Lengths and Diameters of Peripheral Arterial Vessels in the Living Animal

Size: px
Start display at page:

Download "Lengths and Diameters of Peripheral Arterial Vessels in the Living Animal"

Transcription

1 Lengths and Diameters of Peripheral Arterial Vessels in the Living Animal By Mary P. Wiedeman, Ph.D. In 1888, a histological study Avas made of blood vessels in dog mesentery by Mall. 1 Several decades later, the data were used by Schleier 2 to discuss the effects of branching of an arterial tree on the velocity and pressure of blood. Mall's data were again used by Green, 3 in 1944, to compute the approximate dimensions, numbers, lengths, and total crosssectional area of component parts of the circulation. No data, such as Mall's, were available from the living animal. It seemed that significant differences might be found in diameters and lengths of vessels in living material when compared to similar measurements in fixed material. Measurements of a major arterial vessel, and its ramifications down to the capillary nets, have been carried out in living animals. The site for microscopic observation was the subcutaneous area of the bat's wing. The length and inside diameter of an artery were measured, as were the branches from the artery, referred to here as small arteries. The branches of the small arteries, designated arterioles, were measured for length and diameter, and similar measurements were made of the arteriolar branches, the capillaries. From the data, the cross-sectional area of the individual vessels and the total cross-sectional areas of the vascular nets formed by the small arteries, arterioles, and capillaries were calculated. Comparisons of the values thus obtained are made with similar values from Schleier, 2 and from Green, 3 both of whom used Mall's 1 measurements on the fixed mesenteric vessels in the dog. From the Physiology Department, Temple University, School of Medicine, Philadelphin, Pennsylvania. This investigation was supported in part by Research Grant H-2880 (Co) from the National Heart Institute, TJ. S. Public Health Service. Received for publication November 8, Methods Common brown bats (Myotis) were prepared for observation by placing an unanesthetized animal in a, holder and extending' one wing over a glass plate. A drop or two of mineral oil was put between the wing and the glass plate and also on the upper surface of the wing for increased visual clarity. The artery and its branches selected for measurement are shown enclosed by the dotted line in figure 1. A suitable eyepiece micrometer was used to measure the length and the inside diameter of the vessels. A magnification of 400 X was used when measuring the larger vessels and a magnification of 1,200 X was used for the arterioles and capillaries. The length of the major artery was measured from its origin to its first bifurcation. A small artery was considered to end at the point where its forward flow was stopped by blood flowing from the opposite direction. Such a condition occurred where two small arteries, originating either from adjacent arteries or from the same artery, met to form an arcade. Bifurcating branches of the major artery, as well as some arterioles, also terminated in the formation of arcades. Various types of arcades are shown in figure 2. Arterioles, the branches from the small arteries, ended by branching to form a capillary net or by forming an arcade. Capillaries arose as side brandies from the arterioles. The end of an arterial capillary was considered to be the point where an inflowing tributary, or venule, joined the vessel being measured. Results The average length of eight major arteries was found to be 17.0 mm. and the average diameter was 52.6 p.. An average number of 12.3 small arteries originated from this vessel. No correlation was found between the length of the vessel and the number of branches which arose from it. The cross-sectional area of each artery Avas calculated and the average cross-sectional area was found to be 2,263.3 sq. p. The average length of 25 small arteries was found to be 3.5 mm. with an average diameter of 19.0 /x. The small arteries gave Circulation Research, Volume X, April 19G2

2 PERIPHERAL ARTERIAL VESSELS 687 MAIN ARTEf t r FIGURE 2 Various types of arterial arcades. FIGURE 1 Area in the bat wing used for measurements, of a major arterial vessel and its ramifications. rise to an average number of 9.7 branches, the arterioles. An average of the individual cross-sectional area of small arteries was found to be sq. /x and the total crosssectional area of these vessels was calculated to be 4,144.5 sq. J X. The average values for arterioles, based on measurements in 15 vessels, were 0.95 mm. for length, 7.0 JX for diameter, and 42.7 sq. JX for individual cross-sectional area with a total cross-sectional area for the vessels of 5,101.2 sq. jx. Arterioles gave rise to an average number of 4.6 capillaries. The average values for the capillaries, based on measurements of 24 vessels, showed the length to be 0.23 mm. and the diameter to average 3.7 p.. The individual cross-sectional area was 11.7 sq. /X, while the total cross-sectional area was 6,548.1 sq. JX. The relationships between the lengths and diameters of the vessels can be seen in figure 3. The arterioles are roughly twice the diameter of the capillaries and almost one-half the diameter of the small arteries. The small arteries are less than one-half the diameter of their parent vessel. Comparison with the diameters of similar vessels, reported by Schleier, 2 show a different relationship. The arterioles have a diameter roughly three times that of the capillaries and are many times smaller than the terminal branches from which they arise (see fig. 4). The total cross-sectional areas produced by division of the vessels in the various portions of the arterial bed of the bat wing show a linear increment from artery to capillary (see fig. 5). These values differ greatly from those obtained when Mall's 1 data were used for computation by Schleier, 2 and by Green? There is a very small increment in total crosssectional area between artery and small arteries, a slightly larger increase in area between small arteries and arterioles, and a very marked increase in area between arterioles and capillaries. It is very likely that the measurements on fixed sections of the dog mesenteric vessels included many more capillary vessels than were counted in the living bat wing. The tremendous number of capillary vessels reported for the dog mesentery would be a possible result if the termination of arterial capillaries could not be established due to the absence of blood flow. The great difference in the number of vessels reported for the various types results in a wide variance in the calculated total cross-sectional area. A comparison of the calculated total crosssectional areas from Schleier, 2 and from Green, 3 and from the bat wing at the level

