Is a Flat Inlet Profile Sufficient for WSS Estimation in the Aortic Arch?

Size: px
Start display at page:

Download "Is a Flat Inlet Profile Sufficient for WSS Estimation in the Aortic Arch?"

Transcription

1 Is a Flat Inlet Profile Sufficient for WSS Estimation in the Aortic Arch? J. Renner 1, D. Loyd 1, T. Länne 2, M. Karlsson 1 1 Department of Management and Engineering 2 Department of Medical and Health Sciences/Physiology Linköping University SWEDEN johan.renner@liu.se Abstract: - Atherosclerosis is one of the main reasons for cardivascular disease which cause many deaths every year especially in the Western world. The development of atherosclerosis is strongly believed to be influenced by hemodynamic forces in the arteries e.g. wall shear stress (WSS). Estimations of WSS are therefore very important. By combining magnetic resonance imaging (MRI), image processing and computational fluid dynamic (CFD) simulations, it is possible to estimate subject specific WSS in the human arteries. The framework for performing such work includes i.e. using inlet boundary conditions which, however, will influence the final result i.e. the WSS distribution. This paper aims to investigate the influence of the inflow boundary condition in the human aorta with comparing two settings for the inflow: 1) subject specific inlet profile measured with MRI and 2) uniform profile with the subject specific mass flow rate. The analysis of WSS will be performed both on spatial location along the artery as well as on the temporal location in the cardiac cycle. Subject specific data have been used for geometry, inflow velocity profile and blood viscosity. The recommendation due to our findings from nine healthy subjects, is that a measured subject specific inlet boundary condition must be used in order to get a subject specific WSS distribution; the difference in WSS is 8-34% compared to using a mass-flow correct uniform profile. Temporal variations were clearly seen in the WSS differences due to the different inflow velocity profiles used. The lowest influence of the inlet boundary condition was found at peak velocity in the cardiac cycle. The aortic geometry does not form the flow in such extent (compared to the influence by inlet boundary condition) to obtain a more correct WSS distribution further away from the inlet at the systolic parts of the cardiac cycle. The shape of the vessel has only a significant influence at low velocities i.e. the diastolic phase of the cardiac cycle. Key-Words: Wall Shear Stress Aorta - CFD - Subject Specific - Inlet Boundary Condition - Uniform Velocity Profile 1 Introduction The number one killer in the Western world is cardiovascular diseases originating from development of atherosclerosis. Risk factors such as e.g. smoking and hypertension are well known but hemodynamic factors are also highly important for atherosclerosis studies today. The rapid development of in-vivo image acquisition, image analysis, computational fluid dynamics (CFD), as well as computer power has enabled the possibility to perform non-invasive time resolved subject specific simulations of the blood flow in the human body. This makes it possible to perform highly resolved (both spatially and temporally) in-vivo estimations of hemodynamic parameters using computer simulations. The aim of the computer simulations in this paper is to describe the blood velocity distribution and the flow-induced friction force on the arterial wall, i.e. the wall shear stress (WSS). Hemodynamic factors derived from WSS are of great interest due to its coupling to atherosclerosis genesis and development, see (1). The influence of hemodynamic forces on atherosclerosis location was initially divergently postulated by (2) and (3). They found that high and low WSS indicate atherosclerosis risk regions. To this day the coupling between WSS and atherosclerosis is still not fully understood, (4). However, the most recent studies show a coupling of hemodynamic parameters such as WSS with indicators of atherosclerosis; e.g. (5). Our proposed method uses CFD simulation techniques combined with magnetic resonance imaging (MRI) information for arterial geometry as well as measured blood velocity information. With this approach the velocity distribution near the ISSN: Issue 4, Volume 4, October 2009

2 vessel wall is calculated with very high resolution thus enabling a high resolution estimate of the WSS distribution. The design of CFD simulation models contains three main parts: defining the geometry, defining the governing equations and material properties, and defining the boundary conditions, (6). A correct geometry is essential in performing blood flow simulations and an in-vivo arterial geometry is therefore crucial in making subject specific estimates of WSS, (7-9). The governing equations for the flow are the Navier-Stokes equations. Typical boundary conditions for human cardiovascular system handles: the wall, the inflow and the outflow(s). Many factors will influence the final result of the WSS calculation: the geometry interpretation (called segmentation), the boundary conditions as well as the chosen flow equations. The influence of the inflow boundary condition has only been examined in a few studies, where the most prominent ones are the studies by (8) and (10). In the work by (11) they found that the variation of the inlet boundary condition caused differences on the velocity contours but no changes in outflow flow rates. Analyzes by (10) concluded that the geometrical effect on WSS distribution was much larger than the effect of inlet boundary condition variation. The fact that the inlet profile has an influence on the WSS distribution is known. However, to what extent the influence is relevant for different locations in the human aorta and different times in the cardiac cycle will be addressed in this paper. We present and discuss the temporally influence on WSS of the inflow boundary condition using a measured subject specific velocity profile (from MRI) and comparing it to a uniform velocity profile (with the correct subject specific mass flow) on a group (N=9) of normal volunteers, see table 1. Our hypothesis is that the arterial geometry will shape the WSS distribution more then the inflow boundary condition the further downstream the WSS distribution is compared. 2 Method The in-vivo measurement technique of MRI was used in order to achieve both geometrical as well as flow information. Nine healthy normal male volunteers (age 26.6±1.3, BMI 21.9±1.3) see table 1, were scanned in a 1.5T MRI scanner (Philips Achieva, Philips Medical Systems, Best, The Netherlands). For geometrical data of the whole aorta a 3D gadolinium-enhanced gradient-echo sequence was used within a breath hold (echo time 1.6 ms, repetition time 5.3 ms, and flip angle 40, field of view 400x360x80 mm, acquisition matrix 400x230x80, SENSE factor 1.5). A 30 ml (0.5 mmol/ml) contrast bolus (Omniscan, Amersham Health, Oslo, Norway) was injected at 2.0 ml/s. Randomly segmented central k-space ordering (CENTRA) was used. The final geometrical data were transferred into a resolution of 0.78x0.78x1.00 mm. Velocities in the aorta were measured in a 2D plane perpendicular to the main flow direction in the ascending aorta distal to the aortic root (echo time 2.3 or 2.4 ms, repetition time 3.9 or 4.0 ms, flip angle 15, velocity encoding range 1.50 or 2.00 m/s). Acquisitions were made in a breath hold with SENSE factor 2.0 and retrospective cardiac gating to a vectorcardiogram. Velocity information was gained in a 10 mm thick slice (field of view of 350x297 mm, acquisition matrix 144x122) with spatial resolution of 1.37x1.37 mm and temporal resolution of 40 time-frames per cardiac cycle. Corrections for of concomitant gradient fields and eddy currents effects were made directly on the scanner. A level set approach was used for the segmentation, where a region was expanded out from one or several seed points, \cite{sethian_99}. The seed points were placed by the operator and expand automatically toward the aortic contours. The expansion is influenced by a speed image and the local curvature. In order to significantly increase the speed of the level set segmentation was a rough curvature estimate used, (12). The segmentation data in form of binary information was then smoothed with a 2 mm Gaussian smoothing filter with spatial size of 19 pixels. The description of the 3D aortic geometry was converted into a surface description using marching cubes, (13). Finally it was converted to a stereo-lithography file format (.stl). Approximate time for the segmentation process was 20 minutes per subject. The segmentation algorithm was implemented into a cardiac image analysis software package, (14), which is freely available at ( The CFD models consisted of million cells with four prism layers at the wall boundary. This mesh sizes and construction were determined by performing mesh independence analyzes for the WSS in the aortic arch and descending aorta. The time dependent Navier-Stokes equations were solved using the commercially available software ANSYS Fluent 6.1 (Ansys Inc., Pittsburgh, Pennsylvania, USA). The flow was considered non stationary and laminar, (15), with the blood ISSN: Issue 4, Volume 4, October 2009

