9 Quality Assurance in Bone Densitometry section

Size: px
Start display at page:

Download "9 Quality Assurance in Bone Densitometry section"

Transcription

1 9 Quality Assurance in Bone Densitometry section Introduction Bone densitometry is frequently used to determine an individual's fracture risk at a particular point in time but may also be used to assess changes in bone mineral density (BMD) due to therapy, aging or disease. Since the magnitude of any such changes is likely to be small, perhaps in the region of a few percent per annum1, it is essential that the measurements obtained are as precise as possible. Dual Energy X-ray Absorptiometry (DXA) is currently the most widely used technique for the assessment of skeletal status in both the clinical and research setting and therefore will be the focus for this discussion on Quality Assurance. However the principles described will be equally applicable to other methods of assessing skeletal status such as Single Energy X-ray Absorptiometry (SXA), peripheral DXA (pdxa), Quantitative Computed Tomography (QCT), peripheral QCT (pqct) and ultrasound.

2 Precision The precision of a technique is the ability of that technique to reproduce the same result whereas the accuracy of the technique describes the difference between the "true" value and the measured value. There are two main factors that contribute to the precision of BMD measurements, instrument-induced errors and operator-induced errors, although factors such as changes in an individual's weight, degenerative changes particularly in the spine and unexplained biological variation may also contribute to the precision in longitudinal studies2. Precision of Instruments The ideal method for monitoring the performance of bone densitometry instruments is by the regular scanning of a phantom, preferably daily but at least weekly, containing a stable amount of bone mineral or equivalent and assessing the ability of the instrument to reproduce the BMD of the phantom. The BMD data can then be evaluated using statistical quality control (QC) procedures. QC procedures that have been adapted and applied to bone densitometry include the multi-rule Shewhart method, the Cusum technique and simple visual inspection of the data1, 3-6. One of the major benefits of instigating a QC protocol involving the regular scanning of a phantom is that it may allow the early identification of changes in instrument performance prior to instrument malfunction, although of course not all malfunctions will affect BMD data. The prevention or prediction of instrument malfunction is particularly useful in the clinical trial setting where the timing of a BMD measurement may be important. Phantom measurements are also useful in determining if changes in BMD data have occurred following changes in instrument components or software (figure 1). The meticulous recording of any changes to the instrument will assist in the identification and attribution of any changes seen in the BMD data. A further benefit of performing regular scans of phantoms is that it will allow the retrospective adjustment of any patient data acquired during periods affected by change in instrument performance7,8. Figure 1 The short-term precision of BMD measurements using DXA has been assessed in a number

3 of studies using a variety of phantoms. A short-term precision (expressed as a coefficient of variation) of approximately 0.5% for spine phantom measurements3,4 and 1-4% for femur phantoms has been reported9. The longer-term precision over three years has also been reported to be good, approximately 0.5% for spine phantoms8. However, small but significant changes in instrument performance can occur during longitudinal use1,8. These changes can take the form of drifts or jumps in the BMD data7 and may be clinically relevant when they are comparable to the expected changes in BMD. The daily calibration procedures required by some DXA instruments, prior to patient scanning, may not detect small but potentially clinically significant changes6. Types of Phantoms A variety of phantoms have been used to assess instrument performance. The Hologic spine phantom is supplied with each Hologic DXA instrument (Hologic Inc, Waltham, MA, USA) for use as a QC phantom. The phantom is composed of four semi-anthropomorphic (ie. with some resemblance to a human spine) hydroxyapatite (HA) vertebrae of a single density level (approximately 1.05g/cm2 when scanned on Hologic instruments) and therefore calibration of the other levels is not checked. A further potential disadvantage of the Hologic spine phantom is that the material surrounding the spine is not soft-tissue equivalent and this may influence the soft tissue compensation made by instruments from different manufacturers. Hologic also manufacture a HA step spine phantom which provides a range of BMD s ( g/cm2) but it is not anthropomorphic and thus does not provide a check of the edge detection algorithms. An HA hip phantom is also manufactured by Hologic with the configuration of a proximal femur and some internal structures to reflect the varying densities of the trochanter and Ward's triangle and this has been used in some precision studies. The Lunar aluminium spine phantom is supplied with each Lunar DXA instrument (Lunar Corp., Madison, WI, USA) for use as a QC phantom. The aluminium spine ranges in thickness to provide four complete vertebrae with a range of densities (approximately 0.9 to 1.4g/cm2 when scanned on Lunar instruments). The aluminium spine has to be scanned with some soft tissue-equivalent and this is usually accomplished by placing the phantom in a water bath containing 15cm depth of water. Disadvantages of this phantom are that it is not made of HA, it is not anthropomorphic and that even the lowest density level represented (approximately 0.9g/cm2) does not test the calibration at the lowest levels of BMD seen clinically. Lunar also manufacturer an aluminium hip phantom with a step to simulate the Ward's triangle region. As with the spine phantom it needs to be scanned with soft tissue equivalent and is not anthropomorphic. Various cadaveric phantoms have also been used for assessing the performance of DXA instruments. The advantage of using this type of phantom is that it is as anthropomorphic as possible ex vivo. The disadvantages are that without ashing the phantom the true bone mineral content is not known and that a range of phantoms would be required to assess the linearity at all levels of BMD. Spine and forearm phantoms have been developed, under the auspices of an EU organisation, COMAC-BME (Committee d'actions Concertes - Bio Medical Engineering), for use with bone densitometry instruments These are now known as the European Spine Phantom (ESP) and the European Forearm Phantom (EFP). The ESP (figure 2) is composed of three semi-anthropomorphic vertebrae representing low, medium and high bone mineral content (BMC), BMD and wall thicknesses respectively. The ESP is composed of epoxy-resin based plastics with various additional constituents to achieve water and bone equivalent solid materials. The HA densities were selected to represent the range of values found clinically and thus the area densities (including the intervertebral spaces) of 0.5, 1.0 and 1.5 g/cm2 HA are provided when the phantom is scanned in the posteroanterior mode on DXA instruments. The ESP may therefore, be a suitable phantom for QC purposes as it is relatively anthropomorphic, provides a range of

