Arrhythmias_for_6_c..docx. Олена Костянтинівна Редько

Size: px
Start display at page:

Download "Arrhythmias_for_6_c..docx. Олена Костянтинівна Редько"

Transcription

1 Arrhythmias_for_6_c..docx Олена Костянтинівна Редько 2015

2

3 Ключові терміни: 3 Зміст Ключові терміни: Arrhythmias 3 3

4 Ключові терміни: 4 Arrhythmias Ключові терміни: An irregular heart rhythm, Atrial flutter, First-degree heart block, Questions, Second degree heart block, Supraventricular tachycardia (SVT),, The management, The prolonged QT syndrome, heart block, ventricular fibrillation Arrhythmias This is a 1 month old male who presents to the emergency room with a chief complaint of fever, lethargy, and poor feeding for the past 36 hours. He was well until he developed a tactile fever. His parents began noticing increasing lethargy and tiring with feeding and decreased oral intake for about 12 hours prior to presentation. He is the product of a G2P1, full term, uncomplicated pregnancy. Delivery and stay in the nursery was uneventful. Exam: VS T 38.0, HR 240, RR 72, BP 87/64, oxygen saturation 98% in room air. He is well developed, well nourished, but pale, lethargic and tachypneic, with mild subcostal retractions. HEENT exam is normal. Neck is supple without adenopathy. Lungs are clear to auscultation with good aeration. His heart is tachycardic with a regular rhythm. No murmur, rub, or valve clicks are heard. There is a soft S3 gallop that can be head from the lower left sternal border to the cardiac apex. His abdomen is soft, nondistended, non-tender, and without masses. His liver is 2 to 3 cm below right costal margin. His feet and hands are cool. His peripheral pulses are 1+ to 2+ (out of 4+) throughout. Capillary refill time is 3 to 4 seconds. He has no rashes or other significant lesions. A chest x-ray shows mild cardiomegaly and mild pulmonary edema. A 12 lead electrocardiogram shows a narrow complex tachycardia (rate of 240 bpm) with no visible P-waves. Mild ST segment depression in the inferior-lateral leads is present. The patient is felt to be in supraventricular tachycardia and mild congestive heart failure. A peripheral IV is started and he is given a rapid IV bolus dose of adenosine. The patient immediately becomes briefly bradycardic followed by resumption of a normal sinus rhythm at a rate of 140 beats per minute. He is admitted for overnight observation and initiation of an anti-arrhythmic medication. A 12 lead electrocardiogram following conversion shows no evidence of a delta-wave, so a loading dose of digoxin is administered. An irregular heart rhythm is not an unusual finding in children with or without known cardiac disease. Some irregular rhythms are normal findings in healthy children. If the heart rate is not too slow or too fast, as to limit the cardiac output, then an arrhythmia may be well tolerated. Most children can be satisfactorily evaluated with a 12 lead electrocardiogram and rhythm strip, with possible supplementation by a chest x-ray, echocardiogram, Holter or event monitor, or an exercise study. There are several important determinants of arrhythmias, which should be considered. These include the arrhythmogenic substrate (e.g., accessory conduction pathway, automatic ectopic focus), modulating factors, and triggers of the arrhythmia. Changes in sinus rhythm (P-wave preceding each QRS complex, with a normal P-wave axis) are most commonly seen with a sinus arrhythmia, sinus bradycardia, or sinus tachycardia. In pediatrics, a sinus arrhythmia is usually secondary to a variation in vagal tone during the normal respiratory cycle. This causes an increase in heart rate during inspiration and a decrease in heart rate during exhalation. It is most pronounced when the heart rate is slower and resolves with an increase in heart rate.

5 Ключові терміни: 5 Sinus bradycardia is a sinus rhythm with a rate below the lower normal limits for age and activity level. It is most often encountered in well conditioned athletes. Pathologic states in which sinus bradycardia may occur include increased intracranial, intrathoracic, or intraabdominal pressure, and systemic hypertension. Sinus tachycardia is a sinus rhythm with a rate greater than the higher limits for age and activity level. If the child is not active then the tachycardia usually has a secondary cause such as fever, heart failure, pain, anxiety, hypovolemia, anemia, myocarditis, or thyrotoxicosis. Supraventricular tachycardia (SVT), also known as paroxysmal supraventricular tachycardia (PSVT) is a tachyarrhythmia manifesting with a narrow complex QRS duration (<0.08 sec).

6 Ключові терміни: 6 Many definitions of SVT exist, some of, which include all abnormal tachycardias originating in or around the atria (which would include PSVT, atrial fibrillation and atrial flutter). For the sake of this discussion, SVT will be defined as those narrow complex tachycardias involving the SA node and an accessory electrical pathway anywhere along the atrioventricular junction or very near the AV node itself (this definition excludes atrial fibrillation and atrial flutter). These are considered reciprocating tachycardias, as two discrete pathways are present, one with antegrade conduction and the other with retrograde conduction. One pathway is considered a "fast" pathway, with rapid conduction, and the other a "slow" pathway, with slower conduction. This creates the reentrant circuit. With orthodromic (conventional pathway) SVT, the antegrade conduction is down the "slow" pathway, usually the AV node, and the retrograde conduction is up the "fast" pathway, usually the accessory conduction tissue. Antidromic SVT is characterized by antegrade conduction down the "fast" pathway, and retrograde conduction up the "slow" pathway. Supraventricular tachycardia is the most common abnormal tachycardia in the pediatric age group. The most common types of SVT in children include atrioventricular reentrant tachycardia (AVRT), which includes Wolff-Parkinson-White syndrome (WPW), and AV nodal reentrant tachycardia (AVNRT formerly called Lown-Ganong-Levine or LGL syndrome). Supraventricular tachycardia usually has its onset at rest but may initiate during exercise. The precipitating factor(s) is often difficult to identify, but occasionally a febrile illness may precipitate an episode. The heart rate is usually in the 160 to 300 beat/min range. In general, the younger the patient the more rapid the SVT heart rate, but the longer the tachycardia is tolerated before symptoms (usually congestive heart failure) become obvious. As a rule, episodes of SVT onset and terminate abruptly, and may last anywhere from a few minutes to many hours, which is why it is called paroxysmal. In infants, symptoms of SVT may not become apparent until the patient has been in SVT for 24 hours, or longer. They will often present with symptoms of congestive heart failure such as tachypnea, pallor, poor feeding, fussiness or lethargy. In children and adolescents, symptoms may include palpitations, chest pain, shortness of breath, dizziness, syncope or near syncope, pallor, and diaphoresis. It is unusual for older patients to present in heart failure, as they will usually become symptomatic soon after the onset of SVT. They will often complain of intermittent episodes of palpitations, with mild associated symptoms. Supraventricular tachycardia may present as syncope or near syncope. This may occur in patients with WPW who develop atrial fibrillation and rapid conduction down the accessory pathway to the ventricles.