3 688 WIEDEMAN r\ FIGURE 3 Lengths and diameters of various arterial blood vessels in the living bat. i- UJ Z FIGURE 4 Comparison of the diameters of blood vessels in the living bat (MPW) and fixed tissues in the dog (JS). of the artery, small arteries, arterioles, and capillaries is shown in figure 6. Discussion It was an expected finding that the actual values of length and diameter of the various arterial vessels would be different in the bat wing and the dog mesentery. However, it is the disagreement in the relationship between the vessels that is of importance. The basis of the disagreement is certainly to be found in the difference between measurements made in the fixed preparation and the living animal. There are many difficulties associated with

4 PERIPHERAL ARTERIAL VESSELS 689 FIGURE 5 Increase in total cross-sectional area from artery to capillary. Comparative lengths of the vessels are also shown. TOTAL CROSS-SECTIONAL AREA 2 < g = < o FIGURE 6 Comparison of computed total cross-sectional areas from the living bat (MPW), from Schleier (JS), and from Green (HDG), who used Mall's measurements on fixed mesenterie vessels in the dog. Circulation Hcsaarch, Volume X, April 1962

5 690 WIEDEMAN measuring vessels in a fixed preparation, for there is undoubtedly much distortion in the size of vessels subjected to histological preparation. A further difficulty is the inability to classify accurately a vessel in which there is no blood flow. It is also reasonable to assume that the figures given by Schleier, 2 and by Green, 3 for the numbers of small arteries, arterioles, and uapillai-ies in the fixed preparation are hardly more than a rough estimate. However, this value is important in calculating the total cross-sectional areas formed by these vessels. The selection of the subcutaneous area of the bat's wing as a representative site for vascular measurements may provoke criticism. In defense, the vascular pattern seen in the bat wing is comparable to subcutaneous beds described in other animals. Actually, the pattern is a familiar one, being very similar to vascular beds seen in a variety of tissues. Also, it is possible to follow blood flow in this preparation in its complete circuit from distributing artery to collecting vein. Green 3 has pointed out that his data obtained from computing the dimensions, numbers, lengths, and total cross-sectional area of the component parts of the circulation from Mall's 1 original work on the dog's mesenteric vessels are very rough, since many assumptions were necessary. The values reported here are the result of direct microscopic observation in living tissue. Assumptions are limited to the use of average values obtained from a large sample. Summary Measurements of the length, diameter, and number of branches of arterial vessels were made from a distributing artery to the capillaries in a living bat. From the values so obtained, cross-sectional areas in various portions of the arterial bed were calculated. An almost linear decrease in the diameters of successively smaller vessels was found. There was also a linear relationship in the calculated total cross-sectional areas formed by the various vessels. The results are not in agreement with similar reports made by others using measurements from vessels in a fixed preparation. References 1. MALL, F.: Die Blut und Lymphwege im Dunndarm des Hundcs. In Koniglich Sachsschen Gesellschaft der Wissenschaft. Abhandlungen der Mathematisch-physischen Classe. Vol. XIV, SOHLEIEE, J.: Der Energievebriuich in der Blutbahn. Arch. ges. physiol. 173: 172, GKEEN, H. D.: Circulation; physical principles. In Medical Physics, edited by 0. Glasser. Chicago, Tear Book Publishers, 1944.

Syracuse, N. Y.) (Submitted for publication June 24, 1949) A standard type of slit-lamp microscope allowed visualization

Syracuse, N. Y.) (Submitted for publication June 24, 1949) A standard type of slit-lamp microscope allowed visualization THE PERIPHERAL VASCULAR SYSTEM IN THE BULBAR CONJUNCTIVA OF YOUNG NORMOTENSIVE ADULTS AT REST 1 By RICHARD E. LEE2 AND ELIZABETH A. HOLZE2 (From the Department of Pharmacology, College of Medicine, Syracuse

More information

THE REACTION OF PERIPHERAL BLOOD VESSELS TO ANGIOTONIN, RENIN, AND OTHER PRESSOR AGENTS* BY RICHARD G. ABELL, ProD., ~

THE REACTION OF PERIPHERAL BLOOD VESSELS TO ANGIOTONIN, RENIN, AND OTHER PRESSOR AGENTS* BY RICHARD G. ABELL, ProD., ~ Published Online: 1 March, 1942 Supp Info: http://doi.org/10.1084/jem.75.3.305 Downloaded from jem.rupress.org on August 18, 2018 THE REACTION OF PERIPHERAL BLOOD VESSELS TO ANGIOTONIN, RENIN, AND OTHER

More information

blood contained within the minute vessels were Fifteen experiments were performed on six normal

blood contained within the minute vessels were Fifteen experiments were performed on six normal DEMONSTRATION THAT THE CELL PLASMA RATIO OF BLOOD CONTAINED IN MINUTE VESSELS IS LOWER THAN THAT OF VENOUS BLOOD By RICHARD V. EBERT AND EUGENE A. STEAD, JR. (From the Medical Clinic of the Peter Bent

More information

Rela=onship Between Proximal Pressure and Flow

Rela=onship Between Proximal Pressure and Flow Parameters of Vascular Function Model 1: Relationships between Pressure and Flow in a Single Vessel The following data were collected by perfusing individual arterioles and measuring the relationship between

More information

What was the range of the resting heart rates in males after the exercise programme?