3 considered as an incompressible fluid with a density of 1060 kg/m 3. Subject specific fluid behavior regarding viscosity was chosen to Newtonian fluid model with measured subject specific viscosity (0.0046± Ns/m 2 ), measurement performed using the ReoRox Jr. device (MediRox AB, Nyköping, Sweden). The inlet boundary condition at the ascending aorta was of two different types for each subject: 1) the measured subject specific velocity profile (shown in Figure 1 for all subjects at max acceleration time t 1 ) and 2) a uniform profile with subject specific (measured) mass flow rate. The choice of a uniform profile as the simplified case instead of a fully developed profile was made due to the fact that the flow profile in the ascending aorta is far from a fully developed and that a uniform profile is a more relevant assumption, Figure 1 and (16). Outflow boundary conditions (specified fractions of the inflow) were prescribed unified in all subjects. The outlets mass-flow fractions used were 10%, 5%, 5% and 80% in brachiocephalic artery, left common carotid artery, left subclavian artery, and descending aorta. The aortic wall in the computational models was considered rigid with a no slip boundary condition. Simulations were performed, for two cardiac cycles in order to ensure independence of initial conditions, on the Linux cluster monolith at the Swedish National Supercomputer Center, NSC, ( Typically 8 CPUs were used for 100 h to simulate two cardiac cycles. WSS estimations from the nine individuals were gained for a whole cardiac cycle. Comparison data were extracted at the three cross-sections of the aorta placed at the ascending part, mid arch, and descending section; named CS1, CS2 and CS3, see Figure 2. WSS were extracted from these three cross-sections at four times. The times were chosen according to maximum acceleration, maximum velocity, maximum retardation, and minimum velocity at the inlet; denoted t 1 -t 4, see Figure 2. The final set of WSS data used for the analysis were the WSS values for the 9 subjects at three spatially different cross-sections and at these four time positions resulting in 108 possible comparisons between the two inlet profile conditions. Each of the three cross-sections consisted of 360 spatial evenly distributed points on the wall. For evaluations, RMS values were calculated for each cross-section and time according to: where Δ = i max RMS 360 i= 1 WSS = i 2 Δi measured, i ( WSS, WSS ) measured, i uniform, i (1) WSS uniform, i (2) 360 max ( WSS, WSS ) i= 1 measured, i uniform, i Where measured denotes measured profile and uniform denotes uniform profile with subject specific mass flow rate. 3 Results and Discussion Two questions were of special interest for this study. First, is the use of a measured inflow velocity profile important in order to get reliable WSS result or is it sufficient enough to use a uniform profile with subject specific mass flow rate? Secondly, is the geometry influence on the WSS distribution so dominating that a subject specific inlet velocity profile is of limited importance when moving downstream the aorta? 3.1 Results The differences in WSS values between the simulations with measured subject specific inlet velocity profile and uniform inlet velocity profile with subject specific mass flow rate for subject #4 is shown in Figure 3. There are significant differences in the WSS distribution and the differences vary by cardiac cycle time location (t 1 -t 4 ). Circumferential mean WSS values for the two inlet velocity profile settings were calculated for the different individuals, spatial positions, and time positions. These data are presented in Figure 4, where the WSS values are plotted against each other and the solid line marks the no difference positions. All points should coincide with this line if the two inflow boundary conditions resulted in the same WSS result. The subject mean differences in percent between measured and uniform inlet velocity profile are presented in Figure 5 by using RMS values described in equation (1) and (2). 3.2 Main Findings Our focus was to determine the influence on the WSS distribution using a uniform inlet velocity profile (with measured subject specific mass flow) and a measured subject specific inlet velocity profile. Prominent differences in WSS distribution were found when using a mass-flow correct uniform profile compared with using a subject specific ISSN: Issue 4, Volume 4, October 2009

4 measured inlet profile, see Figure 5. In Figure 4 it can be noted that the difference was smallest at time positions t 2 and t 3 which are at maximum velocity and maximum retardation. The over/under estimation structure, between measured profile and uniform velocity profile, shifts between time t 1 and t 4 (maximum acceleration and minimum velocity). This behavior is also indicated in the one subject example in Figure 3. Differences between the three cross-sections were generally very small, with the exception of time t 4 (minimum velocity) there the difference between the different inlet boundary condition is much larger in CS1 then in CS2 and CS3. However, the WSS distribution became significantly different when using the simplified (uniform) inflow boundary condition compared to using a subject specific profile, see Figure 4 and 5. The use of a measured inlet velocity profile is therefore of crucial importance when attempting to estimate WSS. At peak systole i.e. time t 2 the differences in WSS were significantly smaller then at the other times. The influence on WSS distribution due to arterial geometry was not so prominent that the WSS distribution from the uniform profile becomes more similar to the WSS distribution from the measured velocity profile, when comparing the WSS distribution more and more downstream the aorta. However, in the first three time positions t 1 -t 3 (maximum acceleration, maximum velocity, and maximum retardation) the individual order between the three cross-sections is the same, but it is dramatically shifted at minimum velocity time t 4, where the geometrical influences become more prominent, Figure 5. This implies that the temporal behavior is important to study. The main difference on WSS influence of inflow profile between time t 4 and the other time positions is that there exists a retrograde flow with low velocity. At low velocities there is probably a larger influence from the geometry, see (17), which may be explained by that the flow becomes more friction dependent at low velocities. 3.3 Comparison and other findings The influence of inlet boundary condition studied by (11) were evaluated by using uniform, parabolic and a realistic (but not subject specific) profile applied on the femoralis bifurcation. Evaluations were performed by using computed velocity profiles and flow rates in the two outlets. Their main findings were that a geometrically idealized model is behaving clearly different in the flow rate results when varying the inflow boundary condition which enhances the importance of a subject specific geometry. In (10) the focus is the question if a fully developed velocity profile is sufficient to get reliable WSS parameters and compare it with a realistic inlet profile. The realistic velocity profiles were gained by applying different (curved) inlet sections to the simulation inlet in the carotid artery. The approach by (10) was evaluated using cardiac cycle average WSS values and oscillating shear index (OSI). They reported that geometrical variation (realized by performing 3 different scans on each subject) is clearly influencing the WSS more than the inlet boundary condition. Our results show that, in the aorta, the geometry importance does not influence the flow in such an extent that the influence from inflow boundary condition decreases when moving downstream from the inlet in the model of the aorta. The reasons of the different conclusions in our work compared to (10) on geometrical importance compared to the inlet velocity profile are probably that the evaluation was performed in a different temporal scope. Improvement in the knowledge on WSS distribution variation due to inlet boundary condition was that in our study the temporal variations were shown and evaluated. But in (10) the temporal variations were being included in the cardiac cycle average WSS and OSI. Our results show that importance of geometry is more prominent at low velocities which correspond to the diastolic part. The diastolic part is more than 50% of the cardiac cycle at rest, which indicates that temporal average parameters such as cardiac cycle average WSS and OSI consist of a large part of diastolic values. Both (11) and (10) use relevant velocity profiles, but our study uses measured subject specific velocity profiles as well as subject specific viscosity, which is a further step into making subject specific aortic WSS estimations. 3.4 Conclusions In conclusion subject specific models have been used for geometry, inflow velocity profile as well as viscosity in nine subjects. The recommendation due to our findings is that a subject specific inlet boundary condition should be used in order to get a subject specific WSS distribution for the human aorta. The influence on WSS distribution by aortic geometry compared to the inlet velocity profile influence is only significant at diastolic times in the cardiac cycle. Importance in both scope and analysis is the temporal variations which must be taken into account if temporal resolved WSS distribution is of interest. ISSN: Issue 4, Volume 4, October 2009

5 Acknowledgement This work has been conducted within the Center for Medical Image and Science Visualization (CMIV) at Linköping University, Sweden. CMIV is acknowledged for provision of financial support and access to leading edge research infrastructure for medical imaging. Computer resources for making this studie possible were supplied by National Supercomputer Center (NSC) at Linköping University, Sweden. The authors are grateful to Dr Tino Ebbers for MRI acquisition and to Dr Einar Heiberg for segmentation tool development. ISSN: Issue 4, Volume 4, October 2009

