The Meniscus. Bearbeitet von Philippe Beaufils, René Verdonk

Size: px
Start display at page:

Download "The Meniscus. Bearbeitet von Philippe Beaufils, René Verdonk"

Transcription

1 The Meniscus Bearbeitet von Philippe Beaufils, René Verdonk 1st Edition Buch. xv, 407 S. Hardcover ISBN Format (B x L): 19,5 x 26 cm Gewicht: 1201 g Weitere Fachgebiete > Medizin > Sonstige Medizinische Fachgebiete > Orthopädie, konservativ Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, ebooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte.

2 Anatomy I. D. McDermott, S. D. Masouros, A. M. J. Bull, and A. A. Amis 1.2 Morphology The menisci are two crescent-shaped fibrocartilagenous structures that are found within each knee between the femoral condyles and the tibial plateau (Fig ). For many years, the menisci were considered to be the functionless remains of a leg muscle [31]. Indeed, in his paper in 1942, McMurray [21] stated that When the knee-joint is opened on the anterior aspect, and the suspected cartilage appears normal, its removal can be undertaken with confidence if the diagnosis of a posterior tear has been arrived at (clinically) prior to operation. A far too common error is shown in the incomplete removal of the injured meniscus. Attitudes towards the menisci have changed dramatically, and since King s pivotal paper in 1936 [17], numerous studies have shown that the menisci do in fact play various important functional roles within the knee (see Chap. 1.4). The menisci are sometimes referred to as the semilunar cartilages, even though they are crescentic when A. A. Amis (*) Departments of Mechanical Engineering and Musculoskeletal Surgery, Imperial College London, South Kensington Campus, London SW7 2AZ, UK a.amis@imperial.ac.uk I. D. McDermott London Sports Orthopaedics, 31 Old Broad Street, London EC2N 1HT, UK ian.mcdermott@sportsortho.co.uk S. D. Masouros Departments of Bioengineering and Mechanical Engineering, Imperial College London, London SW7 2AZ, UK A. M. J. Bull Department of Bioengineering, Imperial College London, London SW7 2AZ, UK viewed from above, not half-moon shaped. They are wedge-shaped in cross-section and are attached to the joint capsule at their convex peripheral rim, and also to the tibia anteriorly and posteriorly by insertional ligaments. They partially cover the tibio-femoral joint surface. Fukubayashi and Kurosawa [7] examined intraarticular contact areas using a casting method employing silicone rubber and found that the menisci combined occupied 70% of the total contact area within the joint. Walker and Erkman [34] also used casting techniques and found that under no load, contact occurred primarily on the menisci, but that with loads of 150 kg, the menisci covered between 59 and 71% of the joint contact surface area. The peripheral rim of each meniscus has a length of approximately 110 mm [18]. Except for a portion of the lateral meniscus (LM) in the region of the popliteus tendon, the menisci are attached at their peripheral rims to the inside of the joint capsule throughout their length. This capsular attachment is often referred to as the coronary ligament. At its mid-point, the medial meniscus also has a firm attachment to the deep portion of the medial collateral ligament. The central border of each meniscus tapers to a free edge. A congenital variant of the normal morphology of the meniscus is the discoid meniscus. Smillie [29] suggested that this variation in structure is due to a failure of the foetal discoid form of the meniscus to involute. It is difficult to determine the true incidence of discoid menisci, but in a study by Nathan and Cole [22], only 30 out of 1,219 menisci (2.5%) that had been surgically removed were found to have been discoid. Smillie [29] found 185 discoid menisci in 3,000 meniscectomies (6%). Discoid menisci are more common on the lateral side than the medial side, and they are only rarely ever found in both compartments of the knee. P. Beaufils and R. Verdonk (eds.), The Meniscus, DOI: / _1.2, Springer-Verlag Berlin Heidelberg

3 12 I. D. McDermott et al. Fig Gross anatomy of the menisci and associated structures. (From The Interactive Knee, Primal Pictures, London, with permission) Ligament of Humphrey Ligament of Wrisberg Posterior insertional ligament Posterior horn Posterior Cruciate Ligament Posterior insertional ligament Posterior horn Medial Meniscus Lateral Meniscus Anterior horn Anterior horn Anterior insertional ligament Anterior insertional ligament Anterior Cruciate Ligament Table Meniscal dimensions (mm) measured from cadaver knees Mean SD Range Medial meniscal circumference Medial meniscal body width Medial meniscal length Medial meniscal width Fig Meniscal dimension measurements. (Reproduced from McDermott et al. [20], with permission from Springer.) LMC lateral meniscal circumference; LMW lateral meniscal width; LMBW lateral meniscal body width; LML lateral meniscal length; MMC medial meniscal circumference; MMW medial meniscal width; MMBW medial meniscal body width; MML medial meniscal length Lateral meniscal circumference Lateral meniscal body width Lateral meniscal length Lateral meniscal width They may cause symptoms of snapping and popping in the knee in children, usually between the ages of 6 and 12 years. A discoid LM is a constant finding in some of the great apes, with substantial meniscofemoral attachments and absent tibial insertions. In our centre, the various meniscal dimensions were measured as part of a study on meniscal allograft sizing [20]. Examining 88 menisci (medial and lateral) from a total of 22 pairs of dissected cadaveric knees, the dimensions demonstrated in Fig were determined using digital Vernier callipers. The results are given in Table These results are of significant interest, as they demonstrate the very wide range that exists in dimensions between different knees. Table shows the percentage difference between the largest and smallest values for each dimension, Table Percentage differences between largest and smallest values for each meniscal dimension (expressed as a percentage of the smallest value) Smallest value Largest value Medial meniscal body width Lateral meniscal body width Medial meniscal length Lateral meniscal length (LML) Medial meniscal width LML Percentage difference

4 1.2 Anatomy expressed as a percentage of the smallest values. The relevance of these values lies in the critical importance that exists in accurate meniscal allograft sizing while performing meniscal transplantation using a bony bridge fixation technique [27]. The Tibial Insertional Ligaments The circumferential collagen fibres of the meniscal body continue into the anterior and posterior insertional ligaments, which attach to the subchondral bone of the tibia. The insertional ligament of the anterior horn of the medial meniscus is fan-shaped and attaches to the tibia in the area of the intercondylar fossa, about 6 or 7 mm anterior to the attachment of the anterior cruciate ligament (Fig ). In a cadaveric study of 46 donors, it was found that in 64% of cases, posterior or upper fibres from the anterior insertional ligament blended with fibres of the transverse intermeniscal ligament (which connects the anterior horns of the medial and lateral menisci) [18]. The posterior horn of the medial meniscus is attached to the tibial intercondylar fossa between the posterior attachment of the LM and the posterior cruciate ligament (PCL). Kohn and Moreno [18] found that the tibial attachments of the medial meniscus were fixed in areas that could be defined by bony landmarks, and that the anterior insertion covered an area of 139 ± 43 mm 2 and the posterior insertion an area of ± 10 mm 2. The bony tibial insertions of the LM, however, were found to be less well defined. The anterior insertional ligament of the LM inserts into the anterior intercondylar fossa of the tibia, lateral to the attachment of the anterior cruciate ligament and just anterior to the lateral intercondylar eminence. The posterior insertional ligament of the LM attaches to the tibia posterior to the lateral intercondylar eminence, but anterior to the posterior attachment of the medial meniscus. The insertional ligaments have fibrocartilagenous transition zones that make the change in stiffness between ligament and bone tissue at the enthesis less sudden, thereby reducing the stress concentration in this unit and preventing failure. They may also diminish the risk of fatigue failure during motion. The functional importance of the insertional ligaments was demonstrated in a study in rabbits, where transection of the anterior or posterior insertional ligaments of the meniscus led to osteochondral changes in the knee after 6 and 12 weeks that were similar to those found after total meniscectomy [30]. The Intermeniscal Ligaments The anterior intermeniscal ligament, also known as the transverse geniculate ligament, connects the anterior fibres of the anterior horns of the medial and lateral menisci (Fig ). An anatomical study by Nelson and LaPrade [23] found that a transverse ligament could be identified in 94% of fifty unpaired cadaveric knees Fig Anterior insertional ligament of the medial meniscus. (Right knee, viewed posteriorly. Medial peripheral meniscal attachment released and lateral meniscus excised) Fig The transverse geniculate ligament (shown being held with forceps)