What was the range of the resting heart rates in males after the exercise programme? Q1.Scientists investigated the effect of a 6-week exercise programme on the resting heart rate of males and females. The scientists recruited a large group of male volunteers and a large group of female

More information

An x-ray microscopic study of the vasa vasorum

An x-ray microscopic study of the vasa vasorum Thorax (1964), 19, 561. An x-ray microscopic study of the vasa vasorum of normal human pulmonary arteries JOHN A. CLARKE From the Department of Anatomy, University of Glasgow The first description of the

More information

Blood Vessels and Our Pulse

Blood Vessels and Our Pulse Blood Vessels and Our Pulse Blood Vessels in Your Body All the blood vessels in your body joined together in a straight line would reach from St. John s, Newfoundland, to Victoria, British Columbia, and

More information

Chapter 14 Blood Vessels, Blood Flow and Pressure Exam Study Questions

Chapter 14 Blood Vessels, Blood Flow and Pressure Exam Study Questions Chapter 14 Blood Vessels, Blood Flow and Pressure Exam Study Questions 14.1 Physical Law Governing Blood Flow and Blood Pressure 1. How do you calculate flow rate? 2. What is the driving force of blood

More information

Cardivascular System Module 5: Structure and Function of Blood Vessels *

Cardivascular System Module 5: Structure and Function of Blood Vessels * OpenStax-CNX module: m49689 1 Cardivascular System Module 5: Structure and Function of Blood Vessels * Donna Browne Based on Structure and Function of Blood Vessels by OpenStax This work is produced by

More information

Cardiac Conduction System

Cardiac Conduction System Cardiac Conduction System What causes the Heart to Beat? Heart contracts by electrical signals! Cardiac muscle tissue contracts on its own an electrical signal is sent out by the heart so that all cells

More information

Blood is carried within a closed transport system that is made up of three types of vessel:

Blood is carried within a closed transport system that is made up of three types of vessel: Page 1 of 5 Home A-level Biology Transport Transport in Mammals Biology A-level: Transport Transport in Mammals A recurring theme in biological systems is the surface area to volume ratio. All cells require

More information

TOPIC 6: HUMAN HEALTH AND PHYSIOLOGY

TOPIC 6: HUMAN HEALTH AND PHYSIOLOGY TOPIC 6: HUMAN HEALTH AND PHYSIOLOGY 6.2 Transport System/Circulatory Draw and label a diagram of the heart showing the four chambers, associated blood vessels, valves and the route of blood through the

More information

Cardiovascular Physiology

Cardiovascular Physiology Cardiovascular Physiology Lecture 1 objectives Explain the basic anatomy of the heart and its arrangement into 4 chambers. Appreciate that blood flows in series through the systemic and pulmonary circulations.

More information

Cardiovascular system:

Cardiovascular system: Cardiovascular system: Mediastinum: The mediastinum: lies between the right and left pleura and lungs. It extends from the sternum in front to the vertebral column behind, and from the root of the neck

More information

CVS Hemodynamics. Faisal I. Mohammed, MD,PhD.

CVS Hemodynamics. Faisal I. Mohammed, MD,PhD. CVS Hemodynamics Faisal I. Mohammed, MD,PhD. Objectives point out the physical characteristics of the circulation: distribution of blood volume total cross sectional area velocity blood pressure List the

More information

Arterial Branching in Man and Monkey

Arterial Branching in Man and Monkey Published Online: 1 March, 1982 Supp Info: http://doi.org/10.1085/jgp.79.3.353 Downloaded from jgp.rupress.org on December 13, 2018 Arterial Branching in Man and Monkey M. ZAMIR and J. A. MEDEIROS From

More information

Blood Vessels. Types of Blood Vessels Arteries carry blood away from the heart Capillaries smallest blood vessels. Veins carry blood toward the heart

Blood Vessels. Types of Blood Vessels Arteries carry blood away from the heart Capillaries smallest blood vessels. Veins carry blood toward the heart C H A P T E R Blood Vessels 20 Types of Blood Vessels Arteries carry blood away from the heart Capillaries smallest blood vessels The site of exchange of molecules between blood and tissue fluid Veins

More information

Franklin, 1933; Waterman, 1933]; indeed, the only negative findings, [Waterman, 1933]. Inasmuch, then, as Donegan was misled with

Franklin, 1933; Waterman, 1933]; indeed, the only negative findings, [Waterman, 1933]. Inasmuch, then, as Donegan was misled with 381 6I2.I34:6I2.893 THE CONSTRICTOR RESPONSE OF THE INFERIOR VENA CAVA TO STIMULATION OF THE SPLANCHNIC NERVE BY K. J. FRANKLIN AND A. D. McLACHLIN (From the University Department of Pharmacology, Oxford)

More information

An x-ray microscopic study of the vasa vasorum

An x-ray microscopic study of the vasa vasorum Thorax (1965), 20, 76. An x-ray microscopic study of the vasa vasorum of the normal human aortic arch JOHN A. CLARKE From the Department of Anatomy, University of Glasgow Descriptions of the vasa vasorum

More information

I. Adaptations for Transport Figure 1: Open Circulation. Open Circulation:

I. Adaptations for Transport Figure 1: Open Circulation. Open Circulation: I. Adaptations for Transport Figure 1: Open Circulation Open Circulation: Arthropods have an Open Circulatory System. The circulatory fluid does not contain hemoglobin (Hb) & therefore does not function

More information

Blood Vessels. Over view. We have about 60,000 miles of blood vessels!