6 Subject Age [years] Wieght [kg] Length [m] BMI [kg/m 2 ] Viscosity [kg/ms] ±1.3 73±5 1.82± ± ± Table 1: Age, weight, length, BMI and blood viscosity for the nine subjects. ISSN: Issue 4, Volume 4, October 2009

7 Figure 1: Subject specific inlet velocity profiles for all nine subjects at time t1 (maximum acceleration). ISSN: Issue 4, Volume 4, October 2009

8 Figure 2: Left: Subject specific aortic geometry with the three analyzed cross-sections CS1-CS3 marked. Right: Mean inlet velocity in one subject, with time positions t 1 t 4 marked. The positions correspond to maximum acceleration, maximum velocity, maximum retardation, and minimum velocity. ISSN: Issue 4, Volume 4, October 2009

9 Figure 3: WSS values around CS3 for subject #4 (descending aorta) where P, L, A and R denotes posterior, left, anterior, and right. Solid line is WSS from the measured inlet profile and the dashed line comes from the uniform inlet velocity profile (note the different y-axis scales). ISSN: Issue 4, Volume 4, October 2009

10 Figure 4: Cross-section mean WSS values, for subject specific measured inlet profile WSS mp versus mass-flow correct uniform inlet profile WSS fp (N=9). Displayed at the three cross-sections CS1-CS3 and four time positions t1 t4. ISSN: Issue 4, Volume 4, October 2009

11 Figure 5: Subject average of RMS of the percentage of differences in WSS between subject specific inlet profile and mass flow correct uniform inflow profile. The average RMS values are shown at four different time positions t 1 t 4 and three cross-sections CS1-CS3. ISSN: Issue 4, Volume 4, October 2009

12 References 1. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: Molecular, cellular, and vascular behavior. J Am Coll Cardiol Jun 26;49(25): Fry DL. Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res Feb;22(2): Caro CG, Fitz-Gerald JM, Schroter RC. Atheroma and arterial wall shear. observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B Biol Sci Feb 16;177(46): Steinman DA, Taylor CA. Flow imaging and computing: Large artery hemodynamics. Ann Biomed Eng Dec;33(12): Augst AD, Ariff B, McG Thom SA, Xu XY, Hughes AD. Analysis of complex flow and the relationship between blood pressure, wall shear stress, and intima-media thickness in the human carotid artery. Am J Physiol Heart Circ Physiol Aug;293(2):H Svensson J, Gårdhagen R, Heiberg E, Ebbers T, Loyd D, Länne T, et al. Feasibility of patient specific aortic blood flow CFD simulation. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv. 2006;9(Pt 1): Svensson J, Gårdhagen R, Karlsson M. Assesment of geometrical influence on WSS estimation in the human aorta. WSEAS Transactions on Fluid Mechanics. 2006;1: Morris L, Delassus P, Callanan A, Walsh M, Wallis F, Grace P, et al. 3-D numerical simulation of blood flow through models of the human aorta. J Biomech Eng Oct;127(5): Myers JG, Moore JA, Ojha M, Johnston KW, Ethier CR. Factors influencing blood flow patterns in the human right coronary artery. Ann Biomed Eng Feb;29(2): Moyle KR, Antiga L, Steinman DA. Inlet conditions for image-based CFD models of the ISSN: Issue 4, Volume 4, October 2009

13 carotid bifurcation: Is it reasonable to assume fully developed flow? J Biomech Eng Jun;128(3): Fung Y. Biomechanics : Motion, flow, stress, and growth. New York ; Berlin: Springer; Morris L, Delassus P, Grace P, Wallis F, Walsh M, McGloughlin T. Effects of flat, parabolic and realistic steady flow inlet profiles on idealised and realistic stent graft fits through abdominal aortic aneurysms (AAA). Med Eng Phys Jan;28(1): Nilsson B, Heyden A. A fast algorithm for level set-like active contours. Pattern Recog Lett. 2003;24(9-10): Lorensen WE, Cline HE. In: Marching cubes: A high resolution 3D surface construction algorithm. SIGGRAPH '87: 16. Kvitting JP, Ebbers T, Wigström L, Engvall J, Olin CL, Bolger AF. Flow patterns in the aortic root and the aorta studied with timeresolved, 3-dimensional, phase-contrast magnetic resonance imaging: Implications for aortic valve-sparing surgery. J Thorac Cardiovasc Surg Jun;127(6): Renner J, Gårdhagen R, Ebbers T, Heiberg E, Länne T, Karlsson M. A method for subject specific estimatin of aortic wall shear stress. accepted for publication in WSEAS Transactions on Biology and Biomedicine. Proceedings of the 14th annual conference on computer graphics and interactive techniques; July; New York, NY, USA: ACM Press; p Heiberg E, Wigstrom L, Carlsson M, Bolger AF, Karlsson M. In: Time resolved three dimensional automated segmentation of the left ventricle. Lyon, France. ; p ISSN: Issue 4, Volume 4, October 2009

CFD Analysis of Pulsatile Flow and Non-Newtonian Behavior of Blood in Arteries

CFD Analysis of Pulsatile Flow and Non-Newtonian Behavior of Blood in Arteries Copyright 2015 Tech Science Press MCB, vol.12, no.1, pp.37-47, 2015 CFD Analysis of Pulsatile Flow and Non-Newtonian Behavior of Blood in Arteries P. Jhunjhunwala,, P.M. Padole, and S.B. Thombre, Abstract:

More information

Refinements in Mathematical Models to Predict Aneurysm Growth and Rupture

Refinements in Mathematical Models to Predict Aneurysm Growth and Rupture Refinements in Mathematical Models to Predict Aneurysm Growth and Rupture RAMON BERGUER, a,b JOSEPH L. BULL, a,b AND KHALIL KHANAFER a a Vascular Mechanics Laboratory, Department of Biomedical Engineering,

More information

CFD Challenge: Simulation of Hemodynamics in a Patient-Specific Aortic Coarctation Model

CFD Challenge: Simulation of Hemodynamics in a Patient-Specific Aortic Coarctation Model CFD Challenge: Simulation of Hemodynamics in a Patient-Specific Aortic Coarctation Model Background Coarctation of the aorta (CoA) accounts for 8%-11% of congenital heart defects, affecting tens of thousands

More information

Numerical Simulation of Blood Flow through Asymmetric and Symmetric Occlusion in Carotid Artery

Numerical Simulation of Blood Flow through Asymmetric and Symmetric Occlusion in Carotid Artery Proceedings of the 3 rd International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT 16) Ottawa, Canada May 2 3, 2016 Paper No. 170 Numerical Simulation of Blood Flow through Asymmetric and Symmetric

More information

Numerical simulations of fluid mechanical interactions between two abdominal aortic branches

Numerical simulations of fluid mechanical interactions between two abdominal aortic branches Korea-Australia Rheology Journal Vol. 16, No. 2, June 2004 pp. 75-83 Numerical simulations of fluid mechanical interactions between two abdominal aortic branches Taedong Kim, Taewon Seo* 1,2 and Abdul.I.