7 Ключові терміни: 7 The onset of SVT can also cause a decrease in cardiac output with resultant hypotension, decreased cerebral perfusion pressure, and syncope. In the pediatric age group, the most common cause of syncope is neurocardiogenic syncope (also called a vasovagal faint). Syncopal episodes associated with palpitations should raise the suspicion of a possible tachyarrhythmia contributing to the patients symptoms. Nearly any type of cardiac arrhythmia can cause syncope if a sudden fall in cardiac output occurs. Cardiac dysrhythmias to consider should include SVT, ventricular tachycardia (in particular, long QT syndrome), advance degree AV block, sick sinus syndrome in patients with previous cardiac surgery, and pacemaker malfunction in those patients who are pacer dependent. Other cardiac related disease to consider in patients presenting with syncope include outflow tract obstruction (hypertrophic cardiomyopathy, aortic stenosis, pulmonic stenosis, pulmonary hypertension), coronary artery anomalies, cardiomyopathies, and mitral valve prolapse. The diagnosis can often be made with a thorough history and physical examination performed as close to the time of the syncopal episode as possible. Cases, which should arouse increased concern, include those not consistent with neurocardiogenic syncope, syncope with exercise, a family history of sudden death, and those patients with known structural cardiac disease. All patients who present with syncope should, at the minimum, have an EKG performed. In most cases of neurocardiogenic syncope, symptoms will improve or resolve with increased fluid and salt intake. Treatment for other causes of syncope should address the underlying etiology. The differential diagnosis of a pediatric patient who presents in a narrow complex tachycardia includes SVT, sinus tachycardia, atrial flutter, atrial fibrillation, junctional ectopic tachycardia, ectopic atrial tachycardia, and chaotic atrial rhythm. Some patients with SVT and a bundle branch block or antidromic WPW, may present with a wide complex tachycardia, which if often difficult to distinguish from ventricular tachycardia (VT). Most of the narrow complex tachyarrhythmias may be distinguished from their electrocardiogram findings. Supraventricular tachycardia ranges in heart rate from 160 to 300 beats per minute. The diagnosis of AVRT or AVNRT requires the presence of 1:1 A-V conduction. The heart rate usually remains in a very narrow range regardless of the patient's physiologic state. P-waves, which are oftentimes retrograde, are visible only in 50% or less of cases. Upon conversion to a sinus rhythm, patients with WPW or Mahaim fibers (an accessory pathway able to conduct only antegrade, with slow conduction, connecting the atrium directly to a portion of the right bundle branch) will demonstrate the classical delta waves as evidenced by an upsloping or slurring of the initial portion of the QRS complex. Delta waves are secondary to rapid antegrade conduction from the atrium to the ventricles through the accessory pathway, thus causing ventricular pre-excitation. With WPW the PR interval is short, but with the presence of Mahaim fibers the PR interval is normal. Forms of SVT with concealed accessory pathways (i.e., those capable of only retrograde conduction), will not show evidence of a delta wave, and therefore most will have normal PR intervals. An exception is those patients with James fibers (a form of AVNRT), who have a short PR interval. Most patients with SVT have normal cardiac anatomy. Congenital heart defects in which SVT is most commonly encountered are Ebstein's anomaly and L-transposition of the great arteries. Atrial flutter may present with a regular or regularly irregular tachycardia with an atrial rate in the range of 250 to 400 beats per minutes. The classic sawtooth flutter waves may be seen, or revealed following a dose of adenosine. The ventricular rate will depend on the degree of A-V conduction (e.g. 2:1, 3:1, etc.). Atrial flutter will most often be encountered in the setting of congenital heart disease, presence of significant mitral or tricuspid valve regurgitation with atrial dilatation, fetuses or newborns with normal hearts (i.e., it sometimes occurs in normal fetuses and newborns), or in patients with myocarditis.

8 Ключові терміни: 8 Atrial fibrillation demonstrates a rapid atrial rate ( beats per minute) with a very chaotic pattern, and an irregularly irregular ventricular rhythm. Atrial fibrillation is most often seen in older children following palliative surgery for congenital heart defects, especially those involving intra-atrial surgery (e.g., Fontan, Mustard, or Senning procedures), and those children with significant atrioventricular valve disease. Ectopic atrial tachycardia and chaotic atrial rhythm are rare tachyarrhythmias in the pediatric age group. On EKG, ectopic atrial tachycardia will show the presence of a variable atrial rate with an abnormal P-wave axis indicating a single atrial focus. Chaotic atrial rhythm, also referred to as multifocal atrial tachycardia, typically demonstrates at least 3 non-sinus P-wave morphologies, an irregular ventricular response, and variable PR, PP, and RR intervals. Both types of dysrhythmias occur most often in patients with structurally normal hearts, at times with concomitant myocarditis. Junctional ectopic tachycardia is most commonly encountered in children less than 2 years of age, in the immediate post-operative period following corrective surgery for a congenital heart defect involving the region around the AV node (e.g., a VSD or tetralogy of Fallot repair). This is one of the most common post-operative arrhythmias encountered. The EKG typically demonstrates a narrow complex tachycardia with a regular atrial and ventricular rhythm, and a ventricular rate, which is more rapid than the atrial rate. This dysrhythmia originates from a focus of enhanced automaticity in the peri-av nodal region. The heart rate typically rises and decreases gradually (warms up and cools down). This feature helps differentiate it from a reentrant type of tachyarrhythmia. Significant ventricular arrhythmias, such at ventricular tachycardia (VT) and ventricular fibrillation (VF), are rarely encountered in the pediatric age group. Benign premature ventricular contractions (PVC) are not uncommon in infants, older children, and adolescents. Patients with ventricular arrhythmias may be asymptomatic or they may present with symptoms of palpitations, chest pain, dizziness, and/or syncope. Ventricular tachycardia is defined at 3 or more consecutive abnormal QRS complexes at a rate greater than 120 beats per minute. As mentioned previously, SVT may occasionally present as a wide complex tachycardia, which may be difficult to distinguish from ventricular tachycardia. In these cases, the definitive diagnosis may not be known until the patient is converted to a sinus rhythm. In these situations the patient should be presumptively treated as having ventricular tachycardia (VT) until proven otherwise. It should be remembered that VT does not always present as a wide QRS complex tachycardia, especially in infants. Ventricular fibrillation displays unidentifiable QRS complexes due to an uncoordinated state of ventricular depolarization, resulting in a state of poor cardiac output. Significant ventricular dysrhythmias in the pediatric age range are most commonly encountered in the setting of congenital heart disease, myocarditis, cardiomyopathies, myocardial trauma, hypoxia, acidosis, and electrolyte abnormalities (most notably hypokalemia and hyperkalemia). The prolonged QT syndrome causes a distinct type of VT called Torsades de Pointes characterized by a polymorphic VT, which oftentimes causes syncope or sudden death. Recent genetic linkage analyses have isolated a number of genetic foci associated with defects in cardiac ion channels (namely sodium

9 Ключові терміни: 9 and potassium channels). Prior to the advent of genetic analysis, patients with long QT syndrome were classified into two groups: Jervell-Lange-Nielsen (autosomal recessive, associated with congenital deafness) and Romano-Ward (autosomal dominant, without deafness). Prolongation of the QT interval may also develop secondary to drugs (anti-arrhythmic agents, antihistamines, antidepressants, antipsychotics, some antibiotics), CNS trauma, cardiomegaly, hypokalemia, and hypocalcemia.