Blood Vessels. Over view. We have about 60,000 miles of blood vessels! Blood Vessels Over view 3 types of blood vessels arteries - carry blood away from heart "branch", "diverge", and "fork" veins - carry blood toward heart "join", "merge", and "converge" capillaries - site

More information

PHYSIOLOGY WEEK 9. vascular physiology - ED Primary Exam Teaching

PHYSIOLOGY WEEK 9. vascular physiology - ED Primary Exam Teaching PHYSIOLOGY WEEK 9 vascular physiology - ED Primary Exam Teaching CONCEPTS OF BLOOD FLOW Vascular distensibility - when pressure in the arterioles is increased, this dilates the arterioles and therefore

More information

Today s objectives:! - Learn BASICS of circulatory system (Heart, different veins and arteries)! - Appreciate effects and treatment for

Today s objectives:! - Learn BASICS of circulatory system (Heart, different veins and arteries)! - Appreciate effects and treatment for Today s objectives:! - Learn BASICS of circulatory system (Heart, different veins and arteries)! - Appreciate effects and treatment for hyperlipidemia! Agenda! - Review objectives for 6.2! - Video of circulatory

More information

by Starling [1914] and Daly [1925].

by Starling [1914] and Daly [1925]. 612.13 PROPERTIES OF THE PERIPHERAL VASCULAR SYSTEM AND THEIR RELATION TO THE SYSTEMIC OUTPUT. BY HENRY BARCROFT. Harmsworth Scholar, St Mary's Hospital, London. (Experiments performed in the Physiological

More information

The topic of normal vascular and glomerular anatomy is introduced

The topic of normal vascular and glomerular anatomy is introduced Normal Vascular and Glomerular Anatomy Arthur H. Cohen Richard J. Glassock The topic of normal vascular and glomerular anatomy is introduced here to serve as a reference point for later illustrations of

More information

Cardiovascular System

Cardiovascular System Cardiovascular System Cardiovascular System - Function The cardiovascular system transports, from one part of the body to another: nutrients, oxygen, ions, proteins, hormones and other signaling molecules,

More information

BLOOD RUNS THROUGH YOUR BODY

BLOOD RUNS THROUGH YOUR BODY BLOOD RUNS THROUGH YOUR BODY WORKSHEET A Your heart and blood vessels make up your blood system. At the centre of your blood system is your heart. Its job is to pump the blood around your body. The rest

More information

NAILFOLD CAPILLAROSCOPY USING USB DIGITAL MICROSCOPE IN THE ASSESSMENT OF MICROCIRCULATION IN DIABETES MELLITUS

NAILFOLD CAPILLAROSCOPY USING USB DIGITAL MICROSCOPE IN THE ASSESSMENT OF MICROCIRCULATION IN DIABETES MELLITUS NAILFOLD CAPILLAROSCOPY USING USB DIGITAL MICROSCOPE IN THE ASSESSMENT OF MICROCIRCULATION IN DIABETES MELLITUS PROJECT REFERENCE NO. : 37S0841 COLLEGE BRANCH GUIDE : DR.AMBEDKAR INSTITUTE OF TECHNOLOGY,

More information

following its stimulation. joined each superior thyroid artery and was found just cephalad to

following its stimulation. joined each superior thyroid artery and was found just cephalad to 612.44: 612.817 THE THYROID NERVE IN THE DOG AND ITS FUNCTION. By W. DONALD Ross 1 and V. H. K. MOORHOUSE. From the Department of Physiology, Faculty of Medicine, University of Manitoba. (Received for

More information

Ch 9 Transport of substances in humans

Ch 9 Transport of substances in humans Ch 9 Transport of substances in humans Think about (Ch 9, p.2) 1. Blood transports various substances and distributes heat around the body. It also plays a role in body defence. 2. Blood is a liquid tissue

More information

CIRCULATION Blood and Blood Vessels

CIRCULATION Blood and Blood Vessels CIRCULATION Blood and Blood Vessels Blood Vessels The 5 Main Types 1. Arteries 2. Arterioles 3. Capillaries 4. Venules 5. Veins http://www.youtube.com/watch?v=pgi80ue-amo Arteries: 1) Arteries Function

More information

Practical Histology. Cardiovascular System. Dr Narmeen S. Ahmad

Practical Histology. Cardiovascular System. Dr Narmeen S. Ahmad Practical Histology Cardiovascular System Dr Narmeen S. Ahmad The Cardiovascular System A closed system of the heart and blood vessels Functions of cardiovascular system: Transport nutrients, hormones

More information

Effect of Outflow Pressure upon Lymph Flow from Dog Lungs

Effect of Outflow Pressure upon Lymph Flow from Dog Lungs Effect of Outflow Pressure upon Lymph Flow from Dog Lungs R.E. Drake, D.K. Adcock, R.L. Scott, and J.C. Gabel From the Department of Anesthesiology, University of Texas Medical School, Houston, Texas SUMMARY.

More information

Lec #2 histology. Bronchioles:

Lec #2 histology. Bronchioles: Lec #2 histology. Last lecture we talked about the upper respiratory tract histology, this one is about the lower part histology. We will discuss the histology of: -bronchioles -respiratory bronchioles

More information

(2) (1) (3) (4) BLOOD PATHWAY ASSESSMENT RUBRIC

(2) (1) (3) (4) BLOOD PATHWAY ASSESSMENT RUBRIC BLOODPATHWAYASSESSMENT(4) BLOOD%PATHWAY%ASSESSMENT%(3)% BLOODPATHWAYASSESSMENT(3) (4) (3) (2) (1) Using a completely blank diagram of the heart, all valves, chambers, great vessels, and direction of blood

More information

The Blood Supply of the Rat Mandible '

The Blood Supply of the Rat Mandible ' The Blood Supply of the Rat Mandible ' DONALD F. HUELKE AND WALTER A. CASTELL12 Department of Anatomy, The University of Michigan, Ann Arbor, Michigan ABSTRACT The blood supply of the rat mandible was

More information

The Heart & Circulation (I)

The Heart & Circulation (I) The Heart & Circulation (I) (Ch. 1. Modeling and Simulation in Medicine and the Life Sciences) 1.1 Plan of the Circulation - Function of the heart? - Figure 1.1: The left heart receives blood that is rich

More information

THE VESSELS OF BLOOD CIRCULATION

THE VESSELS OF BLOOD CIRCULATION THE VESSELS OF BLOOD CIRCULATION scientistcindy.com /the-vessels-of-blood-circulation.html NOTE: You should familiarize yourself with the anatomy of the heart and have a good understanding of the flow