4 density levels of known BMC and is composed of true soft tissue equivalent. The ESP and the EFP have been used as standardisation phantoms to cross-calibrate bone densitometry instruments13-15 since there are differences not only between bone densitometry instruments from different manufacturers but there may also be small differences between instruments from the same manufacturer. These inter-instrument differences require that repeat scans on an individual should ideally be performed using the same instrument that was used for the baseline scans. Figure 2 Precision in subjects The reported precision of BMD measurements in subjects is usually higher than that of phantoms due to variations in positioning, patient movement, the heterogeneity of the tissues measured and the more complex anatomy that the edge-detection algorithms are required to assess. The reported precision of measurements of the proximal femur (approximately 1-4%) is generally poorer than that of the spine (approximately 1-2%)3,16-18 and the reasons for this include variation in leg positioning, smaller size of the region-ofinterest (ROI) at the femoral neck and lower BMD values. Variable positioning of the foot or leg even within the recommended range of 0 to 20 inward rotation can result in a steady change in the BMD values obtained9. Other sources of operator error include using the incorrect scan speed or current during the acquisition of data, or errors during the analysis of data where there may be variation in the size or position of the ROI selected for analysis4,9,19,20. There may be also be variation between operators; in one study a precision of 3.7% for femoral neck measurements was reported when site radiographers performed the scan analysis compared with 2.1% when the analysis was performed by a trained operator20. BMD measurements performed on different days (1-4 weeks apart) are reported to have a higher variance than those performed on the same day and this discrepancy was found to be most pronounced in post-menopausal women compared to pre-menopausal women17. Other studies have also found lower precision in older individuals or those with a low BMD16,21,22. Precision has also been found to be compromised in those with a greater body thickness

5 (>27cm)16. Therefore, it is important for each centre performing bone densitometry measurements to determine their own "in-house" precision values that are applicable to the poulation to be scanned23 (e.g by performing repeat measurements of volunteers with repositioning between scans). Once a centre has determined their precision values it will enable the least significant change that may be observed in patients to be calculated24. Operator-induced errors may be reduced by measurements being performed by a small number of dedicated and highly trained individuals who follow standard operating procedures for the positioning of patients and for the acquisition and analysis of scan data. Errors in the positioning of ROIs in follow-up scans may be minimised by use of the "compare" facility which is available on most DXA instruments. This facility allows the simultaneous viewing and superimposing of serial scans enabling comparable ROIs to be analysed. Summary Precision errors in bone densitometry measurements are attributable in the most part to instrument errors and operator errors. The regular scanning of a phantom will enable the performance of an instrument to be monitored and thus for instrument errors to be quantified and /or reduced. Furthermore, phantom data may be used to correct BMD data, where necessary, at the end of a study. Operator errors may be reduced by scans being performed by a small number of highly trained operators and by the use of standardised protocols for the acquisition and analysis of scans.