10 Ключові терміни: 10 Various forms of heart block are usually encountered in children with congenital heart defects, heart failure, or with congenitally acquired heart block. Congenital complete heart block is most commonly seen in the setting of a maternal collagen vascular disorder, namely systemic lupus erythematosus or Sjogren's syndrome. In nearly all cases, maternal SS-A/Ro and SS-B/La autoantibodies can be isolated. Conversely, not all fetuses whose mother is positive for these antibodies will develop heart block. The most common congenital heart defect associated with complete heart block is L-transposition of the great arteries. If the ventricular rate is too slow to maintain adequate cardiac output, heart failure may develop in utero or postnatally. Treatment involves permanent pacing. The decision to treat depends on the baseline ventricular rate and the likelihood of sudden death. First-degree heart block is diagnosed by an ECG. First-degree heart block is a condition characterized by a slowing down of the electrical impulse that controls the heartbeat, according to the American Heart Association. This condition is diagnosed after a delay in the heart's electrical impulse is seen on an electrocardiogram (ECG). First-degree heart block can be caused by a number of conditions. Usually this condition does not need treatment. Skipped heart beats indicate second degree heart block. Second degree heart block describes a disorder of the conduction pathways in the heart. Normally, an electrical impulse initiates at the sinus node located in the right atrium. Cells carry the impulse to the

11 Ключові терміни: 11 atrioventricular node or AV node located in the center of the heart between the atria and ventricles. The electrical impulse is delayed at the AV node. Once the atrium contracts, the electrical impulse passes to the ventricles. With second degree heart block, some electrical impulses are not conducted from the atria to the ventricle and skipped heart beats occur. The causes are acquired, congenital or unknown. The management approach for SVT depends upon the age and condition of the patient on presentation. If the patient is clinically stable, vagal maneuvers may be initially attempted to convert the tachycardia. Such vagal maneuvers may include bearing down (as though having a bowel movement, i.e., Valsalva maneuver), or inducing the diving reflex using an ice bag to the face or submerging the patient's face into a container of ice water. Other vagal maneuvers such as eyeball pressure and unilateral carotid massage are less effective and may be harmful. If the patient appears clinically unstable, then an intravenous line should be immediately started in a centrally located peripheral vein (antecubital preferred over a hand vein) through which an IV bolus of adenosine may be given. It must be remembered that this medication has a very short half life of approximately 10 seconds, therefore it should be administered via bolus injection followed by an immediate bolus of saline utilizing either a 3 way stopcock or simultaneous needles within the same IV hub (the IV push and immediate flush technique). A 12 lead electrocardiogram should be obtained before and after conversion, if possible, and a rhythm strip should be continuously run during attempted conversion. External pacing equipment should be available since some patients go into sinus arrest following administration of adenosine. Adenosine causes a transient AV block and sinus bradycardia thus interrupting the reentrant circuit involving the AV node and accessory pathway. Potential side effects with adenosine include hypotension, bronchospasm, and flushing. In rare cases, a patient will present in very unstable condition. Immediate electrical cardioversion may be required in such cases, especially if an IV cannot be started in an expedient manner or the patient fails to convert with IV adenosine. Other modes of acute treatment include use of digoxin, verapamil, propranolol, transesophageal or transvenous pacing. Conversion to a sinus rhythm with these medications will usually be slower, therefore most are utilized for chronic control once the SVT has been converted by other means. If adenosine fails to convert the SVT, but the patient is hemodynamically stable, they may be started on one, or more, of these medications (with the exception of verapamil which should be avoided in infants) and monitored for conversion. It is important to remember not to use digoxin on patients with ventricular pre-excitation (e.g., WPW), as it may increase antegrade conduction down the accessory pathway. Patients with WPW are more prone to develop atrial flutter or fibrillation, and are therefore at risk for 1:1 conduction to the ventricles while on digoxin, potentially sending the patient into ventricular tachycardia or fibrillation. Long term management of SVT depends on the severity and frequency of episodes. In those patients with no ventricular pre-excitation and infrequent, mild episodes that can be converted with vagal maneuvers, no treatment is required. Patients with frequent episodes, or severe symptoms, and those with ventricular pre-excitation, medical management should be started with a beta-blocker, digoxin, or calcium channel blocker. Patients diagnosed in infancy often will not require continued treatment beyond 1 year of age, but may have recurrent episodes later in life. With the presence of severe symptoms, syncope, difficult to control SVT, or other situations, e.g., patient preference, an electrophysiology study and radiofrequency ablation can be performed with a high success rate for cure. The majority of fetuses and infants who present in SVT will have no recurrences off medication after 6 to 12 months of age. Patients who present in later childhood or during adolescence will likely have recurrent episodes of SVT throughout their lifetime. Many of these patients will require medical treatment and will eventually seek curative treatment with radiofrequency ablation. Radiofrequency ablation involves mapping out accessory conduction pathways in the heart with the use of electrodes placed in the atria, coronary sinus, and ventricles through central venous access. Upon localization of the pathway a specialized ablation catheter (tip is heated using radiofrequency energy) is used to burn and cause irreversible tissue injury to the accessory conduction tissue. With the recent advancements in pediatric electrophysiology, the prognosis for patients with SVT is

12 Ключові терміни: 12 very good. The success rate with radiofrequency ablation continues to improve, especially when performed at centers with experienced specialists. Death or significant morbidity is rare with the present state of medical management. Most patients can be expected to live a normal life expectancy with little or no lifestyle alteration due to this condition. Questions What are the two most common forms of SVT in the pediatric population? What are the two most common types of congenital heart defects associated with SVT? Name two instances in which SVT may present as a wide complex QRS tachycardia In a hemodynamically stable patient who presents with SVT, what are the two most commonly used methods for attempted conversion to a sinus rhythm? True/False: Supraventricular tachycardia is the most common cause of syncope in the pediatric age group. Answers 1. Atrioventricular reentrant tachycardia (AVRT) and AV nodal reentrant tachycardia (AVNRT). 2. Ebstein anomaly and L-transposition of the great vessels. 3. With the presence of a bundle branch block or with antidromic conduction. 4. Vagal maneuvers and intravenous adenosine. 5. False.

Supraventricular Tachycardia: From Fetus to Adult. Mohamed Hamdan, MD

Supraventricular Tachycardia: From Fetus to Adult. Mohamed Hamdan, MD Supraventricular Tachycardia: From Fetus to Adult Mohamed Hamdan, MD Learning Objectives Define type of SVT by age Describe clinical approach Describe prenatal and postnatal management of SVT 2 SVT Across

More information

Pediatrics. Arrhythmias in Children: Bradycardia and Tachycardia Diagnosis and Treatment. Overview

Pediatrics. Arrhythmias in Children: Bradycardia and Tachycardia Diagnosis and Treatment. Overview Pediatrics Arrhythmias in Children: Bradycardia and Tachycardia Diagnosis and Treatment See online here The most common form of cardiac arrhythmia in children is sinus tachycardia which can be caused by

More information

Pediatrics ECG Monitoring. Pediatric Intensive Care Unit Emergency Division

Pediatrics ECG Monitoring. Pediatric Intensive Care Unit Emergency Division Pediatrics ECG Monitoring Pediatric Intensive Care Unit Emergency Division 1 Conditions Leading to Pediatric Cardiology Consultation 12.7% of annual consultation Is arrhythmias problems Geggel. Pediatrics.

More information

Case-Based Practical ECG Interpretation for the Generalist

Case-Based Practical ECG Interpretation for the Generalist Case-Based Practical ECG Interpretation for the Generalist Paul D. Varosy, MD, FACC, FAHA, FHRS Director of Cardiac Electrophysiology VA Eastern Colorado Health Care System Associate Professor of Medicine

More information

Chapter 16: Arrhythmias and Conduction Disturbances

Chapter 16: Arrhythmias and Conduction Disturbances Complete the following. Chapter 16: Arrhythmias and Conduction Disturbances 1. Cardiac arrhythmias result from abnormal impulse, abnormal impulse, or both mechanisms together. 2. is the ability of certain

More information

Emergency Medical Training Services Emergency Medical Technician Paramedic Program Outlines Outline Topic: WPW Revised: 11/2013

Emergency Medical Training Services Emergency Medical Technician Paramedic Program Outlines Outline Topic: WPW Revised: 11/2013 Emergency Medical Training Services Emergency Medical Technician Paramedic Program Outlines Outline Topic: WPW Revised: 11/2013 Wolff-Parkinson-White syndrome (WPW) is a syndrome of pre-excitation of the

More information

PEDIATRIC SVT MANAGEMENT

PEDIATRIC SVT MANAGEMENT PEDIATRIC SVT MANAGEMENT 1 INTRODUCTION Supraventricular tachycardia (SVT) can be defined as an abnormally rapid heart rhythm originating above the ventricles, often (but not always) with a narrow QRS

More information

Case #1. 73 y/o man with h/o HTN and CHF admitted with dizziness and SOB Treated for CHF exacerbation with Lasix Now HR 136

Case #1. 73 y/o man with h/o HTN and CHF admitted with dizziness and SOB Treated for CHF exacerbation with Lasix Now HR 136 Tachycardias Case #1 73 y/o man with h/o HTN and CHF admitted with dizziness and SOB Treated for CHF exacerbation with Lasix Now HR 136 Initial Assessment Check Telemetry screen if pt on tele Telemetry

More information

Paroxysmal Supraventricular Tachycardia PSVT.