More information

investigated. According to the current hypothesis fat is completely hydrolysed

investigated. According to the current hypothesis fat is completely hydrolysed 306 J. Physiol. (I943) I02, 3o6-3I2 6i2. 322 73 DIFFERENTIATION IN THE ABSORPTION OF OLIVE OIL *0 AND OLEIC ACID IN THE. RAT By A. C. FRAZER,* From the Physiology Department, St Mary's Hospital Medical

More information

Sinusoids and venous sinuses

Sinusoids and venous sinuses LYMPHOID SYSTEM General aspects Consists of organs that are made of lymphoid tissue; Immune defense Breakdown of red blood cells. 1 Sinusoids In place of capillaries Endothelium; often fenestrated More

More information

Extra notes for lab- 1 histology. Slide 1 : cross section in the elastic artery ( aortic arch, ascending aorta, descending aorta )

Extra notes for lab- 1 histology. Slide 1 : cross section in the elastic artery ( aortic arch, ascending aorta, descending aorta ) Extra notes for lab- 1 histology Slide 1 : cross section in the elastic artery ( aortic arch, ascending aorta, descending aorta ) - twin of ascending aorta is the pulmonary trunk. Ascending aorta represents

More information

Vessels by Design: Basic Vessel Anatomy. Student Information Page 3A

Vessels by Design: Basic Vessel Anatomy. Student Information Page 3A Vessels by Design: Basic Vessel Anatomy Student Information Page 3A Activity Introduction: Once you get home from running around all day, your throat is probably a little dry. You go to your kitchen, get

More information

2. capillaries - allow exchange of materials between blood and tissue fluid

2. capillaries - allow exchange of materials between blood and tissue fluid Chapter 19 - Vascular System A. categories and general functions: 1. arteries - carry blood away from heart 2. capillaries - allow exchange of materials between blood and tissue fluid 3. veins - return

More information

Blood Flow, Blood Pressure, Cardiac Output. Blood Vessels

Blood Flow, Blood Pressure, Cardiac Output. Blood Vessels Blood Flow, Blood Pressure, Cardiac Output Blood Vessels Blood Vessels Made of smooth muscle, elastic and fibrous connective tissue Cells are not electrically coupled Blood Vessels Arteries arterioles

More information

Any of these questions could be asked as open question or lab question, thus study them well

Any of these questions could be asked as open question or lab question, thus study them well Any of these questions could be asked as open question or lab question, thus study them well describe the factors which regulate cardiac output describe the sympathetic and parasympathetic control of heart

More information

BIOL 219 Spring Chapters 14&15 Cardiovascular System

BIOL 219 Spring Chapters 14&15 Cardiovascular System 1 BIOL 219 Spring 2013 Chapters 14&15 Cardiovascular System Outline: Components of the CV system Heart anatomy Layers of the heart wall Pericardium Heart chambers, valves, blood vessels, septum Atrioventricular

More information

Capillary vessel. A) permeability which can vary between tissues, within tissues at different times and along the capillary

Capillary vessel. A) permeability which can vary between tissues, within tissues at different times and along the capillary I. Capillary bed structure Single layer of endothelium supports diffusion MedSoc Teaching CRH Session 2 Capillary circualtion Chanel Tobinska Arteriole Capillary vessel Venules BLOOD Blood flow velocity

More information

CIRCULATORY SYSTEM BLOOD VESSELS

CIRCULATORY SYSTEM BLOOD VESSELS Name: Block: CIRCULATORY SYSTEM Multicellular organisms (above the level of roundworms) rely on a circulatory system to bring nutrients to, and take wastes away from, cells. In higher organisms such as

More information

WHILE it is generally agreed that elevation

WHILE it is generally agreed that elevation The Derivation of Coronary Sinus Flow During Elevation of Right Ventricular Pressure By HERMAN M. GELLER, B.S., M.D., MARTIN BRANDFONBRENEU, M.D., AND CARL J. WIGGERS, M.D., The derivation of coronary

More information

(From the Department of Pathology, School of Medicine, Western Reserve University, Cleveland)

(From the Department of Pathology, School of Medicine, Western Reserve University, Cleveland) THE EFFECT OF UNILATERAL NEPHRECTOM ON THE TOTAL NUMBER OF OPEN GLOMERULI IN THE RABBIT BY ROBERT A. MOORE, M.D.,* AND GREGORY F. LUKIANOFF, M.D. (From the Department of Pathology, School of Medicine,

More information

A Study of Non-Newtonian Viscosity and Yield Stress of Blood. in a Scanning Capillary-Tube Rheometer. A Thesis. Submitted to the Faculty

A Study of Non-Newtonian Viscosity and Yield Stress of Blood. in a Scanning Capillary-Tube Rheometer. A Thesis. Submitted to the Faculty A Study of Non-Newtonian Viscosity and Yield Stress of Blood in a Scanning Capillary-Tube Rheometer A Thesis Submitted to the Faculty of Drexel University by Sangho Kim in partial fulfillment of the requirements

More information

Physics of the Cardiovascular System

Physics of the Cardiovascular System Dentistry College Medical Physics Physics of the Cardiovascular System The cells of the body act like individual engines. In order for them to function they must have: - 1. Fuel from our food to supply

More information

CIRCULATION. Cardiovascular & lymphatic systems Functions. Transport Defense / immunity Homeostasis

CIRCULATION. Cardiovascular & lymphatic systems Functions. Transport Defense / immunity Homeostasis CIRCULATION CIRCULATION Cardiovascular & lymphatic systems Functions Transport Defense / immunity Homeostasis 2 Types of Circulatory Systems Open circulatory system Contains vascular elements Mixing of