6 References 1 Faulkner KG, McClung MR. Quality control of DXA instruments in multi-centre clinical trials. Osteoporosis Int 1995;5: Tothill P, Pye DW. Errors due to non-uniform distribution of fat in dual X-ray absorptiometry of the lumbar spine. Br J Radiol 1992;65: Orwoll ES, Oviatt SK, and the Narfarelin Bone Study Group. Longitudinal precision of Dual Energy X-ray Absorptiometry in a multi-centre study. J Bone Miner Res 1991; 6: Wahner HW, Looker A, Dunn WL et al. Quality control of bone densitometry in a National Health Survey (NHANES III) using three mobile examination centres. J Bone Miner Res 1994;9: Lu Y, Mathur AK, Blunt B, et al. Dual X-ray absorptiometry quality control: Comparison of visual examination and process control charts. J Bone Miner Res 1996; 11 : Garland SW, Lees B, Stevenson JC. DXA longitudinal quality control: A comparison of inbuilt quality assurance, visual inspection, multi-rule Shewhart charts and Cusum analysis. Osteoporosis Int 1997, 7: Gluer CC, Faulkner KG, Estilo MJ et al. Quality assurance for bone densitometry research studies: concept and impact. Osteoporosis Int 1993;3: Orwoll ES, Oviatt SK, Biddle JA Precision of Dual Energy X-ray Absorptiometry: Development of quality control rules and their application in longitudinal studies. J Bone Miner Res 1993,8: Svendsen OL, Marslew U, Hassager C, Christiansen C. Measurements of bone mineral density of the proximal femur by two commercially available dual energy X-ray absorptiometric systems. Eur J Nucl Med 1992;19: Kalender WA. A phantom for standardization and quality control in spinal bone density measurements by QCT and DXA: Design considerations and specifications. Med Phys 1992; 19: Kalender WA, Felsenberg D, Genant HK et al. The European Spine Phantom - a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur JRadiol 1995;20: Ruegsegger P, Kalender W. A phantom for standardisation and quality control in peripheral bone measurements by pqct and DXA. Phys Med Biol 1993;38: Genant HK, Grampp S, Gluer CC et al. Universal standardization for Dual Energy X-ray Absorptiometry: Patient and cross-calibration results. J Bone Miner Res 1994;9: Pearson J, Dequeker J, Henley M et al. European semi-anthropomorphic spine phantom for the calibration of bone densitometers: Assessment of precision, stability and accuracy. Osteoporosis Int 1995;5: Pearson J, Ruegsegger P, Dequeker J et al. European semi-anthropomorphic phantom for the crosscalibration of peripheral bone densitometers: Assessment of precision, accuracy and stability. BoneMiner 1994,27: Laskey MA, Flaxman ME, Barber RW et al. Comparative performance in vitro and in vivo of Lunar DPX and Hologic QDR-1000 dual energy X-ray absorptiometers. Br J Radiol 1991;64: Fuleihan GE, Testa MA, Angell JE, et al. Reproducibility of DXA Absorptiometry: A model for bone loss estimates. J Bone Miner Res 1995; 10: Lees B, Stevenson JC. An evaluation of Dual Energy X-ray Absorptiometry and comparison with dual photon absorptiometry. Osteoporosis Int 1992:2: Slossman DO, Rizzoli R, Buchs B. Comparative study of the performances of X-ray and gadolinium 153 bone densitometers at the level of the spine, femoral neck and femoral shaft. Eur J Nucl Med 1990; 17: Blake GM, Tong CM, Fogelman I. Intersite comparison of the QDR-1000 Dual Energy X-ray Bone Densitometer. Br J Rad 1991;64: Pouilles JM, Tremollieres F7 Tordorovsky N, Ribot C. Precision and sensitivity of Dual Energy X-ray Absorptiometry in spinal osteoporosis. J Bone Miner Res 1991;6: Haddaway MJ, Davie M~TJ, McCall ~N. Bone mineral density in healthy normal women and reproducibility of measurements in spine and hip using Dual Energy X-ray Absorptiometry. Br J Radiol 1992; 65 : Gluer CC, Blake G, Lu Y. Accurate assessment of precision errors: How to measure the reproducibility of bone densitometry techniques. Osteoporosis Int 1995;5: Hassager C, Jensen SB, Gotfredsen A, Christiansen C. The impact of measurement errors on the diagnostic value of bone mass measurements: Theoretical considerations. Osteoporosis Int 1991; 1 :

Quality Control of DXA System and Precision Test of Radio-technologists

Quality Control of DXA System and Precision Test of Radio-technologists J Bone Metab 2014;21:2-7 http://dx.doi.org/10.11005/jbm.2014.21.1.2 pissn 2287-6375 eissn 2287-7029 Review Article Quality Control of DXA System and Precision Test of Radio-technologists Ho-Sung Kim 1,

More information

Documentation, Codebook, and Frequencies

Documentation, Codebook, and Frequencies Documentation, Codebook, and Frequencies Dual-Energy X-ray Absorptiometry Femur Bone Measurements Examination Survey Years: 2005 to 2006 SAS Transport File: DXXFEM_D.XPT January 2009 NHANES 2005 2006 Data

More information

Prevalence of Osteoporosis p. 262 Consequences of Osteoporosis p. 263 Risk Factors for Osteoporosis p. 264 Attainment of Peak Bone Density p.

Prevalence of Osteoporosis p. 262 Consequences of Osteoporosis p. 263 Risk Factors for Osteoporosis p. 264 Attainment of Peak Bone Density p. Dedication Preface Acknowledgments Continuing Education An Introduction to Conventions in Densitometry p. 1 Densitometry as a Quantitative Measurement Technique p. 2 Accuracy and Precision p. 2 The Skeleton

More information

Does standardized BMD still remove differences between Hologic and GE-Lunar state-of-the-art DXA systems?

Does standardized BMD still remove differences between Hologic and GE-Lunar state-of-the-art DXA systems? Osteoporos Int (2010) 21:1227 1236 DOI 10.1007/s00198-009-1062-3 ORIGINAL ARTICLE Does standardized BMD still remove differences between Hologic and GE-Lunar state-of-the-art DXA systems? B. Fan & Y. Lu

More information

Quantitative Computed Tomography 4 Introduction

Quantitative Computed Tomography 4 Introduction Quantitative Computed Tomography 4 Introduction Quantitative Computed Tomography (QCT) is a well recognised technique for the measurement of bone mineral density (BMD) in the lumbar spine1 and forearm2.