Paroxysmal Supraventricular Tachycardia PSVT. Atrial Tachycardia; is the name for an arrhythmia caused by a disorder of the impulse generation in the atrium or the AV node. An area in the atrium sends out rapid signals, which are faster than those

More information

Step by step approach to EKG rhythm interpretation:

Step by step approach to EKG rhythm interpretation: Sinus Rhythms Normal sinus arrhythmia Small, slow variation of the R-R interval i.e. variation of the normal sinus heart rate with respiration, etc. Sinus Tachycardia Defined as sinus rhythm with a rate

More information

Chapter 9. Learning Objectives. Learning Objectives 9/11/2012. Cardiac Arrhythmias. Define electrical therapy

Chapter 9. Learning Objectives. Learning Objectives 9/11/2012. Cardiac Arrhythmias. Define electrical therapy Chapter 9 Cardiac Arrhythmias Learning Objectives Define electrical therapy Explain why electrical therapy is preferred initial therapy over drug administration for cardiac arrest and some arrhythmias

More information

2) Heart Arrhythmias 2 - Dr. Abdullah Sharif

2) Heart Arrhythmias 2 - Dr. Abdullah Sharif 2) Heart Arrhythmias 2 - Dr. Abdullah Sharif Rhythms from the Sinus Node Sinus Tachycardia: HR > 100 b/m Causes: o Withdrawal of vagal tone & Sympathetic stimulation (exercise, fight or flight) o Fever

More information

Anti arrhythmic drugs. Hilal Al Saffar College of medicine Baghdad University

Anti arrhythmic drugs. Hilal Al Saffar College of medicine Baghdad University Anti arrhythmic drugs Hilal Al Saffar College of medicine Baghdad University Mechanism of Arrhythmia Abnormal heart pulse formation Abnormal heart pulse conduction Classification of Arrhythmia Abnormal

More information

Cardiac Arrhythmias. Cathy Percival, RN, FALU, FLMI VP, Medical Director AIG Life and Retirement Company

Cardiac Arrhythmias. Cathy Percival, RN, FALU, FLMI VP, Medical Director AIG Life and Retirement Company Cardiac Arrhythmias Cathy Percival, RN, FALU, FLMI VP, Medical Director AIG Life and Retirement Company The Cardiovascular System Three primary functions Transport of oxygen, nutrients, and hormones to

More information

UNDERSTANDING YOUR ECG: A REVIEW

UNDERSTANDING YOUR ECG: A REVIEW UNDERSTANDING YOUR ECG: A REVIEW Health professionals use the electrocardiograph (ECG) rhythm strip to systematically analyse the cardiac rhythm. Before the systematic process of ECG analysis is described

More information

Paramedic Rounds. Tachyarrhythmia's. Sean Sutton Dallas Wood

Paramedic Rounds. Tachyarrhythmia's. Sean Sutton Dallas Wood Paramedic Rounds Tachyarrhythmia's Sean Sutton Dallas Wood Objectives At the end of this session, the paramedic will be able to: State the key components of the cardiac conduction pathway, along with the

More information

1 Cardiology Acute Care Day 22 April 2013 Arrhythmia Tutorial Course Material

1 Cardiology Acute Care Day 22 April 2013 Arrhythmia Tutorial Course Material 1 Cardiology Acute Care Day 22 April 2013 Arrhythmia Tutorial Course Material Arrhythmia recognition This tutorial builds on the ECG lecture and provides a framework for approaching any ECG to allow the

More information

Dysrhythmias 11/7/2017. Disclosures. 3 reasons to evaluate and treat dysrhythmias. None. Eliminate symptoms and improve hemodynamics

Dysrhythmias 11/7/2017. Disclosures. 3 reasons to evaluate and treat dysrhythmias. None. Eliminate symptoms and improve hemodynamics Dysrhythmias CYDNEY STEWART MD, FACC NOVEMBER 3, 2017 Disclosures None 3 reasons to evaluate and treat dysrhythmias Eliminate symptoms and improve hemodynamics Prevent imminent death/hemodynamic compromise

More information

Intraoperative and Postoperative Arrhythmias: Diagnosis and Treatment

Intraoperative and Postoperative Arrhythmias: Diagnosis and Treatment Intraoperative and Postoperative Arrhythmias: Diagnosis and Treatment Karen L. Booth, MD, Lucile Packard Children s Hospital Arrhythmias are common after congenital heart surgery [1]. Postoperative electrolyte

More information

Sudden cardiac death: Primary and secondary prevention

Sudden cardiac death: Primary and secondary prevention Sudden cardiac death: Primary and secondary prevention By Kai Chi Chan Penultimate Year Medical Student St George s University of London at UNic Sheba Medical Centre Definition Sudden cardiac arrest (SCA)

More information

Emergency treatment to SVT Evidence-based Approach. Tran Thao Giang

Emergency treatment to SVT Evidence-based Approach. Tran Thao Giang Emergency treatment to SVT Evidence-based Approach Tran Thao Giang Description ECG manifestations: HR is extremely rapid and regular (240bpm ± 40) P wave is: usually invisible When visible: anormal P axis,

More information

CRC 431 ECG Basics. Bill Pruitt, MBA, RRT, CPFT, AE-C

CRC 431 ECG Basics. Bill Pruitt, MBA, RRT, CPFT, AE-C CRC 431 ECG Basics Bill Pruitt, MBA, RRT, CPFT, AE-C Resources White s 5 th ed. Ch 6 Electrocardiography Einthoven s Triangle Chest leads and limb leads Egan s 10 th ed. Ch 17 Interpreting the Electrocardiogram

More information

EKG Abnormalities. Adapted from:

EKG Abnormalities. Adapted from: EKG Abnormalities Adapted from: http://www.bem.fi/book/19/19.htm Some key terms: Arrhythmia-an abnormal rhythm or sequence of events in the EKG Flutter-rapid depolarizations (and therefore contractions)

More information

CSI Skills Lab #5: Arrhythmia Interpretation and Treatment

CSI Skills Lab #5: Arrhythmia Interpretation and Treatment CSI 202 - Skills Lab #5: Arrhythmia Interpretation and Treatment Origins of the ACLS Approach: CSI 202 - Skills Lab 5 Notes ACLS training originated in Nebraska in the early 1970 s. Its purpose was to

More information

Arrhythmic Complications of MI. Teferi Mitiku, MD Assistant Clinical Professor of Medicine University of California Irvine

Arrhythmic Complications of MI. Teferi Mitiku, MD Assistant Clinical Professor of Medicine University of California Irvine Arrhythmic Complications of MI Teferi Mitiku, MD Assistant Clinical Professor of Medicine University of California Irvine Objectives Brief overview -Pathophysiology of Arrhythmia ECG review of typical

More information

Nathan Cade, MD Brandon Fainstad, MD Andrew Prouse, MD

Nathan Cade, MD Brandon Fainstad, MD Andrew Prouse, MD Nathan Cade, MD Brandon Fainstad, MD Andrew Prouse, MD OBJECTIVES 1. Identify the basic electrophysiology of the four causes of wide complex tachycardia. 2. Develop a simple framework for acute management

More information

physiology 6 Mohammed Jaafer Turquoise team

physiology 6 Mohammed Jaafer Turquoise team 15 physiology 6 Mohammed Jaafer 22-3-2016 Turquoise team Cardiac Arrhythmias and Their Electrocardiographic Interpretation Today, we are going to talk about the abnormal excitation. As we said before,

More information

Review Packet EKG Competency This packet is a review of the information you will need to know for the proctored EKG competency test.