More information

CHAPTER 4 Basic Physiological Principles

CHAPTER 4 Basic Physiological Principles 4-1 CHAPTER 4 Basic Physiological Principles Now that we have a working anatomical knowledge of the heart and circulatory system, we will next develop a functional and quantitative knowledge of the cardiovascular

More information

Chapter 9. Body Fluid Compartments. Body Fluid Compartments. Blood Volume. Blood Volume. Viscosity. Circulatory Adaptations to Exercise Part 4

Chapter 9. Body Fluid Compartments. Body Fluid Compartments. Blood Volume. Blood Volume. Viscosity. Circulatory Adaptations to Exercise Part 4 Body Fluid Compartments Chapter 9 Circulatory Adaptations to Exercise Part 4 Total body fluids (40 L) Intracellular fluid (ICF) 25 L Fluid of each cell (75 trillion) Constituents inside cell vary Extracellular

More information

Physiology of Circulation

Physiology of Circulation Physiology of Circulation Rodolfo T. Rafael,M.D. 12/8/2005 1 PHYSIOLOGY OF CIRCULATION BLOOD FLOW THROUGH THE CAPILLARIES LYMPHATIC SYSTEM BLOOD PRESSURE 12/8/2005 2 1 Fig.21.08 12/8/2005 3 The Blood Pressure

More information

Tala Saleh. Riham Abu Arrah, Abdallah AlQawasmeh. Yanal Shafagoj

Tala Saleh. Riham Abu Arrah, Abdallah AlQawasmeh. Yanal Shafagoj 27 Tala Saleh Riham Abu Arrah, Abdallah AlQawasmeh Yanal Shafagoj Cardiovascular system Think of the following situation: 5 Cancerous cells (for example: Lymphoma cells) are placed in a proper medium with

More information

Transport in Animals Question Paper

Transport in Animals Question Paper Transport in Animals Question Paper Level Subject Exam Board Topic Sub-Topic Paper Type Booklet IGCSE Biology CIE Transport in Animals Alternative to Practical Question Paper Time Allowed: 64 minutes Score:

More information

8 Transport in humans

8 Transport in humans Class: Name: ( ) Date: 8 Transport in humans 8.1 The human transport system (Book 1B, p. 8-3) In humans, a transport system is developed to ensure the supply of useful substances to all cells and removal

More information

The arteries of the human kidney

The arteries of the human kidney J. Anat. (1966), 100, 4, pp. 881-894 881 With 8 figures Printed in Great Britain The arteries of the human kidney BY H. FINE AND E. N. KEEN Department of Anatomy, University of Natal INTRODUCTION A study

More information

Glossary: The Cardiovascular System

Glossary: The Cardiovascular System This glossary includes terms that have been introduced in Lesson 14. Student Resource 14.14 Glossary: The Cardiovascular System Anatomy Terms aorta Large artery that transports blood from the left ventricle

More information

In Vitro Speeds of Bovine Spermatozoa

In Vitro Speeds of Bovine Spermatozoa In Vitro Speeds of Bovine Spermatozoa A. N. Moeller, M.S., and N. l. VanDemark, Ph.D. THE RATE OF progressive movement of the spermatozoa has been used as one criterion in physiologic studies for evaluation

More information

Health Science 20 Circulatory System Notes

Health Science 20 Circulatory System Notes Health Science 20 Circulatory System Notes Functions of the Circulatory System The circulatory system functions mainly as the body s transport system. It transports: o Oxygen o Nutrients o Cell waste o

More information

Tuesday 21 May 2013 Afternoon

Tuesday 21 May 2013 Afternoon Tuesday 21 May 2013 Afternoon AS GCE UMAN BIOLOGY F221/01 Molecules, Blood and Gas Exchange *F210790613* Candidates answer on the Question Paper. OCR supplied materials: None Other materials required:

More information

History of Vascular Modelling. William Harvey discovery of the circulation 1628

History of Vascular Modelling. William Harvey discovery of the circulation 1628 History of Vascular Modelling William Harvey discovery of the circulation 1628 William Harvey (1578-1657) Since all things, both argument and ocular demonstration, show that the blood passes through the

More information

Lecture 8. Heart and Circulatory System. Lecture 8

Lecture 8. Heart and Circulatory System. Lecture 8 Lecture 8 Heart and Circulatory System Lecture 8 1. Introduction 2. Blood 3. Blood Vessels & Blood Pressure 4. The Heart 5. Cardiovascular (Circulatory) System 2 1 Circulatory System Function 1. Transport

More information

Circulation 1 of 27 Boardworks Ltd 2012

Circulation 1 of 27 Boardworks Ltd 2012 Circulation 1 of 27 Boardworks Ltd 2012 2 of 27 Boardworks Ltd 2012 The exchange of substances 3 of 27 Boardworks Ltd 2012 Single-celled organisms, such as bacteria and amoeba (below), do not need a circulatory

More information

TRANSPORTATION AND CIRCULATION THE CIRCULATORY SYSTEM

TRANSPORTATION AND CIRCULATION THE CIRCULATORY SYSTEM TRANSPORTATION AND CIRCULATION THE CIRCULATORY SYSTEM 1 1. Moves nutrients to and waste from cells 2. Pathway for disease fighting agents and hormones 3. Control of body temperature homeostasis 2 The Circulatory

More information

Collin County Community College

Collin County Community College Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 6 Blood Vessels 1 Anatomy of Blood Vessels Walls of blood vessels contain 3 distinct layers : Tunica intima innermost layer includes

More information

COMMUNICATIONS BLOOD VESSELS OF THE BULBAR CONJUNCTIVA. IN MAN*t

COMMUNICATIONS BLOOD VESSELS OF THE BULBAR CONJUNCTIVA. IN MAN*t Brit. J. Ophthal. (1956), 40, 513. COMMUNICATIONS BLOOD VESSELS OF THE BULBAR CONJUNCTIVA IN MAN*t BY S. SPENCE MEIGHAN From the Western District Hospital, Glasgow LARGELY owing to technical difficulties

More information

CAPILLARY FLUID EXCHANGE

CAPILLARY FLUID EXCHANGE CAPILLARY FLUID EXCHANGE Aubrey E. Taylor and Timothy M. Moore Department of Physiology, University of South Alabama, College of Medicine, Mobile, Alabama 36688-0002 AM. J. PHYSIOL. 277 (ADV. PHYSIOL.