5 14 I. D. McDermott et al. dissected. A study of 92 knees, performed by Kohn and Moreno [18], found a ligament in 64% of specimens. The ligament can be visualised as an opacity of softtissue density apparent in the posterior part of the Hoffa s fat pad on 12% of plain lateral knee radiographs and 58% of magnetic resonance imaging (MRI) scans [28]. The functional relevance of this ligament has not been studied, but it may have a role in moving the menisci during tibial internal external rotation. Nelson and LaPrade [23] showed that the average length of the transverse ligament was 33 mm and the average midsubstance width was 3.3 mm. They also identified three distinct patterns of attachment of the ligament. In type I (46%) the ligament passed primarily between the anterior horn of the medial meniscus and the anterior margin of the LM (a true anterior intermeniscal ligament). Type II ligaments (26%) passed from the anterior horn of the medial meniscus to the joint capsule, anterior to the LM. For type III ligaments (12%), the main attachments were to the anterior capsule only. The Meniscofemoral Ligaments Two ligaments have also been identified joining the posterior horn of the LM to the lateral side of the medial condyle of the femur in the intercondylar notch. These are known as the meniscofemoral ligaments [26]. The anterior meniscofemoral ligament runs anterior to the PCL, and is known as the ligament of Humphrey. The posterior meniscofemoral ligament runs posterior to the PCL, and is known as the ligament of Wrisberg (Fig ). Kohn and Moreno [18] found the ligament of Humphrey to be present in 50% of 92 cadaveric knees dissected, and the Wrisberg ligament to be present in 76%. This is in keeping with other studies such as that by Lee et al. [19], who found that MRI showed either one or both meniscofemoral ligaments to be present in 83% of 138 patients scanned. Heller and Langman [12] found a meniscofemoral ligament in 71% of 140 cadaveric knees. In this study, they noted that the Humphrey ligament was up to 1/3 of the diameter of the posterior cruciate and that the Wrisberg ligament could be up to ½ the size of the PCL. It has also been noted that meniscofemoral ligaments can frequently be found in one knee, while being absent from the other knee [35]. A review of the literature by Gupte et al. [9] suggested that at least one meniscofemoral ligament was Fig The meniscofemoral ligaments (seen with the posterior cruciate ligament held in-between). LM lateral meniscus; PMFL posterior meniscofemoral ligament; AMFL anterior meniscofemoral ligament; PCL posterior cruciate ligament present in 93% of knees, with a significantly higher prevalence in younger knees than in older ones. Although they have often been assumed to be only vestigial structures, there has recently been renewed interest in the meniscofemoral ligaments. They have mechanical properties comparable to the posterior bundle of the PCL [10], and it has been found that they might serve a mechanical role in the knee, acting as secondary restraints to tibial posterior drawer [11]. Further ligaments have been identified, connecting the anterior horns of the menisci to the intercondylar area of the femur, although these are far less commonly found. The antero-medial meniscofemoral ligament has been described arising from the anterior horn of the medial meniscus, and the antero-lateral meniscofemoral ligament arises from the anterior horn of the LM. In a cadaveric study of 60 knees by Wan and Felle [35], these ligaments were each found in 30% of knees. Similarly, there are capsular bands that pass from the patella, on either side of the patellar tendon attachment, to the anterior tibia. These patello-tibial ligaments attach to the anterior horns of the menisci on their superficial aspects. These attachments appear to pull the meniscal horns anteriorly, when the knee extends. The Composition of Meniscal Tissue Normal human meniscal tissue has been found to be composed of 72% water, 22% collagen, 0.8%

6 1.2 Anatomy glycosaminoglycans and 0.12% DNA [13]. On a dry weight basis, normal adult menisci contained 78% collagen, 8% non-collagenous protein and 1% hexosamine [14]. Histologically, the menisci are fibrocartilagenous and are primarily composed of an interlacing network of collagen fibres interposed with cells, with an extracellular matrix of proteoglycans and glycoproteins. Type I collagen accounts for over 90% of the meniscal collagen, the remainder consisting of types II, III and IV [6]. Cheung [4] found that the proportion of the different collagen types within bovine menisci varies according to location. Except for trace amounts (<1%) of types III and V collagens, the peripheral two-thirds of bovine menisci consist solely of type I collagen, whereas the type II collagen (60%) predominates over type I (40%) in the inner third [4]. The collagen fibres themselves have been shown to be heavily cross-linked by hydroxylpyridinium aldehydes [6]. The Fine Structure of Menisci The orientation of the collagen fibres within the meniscus relates directly to the function of the tissue (Fig ). Bullough et al. [3] found that the principal orientation of the collagen fibres is circumferential, to withstand tension. They also found that other radially orientated collagen fibres were present, predominantly in the mid-zone of the meniscus and also on the exposed surfaces. They stated that these radial fibres might act as ties holding the circumferential fibres Fig Diagram showing the orientation of collagen fibres within the meniscus. (Reproduced with permission and copyright from the British Editorial Society of Bone and Joint Surgery from Bullough et al. [3]) 15 together to help prevent longitudinal splitting of the menisci. Beaupre et al. [2] identified two well-differentiated regions within the menisci: the inner two-thirds and the peripheral outermost third. In the inner part, the collagen bundles were primarily radially orientated and were also parallel to the articular surface. In the peripheral part, the bundles were larger and were circumferential. They related these differences to function, and stated that the radial fibres of the inner part were best adapted to transfer of compressive axial load from the femur to the tibia, while the peripheral circumferential fibres resisted tensile forces. The collagen bundles of the surface layer are randomly orientated with a composition similar to articular hyaline cartilage (Fig ). There are two types of cell found within the meniscus [8]. The superficial zones contain cells that are oval or fusiform, with few processes and scant cytoplasm, resulting in the nucleus appearing disproportionately large. The deep zones of the menisci are populated by rounded or polygonal cells with a large amount of rough endoplasmic reticulum. These cells are usually solitary, but are occasionally found in groups of two or three. They have properties that are found in both fibroblasts and chondrocytes, and in 1985, Webber et al. [36] proposed the term fibrochondrocytes to describe them. Blood Supply and Innervation It has been shown that at birth, the whole meniscus is vascularised [24]. However, an avascular area soon develops in the inner zone of the meniscus, and in the second decade, blood vessels occur only in the outer third. This progressive loss of vascularity may be due to weight-bearing and knee motion. Anatomical studies [1] have shown that vessels to the menisci arise mainly from the medial and lateral inferior, and the middle geniculate arteries. Branches from these vessels form a perimeniscal capillary plexus that was first identified by Policard [25]. Radial branches from this perimeniscal capillary plexus penetrate the periphery of the meniscus at intervals, with a richer supply to the anterior and posterior horns [5]. The degree of vascularity varies within each meniscus, and the extent of the peripheral vascular zone also varies between individuals, ranging from 10 to 30% of the meniscal width [1]. The extent of the vascular zone has implications for the healing of meniscal tears.