Review Packet EKG Competency This packet is a review of the information you will need to know for the proctored EKG competency test. Review Packet EKG Competency 2015 This packet is a review of the information you will need to know for the proctored EKG competency test. Normal Sinus Rhythm Rhythm: Regular Ventricular Rate: 60-100 bpm

More information

Cardiovascular Nursing Practice: A Comprehensive Resource Manual and Study Guide for Clinical Nurses 2 nd Edition

Cardiovascular Nursing Practice: A Comprehensive Resource Manual and Study Guide for Clinical Nurses 2 nd Edition Cardiovascular Nursing Practice: A Comprehensive Resource Manual and Study Guide for Clinical Nurses 2 nd Edition Table of Contents Volume 1 Chapter 1: Cardiovascular Anatomy and Physiology Basic Cardiac

More information

ECGs and Arrhythmias: Family Medicine Board Review 2009

ECGs and Arrhythmias: Family Medicine Board Review 2009 Rate Rhythm Intervals Hypertrophy ECGs and Arrhythmias: Family Medicine Board Review 2009 Axis Jess (Fogler) Waldura, MD University of California, San Francisco walduraj@nccc.ucsf.edu Ischemia Overview

More information

Huseng Vefali MD St. Luke s University Health Network Department of Cardiology

Huseng Vefali MD St. Luke s University Health Network Department of Cardiology Huseng Vefali MD St. Luke s University Health Network Department of Cardiology Learning Objectives Establish Consistent Approach to Interpreting ECGs Review Essential Cases for Paramedics and first responders

More information

Cardiac arrhythmias. Janusz Witowski. Department of Pathophysiology Poznan University of Medical Sciences. J. Witowski

Cardiac arrhythmias. Janusz Witowski. Department of Pathophysiology Poznan University of Medical Sciences. J. Witowski Cardiac arrhythmias Janusz Witowski Department of Pathophysiology Poznan University of Medical Sciences A 68-year old man presents to the emergency department late one evening complaining of increasing

More information

TEST BANK FOR ECGS MADE EASY 5TH EDITION BY AEHLERT

TEST BANK FOR ECGS MADE EASY 5TH EDITION BY AEHLERT Link download full: http://testbankair.com/download/test-bank-for-ecgs-made-easy-5thedition-by-aehlert/ TEST BANK FOR ECGS MADE EASY 5TH EDITION BY AEHLERT Chapter 5 TRUE/FALSE 1. The AV junction consists

More information

Ventricular Preexcitation (Wolff-Parkinson-White Syndrome and Its Variants) 柯文欽醫師 國泰綜合醫院心臟內科主治醫師 臺北醫學大學講師

Ventricular Preexcitation (Wolff-Parkinson-White Syndrome and Its Variants) 柯文欽醫師 國泰綜合醫院心臟內科主治醫師 臺北醫學大學講師 Ventricular Preexcitation (Wolff-Parkinson-White Syndrome and Its Variants) 柯文欽醫師 國泰綜合醫院心臟內科主治醫師 臺北醫學大學講師 The Nobel Prize in Physiology or Medicine 1924 "for his discovery of the mechanism of the electrocardiogram"

More information

Antiarrhythmic Drugs

Antiarrhythmic Drugs Antiarrhythmic Drugs DR ATIF ALQUBBANY A S S I S T A N T P R O F E S S O R O F M E D I C I N E / C A R D I O L O G Y C O N S U L T A N T C A R D I O L O G Y & I N T E R V E N T I O N A L E P A C H D /

More information

Supraventricular Tachycardia (SVT)

Supraventricular Tachycardia (SVT) Supraventricular Tachycardia (SVT) Daniel Frisch, MD Cardiology Division, Electrophysiology Section Thomas Jefferson University Hospital daniel.frisch@jefferson.edu Short RP Are these the Mid same RP tachycardias?

More information

Patient Resources: Arrhythmias and Congenital Heart Disease

Patient Resources: Arrhythmias and Congenital Heart Disease Patient Resources: Arrhythmias and Congenital Heart Disease Overview Arrhythmias (abnormal heart rhythms) can develop in patients with congenital heart disease (CHD) due to thickening/weakening of their

More information

PhD FRCP MESC MEAPCI. Consultant Cardiologist SVT - Supra Ventricular Tachycardia. Coronary Arteries

PhD FRCP MESC MEAPCI. Consultant Cardiologist   SVT - Supra Ventricular Tachycardia. Coronary Arteries SVT - Supra Ventricular Tachycardia Coronary Arteries Overview LMS Supraventricular tachycardia is defined as an abnormally fast heartbeat. It's a describes a group of arrhythmias which all originate from

More information

Supraventricular Tachycardia (SVT)

Supraventricular Tachycardia (SVT) Supraventricular Tachycardia (SVT) Bruce Stambler, MD Piedmont Heart Atlanta, GA Supraventricular Tachycardia Objectives Types and mechanisms AV nodal reentrant tachycardia (AVNRT) AV reciprocating tachycardia

More information

The ABCs of EKGs/ECGs for HCPs. Al Heuer, PhD, MBA, RRT, RPFT Professor, Rutgers School of Health Related Professions

The ABCs of EKGs/ECGs for HCPs. Al Heuer, PhD, MBA, RRT, RPFT Professor, Rutgers School of Health Related Professions The ABCs of EKGs/ECGs for HCPs Al Heuer, PhD, MBA, RRT, RPFT Professor, Rutgers School of Health Related Professions Learning Objectives Review the basic anatomy of the heart Describe the cardiac conducting

More information

The most common. hospitalized patients. hypotension due to. filling time Rate control in ICU patients may be difficult as many drugs cause hypotension

The most common. hospitalized patients. hypotension due to. filling time Rate control in ICU patients may be difficult as many drugs cause hypotension Arrhythmias in the critically ill ICU patients: Approach for rapid recognition & management Objectives Be able to identify and manage: Atrial fibrillation with a rapid ventricular response Atrial flutter

More information

TACHYARRHYTHMIAs. Pawel Balsam, MD, PhD

TACHYARRHYTHMIAs. Pawel Balsam, MD, PhD TACHYARRHYTHMIAs Pawel Balsam, MD, PhD SupraVentricular Tachycardia Atrial Extra Systole Sinus Tachycardia Focal A. Tachycardia AVRT AVNRT Atrial Flutter Atrial Fibrillation Ventricular Tachycardia Ventricular

More information

Problems in Pediatrics: Pediatric Cardiology Cases

Problems in Pediatrics: Pediatric Cardiology Cases Problems in Pediatrics: Pediatric Cardiology Cases Kristin C. Lombardi, M.D. Assistant Professor of Pediatrics, Clinical Educator The Warren Alpert Medical School of Brown University Pediatric Cardiologist,