More information

4D model of hemodynamics in the abdominal aorta

4D model of hemodynamics in the abdominal aorta Bio-Medical Materials and Engineering 26 (2015) S257 S264 DOI 10.3233/BME-151312 IOS Press S257 4D model of hemodynamics in the abdominal aorta Ireneusz Zbicinski a,*, Natalia Veshkina a and Ludomir Stefa

More information

Non-Newtonian pulsatile blood flow in a modeled artery with a stenosis and an aneurysm

Non-Newtonian pulsatile blood flow in a modeled artery with a stenosis and an aneurysm Non-Newtonian pulsatile blood flow in a modeled artery with a stenosis and an aneurysm I. Husain, C. Langdon and J. Schwark Department of Mathematics Luther College University of Regina Regina, Saskatchewan

More information

Contents 1 Computational Haemodynamics An Introduction 2 The Human Cardiovascular System

Contents 1 Computational Haemodynamics An Introduction 2 The Human Cardiovascular System Contents 1 Computational Haemodynamics An Introduction... 1 1.1 What is Computational Haemodynamics (CHD)... 1 1.2 Advantages of CHD... 3 1.3 Applications in the Cardiovascular System... 4 1.3.1 CHD as

More information

CPM Specifications Document Aortofemoral Normal:

CPM Specifications Document Aortofemoral Normal: CPM Specifications Document Aortofemoral Normal: OSMSC 0110_0000 May 27, 2013 Version 1 Open Source Medical Software Corporation 2013 Open Source Medical Software Corporation. All Rights Reserved. 1. Clinical

More information

Quantifying turbulent wall shear stress in a subject specific human aorta using large eddy simulation

Quantifying turbulent wall shear stress in a subject specific human aorta using large eddy simulation Quantifying turbulent wall shear stress in a subject specific human aorta using large eddy simulation Jonas Lantz, Roland Gårdhagen and Matts Karlsson Linköping University Post Print N.B.: When citing

More information

CPM Specifications Document Aortic Coarctation: Exercise

CPM Specifications Document Aortic Coarctation: Exercise CPM Specifications Document Aortic Coarctation: Exercise OSMSC 0091_2000 0102_2000 0107_0000 0111_0000 May 29, 2013 Version 1 Open Source Medical Software Corporation 2013 Open Source Medical Software

More information

A Multiphysics Simulation of a Healthy and a Diseased Abdominal Aorta

A Multiphysics Simulation of a Healthy and a Diseased Abdominal Aorta A Multiphysics Simulation of a Healthy and a Diseased Abdominal Aorta No Author Given No Institute Given Abstract. Abdominal Aortic Aneurysm is a potentially life-threatening disease if not treated adequately.

More information

Numerical Simulation of Blood Flow in the System of Human Coronary Arteries with and without Bypass Graft

Numerical Simulation of Blood Flow in the System of Human Coronary Arteries with and without Bypass Graft Numerical Simulation of Blood Flow in the System of Human Coronary Arteries with and without Bypass Graft BURASKORN NUNTADILOK 1, BENCHAWAN WIWATANAPATAPHEE 1 MEECHOKE CHUEDOUNG 1, THANONGCHAI SIRIAPISITH

More information

Simulations of pulsatile blood flow in tapered S-shaped inplane and out-of-plane coronary arteries

Simulations of pulsatile blood flow in tapered S-shaped inplane and out-of-plane coronary arteries Simulations of pulsatile blood flow in tapered S-shaped inplane and out-of-plane coronary arteries Author Johnston, Barbara, Johnston, Peter Published 2009 Conference Title 18th IMACS World Congress MODSIM09

More information

Blood flow in vessels with artificial or pathological geometrical changes

Blood flow in vessels with artificial or pathological geometrical changes Blood flow in vessels with artificial or pathological geometrical changes P. Tibaut 1, B. Wiesler 1, M. Mayer 2 & R. Wegenkittel 3 1 AVL LIST GmbH, Graz, Austria 2 VRVIs, Vienna, Austria 3 Tiani Medgraph

More information

Arteriovenous Graft Modeling and Hemodynamic Interpretation

Arteriovenous Graft Modeling and Hemodynamic Interpretation Open Journal of Fluid Dynamics, 2012, 2, 324-330 http://dx.doi.org/10.4236/ojfd.2012.24a040 Published Online December 2012 (http://www.scirp.org/journal/ojfd) Arteriovenous Graft Modeling and Hemodynamic

More information

CPM Specifications Document Aortofemoral Normal:

CPM Specifications Document Aortofemoral Normal: CPM Specifications Document Aortofemoral Normal: OSMSC 0003_0000 0006_0000 May 24, 2013 Version 1 Open Source Medical Software Corporation 2013 Open Source Medical Software Corporation. All Rights Reserved.

More information

EasyChair Preprint. Computational Fluid Dynamics Simulations of Flow in the Renal Arteries after Stent Graft Implantation

EasyChair Preprint. Computational Fluid Dynamics Simulations of Flow in the Renal Arteries after Stent Graft Implantation EasyChair Preprint 259 Computational Fluid Dynamics Simulations of Flow in the Renal Arteries after Stent Graft Implantation Tianyi Xia, Matthew Doyle, Thomas Forbes and Cristina H. Amon EasyChair preprints

More information

JADAVPUR UNIVERSITY & 2 SCHOOL OF BIOSCIENCE AND ENGINEERING ABHIRUP ROY CHOUDHURY 1, KRITTIKA DASGUPTA 2, ABHIJIT CHANDA 1,2, DEBABRATA NAG 1

JADAVPUR UNIVERSITY & 2 SCHOOL OF BIOSCIENCE AND ENGINEERING ABHIRUP ROY CHOUDHURY 1, KRITTIKA DASGUPTA 2, ABHIJIT CHANDA 1,2, DEBABRATA NAG 1 Presented at the COMSOL Conference 2010 India ABHIRUP ROY CHOUDHURY 1, KRITTIKA DASGUPTA 2, ABHIJIT CHANDA 1,2, DEBABRATA NAG 1 1 DEPARTMENT OF MECHANICAL ENGINEERING & 2 SCHOOL OF BIOSCIENCE AND ENGINEERING

More information

FLUID MECHANICAL PERTURBATIONS INDUCED BY STENT IMPLANTATION: A NUMERICAL STUDY

FLUID MECHANICAL PERTURBATIONS INDUCED BY STENT IMPLANTATION: A NUMERICAL STUDY LABORATORY OF BIOLOGICAL STRUCTURE MECHANICS www.labsmech.polimi.it FLUID MECHANICAL PERTURBATIONS INDUCED BY STENT IMPLANTATION: A NUMERICAL STUDY Rossella Balossino, Francesca Gervaso, Francesco Migliavacca,

More information

Blood Flow Simulation toward Actual Application at Hospital

Blood Flow Simulation toward Actual Application at Hospital THE 5 TH ASIAN COMPUTAITIONAL FLUID DYNAMICS BUSAN, KOREA, OCTOBER 27 ~ OCTOBER 30, 2003 Blood Flow Simulation toward Actual Application at Hospital Abstract R. Himeno 1 1. Advanced Center for Computing

More information

Studying the Flow Dynamics Within Endografts in Abdominal Aortic Aneurysms

Studying the Flow Dynamics Within Endografts in Abdominal Aortic Aneurysms Chapter 8 Studying the Flow Dynamics Within Endografts in Abdominal Aortic Aneurysms Efstratios Georgakarakos, Antonios Xenakis, George S. Georgiadis, Konstantinos C. Kapoulas, Evagelos Nikolopoulos and

More information

Predicting flow in aortic dissection: comparison of computational model with PC-MRI velocity measurements

Predicting flow in aortic dissection: comparison of computational model with PC-MRI velocity measurements Predicting flow in aortic dissection: comparison of computational model with PC-MRI velocity measurements Z. Cheng 1, C. Juli 3 N.B. Wood 1, R.G.J. Gibbs 2, X.Y. Xu 1 1 Department of Chemical Engineering,

More information

PHYSIOLOGICAL PULSATILE WAVEFORM THROUGH AXISYMMETRIC STENOSED ARTERIES: NUMERICAL SIMULATION

PHYSIOLOGICAL PULSATILE WAVEFORM THROUGH AXISYMMETRIC STENOSED ARTERIES: NUMERICAL SIMULATION PHYSIOLOGICAL PULSATILE WAVEFORM THROUGH AXISYMMETRIC STENOSED ARTERIES: NUMERICAL SIMULATION Jayme Pinto Ortiz University of São Paulo - Avenida Prof. Luciano Gualberto, travessa3 nº 380 - CEP - 05508-900

More information

Magnetic Resonance Angiography

Magnetic Resonance Angiography Magnetic Resonance Angiography 1 Magnetic Resonance Angiography exploits flow enhancement of GR sequences saturation of venous flow allows arterial visualization saturation of arterial flow allows venous

More information

MR Advance Techniques. Vascular Imaging. Class II

MR Advance Techniques. Vascular Imaging. Class II MR Advance Techniques Vascular Imaging Class II 1 Vascular Imaging There are several methods that can be used to evaluate the cardiovascular systems with the use of MRI. MRI will aloud to evaluate morphology