More information

2013 ISCD Official Positions Adult

2013 ISCD Official Positions Adult 2013 ISCD Official Positions Adult These are the Official Positions of the ISCD as updated in 2013. The Official Positions that are new or revised since 2007 are in bold type. Indications for Bone Mineral

More information

Effect of Precision Error on T-scores and the Diagnostic Classification of Bone Status

Effect of Precision Error on T-scores and the Diagnostic Classification of Bone Status Journal of Clinical Densitometry, vol. 10, no. 3, 239e243, 2007 Ó Copyright 2007 by The International Society for Clinical Densitometry 1094-6950/07/10:239e243/$32.00 DOI: 10.1016/j.jocd.2007.03.002 Original

More information

DXA When to order? How to interpret? Dr Nikhil Tandon Department of Endocrinology and Metabolism All India Institute of Medical Sciences New Delhi

DXA When to order? How to interpret? Dr Nikhil Tandon Department of Endocrinology and Metabolism All India Institute of Medical Sciences New Delhi DXA When to order? How to interpret? Dr Nikhil Tandon Department of Endocrinology and Metabolism All India Institute of Medical Sciences New Delhi Clinical Utility of Bone Densitometry Diagnosis (DXA)

More information

Clinical Densitometry

Clinical Densitometry Volume 8 Number 3 Fall 2005 ISSN: 1094 6950 Journal of Clinical Densitometry The Official Journal of The International Society for Clinical Densitometry Editor-in-Chief Paul D. Miller, MD HumanaJournals.com

More information

Accuracy of DEXA scanning & other methods for determining BMD.

Accuracy of DEXA scanning & other methods for determining BMD. BMD- Measurement Site Accuracy of DEXA scanning & other methods for determining BMD. Ann Larkin In general, densitometry techniques can be performed in either the axial or the appendicular skeleton, depending

More information

Bone Mineral and Body Composition Measurements: Cross-Calibration of Pencil-Beam and Fan-Beam Dual- Energy X-Ray Absorptiometers*

Bone Mineral and Body Composition Measurements: Cross-Calibration of Pencil-Beam and Fan-Beam Dual- Energy X-Ray Absorptiometers* JOURNAL OF BONE AND MINERAL RESEARCH Volume 13, Number 10, 1998 Blackwell Science, Inc. 1998 American Society for Bone and Mineral Research Bone Mineral and Body Composition Measurements: Cross-Calibration

More information

Body composition analysis by dual energy X-ray absorptiometry in female diabetics differ between manufacturers

Body composition analysis by dual energy X-ray absorptiometry in female diabetics differ between manufacturers European Journal of Clinical Nutrition (1997) 51, 449±454 ß 1997 Stockton Press. All rights reserved 0954±3007/97 $12.00 Body composition analysis by dual energy X-ray absorptiometry in female diabetics

More information

The Influence of Exogenous Fat and Water on Lumbar Spine Bone Mineral Density in Healthy Volunteers

The Influence of Exogenous Fat and Water on Lumbar Spine Bone Mineral Density in Healthy Volunteers Original Article http://dx.doi.org/10.3349/ymj.2012.53.2.289 pissn: 0513-5796, eissn: 1976-2437 Yonsei Med J 53(2):289-293, 2012 The Influence of Exogenous Fat and Water on Lumbar Spine Bone Mineral Density

More information

2013 ISCD Combined Official Positions

2013 ISCD Combined Official Positions 2013 ISCD Combined Oicial Positions Oicial Positions of the International Society for Clinical Densitometry The International Society for Clinical Densitometry (ISCD) is a not-for-profit multidisciplinary

More information

STRUCTURED EDUCATION REQUIREMENTS IMPLEMENTATION DATE: JULY 1, 2017

STRUCTURED EDUCATION REQUIREMENTS IMPLEMENTATION DATE: JULY 1, 2017 STRUCTURED EDUCATION REQUIREMENTS Bone Densitometry The purpose of structured education is to provide the opportunity for individuals to develop mastery of discipline-specific knowledge that, when coupled

More information

Quality Assurance and Control in Dual energy X ray Absorptiometry

Quality Assurance and Control in Dual energy X ray Absorptiometry Mihail A. Boyanov Quality Assurance and Control in Dual energy X ray Absorptiometry Sofia, 2013 Central Medical Library Quality Assurance and Control in Dual energy X ray Absorptiometry Mihail A. Boyanov,

More information

Measurement Uncertainty in Spine Bone Mineral Density by Dual Energy X-ray Absorptiometry

Measurement Uncertainty in Spine Bone Mineral Density by Dual Energy X-ray Absorptiometry J Bone Metab 2017;24:105-109 https://doi.org/10.11005/jbm.2017.24.2.105 pissn 2287-6375 eissn 2287-7029 Original Article Measurement Uncertainty in Spine Bone Mineral Density by Dual Energy X-ray Absorptiometry

More information

Bone Densitometry. Total 30 Maximum CE 14. DXA Scanning (10) 7

Bone Densitometry. Total 30 Maximum CE 14. DXA Scanning (10) 7 STRUCTURED SELF ASSESSMENT CONTENT SPECIFICATIONS SSA LAUNCH DATE: JANUARY 1, 2018 Bone Densitometry The purpose of continuing qualifications requirements (CQR) is to assist registered technologists in

