chopra, Somnath Sharma,

More information

ORIGINAL CONTRIBUTION. Comparison of Spontaneous Intracranial Vertebral Artery Dissection With Large Artery Disease

ORIGINAL CONTRIBUTION. Comparison of Spontaneous Intracranial Vertebral Artery Dissection With Large Artery Disease ORIGINAL CONTRIBUTION Comparison of Spontaneous Intracranial Vertebral Artery Dissection With Large Artery Disease Jin Soo Lee, MD; Seok Woo Yong, MD; Oh Young Bang, MD, PhD; Yong Sam Shin, MD, PhD; Byung

More information

Spasm of the extracranial internal carotid artery resulting from blunt trauma demonstrated by angiography

Spasm of the extracranial internal carotid artery resulting from blunt trauma demonstrated by angiography Spasm of the extracranial internal carotid artery resulting from blunt trauma demonstrated by angiography Case report ELISHA S. GURDJIAN, M.D., BLAISE AUDET, M.D., RENATO W. SIBAYAN, M.D., AND LLYWELLYN

More information

Improvement of Image Quality with ß-Blocker Premedication on ECG-Gated 16-MDCT Coronary Angiography

Improvement of Image Quality with ß-Blocker Premedication on ECG-Gated 16-MDCT Coronary Angiography 16-MDCT Coronary Angiography Shim et al. 16-MDCT Coronary Angiography Sung Shine Shim 1 Yookyung Kim Soo Mee Lim Received December 1, 2003; accepted after revision June 1, 2004. 1 All authors: Department

More information

Cryptogenic Enlargement Of Bilateral Superior Ophthalmic Veins

Cryptogenic Enlargement Of Bilateral Superior Ophthalmic Veins ISPUB.COM The Internet Journal of Radiology Volume 18 Number 1 Cryptogenic Enlargement Of Bilateral Superior Ophthalmic Veins K Kragha Citation K Kragha. Cryptogenic Enlargement Of Bilateral Superior Ophthalmic

More information

Diagnosis of Middle Cerebral Artery Occlusion with Transcranial Color-Coded Real-Time Sonography

Diagnosis of Middle Cerebral Artery Occlusion with Transcranial Color-Coded Real-Time Sonography Diagnosis of Middle Cerebral Artery Occlusion with Transcranial Color-Coded Real-Time Sonography Kazumi Kimura, Yoichiro Hashimoto, Teruyuki Hirano, Makoto Uchino, and Masayuki Ando PURPOSE: To determine

More information

Comparison of Five Major Recent Endovascular Treatment Trials

Comparison of Five Major Recent Endovascular Treatment Trials Comparison of Five Major Recent Endovascular Treatment Trials Sample size 500 # sites 70 (100 planned) 316 (500 planned) 196 (833 estimated) 206 (690 planned) 16 10 22 39 4 Treatment contrasts Baseline

More information

General Imaging. Imaging modalities. Incremental CT. Multislice CT Multislice CT [ MDCT ]

General Imaging. Imaging modalities. Incremental CT. Multislice CT Multislice CT [ MDCT ] General Imaging Imaging modalities Conventional X-rays Ultrasonography [ US ] Computed tomography [ CT ] Radionuclide imaging Magnetic resonance imaging [ MRI ] Angiography conventional, CT,MRI Interventional

More information

Imaging of Cerebrovascular Disease

Imaging of Cerebrovascular Disease Imaging of Cerebrovascular Disease A Practical Guide Val M. Runge, MD Editor-in-Chief of Investigative Radiology Institute for Diagnostic, Interventional, and Pediatric Radiology Inselspital, University

More information

Two Cases of Carotid Artery Stenting Combined Balloon- and Self-expanding Stent for the Spontaneous Internal Carotid Artery Dissections

Two Cases of Carotid Artery Stenting Combined Balloon- and Self-expanding Stent for the Spontaneous Internal Carotid Artery Dissections Journal of Neuroendovascular Therapy 2017; 11: 437 442 Online June 13, 2017 DOI: 10.5797/jnet.tn.2016-0059 Two Cases of Carotid Artery Stenting Combined Balloon- and Self-expanding Stent for the Spontaneous

More information

Cerebral aneurysms A case study

Cerebral aneurysms A case study August 2001 Cerebral aneurysms A case study Heather L. Hinds, Harvard Medical School Year III Our Patient 57yr old woman History of migraines Presents with persistent headache several months duration different