More information

COMPUTER SIMULATION OF BLOOD FLOW IN ARTERIES AFFECTED BY MULTIPLE ANEURYSM

COMPUTER SIMULATION OF BLOOD FLOW IN ARTERIES AFFECTED BY MULTIPLE ANEURYSM COMPUTER SIMULATION OF BLOOD FLOW IN ARTERIES AFFECTED BY MULTIPLE ANEURYSM H. GIRIJA BAI 1 and K.B. NAIDU 2 Department of Mathematics, Sathyabama University, Chennai-600 119, Tamil Nadu, India 1 girijanameprakash@gmail.com

More information

Effects of Non-Newtonian Behavior of Blood on Wall Shear Stress in an Elastic Vessel with Simple and Consecutive Stenosis

Effects of Non-Newtonian Behavior of Blood on Wall Shear Stress in an Elastic Vessel with Simple and Consecutive Stenosis Biomedical & Pharmacology Journal Vol. 8(1), 123-131 (2015) Effects of Non-Newtonian Behavior of Blood on Wall Shear Stress in an Elastic Vessel with Simple and Consecutive Stenosis M. JAHANGIRI 1 *, M.

More information

Simulations of the blood flow in the arterio-venous fistula for haemodialysis

Simulations of the blood flow in the arterio-venous fistula for haemodialysis Acta of Bioengineering and Biomechanics Vol. 16, No. 1, 2014 Original paper DOI: 10.5277/abb140109 Simulations of the blood flow in the arterio-venous fistula for haemodialysis DANIEL JODKO*, DAMIAN OBIDOWSKI,

More information

Design and Simulation of Blocked Blood Vessel for Early Detection of Heart Diseases

Design and Simulation of Blocked Blood Vessel for Early Detection of Heart Diseases Proceedings of the 215 2nd International Symposium on Physics and Technology of Sensors, 8-1th March, 215, Pune, India Design and Simulation of Blocked Blood Vessel for Early Detection of Heart Diseases

More information

La dissection aortique de type B : Dépistage et Suivi

La dissection aortique de type B : Dépistage et Suivi La dissection aortique de type B : Dépistage et Suivi Philippe Cluzel Département d Imagerie Cardiovasculaire et de Radiologie Interventionnelle et Thoracique (DICVRIT) Sorbonne Université Médecine, UMR

More information

Numerical analysis of blood flow in human abdominal aorta

Numerical analysis of blood flow in human abdominal aorta Advances in Fluid Mechanics VI 603 Numerical analysis of blood flow in human abdominal aorta M. Podyma 1, I. Zbicinski 1, J. Walecki 2, M. L. Nowicki 2, P. Andziak 3, P. Makowski 4 & L. Stefanczyk 5 1

More information

Using Computational Fluid Dynamics Model to Predict Changes in Velocity properties in Stented Carotid Artery

Using Computational Fluid Dynamics Model to Predict Changes in Velocity properties in Stented Carotid Artery Excerpt from the Proceedings of the COMSOL Conference 2010 Paris (COMSOL Conference) Using Computational Fluid Dynamics Model to Predict Changes in Velocity properties in Stented Carotid Artery Vaidehi

More information

A computational fluid dynamics simulation study of coronary blood flow affected by graft placement

A computational fluid dynamics simulation study of coronary blood flow affected by graft placement Interactive CardioVascular and Thoracic Surgery 19 (2014) 16 20 doi:10.1093/icvts/ivu034 Advance Access publication 22 April 2014 ORIGINAL ARTICLE ADULTCARDIAC A computational fluid dynamics simulation

More information

Computational medical imaging and hemodynamics framework for functional analysis and assessment of cardiovascular structures

Computational medical imaging and hemodynamics framework for functional analysis and assessment of cardiovascular structures DOI 10.1186/s12938-017-0326-y BioMedical Engineering OnLine REVIEW Open Access Computational medical imaging and hemodynamics framework for functional analysis and assessment of cardiovascular structures

More information

Blood flow in S-shaped in-plane and out-of-plane coronary arteries

Blood flow in S-shaped in-plane and out-of-plane coronary arteries Blood flow in S-shaped in-plane and out-of-plane coronary arteries Author Johnston, Peter, Johnston, Barbara Published 2008 Journal Title The A N Z I A M Journal DOI https://doi.org/10.21914/anziamj.v49i0.330

More information

Computational design of Intracranial Stent using 3D visualization system

Computational design of Intracranial Stent using 3D visualization system Computational design of Intracranial Stent using 3D visualization system Institute of Fluid Science, Tohoku University Makoto OHTA Graduate school of Engineering Hitomi Anzai Graduate school of Biomedical

More information

Influence of Oscillating Flow on LDL Transport and Wall Shear Stress in the Normal Aortic Arch

Influence of Oscillating Flow on LDL Transport and Wall Shear Stress in the Normal Aortic Arch 128 The Open Cardiovascular Medicine Journal, 2009, 3, 128-142 Open Access Influence of Oscillating Flow on LDL Transport and Wall Shear Stress in the Normal Aortic Arch J. Soulis 1,*, G. Giannoglou 2,

More information

Computational analysis of effects of external carotid artery flow and occlusion on adverse carotid bifurcation hemodynamics

Computational analysis of effects of external carotid artery flow and occlusion on adverse carotid bifurcation hemodynamics Computational analysis of effects of external carotid artery flow and occlusion on adverse carotid bifurcation hemodynamics Sinjae Hyun, PhD, a Clement Kleinstreuer, PhD, b and Joseph P. Archie, Jr, PhD,

More information

Previous talks. Clinical applications for spiral flow imaging. Clinical applications. Clinical applications. Coronary flow: Motivation

Previous talks. Clinical applications for spiral flow imaging. Clinical applications. Clinical applications. Coronary flow: Motivation for spiral flow imaging Joao L. A. Carvalho Previous talks Non-Cartesian reconstruction (2005) Spiral FVE (Spring 2006) Aortic flow Carotid flow Accelerated spiral FVE (Fall 2006) 2007? Department of Electrical

More information

Computational Fluid Dynamics Analysis of Blalock-Taussig Shunt

Computational Fluid Dynamics Analysis of Blalock-Taussig Shunt Washington University in St. Louis Washington University Open Scholarship Mechanical Engineering and Materials Science Independent Study Mechanical Engineering & Materials Science 12-23-2017 Computational

More information

EVALUATION OF ABDOMINAL AORTIC ANEURYSM WALL STESS BASED ON FLOW INDUCED LOAD

EVALUATION OF ABDOMINAL AORTIC ANEURYSM WALL STESS BASED ON FLOW INDUCED LOAD International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 11, November 2018, pp. 684 688, Article ID: IJMET_09_11_068 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=11

More information

Computational Fluid Dynamics Analysis of Blood Flow in Human Aorta

Computational Fluid Dynamics Analysis of Blood Flow in Human Aorta Computational Fluid Dynamics Analysis of Blood Flow in Human Aorta Yogesh V. Borse 1, Prof. S.A. Giri 2 M. Tech Scholar, Dept of Mechanical Engg, Ramdeobaba College of Engineering and Management, Nagpur,

More information

Estimation of CSF Flow Resistance in the Upper Cervical Spine

Estimation of CSF Flow Resistance in the Upper Cervical Spine NRJ Digital - The Neuroradiology Journal 3: 49-53, 2013 www.centauro.it Estimation of CSF Flow Resistance in the Upper Cervical Spine K-A. MARDAL 1, G. RUTKOWSKA 1, S. LINGE 1.2, V. HAUGHTON 3 1 Center

More information

Simulation of Chemotractant Gradients in Microfluidic Channels to Study Cell Migration Mechanism in silico

Simulation of Chemotractant Gradients in Microfluidic Channels to Study Cell Migration Mechanism in silico Simulation of Chemotractant Gradients in Microfluidic Channels to Study Cell Migration Mechanism in silico P. Wallin 1*, E. Bernson 1, and J. Gold 1 1 Chalmers University of Technology, Applied Physics,