More information

EXAMINATION CONTENT SPECIFICATIONS ARRT BOARD APPROVED: JANUARY 2017 IMPLEMENTATION DATE: JULY 1, 2017

EXAMINATION CONTENT SPECIFICATIONS ARRT BOARD APPROVED: JANUARY 2017 IMPLEMENTATION DATE: JULY 1, 2017 EXAMINATION CONTENT SPECIFICATIONS Bone Densitometry The purpose of the bone densitometry examination is to assess the knowledge and cognitive skills underlying the intelligent performance of the tasks

More information

The Bone Densitometry Examination

The Bone Densitometry Examination The Bone Densitometry Examination The purpose of The American Registry of Radiologic Technologist (ARRT ) Bone Densitometry Examination is to assess the knowledge and cognitive skills underlying the intelligent

More information

Estimating the Absorbed Dose to Critical Organs During Dual X-ray Absorptiometry

Estimating the Absorbed Dose to Critical Organs During Dual X-ray Absorptiometry Estimating the Absorbed Dose to Critical Organs During Dual X-ray Absorptiometry M Mokhtari-Dizaji, PhD 1 A A Sharafi, PhD 2 B Larijani, MD 3 N Mokhlesian, MSc 4 H Hasanzadeh, MS 1 Index terms: Dual X-ray

More information

Portfolio Requirements and Instructions 2018

Portfolio Requirements and Instructions 2018 Portfolio Requirements and Instructions 2018 Introduction The purpose of the portfolio is to demonstrate your understanding and practical ability in bone densitometry across four sections. It is to provide

More information

Interpreting DEXA Scan and. the New Fracture Risk. Assessment. Algorithm

Interpreting DEXA Scan and. the New Fracture Risk. Assessment. Algorithm Interpreting DEXA Scan and the New Fracture Risk Assessment Algorithm Prof. Samir Elbadawy *Osteoporosis affect 30%-40% of women in western countries and almost 15% of men after the age of 50 years. Osteoporosis

More information

Densitometry Techniques

Densitometry Techniques 2 Densitometry Techniques CONTENTS PLAIN RADIOGRAPHY IN THE ASSESSMENT OF BONE DENSITY QUALITATIVE MORPHOMETRY QUALITATIVE SPINAL MORPHOMETRY THE SINGH INDEX QUANTITATIVE MORPHOMETRIC TECHNIQUES CALCAR

More information

Bone Mineral Densitometry with Dual Energy X-Ray Absorptiometry

Bone Mineral Densitometry with Dual Energy X-Ray Absorptiometry Bone Mineral Densitometry with Dual Energy X-Ray Absorptiometry R Gilles, Laurentius Ziekenhuis Roermond 1. Introduction Osteoporosis is characterised by low bone mass, disruption of the micro-architecture

More information

Bone Densitometry Radiation dose: what you need to know

Bone Densitometry Radiation dose: what you need to know Bone Densitometry Radiation dose: what you need to know John Damilakis, PhD Associate Professor and Chairman University of Crete, Iraklion, Crete, GREECE Estimation of bone status using X-rays Assessment

More information

Osteoporosis International. Original Article. Bone Mineral Density and Vertebral Fractures in Men

Osteoporosis International. Original Article. Bone Mineral Density and Vertebral Fractures in Men Osteoporos Int (1999) 10:265 270 ß 1999 International Osteoporosis Foundation and National Osteoporosis Foundation Osteoporosis International Original Article Bone Mineral Density and Vertebral Fractures

More information

Comparison of Bone Density of Distal Radius With Hip and Spine Using DXA

Comparison of Bone Density of Distal Radius With Hip and Spine Using DXA ORIGINAL ARTICLE Comparison of Bone Density of Distal Radius With Hip and Spine Using DXA Leila Amiri 1, Azita Kheiltash 2, Shafieh Movassaghi 1, Maryam Moghaddassi 1, and Leila Seddigh 2 1 Rheumatology

More information

Journal of Bone and Mineral Research 12: , Non-Invasive Bone Mass Measurement: Techniques and Applications

Journal of Bone and Mineral Research 12: , Non-Invasive Bone Mass Measurement: Techniques and Applications Q C T versus DX A What the Experts Say Mindways Software, Inc. 282 Second St. San Francisco, CA 94105 Tel 415 247 9930 Fax 415 247 9931 www.qct.com Excerpts from Leading Journals in the Field M0004 Q C

More information

CLINIQCT NO-DOSE CT BONE DENSITOMETRY FOR ROUTINE AND SPECIALIST USE.