More information

Extracranial CAD accounts for nearly 20% of cases of stroke

Extracranial CAD accounts for nearly 20% of cases of stroke ORIGINAL RESEARCH O. Naggara F. Soares E. Touze D. Roy X. Leclerc J.-P. Pruvo J.-L. Mas J.-F. Meder C. Oppenheim Is It Possible to Recognize Cervical Artery Dissection on Stroke Brain MR Imaging? A Matched

More information

MR Imaging with the CCSVI or Haacke protocol

MR Imaging with the CCSVI or Haacke protocol MR Imaging with the CCSVI or Haacke protocol Reports from the Haacke protocol are often made available to the patients. The report consists of four major components: 1. anatomical images of major neck

More information

41 year old female with headache. Elena G. Violari MD and Leo Wolansky MD

41 year old female with headache. Elena G. Violari MD and Leo Wolansky MD 41 year old female with headache Elena G. Violari MD and Leo Wolansky MD ? Dural Venous Sinus Thrombosis with Hemorrhagic Venous Infarct Acute intraparenchymal hematoma measuring ~3 cm in diameter centered

More information

Evaluation of Carotid Vessels and Vertebral Artery in Stroke Patients with Color Doppler Ultrasound and MR Angiography

Evaluation of Carotid Vessels and Vertebral Artery in Stroke Patients with Color Doppler Ultrasound and MR Angiography Evaluation of Carotid Vessels and Vertebral Artery in Stroke Patients with Color Doppler Ultrasound and MR Angiography Dr. Pramod Shaha 1, Dr. Vinay Raj R 2, Dr. (Brig) K. Sahoo 3 Abstract: Aim & Objectives:

More information

Cervical artery dissection accounts for approximately

Cervical artery dissection accounts for approximately 618 Case Reports Three Cases of Spontaneous Extracranial Vertebral Artery Dissection B.D. Youl, FRACP, A. Coutellier, MD, B. Dubois, MD, J.M. Leger, MD, and M.G. Bousser, MD We describe three cases of

More information

1998 Plenary Session: Imaging Symposium

1998 Plenary Session: Imaging Symposium 1998 Plenary Session: Imaging Symposium LEARNING OBJECTIVE Understand the characteristic imaging findings of acute cerebral infarction and dural sinus thrombosis and be familiar with the current best imaging

More information

Subclavian steal syndrome: an underdiagnosed disease

Subclavian steal syndrome: an underdiagnosed disease Subclavian steal syndrome: an underdiagnosed disease Poster No.: C-0753 Congress: ECR 2017 Type: Educational Exhibit Authors: R. O. Martins 1, M. C. Calegari 2, M. Lopes 3, L. Santos 3, L. Cruz 3, R. Vasconcelos

More information

Dilemma in Imaging Diagnosis, Endovascular Management and Complications

Dilemma in Imaging Diagnosis, Endovascular Management and Complications Vascular anomaly at the craniocervical junction presenting with sub arachnoid hemorrhage: Dilemma in Imaging Diagnosis, Endovascular Management and Complications Ajeet 1* 1. Department of Radiology, St

More information

Post traumatic vascular injuries in the neck, do current imaging protocols suffice?

Post traumatic vascular injuries in the neck, do current imaging protocols suffice? Post traumatic vascular injuries in the neck, do current imaging protocols suffice? Poster No.: C-2398 Congress: ECR 2015 Type: Educational Exhibit Authors: J. Kumaraguru, A. Shah, R. Balachandar, D. Lewis,

More information

Case 9799 Stanford type A aortic dissection: US and CT findings

Case 9799 Stanford type A aortic dissection: US and CT findings Case 9799 Stanford type A aortic dissection: US and CT findings Accogli S, Aringhieri G, Scalise P, Angelini G, Pancrazi F, Bemi P, Bartolozzi C Department of Diagnostic and Interventional Radiology, University

More information

Table 1.Summary of 12 Patients with Brain Death and Deep Coma: Clinical Findings Patients No. Age/Sex Underlying Cause Study No.