More information

EKG Competency for Agency

EKG Competency for Agency EKG Competency for Agency Name: Date: Agency: 1. The upper chambers of the heart are known as the: a. Atria b. Ventricles c. Mitral Valve d. Aortic Valve 2. The lower chambers of the heart are known as

More information

ECG Interpretation Made Easy

ECG Interpretation Made Easy ECG Interpretation Made Easy Dr. A Tageldien Abdellah, MSc MD EBSC Lecturer of Cardiology- Hull University Hull York Medical School 2007-2008 ECG Interpretation Made Easy Synopsis Benefits Objectives Process

More information

a lecture series by SWESEMJR

a lecture series by SWESEMJR Arrhythmias Automaticity- the ability to depolarize spontaneously. Pacemakers: Sinoatrial node: 70 bpm AV-nodal area: 40 bpm His-Purkinje: 20-40 bpm it Mechanisms of arrhythmias 1. Increased automaticity

More information

Core Content In Urgent Care Medicine

Core Content In Urgent Care Medicine Palpitations/Arrhythmias Ebrahim Barkoudah, MD Clinical Instructor in Internal Medicine Harvard Medical School Assistant in Internal Medicine & Pediatrics Massachusetts General Hospital MGH Chelsea Chelsea,

More information

Cardiology Flash Cards

Cardiology Flash Cards Cardiology Flash Cards EKG in a nut shell www.brain101.info Conduction System www.brain101.info 2 Analyzing EKG Step by step Steps in Analyzing ECG'S 1. Rhythm: - Regular _ Sinus, Junctional or Ventricular.

More information

Dr. Schroeder has no financial relationships to disclose

Dr. Schroeder has no financial relationships to disclose Valerie A Schroeder MD MS Assistant Professor University of Kansas Medical Center READING THE WAVES- THE HEART S ELECTRICAL MESSAGE FINANCIAL DISCLOSURE Dr. Schroeder has no financial relationships to

More information

Electrocardiography for Healthcare Professionals

Electrocardiography for Healthcare Professionals Electrocardiography for Healthcare Professionals Kathryn A. Booth Thomas O Brien Chapter 5: Rhythm Strip Interpretation and Sinus Rhythms Learning Outcomes 5.1 Explain the process of evaluating ECG tracings

More information

Rhythm ECG Characteristics Example. Normal Sinus Rhythm (NSR)

Rhythm ECG Characteristics Example. Normal Sinus Rhythm (NSR) Normal Sinus Rhythm (NSR) Rate: 60-100 per minute Rhythm: R- R = P waves: Upright, similar P-R: 0.12-0.20 second & consistent P:qRs: 1P:1qRs Sinus Tachycardia Exercise Hypovolemia Medications Fever Substances

More information

Sustained tachycardia with wide QRS

Sustained tachycardia with wide QRS Sustained tachycardia with wide QRS Courtesy from Prof. Antonio Américo Friedmann. Electrocardiology Service of University of Faculty of São Paulo. Opinions from colleagues Greetings to everyone, In a

More information

BEDSIDE ECG INTERPRETATION

BEDSIDE ECG INTERPRETATION BEDSIDE ECG INTERPRETATION Presented by: Ryan Dean, RN, MSN, CCRN, CCNS, CFRN Flight Nurse 2017 Based on presentations originally by Gennifer DePaoli, RN Objectives Hospital policies Electrical conduction

More information

Clinical Cardiac Electrophysiology

Clinical Cardiac Electrophysiology Clinical Cardiac Electrophysiology Certification Examination Blueprint Purpose of the exam The exam is designed to evaluate the knowledge, diagnostic reasoning, and clinical judgment skills expected of

More information

Electrocardiography Abnormalities (Arrhythmias) 7. Faisal I. Mohammed, MD, PhD

Electrocardiography Abnormalities (Arrhythmias) 7. Faisal I. Mohammed, MD, PhD Electrocardiography Abnormalities (Arrhythmias) 7 Faisal I. Mohammed, MD, PhD 1 Causes of Cardiac Arrythmias Abnormal rhythmicity of the pacemaker Shift of pacemaker from sinus node Blocks at different

More information

ECG Basics Sonia Samtani 7/2017 UCI Resident Lecture Series

ECG Basics Sonia Samtani 7/2017 UCI Resident Lecture Series ECG Basics Sonia Samtani 7/2017 UCI Resident Lecture Series Agenda I. Introduction II.The Conduction System III.ECG Basics IV.Cardiac Emergencies V.Summary The Conduction System Lead Placement avf Precordial

More information

EHRA Accreditation Exam - Sample MCQs Invasive cardiac electrophysiology

EHRA Accreditation Exam - Sample MCQs Invasive cardiac electrophysiology EHRA Accreditation Exam - Sample MCQs Invasive cardiac electrophysiology Dear EHRA Member, Dear Colleague, As you know, the EHRA Accreditation Process is becoming increasingly recognised as an important

More information

Dysrhythmias: Diagnosis and management

Dysrhythmias: Diagnosis and management 15 Dysrhythmias: Diagnosis and management Wanda C. Miller-Hance Kathryn K. Collins Introduction The practice of pediatric cardiac anesthesia has evolved significantly over the years, expanding beyond the

More information

APPROACH TO TACHYARRYTHMIAS

APPROACH TO TACHYARRYTHMIAS APPROACH TO TACHYARRYTHMIAS PROF.DR.MD.ZAKIR HOSSAIN PROFESSOR AND HEAD DEPARTMENT OF MEDICINE SZMCH TACHYARRYTHMIA Cardiac arrythmia is a disturbance of electrical rhythm of heart. Cardac arrythmia with

More information

Dr.Binoy Skaria 13/07/15

Dr.Binoy Skaria  13/07/15 Dr.Binoy Skaria binoyskaria@hotmail.com binoy.skaria@heartofengland.nhs.uk 13/07/15 Acknowledgement Medtronic, Google images & Elsevier for slides Natalie Ryan, Events Manager, HEFT- for organising the

More information

Ventricular Tachycardia Basics

Ventricular Tachycardia Basics Ventricular Tachycardia Basics OVERVIEW Ventricular refers to the ventricles of the heart; tachycardia is the medical term for rapid heart rate The heart of the dog or cat is composed of four chambers;

More information

UNDERSTANDING ELECTROPHYSIOLOGY STUDIES

UNDERSTANDING ELECTROPHYSIOLOGY STUDIES UNDERSTANDING ELECTROPHYSIOLOGY STUDIES Testing and Treating Your Heart s Electrical System A Problem with Your Heart Rhythm The speed and pattern of a heartbeat is called the heart rhythm. The rhythm

More information

Arrhythmia 341. Ahmad Hersi Professor of Cardiology KSU

Arrhythmia 341. Ahmad Hersi Professor of Cardiology KSU Arrhythmia 341 Ahmad Hersi Professor of Cardiology KSU Objectives Epidemiology and Mechanisms of AF Evaluation of AF patients Classification of AF Treatment and Risk stratification of AF Identify other

More information

Wolff-Parkinson-White Syndrome

Wolff-Parkinson-White Syndrome Wolff-Parkinson-White Syndrome www.consultant360.com /articles/wolff-parkinson-white-syndrome A 37-year-old woman presented to the office with intermittent dizziness, palpitations, and multiple syncopal

More information

Rate: The atrial and ventricular rates are equal; heart rate is greater than 100 bpm (usually between bpm).