CLINIQCT NO-DOSE CT BONE DENSITOMETRY FOR ROUTINE AND SPECIALIST USE. CLINIQCT NO-DOSE CT BONE DENSITOMETRY FOR ROUTINE AND SPECIALIST USE Clinically superior BMD solutions for physicians DXA equivalent hip measurements Dual-use of standard abdominal or pelvic CT studies

More information

Selecting regions of interest on intra oral radiographs. for the prediction of bone mineral density

Selecting regions of interest on intra oral radiographs. for the prediction of bone mineral density Selecting regions of interest on intra oral radiographs for the prediction of bone mineral density W.G.M. Geraets a, J.G.C. Verheij a, P.F. van der Stelt a, K. Horner b, C. Lindh c, K. Nicopoulou-Karayianni

More information

Dual-energy Vertebral Assessment

Dual-energy Vertebral Assessment Dual-energy Vertebral Assessment gehealthcare.com Dual-energy Vertebral Assessment More than 40% of women with normal or osteopenic BMD had a moderate or severe vertebral deformation seen with DVA. Patrick

More information

LOW-DOSE CT BONE DENSITOMETRY FOR ROUTINE AND SPECIALIST USE

LOW-DOSE CT BONE DENSITOMETRY FOR ROUTINE AND SPECIALIST USE LOW-DOSE CT BONE DENSITOMETRY FOR ROUTINE AND SPECIALIST USE Clinically superior BMD solutions for physicians DXA equivalent hip measurements Innovative clinical trials & research applications mindwaysaustralia.com.au

More information

PhenX Measure: Body Composition (#020300) PhenX Protocol: Body Composition - Body Composition by Dual-Energy X-Ray Absorptiometry (#020302)

PhenX Measure: Body Composition (#020300) PhenX Protocol: Body Composition - Body Composition by Dual-Energy X-Ray Absorptiometry (#020302) PhenX Measure: Body Composition (#020300) PhenX Protocol: Body Composition - Body Composition by Dual-Energy X-Ray Absorptiometry (#020302) Date of Interview/Examination (MM/DD/YYYY): A downloadable PDF

More information

Technical Principles of Dual Energy X-Ray Absorptiometry

Technical Principles of Dual Energy X-Ray Absorptiometry Technical Principles of Dual Energy X-Ray Absorptiometry Glen M. Blake and Ignac Fogelman Since its introduction nearly ten years ago, dualenergy x-ray absorptiometry (DXA) has become the single most widely

More information

Comparison of Dual-Energy X-Ray Absorptiometry and Dual Photon Absorptiometry for Bone Mineral Measurements of the Lumbar Spine

Comparison of Dual-Energy X-Ray Absorptiometry and Dual Photon Absorptiometry for Bone Mineral Measurements of the Lumbar Spine Comparison of Dual-Energy X-Ray Absorptiometry and Dual Photon Absorptiometry for Bone Mineral Measurements of the Lumbar Spine HENZ W. WAHNER, M.D., WLLAM L. DUNN, M.Sc, MANUEL L. BROWN, M.D., Section

More information

Foreword...v Preface...vii Acknowledgments... xi Dedication... xiii Continuing Medical Education... xxv. Chapter 1: Densitometry Techniques...

Foreword...v Preface...vii Acknowledgments... xi Dedication... xiii Continuing Medical Education... xxv. Chapter 1: Densitometry Techniques... CONTENTS Foreword...v Preface...vii Acknowledgments... xi Dedication... xiii Continuing Medical Education... xxv Chapter 1: Densitometry Techniques... 1 Plain Radiography in the Assessment of Bone Density...

More information

Differences in whole body measurements by DXA-scanning using two Lunar DPX-L machines

Differences in whole body measurements by DXA-scanning using two Lunar DPX-L machines International Journal of Obesity (1999) 23, 764±770 ß 1999 Stockton Press All rights reserved 0307±0565/99 $12.00 http://www.stockton-press.co.uk/ijo Short Communication Differences in whole body measurements

More information

The official position of the International Society for Clinical

The official position of the International Society for Clinical Improving Clinical Decisions for Women at Risk of Osteoporosis: Dual-Femur Bone Mineral Density Testing Raymond E. Cole, DO, CCD Context: In bone mineral density (BMD) testing, unilateral hip analysis

More information

Prediction of osteoporosis with dental radiographs and age

Prediction of osteoporosis with dental radiographs and age (2009) 38, 431 437 2009 The British Institute of Radiology http://dmfr.birjournals.org RESEARCH Prediction of osteoporosis with dental radiographs and age JGC Verheij*,1, WGM Geraets 1, PF van der Stelt

More information

Clinical Study Comparison of QCT and DXA: Osteoporosis Detection Rates in Postmenopausal Women

Clinical Study Comparison of QCT and DXA: Osteoporosis Detection Rates in Postmenopausal Women International Endocrinology Volume 3, Article ID 895474, 5 pages http://dx.doi.org/.55/3/895474 Clinical Study Comparison of QCT and DXA: Osteoporosis Detection Rates in Postmenopausal Women Na Li, Xin-min

More information

Bone Densitometry Equipment Operator

Bone Densitometry Equipment Operator Bone Densitometry Equipment Operator The purpose of the Bone Densitometry Equipment Operator Examination, which is made available to state licensing agencies, is to assess the knowledge and cognitive skills

More information

Evaluation of Bone Mineral Status in Adolescent Idiopathic Scoliosis

Evaluation of Bone Mineral Status in Adolescent Idiopathic Scoliosis Original Article Clinics in Orthopedic Surgery 2014;6:180-184 http://dx.doi.org/10.4055/cios.2014.6.2.180 Evaluation of Bone Mineral Status in Adolescent Idiopathic Scoliosis Babak Pourabbas Tahvildari,

More information

Measurement of Periprosthetic Bone Density in Hip Arthroplasty Using Dual-energy X-ray Absorptiometry Reproducibility of Measurements