Table 1.Summary of 12 Patients with Brain Death and Deep Coma: Clinical Findings Patients No. Age/Sex Underlying Cause Study No. 3 9 5 Table 1.Summary of 12 Patients with Brain Death and Deep Coma: Clinical Findings Patients No. Age/Sex Underlying Cause Study No. Brain Stem Reflex EEG Clinical Diagnosis 01 40/M Trauma 01 ECS Brain

More information

L M Thornton, MD; L Lanier, MD; C L Sistrom, MD; D Rajderkar, MD; A Mancuso, MD; IM Schmalfuss, MD University of Florida, Gainesville Department of

L M Thornton, MD; L Lanier, MD; C L Sistrom, MD; D Rajderkar, MD; A Mancuso, MD; IM Schmalfuss, MD University of Florida, Gainesville Department of L M Thornton, MD; L Lanier, MD; C L Sistrom, MD; D Rajderkar, MD; A Mancuso, MD; IM Schmalfuss, MD University of Florida, Gainesville Department of Radiology RSNA Annual Meeting 2016 Trainee call readiness

More information

The inferior petrosal sinus (IPS) is a dural venous sinus running

The inferior petrosal sinus (IPS) is a dural venous sinus running ORIGINAL RESEARCH Y. Mitsuhashi A. Nishio S. Kawahara T. Ichinose S. Yamauchi H. Naruse Y. Matsuoka K. Ohata M. Hara Morphologic Evaluation of the Caudal End of the Inferior Petrosal Sinus Using 3D Rotational

More information

It has been demonstrated that postmortem MDCT, or virtual

It has been demonstrated that postmortem MDCT, or virtual Published April 5, 2012 as 10.3174/ajnr.A2966 ORIGINAL RESEARCH A.B. Smith G.E. Lattin Jr P. Berran H.T. Harcke Common and Expected Postmortem CT Observations Involving the Brain: Mimics of Antemortem

More information

Beyond Stenosis Severity: Top 5 Important Duplex Characteristics to Identify in a Patient with Carotid Disease

Beyond Stenosis Severity: Top 5 Important Duplex Characteristics to Identify in a Patient with Carotid Disease Beyond Stenosis Severity: Top 5 Important Duplex Characteristics to Identify in a Patient with Carotid Disease Jan M. Sloves RVT, RCS, FASE Technical Director New York Cardiovascular Associates Disclosures

More information

Craniocervical Junction Venous Anatomy on Enhanced MR Images: The Suboccipital Cavernous Sinus

Craniocervical Junction Venous Anatomy on Enhanced MR Images: The Suboccipital Cavernous Sinus AJNR Am J Neuroradiol 20:1127 1131, June/July 1999 Craniocervical Junction Venous Anatomy on Enhanced MR Images: The Suboccipital Cavernous Sinus Ronald D. Caruso, Arthur E. Rosenbaum, Ja Kwei Chang, and

More information

A Case of Carotid-Cavernous Fistula

A Case of Carotid-Cavernous Fistula A Case of Carotid-Cavernous Fistula By : Mohamed Elkhawaga 2 nd Year Resident of Ophthalmology Alexandria University A 19 year old male patient came to our outpatient clinic, complaining of : -Severe conjunctival

More information

MRA of the hand at 3 Tesla: Technical considerations and spectrum of findings

MRA of the hand at 3 Tesla: Technical considerations and spectrum of findings MRA of the hand at 3 Tesla: Technical considerations and spectrum of findings Poster No.: C-837 Congress: ECR 2009 Type: Educational Exhibit Topic: Chest - Vascular Authors: T. M. Carr III, A. P. Crane,

More information

Examination of the Extracranial Carotid Bifurcation by Thin-Section Dynamic CT: Direct Visualization

Examination of the Extracranial Carotid Bifurcation by Thin-Section Dynamic CT: Direct Visualization xamination of the xtracranial Carotid Bifurcation by Thin-Section Dynamic CT: Direct Visualization of Intimal theroma in Man (Part 2) 361. R. Heinz1 J. Fuchs2 D.Osborne 1 B. Drayer1. Yeates 1 H. Fuchs

More information

Common clinical presentation and possible ischemic

Common clinical presentation and possible ischemic Facial Diplegia Complicating a Bilateral Internal Carotid Artery Dissection O. Gout, MD; I. Bonnaud, MD; A. Weill, MD; A. Moulignier, MD; J.J. Quenet, MD; J. Moret, MD; P. Bakouche, MD Background and Purpose