More information

Visualization and Quantification of Blood Flow in the Human Aorta. From in vivo 4D Phase Contrast MRI to Subject-Specific Computational Hemodynamics

Visualization and Quantification of Blood Flow in the Human Aorta. From in vivo 4D Phase Contrast MRI to Subject-Specific Computational Hemodynamics Visualization and Quantification of Blood Flow in the Human Aorta. From in vivo 4D Phase Contrast MRI to Subject-Specific Computational Hemodynamics Industrial Bioengineering Group Department of Mechanics,

More information

Essentials of Clinical MR, 2 nd edition. 99. MRA Principles and Carotid MRA

Essentials of Clinical MR, 2 nd edition. 99. MRA Principles and Carotid MRA 99. MRA Principles and Carotid MRA As described in Chapter 12, time of flight (TOF) magnetic resonance angiography (MRA) is commonly utilized in the evaluation of the circle of Willis. TOF MRA allows depiction

More information

Simulating the Motion of Heart Valves Under Fluid Flows Induced by Cardiac Contraction

Simulating the Motion of Heart Valves Under Fluid Flows Induced by Cardiac Contraction Simulating the Motion of Heart Valves Under Fluid Flows Induced by Cardiac Contraction Eann A. Patterson Department of Mechanical Engineering, The University of Sheffield Mappin Street, Sheffield, S1 3JD

More information

Noninvasive Fractional Flow Reserve from Coronary CT Angiography

Noninvasive Fractional Flow Reserve from Coronary CT Angiography 2016 KSC Annual Spring Scientific Conference Noninvasive Fractional Flow Reserve from Coronary CT Angiography Bon-Kwon Koo, MD, PhD, Seoul, Korea Why the hemodynamics for coronary artery disease? Twinlifemarketing.com.au

More information

ON FLOW DYNAMICS IN TYPE B AORTIC DISSECTION (TBAD)

ON FLOW DYNAMICS IN TYPE B AORTIC DISSECTION (TBAD) ON FLOW DYNAMICS IN TYPE B AORTIC DISSECTION (TBAD) A. Rabin 1, R. Karmeli 1, P. Bar-Yoseph 2 1- Vascular & Endovascular surgery department Hadassah university hospital, Jerusalem, Israel 2- Mechanical

More information

Influence of Velocity Encoding and Position of Image Plane in Patients with Aortic Valve Insufficiency Using 2D Phase Contrast MRI

Influence of Velocity Encoding and Position of Image Plane in Patients with Aortic Valve Insufficiency Using 2D Phase Contrast MRI Influence of Velocity Encoding and Position of Image Plane in Patients with Aortic Valve Insufficiency Using 2D Phase Contrast MRI M. Sc. Thesis Frida Svensson gussvefrh@student.gu.se Supervisors: Kerstin

More information

Study of Newtonian and Non-Newtonian Effect of Blood Flow in Portal Vein in Normal and Hypertension Conditions using CFD Technique

Study of Newtonian and Non-Newtonian Effect of Blood Flow in Portal Vein in Normal and Hypertension Conditions using CFD Technique International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 3 (2013), pp. 399-406 International Research Publication House http://www.irphouse.com Study of Newtonian and

More information

Flow Analysis with Stent Placement in the Cerebral Aneurysm

Flow Analysis with Stent Placement in the Cerebral Aneurysm Proceedings of the ECCOMAS Thematic International Conference on Simulation and Modeling of Biological Flows (SIMBIO 2011) September 21-23, 2011, VUB, Brussels, Belgium Flow Analysis with Stent Placement

More information

There has been extensive speculation in the literature about

There has been extensive speculation in the literature about TECHNICAL NOTE A. Mantha C. Karmonik G. Benndorf C. Strother R. Metcalfe Hemodynamics in a Cerebral Artery before and after the Formation of an Aneurysm SUMMARY: Using data obtained from 3D digital subtraction

More information

54. Simulation and research on the influence of the shape and the geometrical parameters of a blood vessel bypass graft upon hemodynamics

54. Simulation and research on the influence of the shape and the geometrical parameters of a blood vessel bypass graft upon hemodynamics 54. Simulation and research on the influence of the shape and the geometrical parameters of a blood vessel bypass graft upon hemodynamics Andžela Šešok 1, Donatas Lukšys 2 Vilnius Gediminas Technical University,

More information

Research Article Hemodynamic Features in Stenosed Coronary Arteries: CFD Analysis Based on Histological Images

Research Article Hemodynamic Features in Stenosed Coronary Arteries: CFD Analysis Based on Histological Images Applied Mathematics Volume, Article ID 77, pages http://dx.doi.org/.//77 Research Article Hemodynamic Features in Stenosed Coronary Arteries: CFD Analysis Based on Histological Images Mahsa Dabagh,, Wakako

More information

CFD Study of the Blood Flow in Cerebral Aneurysms Treated with Flow Diverter Stents

CFD Study of the Blood Flow in Cerebral Aneurysms Treated with Flow Diverter Stents CFD Study of the Blood Flow in Cerebral Aneurysms Treated with Flow Diverter Stents Augusto F. Sanches and Eva Gutheil Interdisciplinary Center for Scientific Computing, Heidelberg University Flow diverters

More information

UNIVERSITY OF CINCINNATI

UNIVERSITY OF CINCINNATI UNIVERSITY OF CINCINNATI Date: 5-Nov-2010 I, Justin Niehaus, hereby submit this original work as part of the requirements for the degree of: Master of Science in Aerospace Engineering It is entitled: Use

More information

CVIA. Computational Fluid Dynamics Modeling in Aortic Diseases INTRODUCTION. Takuya Ueda 1, Hiroshi Suito 2, Hideki Ota 1, Kei Takase 1

CVIA. Computational Fluid Dynamics Modeling in Aortic Diseases INTRODUCTION. Takuya Ueda 1, Hiroshi Suito 2, Hideki Ota 1, Kei Takase 1 CVIA REVIEW ARTICLE pissn 2508-707X / eissn 2508-7088 https://doi.org/10.22468/cvia.2018.00073 CVIA 2018;2(2):58-64 Computational Fluid Dynamics Modeling in Aortic Diseases Takuya Ueda 1, Hiroshi Suito

More information

Computational simulation of 4D blood flow dynamics of the thoraco-abdominal aorta: prediction of long-term changes in aneurysm morphology

Computational simulation of 4D blood flow dynamics of the thoraco-abdominal aorta: prediction of long-term changes in aneurysm morphology Computational simulation of 4D blood flow dynamics of the thoraco-abdominal aorta: prediction of long-term changes in aneurysm morphology Poster No.: B-044 Congress: ECR 2011 Type: Scientific Paper Topic:

More information

Finite element modeling of the thoracic aorta: including aortic root motion to evaluate the risk of aortic dissection

Finite element modeling of the thoracic aorta: including aortic root motion to evaluate the risk of aortic dissection Journal of Medical Engineering & Technology, Vol. 32, No. 2, March/April 2008, 167 170 Short Communication Finite element modeling of the thoracic aorta: including aortic root motion to evaluate the risk

More information

Non Contrast MRA. Mayil Krishnam. Director, Cardiovascular and Thoracic Imaging University of California, Irvine

Non Contrast MRA. Mayil Krishnam. Director, Cardiovascular and Thoracic Imaging University of California, Irvine Non Contrast MRA Mayil Krishnam Director, Cardiovascular and Thoracic Imaging University of California, Irvine No disclosures Non contrast MRA-Why? Limitations of CTA Radiation exposure Iodinated contrast

More information

NUMERICAL STUDY OF PULSATILE BLOOD FLOW IN THE CORONARY SYSTEM WITH THE RCA BYPASS GRAFT

NUMERICAL STUDY OF PULSATILE BLOOD FLOW IN THE CORONARY SYSTEM WITH THE RCA BYPASS GRAFT Journal of Pure and Applied Mathematics: Advances and Applications Volume 9, Number 2, 2013, Pages 81-106 NUMERICAL STUDY OF PULSATILE BLOOD FLOW IN THE CORONARY SYSTEM WITH THE RCA BYPASS GRAFT BURASKORN