7 16 I. D. McDermott et al. There is an area in the posterolateral region of the LM, adjacent to the popliteus tendon, where the meniscus does not have any capsular attachment. This area is relatively avascular. Reports on the innervation of the menisci are conflicting. Kennedy et al. [16] found abundant axons, large nerve bundles, free nerve endings, and specialised receptors including complex end bulbs and Golgitype type III endings in perimeniscal capsular tissue. However, this innervation did not extend into the meniscal body itself. Day et al. [5], however, demonstrated that nerves run with the radially oriented blood vessels in the outer portion of the meniscus. As with the blood supply, there was a greater innervation of the anterior and posterior horns of the menisci, and unlike in the body of the meniscus, here, axons were found in the inner one-third. Wilson et al. [37] also showed penetration of neural tissue into the outer third of the meniscus. However, they showed that the neural elements were not exclusively paravascular in position, and postulated that the nerves may not be exclusively vasomotor in function, but that they may perform an afferent function. They felt that this was most likely to be slow pain. Zimny et al. [38] also found axons penetrating from the perimeniscal tissue into the outer third of the meniscus, with a heavier concentration at the horns. They comprised all three types of encapsulated end organs (Pacini corpuscles, which are usually involved in continued information of position, and the slowly adapting Ruffini endings and Golgi tendon organs, which respond when extreme stress is applied), and free nerve endings (type IV). The presence of mechanoreceptors in the menisci suggests that the menisci may play a role in knee-joint afferent nerve transmission. This neural information may be important in joint proprioception. Indeed, it has been shown that proprioception was disturbed in knees with an isolated meniscal lesion, and that it improved after partial meniscal resection [15]. Meniscal Motion During Knee Flexion The menisci are dynamic structures, and to effectively maintain an optimum load-bearing function over a moving, incongruent joint surface, they need to be able to move as the femur and tibia move, to maintain maximum congruency. Thompson et al. [32] were the first to describe meniscal movements through a full flexionextension arc in the intact knee using MRI of cadaver knees. They showed that from full extension to full flexion, there was posterior excursion of the medial meniscus of 5.1 mm and of the LM of 11.2 mm, with the anterior horns moving more than the posterior horns. However, these observations were made in unloaded cadaver knees, and may, therefore, not be representative of the in vivo weight-bearing situation. Furthermore, Thompson et al. failed to comment on the medio-lateral movement of the meniscal tissue. More recent technical advances in the field of radiographic imaging have led to the development of the so-called open magnetic resonance scanners. These scanners allow a subject to lie, stand, sit or squat within the imaging field, and thus, permit imaging of the intact in vivo knee under load in all positions. Using such a scanner, Vedi et al. [33] described meniscal motion in the normal knee, in both the weight-bearing and nonweight-bearing situation (Fig ). They found that the menisci moved less than was reported by Thompson et al. [32]. However, in common with Thompson et al. s findings, they observed that the menisci move posteriorly as the knee flexes. The anterior horns were also noted to be more mobile than the posterior horns, and the LM to be more mobile than the medial. The posterior Fig The mean movement (mm) in each meniscus from extension (shaded) to flexion (hashed) in (a) the weight-bearing and (b) the unloaded knee. (Reproduced with permission and copyright from the British Editorial Society of Bone and Joint Surgery from Vedi et al. [33]) 3.6 a Medial Ant 9.5 Post 5.6 Lateral b Medial Ant Post Lateral 3.4

8 1.2 Anatomy horn of the medial meniscus was found to be the least mobile. Vedi et al. also showed that there was significant movement of the bodies of the menisci peripherally with knee flexion, reflecting the anterior to posterior divergence of the femoral condyles from anterior to posterior. Vedi et al. [33] compared the meniscal movements observed in the unloaded knee with those found when weight-bearing. They showed that there was significantly greater movement in the anterior horn of the LM when the knee was weight-bearing, but no significant differences were demonstrated between the other meniscal movements. Summary The menisci of the knee are highly complex structures, whose form is intricately linked to their various functions. Although far more is now understood about their functional importance in the knee, and even though meniscal preservation is now practised at surgery, where possible, there are still a number of anatomical features of the menisci that at present are all but ignored, from the surgical reconstructive perspective. This includes structures such as the meniscofemoral ligaments and the transverse ligament. Greater understanding of the relevance of the detailed anatomical features of the menisci is an essential part of developing a deeper knowledge that will hopefully enable more accurate modelling of this tissue, with the aim of some day perhaps being able to manufacture or even grow appropriate artificial scaffolds or tissue-engineered replacement tissue. References 1. Arnoczky SP, Warren RF (1982) Microvasculature of the human meniscus. Am J Sports Med 10: Beaupre A, Choukroun R, Guidouin R et al (1986) Knee menisci. Correlation between microstructure and biomechanics. Clin Orthop Relat Res 208: Bullough PG, Munuera L, Murphy J et al (1970) The strength of the menisci of the knee as it relates to their fine structure. J Bone Joint Surg 52B: Cheung HS (1987) Distribution of type I, II, III and V in the pepsin solubilized collagens in bovine menisci. Connect Tissue Res 16: Day B, Mackenzie WG, Shim SS et al (1985) The vascular and nerve supply of the human meniscus. Arthroscopy 1: Eyre DR, Wu JJ (1983) Collagen of fibrocartilage: a distinctive molecular phenotype in bovine meniscus. FEBS Lett 158: Fukubayashi T, Kurosawa H (1980) The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthritic knee joints. Acta Orthop Scand 51: Ghadially FN, Lalonde JM, Wedge JH (2002) Ultrastructure of normal and torn menisci of the human knee joint. J Anat 136: Gupte CM, Smith A, McDermott ID et al (2002) Meniscofemoral ligaments revisited. Anatomical study, age correlation and clinical implications. J Bone Joint Surg 84-B: Gupte CM, Smith A, Jamieson N et al (2002) Meniscofemoral ligaments structural and material properties. J Biomech 35: Gupte CM, Bull AMJ, Thomas RD et al (2003) The meniscofemoral ligaments: secondary restraints to the posterior drawer. Analysis of anteroposterior and rotatory laxity in the intact and posterior-cruciate-deficient knee. J Bone Joint Surg 85 B: Heller L, Langman J (1964) The menisco-femoral ligaments of the human knee. J Bone Joint Surg 46: Herwig J, Egner E, Buddecke E (1984) Chemical changes of human knee joint menisci in various stages of degeneration. Ann Rheum Dis 43: Ingman AM, Ghosh P, Taylor TK (1974) Variation of collagenous and non-collagenous proteins of human knee joint menisci with age and degeneration. Gerontologia 20: Jerosch J, Prymka M, Castro WH (1996) Proprioception of knee joints with a lesion of the medial meniscus. Acta Orthop Belg 62: Kennedy JC, Alexander IJ, Hayes KC (1982) Nerve supply of the human knee and its functional importance. Am J Sports Med 10: King D (1936) The function of the semilunar cartilages. J Bone Joint Surg 18-B: Kohn D, Moreno B (1995) Meniscus insertion anatomy as a basis for meniscus replacement: a morphological cadaveric study. Arthroscopy 11: Lee BY, Jee WH, Kim JM et al (2000) Incidence and significance of demonstrating the meniscofemoral ligament on MRI. Br J Radiol 73: McDermott ID, Sharifi F, Bull AMJ et al (2004) An anatomical study of meniscal allograft sizing. Knee Surg Sports Traumatol Arthrosc 12: McMurray TP (1942) The semilunar cartilages. Br J Surg 29: Nathan PA, Cole SC (1969) Discoid meniscus. A clinical and pathologic study. Clin Orthop Relat Res 64: Nelson EW, LaPrade RF (2000) The anterior intermeniscal ligament of the knee. An anatomic study. Am J Sports Med 28: Petersen W, Tillmann B (1995) Age-related blood and lymph supply of the knee menisci. A cadaver study. Acta Orthop Scand 66: Policard A (1936) Physiologie Générale des Articulations à l etat Normale et Pathologique. Masson, Paris

9 18 I. D. McDermott et al. 26. Radoievitch F (1931) Les ligaments des menisques interarticulares du genou. Ann Anat Pathol 8: Sekaran SV, Hull ML, Howell SM (2002) Nonanatomic location of the posterior horn of a medial meniscal autograft implanted in a cadaveric knee adversely affects the pressure distribution on the tibial plateau. Am J Sports Med 30: Sintzoff SA Jr, Stallenberg B, Gillard I et al (1992) Transverse geniculate ligament of the knee: appearance and frequency on plain radiographs. Br J Radiol 65: Smillie IS (1948) The congenital discoid meniscus. J Bone Joint Surg 30-B: Sommerlath K, Gillquist J (1992) The effect of a meniscal prosthesis on knee biomechanics and cartilage. An experimental study in rabbits. Am J Sports Med 20: Sutton JB (1987) Ligaments: their nature and morphology. M.K. Lewis, London 32. Thompson WO, Thaete FL, Fu FH et al (1991) Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. Am J Sports Med 19: Vedi V, Williams A, Tennant SJ et al (1999) Meniscal movement. An in-vivo study using dynamic MRI. J Bone Joint Surg 81-B: Walker PS, Erkman MJ (1975) The role of the menisci in force transmission across the knee. Clin Orthop Relat Res 109: Wan AC, Felle P (1995) The menisco-femoral ligaments. Clin Anat 8: Webber RJ, Harris MG, Hough AJ Jr (1985) Cell culture of rabbit meniscal fibrochondrocytes: proliferative and synthetic response to growth factors and ascorbate. J Orthop Res 3: Wilson AS, Legg PG, McNeur JC (1969) Studies on the innervation of the medial meniscus in the human knee joint. Anat Rec 165: Zimny ML, Albright DJ, Dabezies E (1988) Mechanoreceptors in the human medial meniscus. Acta Anat Basel 133:35 40