More information

Carotid Artery Dissection Causing an Isolated Hypoglossal. Nerve Palsy

Carotid Artery Dissection Causing an Isolated Hypoglossal. Nerve Palsy Archives of Clinical and Medical Case Reports doi: 10.26502/acmcr.96550035 Volume 2, Issue 5 Case Report Carotid Artery Dissection Causing an Isolated Hypoglossal Muzzammil Ali*, Yatin Sardana Nerve Palsy

More information

Multidetector computed tomographic (CT) angiography : FREQUENTLY ANATOMICAL VARIATIONS OF THE CIRCLE WILLIS ICONOGRAPHIC REVIEW

Multidetector computed tomographic (CT) angiography : FREQUENTLY ANATOMICAL VARIATIONS OF THE CIRCLE WILLIS ICONOGRAPHIC REVIEW Multidetector computed tomographic (CT) angiography : FREQUENTLY ANATOMICAL VARIATIONS OF THE CIRCLE WILLIS ICONOGRAPHIC REVIEW Dra. Ximena González Larramendi Dr. Fernando Landó Baison ABSTRACT: Objetives:

More information

MR Imaging of Spinal Cord Arteriovenous Malformations at 0.5 T: Study of 34 Cases

MR Imaging of Spinal Cord Arteriovenous Malformations at 0.5 T: Study of 34 Cases 833 MR Imaging of Spinal Cord Arteriovenous Malformations at 0.5 T: Study of 34 Cases D. Dormont 1 F. Gelbert 2 E. Assouline 2 D. Reizine 2 A. Helias 2 M. C. Riche 2 J. Chiras 1 J. Sories 1 J. J. Merland

More information

Craniocervical artery dissection (CCAD) is the most common

Craniocervical artery dissection (CCAD) is the most common ORIGINAL RESEARCH EXTRACRANIAL VASCULAR Characterization of Craniocervical Artery Dissection by Simultaneous MR Noncontrast Angiography and Intraplaque Hemorrhage Imaging at 3T Q. Li, J. Wang, H. Chen,

More information

Diagnosis of Subarachnoid Hemorrhage (SAH) and Non- Aneurysmal Causes

Diagnosis of Subarachnoid Hemorrhage (SAH) and Non- Aneurysmal Causes Diagnosis of Subarachnoid Hemorrhage (SAH) and Non- Aneurysmal Causes By Sheila Smith, MD Swedish Medical Center 1 Disclosures I have no disclosures 2 Course Objectives Review significance and differential

More information

Hrushchak N.M. The Pharma Innovation Journal 2014; 3(9): 38-42

Hrushchak N.M. The Pharma Innovation Journal 2014; 3(9): 38-42 2014; 3(9): 38-42 ISSN: 2277-7695 TPI 2014; 3(9): 38-42 2013 TPI www.thepharmajournal.com Received: 10-10-2014 Accepted: 23-11-2014 Ivano-Frankivsk national medical university Kalush regional hospital.

More information

Peter I. Kalmar, 1 Peter Oberwalder, 2 Peter Schedlbauer, 1 Jürgen Steiner, 1 and Rupert H. Portugaller Introduction. 2.

Peter I. Kalmar, 1 Peter Oberwalder, 2 Peter Schedlbauer, 1 Jürgen Steiner, 1 and Rupert H. Portugaller Introduction. 2. Case Reports in Medicine Volume 2013, Article ID 714914, 4 pages http://dx.doi.org/10.1155/2013/714914 Case Report Secondary Aortic Dissection after Endoluminal Treatment of an Intramural Hematoma of the

More information

Advances in Emergency Imaging

Advances in Emergency Imaging Hampton Symposium,, October 16 th, 2010 Advances in Emergency Imaging Robert A. Novelline, MD Professor of Radiology, Harvard Medical School Director of Emergency Radiology, Massachusetts General Hospital

More information

Pre-and Post Procedure Non-Invasive Evaluation of the Patient with Carotid Disease

Pre-and Post Procedure Non-Invasive Evaluation of the Patient with Carotid Disease Pre-and Post Procedure Non-Invasive Evaluation of the Patient with Carotid Disease Michael R. Jaff, D.O., F.A.C.P., F.A.C.C. Assistant Professor of Medicine Harvard Medical School Director, Vascular Medicine

More information

CT angiography techniques. Boot camp

CT angiography techniques. Boot camp CT angiography techniques Boot camp Overview Basic concepts Contrast administration arterial opacification Time scan acquisition during the arterial phase Protocol examples Helical non-gated CTA Pulmonary

More information