Rate: The atrial and ventricular rates are equal; heart rate is greater than 100 bpm (usually between bpm). Sinus Bradycardia Regularity: The R-R intervals are constant; the rhythm is regular. Rate: The atrial and ventricular rates are equal; heart rate is less than 60 bpm. P wave: There is a uniform P wave

More information

SIMPLY ECGs. Dr William Dooley

SIMPLY ECGs. Dr William Dooley SIMPLY ECGs Dr William Dooley Content Basic ECG interpretation pattern Some common (examined) abnormalities Presenting ECGs in context Setting up an ECG Setting up an ECG 1 V1-4 th Right intercostal space

More information

Practical Approach to Arrhythmias

Practical Approach to Arrhythmias Outline Practical Approach to Arrhythmias Julia Shih, VMD, DACVIM (Cardiology) October 27, 2018 Conduction System ECG Acquisition ECG Interpretation Heart rate Rhythm Arrhythmias Tachyarrhythmias Supraventricular

More information

Introduction. Pediatric Cardiology. General Appearance. Tools of Assessment. Auscultation. Vital Signs

Introduction. Pediatric Cardiology. General Appearance. Tools of Assessment. Auscultation. Vital Signs Introduction Pediatric Cardiology An introduction to the pediatric patient with heart disease: M-III Lecture Douglas R. Allen, M.D. Assistant Professor and Director of Community Pediatric Cardiology at

More information

Course Objectives. Proper Lead Placements. Review the ECG print paper. Review the mechanics of the Myocardium. Review basics of ECG Rhythms

Course Objectives. Proper Lead Placements. Review the ECG print paper. Review the mechanics of the Myocardium. Review basics of ECG Rhythms ECG Interpretations Course Objectives Proper Lead Placements Review the ECG print paper Review the mechanics of the Myocardium Review basics of ECG Rhythms How Leads Work The ECG Leads we use are Bipolar

More information

ECGs and Arrhythmias: Family Medicine Board Review 2012

ECGs and Arrhythmias: Family Medicine Board Review 2012 Overview ECGs and Arrhythmias: Family Medicine Board Review 2012 Jess Waldura, MD University of California, San Francisco walduraj@nccc.ucsf.edu Bundle branch blocks Quick review of ischemia Arrhythmias

More information

Conduction Problems / Arrhythmias. Conduction

Conduction Problems / Arrhythmias. Conduction Conduction Problems / Arrhythmias Conduction Wolf-Parkinson White Syndrome (WPW) and Lown-Ganong-Levine (LGL): Atrial impulses bypass the AV node through an accessory pathway or bypass tract (bundle of

More information

Rhythm Control: Is There a Role for the PCP? Blake Norris, MD, FACC BHHI Primary Care Symposium February 28, 2014

Rhythm Control: Is There a Role for the PCP? Blake Norris, MD, FACC BHHI Primary Care Symposium February 28, 2014 Rhythm Control: Is There a Role for the PCP? Blake Norris, MD, FACC BHHI Primary Care Symposium February 28, 2014 Financial disclosures Consultant Medtronic 3 reasons to evaluate and treat arrhythmias

More information

Evaluation and Initial Treatment of Supraventricular Tachycardia

Evaluation and Initial Treatment of Supraventricular Tachycardia T h e n e w e ngl a nd j o u r na l o f m e dic i n e clinical practice Evaluation and Initial Treatment of Supraventricular Tachycardia Mark S. Link, M.D. This Journal feature begins with a case vignette

More information

WOLFF PARKINSON WHITE SYNDROME. Katarzyna Bigaj PGY-1

WOLFF PARKINSON WHITE SYNDROME. Katarzyna Bigaj PGY-1 WOLFF PARKINSON WHITE SYNDROME Katarzyna Bigaj PGY-1 Preexcitation is defined as a premature activation of the ventricular myocardium by an impulse that travels by an anomalous path and avoids physiologic

More information

Chapter 26. Media Directory. Dysrhythmias. Diagnosis/Treatment of Dysrhythmias. Frequency in Population Difficult to Predict

Chapter 26. Media Directory. Dysrhythmias. Diagnosis/Treatment of Dysrhythmias. Frequency in Population Difficult to Predict Chapter 26 Drugs for Dysrythmias Slide 33 Slide 35 Media Directory Propranolol Animation Amiodarone Animation Upper Saddle River, New Jersey 07458 All rights reserved. Dysrhythmias Abnormalities of electrical

More information

Electrical System Overview Electrocardiograms Action Potentials 12-Lead Positioning Values To Memorize Calculating Rates

Electrical System Overview Electrocardiograms Action Potentials 12-Lead Positioning Values To Memorize Calculating Rates Electrocardiograms Electrical System Overview James Lamberg 2/ 74 Action Potentials 12-Lead Positioning 3/ 74 4/ 74 Values To Memorize Inherent Rates SA: 60 to 100 AV: 40 to 60 Ventricles: 20 to 40 Normal

More information

Please check your answers with correct statements in answer pages after the ECG cases.

Please check your answers with correct statements in answer pages after the ECG cases. ECG Cases ECG Case 1 Springer International Publishing AG, part of Springer Nature 2018 S. Okutucu, A. Oto, Interpreting ECGs in Clinical Practice, In Clinical Practice, https://doi.org/10.1007/978-3-319-90557-0

More information

Patient Examination. Objectives for Presentation RECOGNITION OF COMMON ARRHYTHMIAS THEIR CAUSES AND TREATMENT OPTIONS 9/8/2016

Patient Examination. Objectives for Presentation RECOGNITION OF COMMON ARRHYTHMIAS THEIR CAUSES AND TREATMENT OPTIONS 9/8/2016 RECOGNITION OF COMMON ARRHYTHMIAS THEIR CAUSES AND TREATMENT OPTIONS Ryan Fries, DVM, DACVIM (Cardiology) Clinical Assistant Professor University of Illinois Department of Clinical Veterinary Medicine

More information

WPW syndrome and AVRT

WPW syndrome and AVRT WPW syndrome and AVRT Myung-Yong Lee, MD, PhD Division of Cardiology Department of Internal Medicine School of Medicine Dankook University, Cheonan, Korea Supraventricular tachycardia (SVT) Paroxysmal

More information

3. AV Block 1. First-degree AV block 1. Delay in AV node 2. Long PR interval 3. QRS complex follows each P wave 4. Benign, no tx

3. AV Block 1. First-degree AV block 1. Delay in AV node 2. Long PR interval 3. QRS complex follows each P wave 4. Benign, no tx 1. Rhythms & arrhythmias SA nodal rhythms Sinus rhythm Sinus tachycardia Sinus bradycardia Sinus arrhythmia Sick sinus syndrome SA block Sinus arrest AV blocks First-degree Second-degree Mobitz Type I

More information

CORONARY ARTERIES. LAD Anterior wall of the left vent Lateral wall of left vent Anterior 2/3 of interventricluar septum R & L bundle branches

CORONARY ARTERIES. LAD Anterior wall of the left vent Lateral wall of left vent Anterior 2/3 of interventricluar septum R & L bundle branches CORONARY ARTERIES RCA Right atrium Right ventricle SA node 55% AV node 90% Posterior wall of left ventricle in 90% Posterior third of interventricular septum 90% LAD Anterior wall of the left vent Lateral

More information

the ECG, 6 mg of intravenous adenosine was administered as a fast bolus through a large bore intravenous cannula in

the ECG, 6 mg of intravenous adenosine was administered as a fast bolus through a large bore intravenous cannula in (arrows). Electrocardiography Series Singapore Med.1 2011, 52(3) 146 CME Article Regular narrow complex tachycardia Singh D, Teo S G, Poh K K V Hr JL1 11 VL VF WA, Fig. I ECG shows regular narrow complex