Cone Beam CT of the Head and Neck

Cone Beam CT of the Head and Neck Cone Beam CT of the Head and Neck An Anatomical Atlas Bearbeitet von Chung H. Kau, Kenneth Abramovitch, Sherif Galal Kamel, Marko Bozic 1st Edition. 2010. Taschenbuch. IX, 66 S. Paperback ISBN 978 3 642

More information

Septic Bone and Joint Surgery

Septic Bone and Joint Surgery Septic Bone and Joint Surgery Bearbeitet von Reinhard Schnettler 1. Auflage 2010. Buch. 328 S. Hardcover ISBN 978 3 13 149031 5 Format (B x L): 19,5 x 27 cm Weitere Fachgebiete > Medizin > Chirurgie >

More information

The Meniscus. History. Anatomy. Anatomy. Blood Supply. Attachments

The Meniscus. History. Anatomy. Anatomy. Blood Supply. Attachments History The Meniscus W. Randall Schultz, MD, MS Austin, TX January 23, 2016 Meniscus originally thought to represent vestigial tissue 1883 first reported meniscal repair (Annandale) Total menisectomy treatment

More information

Ethics of Science and Technology Assessment 20. Functional Foods

Ethics of Science and Technology Assessment 20. Functional Foods Ethics of Science and Technology Assessment 20 Functional Foods Bearbeitet von R. Chadwick, S. Henson, B. Moseley, G. Koenen, M. Liakopoulos, C. Midden, A. Palou, G. Rechkemmer, D. Schröder, A. von Wright

More information

Duus' Topical Diagnosis in Neurology

Duus' Topical Diagnosis in Neurology Duus' Topical Diagnosis in Neurology Anatomy - Physiology - Signs - Symptoms Bearbeitet von Michael Frotscher 1. Auflage 2005. Taschenbuch. 532 S. Paperback ISBN 978 3 13 612804 6 Format (B x L): 19 x

More information

Spinal Imaging. Bearbeitet von Herwig Imhof. 1. Auflage Taschenbuch. 312 S. Paperback ISBN Format (B x L): 12,5 x 19 cm

Spinal Imaging. Bearbeitet von Herwig Imhof. 1. Auflage Taschenbuch. 312 S. Paperback ISBN Format (B x L): 12,5 x 19 cm Spinal Imaging Bearbeitet von Herwig Imhof 1. Auflage 2007. Taschenbuch. 312 S. Paperback ISBN 978 3 13 144071 6 Format (B x L): 12,5 x 19 cm Weitere Fachgebiete > Medizin > Sonstige Medizinische Fachgebiete

More information

Impacts of Selenium on the Biogeochemical Cycles of Mercury in Terrestrial Ecosystems in Mercury Mining Areas

Impacts of Selenium on the Biogeochemical Cycles of Mercury in Terrestrial Ecosystems in Mercury Mining Areas Springer Theses Impacts of Selenium on the Biogeochemical Cycles of Mercury in Terrestrial Ecosystems in Mercury Mining Areas Bearbeitet von Hua Zhang 1. Auflage 2014. Buch. xxii, 193 S. Hardcover ISBN

More information

The Knee. Prof. Oluwadiya Kehinde

The Knee. Prof. Oluwadiya Kehinde The Knee Prof. Oluwadiya Kehinde www.oluwadiya.sitesled.com The Knee: Introduction 3 bones: femur, tibia and patella 2 separate joints: tibiofemoral and patellofemoral. Function: i. Primarily a hinge joint,

More information

Brain Imaging. Bearbeitet von Klaus Sartor, Stefan Hähnel, Bodo Kress

Brain Imaging. Bearbeitet von Klaus Sartor, Stefan Hähnel, Bodo Kress Brain Imaging Bearbeitet von Klaus Sartor, Stefan Hähnel, Bodo Kress 1. Auflage 2007. Taschenbuch. 312 S. Paperback ISBN 978 3 13 143961 1 Format (B x L): 12,5 x 19 cm Weitere Fachgebiete > Medizin > Sonstige

More information

MORPHOMETRICAL STUDY OF MENISCI OF HUMAN KNEE

MORPHOMETRICAL STUDY OF MENISCI OF HUMAN KNEE IJCRR Vol 05 issue 08 Section: Healthcare Category: Research Received on: 19/3/13 Revised on: 05/4/13 Accepted on: 23/4/13 MORPHOMETRICAL STUDY OF MENISCI OF HUMAN KNEE JOINT Ashwini C. 1, Nanjaiah C.M.

More information

Monitoring of Cerebral and Spinal Haemodynamics during Neurosurgery

Monitoring of Cerebral and Spinal Haemodynamics during Neurosurgery Monitoring of Cerebral and Spinal Haemodynamics during Neurosurgery Bearbeitet von Georg E Cold, Niels Juul 1. Auflage 2008. Buch. XX, 332 S. Hardcover ISBN 978 3 540 77872 1 Format (B x L): 15,5 x 23,5

More information

Epidemiology. Meniscal Injury & Repair. Meniscus Anatomy. Meniscus Anatomy

Epidemiology. Meniscal Injury & Repair. Meniscus Anatomy. Meniscus Anatomy Epidemiology 60-70/100,000 per year Meniscal Injury & Repair Arthroscopic Mensiscectomy One of the most common orthopaedic procedures 20% of all surgeries at some centers Male:Female ratio - 2-4:1 Younger

More information

Panoramic Radiology. Seminars on Maxillofacial Imaging and Interpretation. Bearbeitet von Allan G Farman

Panoramic Radiology. Seminars on Maxillofacial Imaging and Interpretation. Bearbeitet von Allan G Farman Panoramic Radiology Seminars on Maxillofacial Imaging and Interpretation Bearbeitet von Allan G Farman 1. Auflage 2007. Buch. xiv, 232 S. Hardcover ISBN 978 3 540 46229 3 Format (B x L): 19,3 x 27 cm Gewicht:

More information

Differential Diagnosis in Conventional Radiology

Differential Diagnosis in Conventional Radiology Differential Diagnosis in Conventional Radiology Bearbeitet von Francis A. Burgener, Martti Kormano, Tomi Pudas Neuausgabe 2007. Buch. 872 S. Hardcover ISBN 978 3 13 656103 4 Format (B x L): 21 x 29,7

More information

Anterior Cruciate Ligament Surgery

Anterior Cruciate Ligament Surgery Anatomy Anterior Cruciate Ligament Surgery Roger Ostrander, MD Andrews Institute Anatomy Anatomy Function Primary restraint to anterior tibial translation Secondary restraint to internal tibial rotation

More information

MRI of the Knee: Part 2 - menisci. Mark Anderson, M.D. University of Virginia Health System

MRI of the Knee: Part 2 - menisci. Mark Anderson, M.D. University of Virginia Health System MRI of the Knee: Part 2 - menisci Mark Anderson, M.D. University of Virginia Health System Learning Objectives At the end of the presentation, each participant should be able to: describe the normal anatomy

More information

Knee Joint Anatomy 101

Knee Joint Anatomy 101 Knee Joint Anatomy 101 Bone Basics There are three bones at the knee joint femur, tibia and patella commonly referred to as the thighbone, shinbone and kneecap. The fibula is not typically associated with