More information

Determination of Wall Shear Rate in the Human Carotid Artery by Magnetic Resonance Techniques

Determination of Wall Shear Rate in the Human Carotid Artery by Magnetic Resonance Techniques Eur J Vasc Endovasc Surg 20, 427 433 (2000) doi:10.1053/ejvs.2000.1221, available online at http://www.idealibrary.com on Determination of Wall Shear Rate in the Human Carotid Artery by Magnetic Resonance

More information

A study of computational modeling of abdominal aortic aneurysm

A study of computational modeling of abdominal aortic aneurysm A study of computational modeling of abdominal aortic aneurysm S.M. Kim (a), M.P Lee (b), H.C Kang (c), J.H Lee (d), J.H Jeong (e), S.G Roh (f) (a) Department of Medical Bio Engineering, College of Biosystem,

More information

ISSUES ON COMPUTATIONAL MODELING FOR COMPUTATION-AIDED DIAGNOSIS 臨床診断支援ツールのための計算力学モデリング

ISSUES ON COMPUTATIONAL MODELING FOR COMPUTATION-AIDED DIAGNOSIS 臨床診断支援ツールのための計算力学モデリング ISSUES ON COMPUTATIONAL MODELING FOR COMPUTATION-AIDED DIAGNOSIS 臨床診断支援ツールのための計算力学モデリング Hao LIU Advanced Computer and Information Division, RIKEN 2-1, Hirosawa, Wako-shi, Saitama 351-0198 JAPAN e-mail:

More information

A Multiphysics Simulation of a Healthy and a Diseased Abdominal Aorta

A Multiphysics Simulation of a Healthy and a Diseased Abdominal Aorta A Multiphysics Simulation of a Healthy and a Diseased Abdominal Aorta Robert H.P. McGregor 1, Dominik Szczerba 1,andGábor Székely 1 Computer Vision Laboratory, Sternwartstr. 7, 8092 Zürich, Switzerland

More information

BLOOD FLOW VISUALISATION THROUGH CAROTID BIFURCATION USING ANSYS CFD

BLOOD FLOW VISUALISATION THROUGH CAROTID BIFURCATION USING ANSYS CFD BLOOD FLOW VISUALISATION THROUGH CAROTID BIFURCATION USING ANSYS CFD Roopa.V.Chanashetty 1, Dr.Channappa Bhyri 2 and Vijaykumar Chanashetty 3 1 Department of Electronics and Communication Engineering,

More information

Medical device design using Computational Fluid Dynamics (CFD)

Medical device design using Computational Fluid Dynamics (CFD) Medical device design using Computational Fluid Dynamics (CFD) Session: Winter 2016 IMPORTANT NOTE: This project has 8 deliverables, for each one timely work is expected. 1. General Design Specifications

More information

Blood Flow Patterns in the Proximal Human Coronary Arteries: Relationship to Atherosclerotic Plaque Occurrence

Blood Flow Patterns in the Proximal Human Coronary Arteries: Relationship to Atherosclerotic Plaque Occurrence Copyright c 2008 Tech Science Press MCB, vol.5, no.1, pp.9-18, 2008 Blood Flow Patterns in the Proximal Human Coronary Arteries: Relationship to Atherosclerotic Plaque Occurrence Jin Suo, John N. Oshinski,

More information

Hematocrit Level on Blood flow through a Stenosed Artery with Permeable Wall: A Theoretical Study

Hematocrit Level on Blood flow through a Stenosed Artery with Permeable Wall: A Theoretical Study Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 12, Issue 1 (June 2017), pp. 291-304 Applications and Applied Mathematics: An International Journal (AAM) Hematocrit Level on Blood

More information

Non-axisymmetric Flow Development in Pulsatile Blood Flow through an Aneurysm

Non-axisymmetric Flow Development in Pulsatile Blood Flow through an Aneurysm 16 th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 2007 Non-axisymmetric Flow Development in Pulsatile Blood Flow through an Aneurysm R.A. Jamison 1,2, G.J. Sheard

More information

Flow Quantification from 2D Phase Contrast MRI in Renal Arteries using Clustering

Flow Quantification from 2D Phase Contrast MRI in Renal Arteries using Clustering Flow Quantification from 2D Phase Contrast MRI in Renal Arteries using Clustering Frank G. Zöllner 1,2, Jan Ankar Monnsen 1, Arvid Lundervold 2, Jarle Rørvik 1 1 Department for Radiology, University of

More information

Go With The Flow: Role of 4D Flow Imaging

Go With The Flow: Role of 4D Flow Imaging 4D Flow Go With The Flow: Role of 4D Flow Imaging Niti R. Aggarwal, MD Associate Director of Cardiac MRI Assistant Professor of Medicine & Radiology University of Wisconsin Madison Disclosures GE Healthcare

More information

The effect of the LVAD connecting point on the hemodynamics in the aortic arch BMTE 09.16

The effect of the LVAD connecting point on the hemodynamics in the aortic arch BMTE 09.16 The effect of the LVAD connecting point on the hemodynamics in the aortic arch BMTE 09.16 Author: F.L. Boogaard Supervisor: Dr. Ir. A.C.B. Bogaerds Abstract Left Ventricular Assist Devices (LVADs) are

More information

3D Modeling of Plaque Progression in the Human Coronary Artery

3D Modeling of Plaque Progression in the Human Coronary Artery Proceedings 3D Modeling of Plaque Progression in the Human Coronary Artery Igor Saveljic 1,2, *, Dalibor Nikolic 1,2, Zarko Milosevic 1,2, Velibor Isailovic 1,2, Milica Nikolic 1,2, Oberdan Parodi 3 and

More information

J. Laustsen ~, W. P. Paaske ~, S. Oyre 2 and E. Morre Pedersen ~'2

J. Laustsen ~, W. P. Paaske ~, S. Oyre 2 and E. Morre Pedersen ~'2 Eur J Vasc Endovasc Surg 9, 383-388 (1995) Dynamic Quantification, Visualisation and Animation of Blood Velocities and Flows in Infrarenal Aortic Aneurysms in vivo by Three-Dimensional MR Phase Velocity

More information

Identification of Atherosclerotic Lesion-Prone Sites through Patient-Specific Simulation of Low-Density Lipoprotein Accumulation

Identification of Atherosclerotic Lesion-Prone Sites through Patient-Specific Simulation of Low-Density Lipoprotein Accumulation Identification of Atherosclerotic Lesion-Prone Sites through Patient-Specific Simulation of Low-Density Lipoprotein Accumulation Ufuk Olgac 1, Vartan Kurtcuoglu 1, Stefan C. Saur 2, and Dimos Poulikakos

More information

1Pulse sequences for non CE MRA

1Pulse sequences for non CE MRA MRI: Principles and Applications, Friday, 8.30 9.20 am Pulse sequences for non CE MRA S. I. Gonçalves, PhD Radiology Department University Hospital Coimbra Autumn Semester, 2011 1 Magnetic resonance angiography

More information

Wall Shear Stress Distribution in Patient Specific Coronary Artery Bifurcation

Wall Shear Stress Distribution in Patient Specific Coronary Artery Bifurcation American Journal of Applied Sciences 7 (9): 1237-1242, 2010 ISSN 1546-9239 2010 Science Publications Wall Shear Stress Distribution in Patient Specific Coronary Artery Bifurcation 1 Vahab Dehlaghi and

More information

Global left ventricular circumferential strain is a marker for both systolic and diastolic myocardial function

Global left ventricular circumferential strain is a marker for both systolic and diastolic myocardial function Global left ventricular circumferential strain is a marker for both systolic and diastolic myocardial function Toshinari Onishi 1, Samir K. Saha 2, Daniel Ludwig 1, Erik B. Schelbert 1, David Schwartzman