More information

The cardiovascular system is composed of a pump the heart and blood

The cardiovascular system is composed of a pump the heart and blood 5 E X E R C I S E Cardiovascular Dynamics O B J E C T I V E S 1. To understand the relationships among blood flow, pressure gradient, and resistance 2. To define resistance and describe the main factors

More information

VASCULAR ANATOMY OF THE COUNTER-CURRENT HEAT EXCHANGER OF SKIPJACK TUNA*

VASCULAR ANATOMY OF THE COUNTER-CURRENT HEAT EXCHANGER OF SKIPJACK TUNA* J. Exp. Biol. (1974), 61, 145-153 2 plates and 4 figures Great Britain VASCULAR ANATOMY OF THE COUNTER-CURRENT HEAT EXCHANGER OF SKIPJACK TUNA* BY E. DON STEVENS, HOW MAN LAM AND J. KENDALL Department

More information

7.L.1.4 Circulatory System Guided Study Notes. Circulation

7.L.1.4 Circulatory System Guided Study Notes. Circulation 1 7.L.1.4 Circulatory System Guided Study Notes Circulation Sect. 1: The Body s Transport System Sect. 2: A Closer Look at Blood Vessels Sect. 3: Blood and Lymph Sect. 4: Cardiovascular Health Sect. 1:

More information

Intrahepatic ramifications of the portal vein in the horse

Intrahepatic ramifications of the portal vein in the horse Intrahepatic ramifications of the portal vein in the horse Tadjalli, M. 1* and Moslemy, H. R. 2 1 Department of Anatomical Sciences, School of Veterinary Medicine, University of Shiraz, Shiraz, Iran; 2

More information

Chapter 12. Capillaries. Circulation. The circulatory system connects with all body tissues

Chapter 12. Capillaries. Circulation. The circulatory system connects with all body tissues Chapter 12 Circulation The circulatory system connects with all body s In many animals, microscopic blood vessels called capillaries Form an intricate network among the Red blood cell song Figure 23.1A

More information

Structure and organization of blood vessels

Structure and organization of blood vessels The cardiovascular system Structure of the heart The cardiac cycle Structure and organization of blood vessels What is the cardiovascular system? The heart is a double pump heart arteries arterioles veins

More information

Physiology of Circulation

Physiology of Circulation Physiology of Circulation Dr. Ali Ebneshahidi Blood vessels Arteries: Blood vessels that carry blood away from the heart to the lungs and tissues. Arterioles are small arteries that deliver blood to the

More information

Topic 6: Human Physiology

Topic 6: Human Physiology Topic 6: Human Physiology 6.2 The Blood System D.4 The Heart Essential Questions: 6.2 The blood system continuously transports substances to cells and simultaneously collects waste products. D.3 The chemical

More information

Structure. Arteries. 21_01d 4/18/12. The Cardiovascular System: Blood Vessels and Hemodynamics. Dr Badri Paudel GMC

Structure. Arteries. 21_01d 4/18/12. The Cardiovascular System: Blood Vessels and Hemodynamics. Dr Badri Paudel GMC Goal of the Cardiovascular System: deliver blood to all parts of the body The Cardiovascular System: Blood Vessels and Hemodynamics Dr Badri Paudel GMC Does so by using different types of tubing, attached

More information

CVS Hemodynamics. Change in blood pressure:

CVS Hemodynamics. Change in blood pressure: CVS Hemodynamics -The distribution of blood inside the circulation: The major part of blood volume is found in the venous system 60% (2/3), that s why veins are called the capacitance vessels. -Arteries

More information

C3, 4, 5, 6, & 7 Worksheet. C3 Describe the inter-relationships of the structures of the heart

C3, 4, 5, 6, & 7 Worksheet. C3 Describe the inter-relationships of the structures of the heart Name: Date: C3, 4, 5, 6, & 7 Worksheet C3 Describe the inter-relationships of the structures of the heart 1. Label and give the functions of the following: a. left and right atrium: b. left and right ventricle:

More information

Modeling the Vascular System and Its Capillary Networks

Modeling the Vascular System and Its Capillary Networks CHAPTER 1 Modeling the Vascular System and Its Capillary Networks THOMAS H. DAWSON United States Naval Academy, Annapolis, Maryland Abstract. Modeling of the vascular system and its capillary networks

More information

P215 SPRING 2019: CIRCULATORY SYSTEM Chaps 13, 14 & 15: pp , , , I. Major Functions of the Circulatory System

P215 SPRING 2019: CIRCULATORY SYSTEM Chaps 13, 14 & 15: pp , , , I. Major Functions of the Circulatory System P215 SPRING 2019: CIRCULATORY SYSTEM Chaps 13, 14 & 15: pp 360-390, 395-404, 410-428 433-438, 441-445 I. Major Functions of the Circulatory System 1. 2. 3. 4. II. Structure of the Heart 1. atria 2. ventricles

More information

THE CIRCULATORY SYSTEM

THE CIRCULATORY SYSTEM Biology 30S THE CIRCULATORY SYSTEM Name: This module adapted from bblearn.merlin.mb.ca 1 Introduction to Circulation The first organ to form, and the last organ to die. The heart is the pump of life. The

More information

Cardiovascular System

Cardiovascular System Cardiovascular System BELLWORK: Define using technology angio hemo/hema cardio brady as in bradycardia tachy as in tachycardia Standards 8) Outline basic concepts of normal structure and function of all