More information

and K n e e J o i n t Is the most complicated joint in the body!!!!

and K n e e J o i n t Is the most complicated joint in the body!!!! K n e e J o i n t K n e e J o i n t Is the most complicated joint in the body!!!! 1-Consists of two condylar joints between: A-The medial and lateral condyles of the femur and The condyles of the tibia

More information

Neuromarketing. Exploring the Brain of the Consumer. Bearbeitet von Leon Zurawicki

Neuromarketing. Exploring the Brain of the Consumer. Bearbeitet von Leon Zurawicki Neuromarketing Exploring the Brain of the Consumer Bearbeitet von Leon Zurawicki 1st Edition. 2010. Buch. xx, 273 S. Hardcover ISBN 978 3 540 77828 8 Format (B x L): 0 x 0 cm Gewicht: 608 g Wirtschaft

More information

The Knee Joint By Prof. Dr. Muhammad Imran Qureshi

The Knee Joint By Prof. Dr. Muhammad Imran Qureshi The Knee Joint By Prof. Dr. Muhammad Imran Qureshi Structurally, it is the Largest and the most complex joint in the body because of the functions that it performs: Allows mobility (flexion/extension)

More information

Medical Practice for Sports Injuries and Disorders of the Knee

Medical Practice for Sports Injuries and Disorders of the Knee Sports-Related Injuries and Disorders Medical Practice for Sports Injuries and Disorders of the Knee JMAJ 48(1): 20 24, 2005 Hirotsugu MURATSU*, Masahiro KUROSAKA**, Tetsuji YAMAMOTO***, and Shinichi YOSHIDA****

More information

MORPHOLOGICAL STUDY OF THE MENISCOFEMORAL LIGAMENTS

MORPHOLOGICAL STUDY OF THE MENISCOFEMORAL LIGAMENTS Original Research Article MORPHOLOGICAL STUDY OF THE MENISCOFEMORAL LIGAMENTS Geetharani BG * 1, Betty Anna Jose 1, Shashirekha M 2, Varsha Mokhasi 3. ABSTRACT Background: A thorough understanding on the

More information

The Human Brain. Prenatal Development and Structure. Bearbeitet von Miguel Marín-Padilla

The Human Brain. Prenatal Development and Structure. Bearbeitet von Miguel Marín-Padilla The Human Brain Prenatal Development and Structure Bearbeitet von Miguel Marín-Padilla 1st Edition. 2010. Buch. xii, 145 S. Hardcover ISBN 978 3 642 14723 4 Format (B x L): 19,3 x 26 cm Gewicht: 563 g

More information

Medical Diagnosis for Michael s Knee

Medical Diagnosis for Michael s Knee Medical Diagnosis for Michael s Knee Introduction The following report mainly concerns the diagnosis and treatment of the patient, Michael. Given that Michael s clinical problem surrounds an injury about

More information

The Knee. Tibio-Femoral

The Knee. Tibio-Femoral The Knee Tibio-Femoral Osteology Distal Femur with Proximal Tibia Largest Joint Cavity in the Body A modified hinge joint with significant passive rotation Technically, one degree of freedom (Flexion/Extension)

More information

Post-injury painful and locked knee

Post-injury painful and locked knee H R J Post-injury painful and locked knee, p. 54-59 Clinical Case - Test Yourself Musculoskeletal Imaging Post-injury painful and locked knee Ioannis I. Daskalakis 1, 2, Apostolos H. Karantanas 1, 2 1

More information

Knee: Meniscus Back to Basics

Knee: Meniscus Back to Basics Knee: Meniscus Back to Basics Kyung Jin Suh kyungjin.suh@gmail.com Doctor Radiology, Daegu, KOREA Medial Lateral 7.7 10.2 11.6 9.6 10.6 mm Posterior > Anterior horn 10.6 mm Posterior = Anterior horn Medial

More information

To describe he knee joint, ligaments, structure & To list the main features of other lower limb joints

To describe he knee joint, ligaments, structure & To list the main features of other lower limb joints To describe he knee joint, ligaments, structure & neurovascular supply To demonstrate the ankle joint anatomy To list the main features of other lower limb joints To list main groups of lymph nodes in

More information

ADVANCED IMAGING OF THE KNEE

ADVANCED IMAGING OF THE KNEE MENISCAL ANATOMY ADVANCED IMAGING OF THE KNEE MENISCAL ABNORMALITIES MENISCAL FUNCTION MENISCAL FUNCTION load transmission shock absorption stability The menisci DO NOT function as primary stabilizers

More information

Learning Objectives. Meniscal Injuries of the Knee. Meniscal Anatomy. Medial Meniscus. Chock Block Shape. Lateral Meniscus

Learning Objectives. Meniscal Injuries of the Knee. Meniscal Anatomy. Medial Meniscus. Chock Block Shape. Lateral Meniscus Meniscal Injuries of the Knee Learning Objectives Edward P. Mulligan, MS, PT, SCS, ATC VP, National Director of Clinical Education HealthSouth Corporation Grapevine, TX Clinical Instructor University of

More information

Anterolateral Ligament. Bradd G. Burkhart, MD Orlando Orthopaedic Center Sports Medicine

Anterolateral Ligament. Bradd G. Burkhart, MD Orlando Orthopaedic Center Sports Medicine Anterolateral Ligament Bradd G. Burkhart, MD Orlando Orthopaedic Center Sports Medicine What in the world? TIME magazine in November 2013 stated: In an age filled with advanced medical techniques like

More information

ACL AND PCL INJURIES OF THE KNEE JOINT

ACL AND PCL INJURIES OF THE KNEE JOINT ACL AND PCL INJURIES OF THE KNEE JOINT Dr.KN Subramanian M.Ch Orth., FRCS (Tr & Orth), CCT Orth(UK) Consultant Orthopaedic Surgeon, Special interest: Orthopaedic Sports Injury, Shoulder and Knee Surgery,

More information

Physical Activity and Cancer

Physical Activity and Cancer Recent Results in Cancer Research 186 Physical Activity and Cancer Bearbeitet von Kerry S. Courneya, Christine M. Friedenreich 1st Edition. 2010. Buch. xiii, 387 S. Hardcover ISBN 978 3 642 04230 0 Format

More information

Differential Diagnosis

Differential Diagnosis Case 31yo M who sustained an injury to L knee while playing Basketball approximately 2 weeks ago. He describes pivoting and hyperextending his knee, which swelled over the next few days. He now presents

More information

(Alternate title) Evaluation of Meniscal Extrusion with Posterior Root Disruption and Repair using Ultrasound

(Alternate title) Evaluation of Meniscal Extrusion with Posterior Root Disruption and Repair using Ultrasound Evaluation of lateral meniscal position with weight bearing: Ultrasonography to measure extrusion with intact, torn and repaired posterior root attachments (Alternate title) Evaluation of Meniscal Extrusion

More information

MENISCAL INJURY. Meniscus. Anterior Roots. Medial Meniscus. Lateral Meniscus. Posterior Roots. MRI and Arthroscopic Findings

MENISCAL INJURY. Meniscus. Anterior Roots. Medial Meniscus. Lateral Meniscus. Posterior Roots. MRI and Arthroscopic Findings Meniscus Anterior Roots MENISCAL INJURY MRI and Arthroscopic Findings Medial Meniscus AH PH PH AH Lateral Meniscus Rawiwan Pattaweerakul Naresuan University Hospital Posterior Roots Meniscus Normal Meniscus

More information

What is the most effective MRI specific findings for lateral meniscus posterior root tear in ACL injuries

What is the most effective MRI specific findings for lateral meniscus posterior root tear in ACL injuries What is the most effective MRI specific findings for lateral meniscus posterior root tear in ACL injuries Kazuki Asai 1), Junsuke Nakase 1), Kengo Shimozaki 1), Kazu Toyooka 1), Hiroyuki Tsuchiya 1) 1)

More information

ABSTRACT 2 Key Words: meniscus, tibiofemoral joint, osteoarthritis

ABSTRACT 2 Key Words: meniscus, tibiofemoral joint, osteoarthritis ABSTRACT In the United States, meniscal lesions represent the most common intra-articular knee injury. 1 In fact, the mean annual incidence of meniscal tears is approximately 60 to 70 per 100,000 patients.