More information

Non-Newtonian blood flow in human right coronary arteries: Transient simulations

Non-Newtonian blood flow in human right coronary arteries: Transient simulations Non-Newtonian blood flow in human right coronary arteries: Transient simulations Author Johnston, Barbara, Johnston, Peter, Corney, Stuart, Kilpatrick, David Published 2006 Journal Title Journal of Biomechanics

More information

The relative effects of arterial curvature and lumen diameter on wall shear stress distributions in human right coronary arteries

The relative effects of arterial curvature and lumen diameter on wall shear stress distributions in human right coronary arteries The relative effects of arterial curvature and lumen diameter on wall shear stress distributions in human right coronary arteries Author Johnston, Barbara, Johnston, Peter Published 2007 Journal Title

More information

Predicting Aneurysm Rupture: Computer Modeling of Geometry and Hemodynamics

Predicting Aneurysm Rupture: Computer Modeling of Geometry and Hemodynamics Predicting Aneurysm Rupture: Computer Modeling of Geometry and Hemodynamics Robert E. Harbaugh, MD, FACS, FAHA Director, Penn State Institute of the Neurosciences University Distinguished Professor & Chair,

More information

Finite Element Modeling of Three-Dimensional Pulsatile Flow in the Abdominal Aorta: Relevance to Atherosclerosis

Finite Element Modeling of Three-Dimensional Pulsatile Flow in the Abdominal Aorta: Relevance to Atherosclerosis Annals of Biomedical Engineering, Vol. 26, pp. 975 987, 1998 0090-6964/98 $10.50.00 Printed in the USA. All rights reserved. Copyright 1998 Biomedical Engineering Society Finite Element Modeling of Three-Dimensional

More information

STUDY OF FLOW PHENOMENA IN AORTIC DISSECTION

STUDY OF FLOW PHENOMENA IN AORTIC DISSECTION STUDY OF FLOW PHENOMENA IN AORTIC DISSECTION Maurizio Bordone *, Eugenio Oñate *, Paula Rudenick, Bart Bijnens and Eduardo Soudah * * International Centre for Numerical Methods in Engineering (CIMNE) Campus

More information

Scientific Exhibit Authors: M. Sugiyama, Y. Takehara, T. Saito, N. Ooishi, M. Alley,

Scientific Exhibit Authors: M. Sugiyama, Y. Takehara, T. Saito, N. Ooishi, M. Alley, Abnormal flow dynamics within the ascending aorta of the patients with aortic valve stenosis. Assessments with phase resolved three dimensional phase contrast MR image (4DFlow). Poster No.: C-2504 Congress:

More information

CARDIAC MRI. Cardiovascular Disease. Cardiovascular Disease. Cardiovascular Disease. Overview

CARDIAC MRI. Cardiovascular Disease. Cardiovascular Disease. Cardiovascular Disease. Overview CARDIAC MRI Dr Yang Faridah A. Aziz Department of Biomedical Imaging University of Malaya Medical Centre Cardiovascular Disease Diseases of the circulatory system, also called cardiovascular disease (CVD),

More information

FSI Analysis of Diseased Coronary using Patient Specific Data

FSI Analysis of Diseased Coronary using Patient Specific Data FSI Analysis of Diseased Coronary using Patient Specific Data Mingchao Cai, * Haofei Liu, a Chun Yang, a,c Jie Zheng, b Richard Bach, b Mehmet H. Kural, d Kristen L. Billiar, d David Muccigrosso, b Dongsi

More information

Impaired Regional Myocardial Function Detection Using the Standard Inter-Segmental Integration SINE Wave Curve On Magnetic Resonance Imaging

Impaired Regional Myocardial Function Detection Using the Standard Inter-Segmental Integration SINE Wave Curve On Magnetic Resonance Imaging Original Article Impaired Regional Myocardial Function Detection Using the Standard Inter-Segmental Integration Ngam-Maung B, RT email : chaothawee@yahoo.com Busakol Ngam-Maung, RT 1 Lertlak Chaothawee,

More information

3D cine PCA enables rapid and comprehensive hemodynamic assessment of the abdominal aorta

3D cine PCA enables rapid and comprehensive hemodynamic assessment of the abdominal aorta 3D cine PCA enables rapid and comprehensive hemodynamic assessment of the abdominal aorta Poster No.: C-1138 Congress: ECR 2013 Type: Scientific Exhibit Authors: M. Takahashi 1, Y. Takehara 2, H. Isoda

More information

Analysis of the effects of plaque deposits on the blood flow through human artery

Analysis of the effects of plaque deposits on the blood flow through human artery ISSN 2395-1621 Analysis of the effects of plaque deposits on the blood flow through human artery #1 Sajid S. Mulani, #2 Pankaj I. Jagad 1 sajidsmulani21@gmail.com 2 pjjagad.scoe@sinhgad.edu #12 Department

More information

Appendix II: ECHOCARDIOGRAPHY ANALYSIS

Appendix II: ECHOCARDIOGRAPHY ANALYSIS Appendix II: ECHOCARDIOGRAPHY ANALYSIS Two-Dimensional (2D) imaging was performed using the Vivid 7 Advantage cardiovascular ultrasound system (GE Medical Systems, Milwaukee) with a frame rate of 400 frames

More information

Late False Lumen Expansion Predicted by Preoperative Blood Flow Simulation in a Patient with Chronic Type B Aortic Dissection

Late False Lumen Expansion Predicted by Preoperative Blood Flow Simulation in a Patient with Chronic Type B Aortic Dissection Accepted Manuscript Late False Lumen Expansion Predicted by Preoperative Blood Flow Simulation in a Patient with Chronic Type B Aortic Dissection Chikara Ueki, MD, Hiroshi Tsuneyoshi, MD, PhD PII: S0022-5223(18)32652-7

More information

Velocity Vector Imaging as a new approach for cardiac magnetic resonance: Comparison with echocardiography

Velocity Vector Imaging as a new approach for cardiac magnetic resonance: Comparison with echocardiography Velocity Vector Imaging as a new approach for cardiac magnetic resonance: Comparison with echocardiography Toshinari Onishi 1, Samir K. Saha 2, Daniel Ludwig 1, Erik B. Schelbert 1, David Schwartzman 1,

More information

FSI within Aortic Arch Model over Cardiac Cycle and Influence of Wall Stiffness on Wall Stress in Layered Wall

FSI within Aortic Arch Model over Cardiac Cycle and Influence of Wall Stiffness on Wall Stress in Layered Wall Engineering Letters, 13:2, EL_13_2_15 (Advance online publication: 4 August 2006) FSI within Aortic Arch Model over Cardiac Cycle and Influence of Wall Stiffness on Wall Stress in Layered Wall F. Gao and

More information

Hemodynamics is recognized as one of the many factors

Hemodynamics is recognized as one of the many factors ORIGINAL RESEARCH L.-D. Jou D.H. Lee H. Morsi M.E. Mawad Wall Shear Stress on Ruptured and Unruptured Intracranial Aneurysms at the Internal Carotid Artery BACKGROUND AND PURPOSE: Hemodynamics is often

More information

Assessment of the Effects of Increasing Levels of Physiological Realism in the Computational Fluid Dynamics Analyses of Implanted Coronary Stents

Assessment of the Effects of Increasing Levels of Physiological Realism in the Computational Fluid Dynamics Analyses of Implanted Coronary Stents Dublin Institute of Technology ARROW@DIT Conference Papers School of Mechanical and Design Engineering 2008-09-01 Assessment of the Effects of Increasing Levels of Physiological Realism in the Computational

More information

Extraction and FSI modeling of Left coronary artery structure from patient s CTA images

Extraction and FSI modeling of Left coronary artery structure from patient s CTA images Extraction and FSI modeling of Left coronary artery structure from patient s CTA images Safia Salim Dept. of Electronics & Communication College of Engineering, Kerala University Trivandrum. 695016 Email:

More information

Simulation of structure - fluid interaction in left side of human heart

Simulation of structure - fluid interaction in left side of human heart Journal of Scientific Research and Development 2 (3): 163-168, 2015 Available online at www.jsrad.org ISSN 1115-7569 2015 JSRAD Simulation of structure - fluid interaction in left side of human heart Masoud

More information