Measurement of Periprosthetic Bone Density in Hip Arthroplasty Using Dual-energy X-ray Absorptiometry Reproducibility of Measurements The Journal of Arthroplasty Vol. 11 No. 4 1996 Measurement of Periprosthetic Bone Density in Hip Arthroplasty Using Dual-energy X-ray Absorptiometry Reproducibility of Measurements R. C. Smart, BSc, MSc,

More information

Screening points for a peripheral densitometer of the calcaneum for the diagnosis of osteoporosis

Screening points for a peripheral densitometer of the calcaneum for the diagnosis of osteoporosis 23 Ivorra Cortés J, Román-Ivorra JA, Alegre Sancho JJ, Beltrán Catalán E, Chalmeta Verdejo I, Fernández-Llanio Comella N, Muñoz Gil S Servicio de Reumatología - Hospital Universitario Dr. Peset - Valencia

More information

Healthy aging. It s vital.

Healthy aging. It s vital. GE Healthcare Healthy aging. It s vital. encore 17 The leading edge of DXA applications This trio of new encore 17 functions will take your clinical assessment capability to the next level. We are pleased

More information

Purpose. Methods and Materials

Purpose. Methods and Materials Prevalence of pitfalls in previous dual energy X-ray absorptiometry (DXA) scans according to technical manuals and International Society for Clinical Densitometry. Poster No.: P-0046 Congress: ESSR 2014

More information

Certified Clinical Densitometrist (CCD ) DXA Resource Materials

Certified Clinical Densitometrist (CCD ) DXA Resource Materials Certified Clinical Densitometrist (CCD ) DXA Resource Materials International Society for Densitometry DXA Resource Materials Editors Steven Petak, MD, JD, CCD Neil Binkley, MD, CCD Sue Broy, MD, CCD

More information

Bone Densitometry. What is a Bone Density Scan (DXA)? What are some common uses of the procedure?

Bone Densitometry. What is a Bone Density Scan (DXA)? What are some common uses of the procedure? Scan for mobile link. Bone Densitometry What is a Bone Density Scan (DXA)? Bone density scanning, also called dual-energy x-ray absorptiometry (DXA) or bone densitometry, is an enhanced form of x-ray technology

More information

The DXL Calscan heel densitometer: evaluation and diagnostic thresholds

The DXL Calscan heel densitometer: evaluation and diagnostic thresholds The British Journal of Radiology, 79 (2006), 336 341 The DXL Calscan heel densitometer: evaluation and diagnostic thresholds J A THORPE, MSc, BSc and S A STEEL, MSc, BSc Centre for Metabolic Bone Disease,

More information

Morphometric Measurements in Radiographic Image Processing in the Assessment of Post Menopausal Osteoporosis

Morphometric Measurements in Radiographic Image Processing in the Assessment of Post Menopausal Osteoporosis Morphometric Measurements in Radiographic Image Processing in the Assessment of Post Menopausal Osteoporosis Shankar N 1, Dr V Rajmohan 2, Sankar K 3 1,3 Assistant Professor, Department of Biomedical Engineering,

More information

Obesity Increases Precision Errors in Total Body Dual X-ray Absorptiometry Measurements.

Obesity Increases Precision Errors in Total Body Dual X-ray Absorptiometry Measurements. Obesity Increases Precision Errors in Total Body Dual X-ray Absorptiometry Measurements. 1 K.M.Knapp, 1 J.R.Welsman, 1 S.J.Hopkins, 1 A.Shallcross, 2 I.Fogelman and 2 G.M.Blake 1. University of Exeter,

More information

Adina Alazraki, MD, FAAP Assistant Professor, Radiology and Pediatrics Emory University School of Medicine Children s Healthcare of Atlanta

Adina Alazraki, MD, FAAP Assistant Professor, Radiology and Pediatrics Emory University School of Medicine Children s Healthcare of Atlanta Adina Alazraki, MD, FAAP Assistant Professor, Radiology and Pediatrics Emory University School of Medicine Technical: Patient positioning Performance of the scan Analysis of the data Theoretical: Identification

More information

DEXA T-score Concordance and Discordance Between hip and Lumbar Spine

DEXA T-score Concordance and Discordance Between hip and Lumbar Spine Abstract DEXA T-score Concordance and Discordance Between hip and Lumbar Spine Jang-Suk Choi, MD, Ki-Chan An, MD, Chang-Seop Lee, MD Jong-Moon Choi, MD, Joo Yong Kim, MD, Dong-Reol Shin, MD* Department

More information

The effect of vertebral rotation of the lumbar spine on dual energy X-ray absorptiometry measurements: observational study

The effect of vertebral rotation of the lumbar spine on dual energy X-ray absorptiometry measurements: observational study JCY Cheng HL Sher X Guo VWY Hung AYK Cheung Key words: Absorptiometry, Bone density; Densitometry, X-ray; Lumbar vertebrae; Scoliosis "#$%& "# X HKMJ 2001;7:241-5 The Chinese University of Hong Kong, Prince

More information

Lateral Vertebral Analysis DXA Body Composition Quality Assurance in DXA

Lateral Vertebral Analysis DXA Body Composition Quality Assurance in DXA Strong Bone Asia 2013 Osteoporosis in ASEAN Lateral Vertebral Analysis DXA Body Composition Quality Assurance in DXA Chris Schultz Scientist-in-Charge (Bone Densitometry) Royal Adelaide Hospital, Adelaide,