More information

Meniscus cartilage replacement with cadaveric

Meniscus cartilage replacement with cadaveric Technical Note Meniscal Allografting: The Three-Tunnel Technique Kevin R. Stone, M.D., and Ann W. Walgenbach, R.N.N.P., M.S.N. Abstract: This technical note describes an improved arthroscopic technique

More information

Lateral Location of the Tibial Tunnel Increases Lateral Meniscal Extrusion After Anatomical Single Bundle Anterior Cruciate Ligament Reconstruction

Lateral Location of the Tibial Tunnel Increases Lateral Meniscal Extrusion After Anatomical Single Bundle Anterior Cruciate Ligament Reconstruction Lateral Location of the Tibial Tunnel Increases Lateral Meniscal Extrusion After Anatomical Single Bundle Anterior Cruciate Ligament Reconstruction Takeshi Oshima Samuel Grasso David A. Parker Sydney Orthopaedic

More information

Proximal tibial bony and meniscal slopes are higher in ACL injured subjects than controls: a comparative MRI study

Proximal tibial bony and meniscal slopes are higher in ACL injured subjects than controls: a comparative MRI study Proximal tibial bony and meniscal slopes are higher in ACL injured subjects than controls: a comparative MRI study Ashraf Elmansori, Timothy Lording, Raphaël Dumas, Khalifa Elmajri, Philippe Neyret, Sebastien

More information

Color Atlas of Nails

Color Atlas of Nails Color Atlas of Nails Bearbeitet von Antonella Tosti, C Ralph Daniel III, Bianca Maria Piraccini, Matilde Iorizzo 1. Auflage 2009. Buch. viii, 114 S. Hardcover ISBN 978 3 540 79049 5 Format (B x L): 19,3

More information

Knee Injury Assessment

Knee Injury Assessment Knee Injury Assessment Clinical Anatomy p. 186 Femur Medial condyle Lateral condyle Femoral trochlea Tibia Intercondylar notch Tibial tuberosity Tibial plateau Fibula Fibular head Patella Clinical Anatomy

More information

Rehab Considerations: Meniscus

Rehab Considerations: Meniscus Rehab Considerations: Meniscus Steve Cox, PT, DPT Department of Orthopaedics School of Medicine University of Texas Health Science Center at San Antonio 1 -Anatomy/ Function/ Injuries -Treatment Options

More information

Disclosures. Outline. The Posterior Cruciate Ligament 5/3/2016

Disclosures. Outline. The Posterior Cruciate Ligament 5/3/2016 The Posterior Cruciate Ligament Christopher J. Utz, MD Assistant Professor of Orthopaedic Surgery University of Cincinnati Disclosures I have no disclosures relevant to this topic. Outline 1. PCL Basic

More information

Disorders of Sex Development

Disorders of Sex Development Disorders of Sex Development An Integrated Approach to Management Bearbeitet von, Garry L. Warne, Sonia R. Grover 1. Auflage 2012. Buch. XV, 311 S. Hardcover ISBN 978 3 642 22963 3 Format (B x L): 0 x

More information

Clinics in diagnostic imaging (177)

Clinics in diagnostic imaging (177) Singapore Med J 2017; 58(5): 241-245 doi: 10.11622/smedj.2017038 CMEArticle Clinics in diagnostic imaging (177) Poh Lye Paul See, MBBS, FRCR Fig. 1 Sagittal proton density (PD)-weighted fast spin-echo

More information

Original Report. The Reverse Segond Fracture: Association with a Tear of the Posterior Cruciate Ligament and Medial Meniscus

Original Report. The Reverse Segond Fracture: Association with a Tear of the Posterior Cruciate Ligament and Medial Meniscus Eva M. Escobedo 1 William J. Mills 2 John. Hunter 1 Received July 10, 2001; accepted after revision October 1, 2001. 1 Department of Radiology, University of Washington Harborview Medical enter, 325 Ninth

More information

MCL Injuries: When and How to Repair Scott D. Mair, MD

MCL Injuries: When and How to Repair Scott D. Mair, MD MCL Injuries: When and How to Repair Scott D. Mair, MD Professor and Team Physician: Orthopaedic Surgery University of Kentucky School of Medicine Disclosure Institution: Research/Education Smith-Nephew

More information

ACL Athletic Career. ACL Rupture - Warning Features Intensive pain Immediate swelling Locking Feel a Pop Dead leg Cannot continue to play

ACL Athletic Career. ACL Rupture - Warning Features Intensive pain Immediate swelling Locking Feel a Pop Dead leg Cannot continue to play FIMS Ambassador Tour to Eastern Europe, 2004 Belgrade, Serbia Montenegro Acute Knee Injuries - Controversies and Challenges Professor KM Chan OBE, JP President of FIMS Belgrade ACL Athletic Career ACL

More information

MRI KNEE WHAT TO SEE. Dr. SHEKHAR SRIVASTAV. Sr.Consultant KNEE & SHOULDER ARTHROSCOPY

MRI KNEE WHAT TO SEE. Dr. SHEKHAR SRIVASTAV. Sr.Consultant KNEE & SHOULDER ARTHROSCOPY MRI KNEE WHAT TO SEE Dr. SHEKHAR SRIVASTAV Sr.Consultant KNEE & SHOULDER ARTHROSCOPY MRI KNEE - WHAT TO SEE MRI is the most accurate and frequently used diagnostic tool for evaluation of internal derangement

More information

Morphometric analysis of lateral menisci in North Indian population: a cadaveric study

Morphometric analysis of lateral menisci in North Indian population: a cadaveric study International Journal of Research in Medical Sciences Rohila J et al. Int J Res Med Sci. 2016 Jul;4(7):2745-2749 www.msjonline.org pissn 2320-6071 eissn 2320-6012 Research Article DOI: http://dx.doi.org/10.18203/2320-6012.ijrms20161943

More information

BASELINE QUESTIONNAIRE (SURGEON)

BASELINE QUESTIONNAIRE (SURGEON) SECTION A: STUDY INFORMATION Subject ID: - - Study Visit: Baseline Site Number: Date: / / Surgeon ID: SECTION B: INITIAL SURGEON HISTORY B1. Previous Knee Surgery: Yes No Not recorded B2. Number of Previous

More information

The Role of Neural Afferents in Human Menisci

The Role of Neural Afferents in Human Menisci FUNCTIONAL REHABILITATION R. Barry Dale, PhD, PT, ATC, CSCS, Report Editor The Role of Neural Afferents in Human Menisci Joanne L. Parsons, MSc, BMR(PT), CAT(C) University of Manitoba THE IMPORTANCE of

More information

The Anterior Transverse Ligament of Knee: Morphological and Morphometric Study in Formalin Fixed Human Fetuses

The Anterior Transverse Ligament of Knee: Morphological and Morphometric Study in Formalin Fixed Human Fetuses Original Research Article The Anterior Transverse Ligament of Knee: Morphological and Morphometric Study in Formalin Fixed Human Fetuses Murlimanju BV 1, Narga N 2, Ashwin K 1, Mangala MP 1, Naveen K 3,

More information

Do Not Fall on Your Knees - Recognizing Common and Uncommon Pitfalls that May Simulate Meniscal Tears

Do Not Fall on Your Knees - Recognizing Common and Uncommon Pitfalls that May Simulate Meniscal Tears Do Not Fall on Your Knees - Recognizing Common and Uncommon Pitfalls that May Simulate Meniscal Tears Poster No.: C-1146 Congress: ECR 2016 Type: Educational Exhibit Authors: P. Musa Aguiar, J. Goncalves,

More information

ANTERIOR CRUCIATE LIGAMENT INJURY

ANTERIOR CRUCIATE LIGAMENT INJURY ANTERIOR CRUCIATE LIGAMENT INJURY WHAT IS THE ANTERIOR CRUCIATE LIGAMENT? The anterior cruciate ligament (ACL) is one of four major ligaments that stabilizes the knee joint. A ligament is a tough band

More information

The Knee. Two Joints: Tibiofemoral. Patellofemoral

The Knee. Two Joints: Tibiofemoral. Patellofemoral Evaluating the Knee The Knee Two Joints: Tibiofemoral Patellofemoral HISTORY Remember the questions from lecture #2? Girth OBSERVATION TibioFemoral Alignment What are the consequences of faulty alignment?