More information

ECGs: Everything a finalist needs to know. Dr Amy Coulden As part of the Simply Finals series

ECGs: Everything a finalist needs to know. Dr Amy Coulden As part of the Simply Finals series ECGs: Everything a finalist needs to know Dr Amy Coulden As part of the Simply Finals series Aims and objectives To be able to interpret basic ECG abnormalities To be able to recognise commonly tested

More information

HTEC 91. Performing ECGs: Procedure. Normal Sinus Rhythm (NSR) Topic for Today: Sinus Rhythms. Characteristics of NSR. Conduction Pathway

HTEC 91. Performing ECGs: Procedure. Normal Sinus Rhythm (NSR) Topic for Today: Sinus Rhythms. Characteristics of NSR. Conduction Pathway HTEC 91 Medical Office Diagnostic Tests Week 3 Performing ECGs: Procedure o ECG protocol: you may NOT do ECG if you have not signed up! If you are signed up and the room is occupied with people who did

More information

Chapter 03: Sinus Mechanisms Test Bank MULTIPLE CHOICE

Chapter 03: Sinus Mechanisms Test Bank MULTIPLE CHOICE Instant download and all chapters Tesst Bank ECGs Made Easy 5th Edition Barbara J Aehlert https://testbanklab.com/download/tesst-bank-ecgs-made-easy-5th-edition-barbara-jaehlert/ Chapter 03: Sinus Mechanisms

More information

Catheter Ablation for Supraventricular Tachycardias

Catheter Ablation for Supraventricular Tachycardias Catheter Ablation for Supraventricular Tachycardias - A Patient's Guide - Westby G. Fisher, MD, FACC Director, Cardiac Electrophysiology Evanston Northwesten Healthcare Evanston, IL, USA (Last Updated

More information

HR: 50 bpm (Sinus) PR: 280 ms QRS: 120 ms QT: 490 ms Axis: -70. Sinus bradycardia with one ventricular escape (*)

HR: 50 bpm (Sinus) PR: 280 ms QRS: 120 ms QT: 490 ms Axis: -70. Sinus bradycardia with one ventricular escape (*) 1? HR: 50 bpm (Sinus) PR: 280 ms QRS: 120 ms QT: 490 ms Axis: -70 1 Sinus P waves? 2 sinus cycles The pause (2 sinus cycles) suggests that the sinus fired (?) but did not conduct to the atria (i.e., missing

More information

ECG Interpretation Cat Williams, DVM DACVIM (Cardiology)

ECG Interpretation Cat Williams, DVM DACVIM (Cardiology) ECG Interpretation Cat Williams, DVM DACVIM (Cardiology) Providing the best quality care and service for the patient, the client, and the referring veterinarian. GOAL: Reduce Anxiety about ECGs Back to

More information

SIMPLY ECGs. Dr William Dooley

SIMPLY ECGs. Dr William Dooley SIMPLY ECGs Dr William Dooley 1 No anatomy just interpretation 2 Setting up an ECG 3 Setting up an ECG 1 V1-4 th Right intercostal space at sternal border 2 V2-4 th Left intercostal space at sternal border

More information

Cardiac Telemetry Self Study: Part One Cardiovascular Review 2017 THINGS TO REMEMBER

Cardiac Telemetry Self Study: Part One Cardiovascular Review 2017 THINGS TO REMEMBER Please review the above anatomy of the heart. THINGS TO REMEMBER There are 3 electrolytes that affect cardiac function o Sodium, Potassium, and Calcium When any of these electrolytes are out of the normal

More information

I have nothing to disclose.

I have nothing to disclose. I have nothing to disclose. Antiarrhythmic Therapy in Pregnancy Prof. Ali Oto,MD,FESC,FACC,FHRS Department of Cardiology Hacettepe University,Faculty of Medicine Ankara Arrhythmias in pregnancy An increased

More information

Catheter Ablation. Patient Education

Catheter Ablation. Patient Education Catheter Ablation Patient Education Allina Health System Your heart has four chambers. Two upper chambers (atria) pump blood to the two lower chambers (ventricles). In order for the heart to pump, it requires

More information

REtrive. REpeat. RElearn Design by. Test-Enhanced Learning based ECG practice E-book

REtrive. REpeat. RElearn Design by. Test-Enhanced Learning based ECG practice E-book Test-Enhanced Learning Test-Enhanced Learning Test-Enhanced Learning Test-Enhanced Learning based ECG practice E-book REtrive REpeat RElearn Design by S I T T I N U N T H A N G J U I P E E R I Y A W A

More information

Atrial Fibrillation 10/2/2018. Depolarization & ECG. Atrial Fibrillation. Hemodynamic Consequences

Atrial Fibrillation 10/2/2018. Depolarization & ECG. Atrial Fibrillation. Hemodynamic Consequences Depolarization & ECG Atrial Fibrillation How to make ORDER out of CHAOS Julia Shih, VMD, DACVIM (Cardiology) October 27, 2018 Depolarization & ECG Depolarization & ECG Atrial Fibrillation Hemodynamic Consequences

More information

Chest Pain. Dr. Amitesh Aggarwal. Department of Medicine

Chest Pain. Dr. Amitesh Aggarwal. Department of Medicine Chest Pain Dr. Amitesh Aggarwal Department of Medicine BACKGROUND Approx 5% of all ED visits 15 % - AMI 25-30 % - Unstable angina 50-55 % - Other conditions Atypical presentations common 2% of patients

More information

Lecture outline. Electrical properties of the heart. Automaticity. Excitability. Refractoriness. The ABCs of ECGs Back to Basics Part I

Lecture outline. Electrical properties of the heart. Automaticity. Excitability. Refractoriness. The ABCs of ECGs Back to Basics Part I Lecture outline The ABCs of ECGs Back to Basics Part I Meg Sleeper VMD, DACVIM (cardiology) University of Florida Veterinary School Electrical properties of the heart Action potentials Normal intracardiac

More information

-RHYTHM PRACTICE- By Dr.moanes Msc.cardiology Assistant Lecturer of Cardiology Al Azhar University. OBHG Education Subcommittee

-RHYTHM PRACTICE- By Dr.moanes Msc.cardiology Assistant Lecturer of Cardiology Al Azhar University. OBHG Education Subcommittee -RHYTHM PRACTICE- By Dr.moanes Msc.cardiology Assistant Lecturer of Cardiology Al Azhar University The Normal Conduction System Sinus Node Normal Sinus Rhythm (NSR) Sinus Bradycardia Sinus Tachycardia

More information

Pathological Arrhythmias/ Tachyarrhythmias

Pathological Arrhythmias/ Tachyarrhythmias Pathological Arrhythmias/ Tachyarrhythmias caused by: 1.Ectopic focus: Extrasystole or premature beat. If discharge is occasional. Can be: Atrial Extrasystole Vevtricular Extrasystole 2.Cardiac Arrhythmia

More information

EKG Rhythm Interpretation Exam

EKG Rhythm Interpretation Exam as EKG Rhythm Interpretation Exam Name: Date: ID# Unit Assume each strip is a 6 second strip. Passing is 80%. 1. Identify the following rhythm: a. Asystole b. Ventricular fibrillation c. Atrial fibrillation

More information

Chad Morsch B.S., ACSM CEP

Chad Morsch B.S., ACSM CEP What Is Cardiac Stress Testing? Chad Morsch B.S., ACSM CEP A Cardiac Stress Test is a test used to measure the heart's ability to respond to external stress in a controlled clinical environment. Cardiac

More information