More information

Circulation. Sinoatrial (SA) Node. Atrioventricular (AV) Node. Cardiac Conduction System. Cardiac Conduction System. Linked to the nervous system

Circulation. Sinoatrial (SA) Node. Atrioventricular (AV) Node. Cardiac Conduction System. Cardiac Conduction System. Linked to the nervous system Circulation Cardiac Conduction System AHS A H S Your body resembles a large roadmap. There are routes or arteries that take you downtown to the heart of the city and veins that take you to the outskirts

More information

Oxygen Carbon dioxide Water vapour Nitrogen

Oxygen Carbon dioxide Water vapour Nitrogen 1. The table shows the percentage of various gases in atmospheric air, exhaled air and in air samples collected from the alveoli and the trachea of a healthy human. Gas Atmospheric air(inhaled air) Exhaled

More information

Cardiac Physiology an Overview

Cardiac Physiology an Overview Cardiac Physiology an Overview Dr L J Solomon Department of Paediatrics and Child Health School of Medicine Faculty of Health Sciences University of the Free State and PICU Universitas Academic Hospital

More information

Control material was obtained in cases in which necropsy was performed and in which there was no history of peripheral vascular disease or

Control material was obtained in cases in which necropsy was performed and in which there was no history of peripheral vascular disease or Blood Vessels of the Skin in Chronic Venous Insufficiency By MYRON H. KULWIN, M.D., AND EDGAR A. HINES, JR., M.D. This study concerns ain evaluation of the anatomicopathologic changes found in blood vessels

More information

Heart and Lung Dissection

Heart and Lung Dissection Heart and Lung Dissection Name(s) Before you begin any work or dissection of your specimen, please try to identify the following. You will need to illustrate what you see, so make sure to note size, texture

More information

Neuro Vascular Relationship between Superior Cerebellar Artery and Trigeminal Nerve

Neuro Vascular Relationship between Superior Cerebellar Artery and Trigeminal Nerve Neuro Vascular Relationship between Superior Cerebellar Artery and Trigeminal Nerve Pages with reference to book, From 140 To 143 Nawab Mohammad Khan, Mohammad Afzal Khan, Fazal Karim Aasi ( Department

More information

Biology. A Guide to the Natural World. Chapter 30 Lecture Outline Transport and Exchange 1: Blood and Breath. Fifth Edition.

Biology. A Guide to the Natural World. Chapter 30 Lecture Outline Transport and Exchange 1: Blood and Breath. Fifth Edition. Biology A Guide to the Natural World Chapter 30 Lecture Outline Transport and Exchange 1: Blood and Breath Fifth Edition David Krogh 30.1 The Cardiovascular System The Cardiovascular System The human cardiovascular

More information

Skeletal muscle. Flow increases and decreases with each muscular contraction - as a result of compression of the blood vessels by contracted muscle

Skeletal muscle. Flow increases and decreases with each muscular contraction - as a result of compression of the blood vessels by contracted muscle Regional blood flow Skeletal muscle Extreme increases during exercises Flow increases and decreases with each muscular contraction - as a result of compression of the blood vessels by contracted muscle

More information

College, London, E.C. 1

College, London, E.C. 1 340 J. Physiol. (I952) ii8, 340-347 THE OCCURRENCE OF TURBULENT FLOW IN THE RABBIT AORTA BY D. A. McDONALD From the Department of Physiology, St Bartholomew's Hospital Medical College, London, E.C. 1 (Received

More information

Cardiovascular System. I. Structures of the heart A. : Pericardium sack that surrounds the heart

Cardiovascular System. I. Structures of the heart A. : Pericardium sack that surrounds the heart Cardiovascular System I. Structures of the heart A. : Pericardium sack that surrounds the heart 1. : Pericardial Cavity serous fluid filled space between the heart and the pericardium B. Heart Wall 1.

More information

Physiology - 8 Hemodynamics - 1 M.jafar 24/3/2016 Turquoise Team

Physiology - 8 Hemodynamics - 1 M.jafar 24/3/2016 Turquoise Team 21 Physiology - 8 Hemodynamics - 1 M.jafar 24/3/2016 Turquoise Team Hemodynamics Today we will take about hemodynamics which is the study of the movement of blood and of the forces concerned. Now how the

More information

STATION 1 - Types of Blood Vessels

STATION 1 - Types of Blood Vessels STATION 1 - Types of Blood Vessels 1. Read the description of arteries, veins, and capillaries on the computer screen. Use the information to fill in your Notes for Station 1 2. Look at the different size

More information

A MODEL OF CEREBRAL BLOOD FLOW DURING SUSTAINED ACCELERATION. S. Cirovic 1 C. Walsh 2 W. D. Fraser 3

A MODEL OF CEREBRAL BLOOD FLOW DURING SUSTAINED ACCELERATION. S. Cirovic 1 C. Walsh 2 W. D. Fraser 3 16-l A MODEL OF CEREBRAL BLOOD FLOW DURING SUSTAINED ACCELERATION S. Cirovic 1 C. Walsh 2 W. D. Fraser 3 1. Institute for Aerospace Studies, University of Toronto, Ontario, Canada 2. Department of Mechanical

More information

Intestinal Microvascular Growth During Maturation in Diabetic Juvenile Rats. Joseph L. Unthank and H. Glenn Bohlen

Intestinal Microvascular Growth During Maturation in Diabetic Juvenile Rats. Joseph L. Unthank and H. Glenn Bohlen 429 Intestinal Microvascular Growth During Maturation in Diabetic Juvenile Rats Joseph L. Unthank and H. Glenn Bohlen Downloaded from http://ahajournals.org by on August 21, 218 To determine if intestinal

More information