More information

Optical Coherence Tomography

Optical Coherence Tomography Biological and Medical Physics, Biomedical Engineering Optical Coherence Tomography A Clinical and Technical Update Bearbeitet von Rui Bernardes, José Cunha-Vaz 1. Auflage 2012. Buch. XV, 255 S. Hardcover

More information

The Lower Limb II. Anatomy RHS 241 Lecture 3 Dr. Einas Al-Eisa

The Lower Limb II. Anatomy RHS 241 Lecture 3 Dr. Einas Al-Eisa The Lower Limb II Anatomy RHS 241 Lecture 3 Dr. Einas Al-Eisa Tibia The larger & medial bone of the leg Functions: Attachment of muscles Transfer of weight from femur to skeleton of the foot Articulations

More information

Neural Elements in the Cruciate Ligaments and Menisci of the Knee Joint of the American Alligator, Alligator mississippiensis

Neural Elements in the Cruciate Ligaments and Menisci of the Knee Joint of the American Alligator, Alligator mississippiensis JOURNAL OF MORPHOLOGY 202:165-172 (1989) Neural Elements in the Cruciate Ligaments and Menisci of the Knee Joint of the American Alligator, Alligator mississippiensis CAROLE S. WINK, RUTH M. ELSEY, MICHELE

More information

Rehabilitation Guidelines for Knee Arthroscopy

Rehabilitation Guidelines for Knee Arthroscopy UW HEALTH SPORTS REHABILITATION Rehabilitation Guidelines for Knee Arthroscopy Arthroscopy is a common surgical procedure in which a joint is viewed using a small camera. This technique allows the surgeon

More information

THE EFFECTS OF MENISCAL SIZING ON THE KNEE USING FINITE ELEMENT METHODS. A dissertation presented to. The faculty of. the Fritz J. and Dolores H.

THE EFFECTS OF MENISCAL SIZING ON THE KNEE USING FINITE ELEMENT METHODS. A dissertation presented to. The faculty of. the Fritz J. and Dolores H. THE EFFECTS OF MENISCAL SIZING ON THE KNEE USING FINITE ELEMENT METHODS A dissertation presented to The faculty of the Fritz J. and Dolores H. Russ College of Engineering and Technology of Ohio University

More information

What s your diagnosis?

What s your diagnosis? Case Study 58 A 61-year-old truck driver man presented with a valgus injury to the left knee joint when involved in a truck accident. What s your diagnosis? Diagnosis : Avulsion of Deep MCL The medial

More information

Direct Measurement of Graft Tension in Anatomic Versus Non-anatomic ACL Reconstructions during a Dynamic Pivoting Maneuver

Direct Measurement of Graft Tension in Anatomic Versus Non-anatomic ACL Reconstructions during a Dynamic Pivoting Maneuver Direct Measurement of Graft Tension in Anatomic Versus Non-anatomic ACL Reconstructions during a Dynamic Pivoting Maneuver Scott A. Buhler 1, Newton Chan 2, Rikin Patel 2, Sabir K. Ismaily 2, Brian Vial

More information

Lateral knee injuries

Lateral knee injuries Created as a free resource by Clinical Edge Based on Physio Edge podcast episode 051 with Matt Konopinski Get your free trial of online Physio education at Orthopaedic timeframes Traditionally Orthopaedic

More information

Rehabilitation Guidelines for Meniscal Repair

Rehabilitation Guidelines for Meniscal Repair UW HEALTH SPORTS REHABILITATION Rehabilitation Guidelines for Meniscal Repair There are two types of cartilage in the knee, articular cartilage and cartilage. Articular cartilage is made up of collagen,

More information

Current and Future Management of Brain Metastasis

Current and Future Management of Brain Metastasis Progress in Neurological Surgery 25 Current and Future Management of Brain Metastasis Bearbeitet von D.G. Kim, L.D. Lunsford 1. Auflage 2012. Buch. XII, 314 S. Hardcover ISBN 978 3 8055 9617 6 Gewicht:

More information

Meniscus Tears. Three bones meet to form your knee joint: your thighbone (femur), shinbone (tibia), and kneecap (patella).

Meniscus Tears. Three bones meet to form your knee joint: your thighbone (femur), shinbone (tibia), and kneecap (patella). Meniscus Tears Information on meniscus tears is also available in Spanish: Desgarros de los meniscus (topic.cfm?topic=a00470) and Portuguese: Rupturas do menisco (topic.cfm?topic=a00754). Meniscus tears

More information

Medial Knee Osteoarthritis Precedes Medial Meniscal Posterior Root Tear with an Event of Painful Popping

Medial Knee Osteoarthritis Precedes Medial Meniscal Posterior Root Tear with an Event of Painful Popping Medial Knee Osteoarthritis Precedes Medial Meniscal Posterior Root Tear with an Event of Painful Popping Dhong Won Lee, M.D, Ji Nam Kim, M.D., Jin Goo Kim, M.D., Ph.D. KonKuk University Medical Center

More information

STATE OF THE ART OF ACL SURGERY (Advancements that have had an impact)

STATE OF THE ART OF ACL SURGERY (Advancements that have had an impact) STATE OF THE ART OF ACL SURGERY (Advancements that have had an impact) David Drez, Jr., M.D. Clinical Professor of Orthopaedics LSU School of Medicine Financial Disclosure Dr. David Drez has no relevant

More information

Joints of the Lower Limb II

Joints of the Lower Limb II Joints of the Lower Limb II Lecture Objectives Describe the components of the knee and ankle joint. List the ligaments associated with these joints and their attachments. List the muscles acting on these

More information

Knee Dislocation: Spectrum of Injury, Evolution of Treatment & Modern Outcomes

Knee Dislocation: Spectrum of Injury, Evolution of Treatment & Modern Outcomes Knee Dislocation: Spectrum of Injury, Evolution of Treatment & Modern Outcomes William M Weiss, MD MSc FRCSC Orthopedic Surgery & Rehabilitation Sports Medicine, Arthroscopy & Extremity Reconstruction

More information

2. Review of Literature

2. Review of Literature 2. Review of Literature 2.1 Introduction This section provides background information that is pertinent to the dissertation. Gross anatomy of the knee is introduced in terms of human structures, and comparative

More information

Unicompartmental Knee Resurfacing

Unicompartmental Knee Resurfacing Disclaimer This movie is an educational resource only and should not be used to manage knee pain. All decisions about the management of knee pain must be made in conjunction with your Physician or a licensed

More information

Remnant Preservation in ACL Reconstruction: Is it Worth Doing?

Remnant Preservation in ACL Reconstruction: Is it Worth Doing? Remnant Preservation in ACL Reconstruction: Is it Worth Doing? 1. Presentation (4 x approx. 5min.) i. Mitsuo Ochi ii. Freddie Fu, iii. Takeshi Muneta iv. Rainer Siebold, 2. Debate (approx. 10 min.) 1 ACL

More information

Anatomy of the posterior cruciate ligament

Anatomy of the posterior cruciate ligament O R I G I N A L A R T I C L E Folia Morphol. Vol. 68, No. 1, pp. 8 12 Copyright 2009 Via Medica ISSN 0015 5659 www.fm.viamedica.pl Anatomy of the posterior cruciate ligament A. Chwaluk 1, B. Ciszek 2 1

More information

Anatomy and Sports Injuries of the Knee

Anatomy and Sports Injuries of the Knee Anatomy and Sports Injuries of the Knee I. Anatomy II. Assessment III. Treatment IV. Case Study V. Dissection Anatomy Not a hinge joint 6 degrees of freedom Flexion/Extension Rotation Translation Anatomy

More information

Imaging the Athlete s Knee. Peter Lowry, MD Musculoskeletal Radiology University of Colorado

Imaging the Athlete s Knee. Peter Lowry, MD Musculoskeletal Radiology University of Colorado Imaging the Athlete s Knee Peter Lowry, MD Musculoskeletal Radiology University of Colorado None Disclosures Knee Imaging: Radiographs Can be performed weight-bearing or non-weight-bearing View options

More information

Malignant Mesothelioma

Malignant Mesothelioma Recent Results in Cancer Research 189 Malignant Mesothelioma Bearbeitet von Andrea Tannapfel 1. Auflage 2011. Buch. xii, 196 S. Hardcover ISBN 978 3 642 10861 7 Format (B x L): 16 x 24 cm Gewicht: 574

More information

Rehabilitation Guidelines for Anterior Cruciate Ligament (ACL) Reconstruction

Rehabilitation Guidelines for Anterior Cruciate Ligament (ACL) Reconstruction Rehabilitation Guidelines for Anterior Cruciate Ligament (ACL) Reconstruction The knee is the body's largest joint, and the place where the femur, tibia, and patella meet to form a hinge-like joint. These

More information

A Patient s Guide to Knee Anatomy. Stephanie E. Siegrist, MD, LLC

A Patient s Guide to Knee Anatomy. Stephanie E. Siegrist, MD, LLC A Patient s Guide to Knee Anatomy Hands, shoulders, knees and toes (and elbows and ankles, too!) Most bone and joint conditions have several treatment options. The best treatment for you is based on your

More information

Meniscal tears on 3T MR: Patterns, pearls and pitfalls

Meniscal tears on 3T MR: Patterns, pearls and pitfalls Meniscal tears on 3T MR: Patterns, pearls and pitfalls Poster No.: C-2221 Congress: ECR 2010 Type: Educational Exhibit Topic: Musculoskeletal Authors: J. C. Kandathil; Singapore/SG Keywords: Knee injuries,

More information

LATERAL MENISCUS SLOPE AND ITS CLINICAL RELEVANCE IN PATIENTS WITH A COMBINED ACL TEAR AND POSTERIOR TIBIA COMPRESSION

LATERAL MENISCUS SLOPE AND ITS CLINICAL RELEVANCE IN PATIENTS WITH A COMBINED ACL TEAR AND POSTERIOR TIBIA COMPRESSION LATERAL MENISCUS SLOPE AND ITS CLINICAL RELEVANCE IN PATIENTS WITH A COMBINED ACL TEAR AND POSTERIOR TIBIA COMPRESSION R. ŚMIGIELSKI, B. DOMINIK, U, ZDANOWICZ, Z. GAJEWSKI, K. SKIERBISZEWSKA, K. SIEWRUK,

More information

REVIEW: MODELING OF MENISCUS OF KNEE JOINT DURING SOCCER KICKING

REVIEW: MODELING OF MENISCUS OF KNEE JOINT DURING SOCCER KICKING International Conference on Mechanical Engineering Research (ICMER2013), 1-3 July 2013 Bukit Gambang Resort City, Kuantan, Pahang, Malaysia Organized By Faculty of Mechanical Engineering, Universiti Malaysia

More information

A Patient s Guide to Knee Anatomy

A Patient s Guide to Knee Anatomy A Patient s Guide to Knee Anatomy 15195 Heathcote Blvd Suite 334 Haymarket, VA 20169 Phone: 703-369-9070 Fax: 703-369-9240 DISCLAIMER: The information in this booklet is compiled from a variety of sources.

More information

Pediatric Bone and Soft Tissue Sarcomas

Pediatric Bone and Soft Tissue Sarcomas Pediatric Oncology Pediatric Bone Bearbeitet von Alberto S Pappo 1. Auflage 2005. Buch. xiv, 240 S. Hardcover ISBN 978 3 540 40843 7 Format (B x L): 19,1 x 23,5 cm Gewicht: 677 g Weitere Fachgebiete >

More information

No Disclosures. Topics. Pediatric ACL Tears

No Disclosures. Topics. Pediatric ACL Tears Knee Injuries in Skeletally Immature Athletes No Disclosures Zachary Stinson, M.D. 2 Topics ACL Tears and Tibial Eminence Fractures Meniscus Injuries Discoid Meniscus Osteochondritis Dessicans Patellar

More information

What to Expect from your Anterior Cruciate Ligament (ACL) Reconstruction Surgery A Guide for Patients

What to Expect from your Anterior Cruciate Ligament (ACL) Reconstruction Surgery A Guide for Patients What to Expect from your Anterior Cruciate Ligament (ACL) Reconstruction Surgery A Guide for Patients Sources of Information: http://orthoinfo.aaos.org http://www.orthoinfo.org/informedpatient.cfm http://www.sportsmed.org/patient/

More information

Figure 3 Figure 4 Figure 5

Figure 3 Figure 4 Figure 5 Figure 1 Figure 2 Begin the operation with examination under anesthesia to confirm whether there are any ligamentous instabilities in addition to the posterior cruciate ligament insufficiency. In particular

More information

Role of magnetic resonance imaging in the evaluation of traumatic knee joint injuries

Role of magnetic resonance imaging in the evaluation of traumatic knee joint injuries Original Research Article Role of magnetic resonance imaging in the evaluation of traumatic knee joint injuries Dudhe Mahesh 1*, Rathi Varsha 2 1 Resident, 2 Professor, Department of Radio-Diagnosis, Grant

More information

HOW DO WE DIAGNOSE LAMENESS IN YOUR HORSE?

HOW DO WE DIAGNOSE LAMENESS IN YOUR HORSE? HOW DO WE DIAGNOSE LAMENESS IN YOUR HORSE? To help horse owners better understand the tools we routinely use at VetweRx to evaluate their horse s soundness, the following section of this website reviews

More information

Grant H Garcia, MD Sports and Shoulder Surgeon

Grant H Garcia, MD Sports and Shoulder Surgeon What to Expect from your Anterior Cruciate Ligament Reconstruction Surgery A Guide for Patients Grant H Garcia, MD Sports and Shoulder Surgeon Important Contact Information Grant Garcia, MD Wallingford:

More information

5/31/15. The Problem. Every Decade We Change Our Minds The Journey Around the Notch. Life is full of Compromises. 50 years ago..

5/31/15. The Problem. Every Decade We Change Our Minds The Journey Around the Notch. Life is full of Compromises. 50 years ago.. The Problem Surgical Treatment of ACL Tears Optimizing Femoral Tunnel Positioning Andrew D. Pearle, MD Associate Attending Orthopedic Surgeon Sports Medicine and Shoulder Service Hospital for Special Surgery

More information

The Role of the Anterolateral Ligament in Knee Stability

The Role of the Anterolateral Ligament in Knee Stability The Role of the Anterolateral Ligament in Knee Stability Albert O. Gee, MD Assistant Professor Orthopaedics and Sports Medicine University of Washington CU Sports Medicine Fall Symposium September 22,

More information

A comparison of arthroscopic diagnosis of ramp lesion and pre-operative MRI evaluation

A comparison of arthroscopic diagnosis of ramp lesion and pre-operative MRI evaluation A comparison of arthroscopic diagnosis of ramp lesion and pre-operative MRI evaluation Yasuma S, Nozaki M, Kobayashi M, Kawanishi Y Yoshida M, Mitsui H, Nagaya Y, Iguchi H, Murakami H Department of Orthopaedic

More information

Knee MRI Update Case Review 2009 Russell C. Fritz, M.D. National Orthopedic Imaging Associates San Francisco, CA

Knee MRI Update Case Review 2009 Russell C. Fritz, M.D. National Orthopedic Imaging Associates San Francisco, CA Knee MRI Update Case Review 2009 Russell C. Fritz, M.D. National Orthopedic Imaging Associates San Francisco, CA Meniscal Tears -linear increased signal extending to an articular surface is the hallmark

More information

Uveitis and Immunological Disorders

Uveitis and Immunological Disorders Essentials in Ophthalmology Uveitis and Immunological Disorders Progress III Bearbeitet von Uwe Pleyer, John V. Forrester 1. Auflage 2008. Buch. xiv, 120 S. Hardcover ISBN 978 3 540 69458 8 Format (B x

More information