More information

Building Bone Density-Research Issues

Building Bone Density-Research Issues Building Bone Density-Research Issues Helping to Regain Bone Density QUESTION 1 What are the symptoms of Osteoporosis? Who is at risk? Symptoms Bone Fractures Osteoporosis 1,500,000 fractures a year Kyphosis

More information

L.W. Sun 1,2, G. Beller 1, D. Felsenberg 1. Introduction. Original Article. Abstract

L.W. Sun 1,2, G. Beller 1, D. Felsenberg 1. Introduction. Original Article. Abstract J Musculoskelet Neuronal Interact 2009; 9(1):18-24 Original Article Hylonome Quantification of bone mineral density precision according to repositioning errors in peripheral quantitative computed tomography

More information

QCT and CT applications in Osteoporosis Imaging

QCT and CT applications in Osteoporosis Imaging Q appli in Osteoporosis Imaging Thomas M. Link, MD, PhD Department of Radiology Biomedical Imaging University of California, San Francisco Goals 1. To identify advantages disadvantages of Q compared to

More information

Prodigy. from GE Healthcare. Most trusted, reliable and best-selling DXA system with one of the largest installed base in the world. gehealthcare.

Prodigy. from GE Healthcare. Most trusted, reliable and best-selling DXA system with one of the largest installed base in the world. gehealthcare. Prodigy from GE Healthcare Most trusted, reliable and best-selling DXA system with one of the largest installed base in the world gehealthcare.com Prodigy High performance, efficient and reliable DXA system

More information

Standard Operating Procedure TCRC Dual-Energy X-ray Absorptiometry (DXA)

Standard Operating Procedure TCRC Dual-Energy X-ray Absorptiometry (DXA) 1. RELEVANCE a. This SOP outlines the instructions to completing Duel Energy X-Ray Absorptiometry (DXA) including: scanning, analysis, review and filing. 2. SCOPE a. This SOP applies to all TCRC RDs. 3.

More information

2 Skeletal Anatomy in Densitometry

2 Skeletal Anatomy in Densitometry 2 Skeletal Anatomy in Densitometry CONTENTS CHARACTERIZING THE SKELETON IN DENSITOMETRY THE SPINE IN DENSITOMETRY THE PROXIMAL FEMUR IN DENSITOMETRY THE FOREARM IN DENSITOMETRY THE METACARPALS, PHALANGES,

More information

QDR Series. Discovery and Explorer Advanced Health Assessment

QDR Series. Discovery and Explorer Advanced Health Assessment O S T E O P O R O S I S A S S E S S M E N T QDR Series Discovery and Explorer Advanced Health The Hologic QDR Series bone densitometers combine the proven clinical value of bone mineral density (BMD) measurement

More information

Bone Mineral Density and Its Associated Factors in Naresuan University Staff

Bone Mineral Density and Its Associated Factors in Naresuan University Staff Naresuan University Journal 2005; 13(3): 13-18 13 Bone Mineral Density and Its Associated Factors in Naresuan University Staff Supawitoo Sookpeng *, Patsuree Cheebsumon, Malinee Dhanarun, Thanyavee Pengpan

More information

Norland Densitometry A Tradition of Excellence

Norland Densitometry A Tradition of Excellence Norland Densitometry A Tradition of Excellence Norland DXA Bone Density Measurement Osteoporosis is a disease marked by reduced bone strength leading to an increased risk of fractures. About 54 million

More information

Radiation Physics Principles of DXA Basic Statistics for DXA Essential Anatomy for DXA

Radiation Physics Principles of DXA Basic Statistics for DXA Essential Anatomy for DXA Strong Bone Asia 2013 Osteoporosis in ASEAN Radiation Physics Principles of DXA Basic Statistics for DXA Essential Anatomy for DXA Chris Schultz Scientist-in-Charge (Bone Densitometry) Royal Adelaide Hospital,

More information

Ultrasound bone densitometry and dual energy X-ray absorptiometry in patients with spinal cord injury: a cross-sectional study

Ultrasound bone densitometry and dual energy X-ray absorptiometry in patients with spinal cord injury: a cross-sectional study Spinal Cord (1996) 34, 736-741 1996 International Medical Society of Paraplegia All rights reserved 1362-4393/96 $12.00 Ultrasound bone densitometry and dual energy X-ray absorptiometry in patients with

More information

A basic study for automatic recognition of osteoporosis using abdominal X-ray CT images

A basic study for automatic recognition of osteoporosis using abdominal X-ray CT images A basic study for automatic recognition of osteoporosis using abdominal X-ray CT images Sadamitsu Nishihara* a, Hiroshi Fujita b, Tadayuki Iida a, Atsushi Takigawa a, Takeshi Hara b and Xiangrong Zhou

More information

Cpt code for bone density of hips only

Cpt code for bone density of hips only Cpt code for bone density of hips only Enter a location: Find a13 This policy may apply to the following codes. Inclusion of a code in this section does not guarantee that it will be reimbursed. For further

More information

Omnisense: At Least As Good As DXA

Omnisense: At Least As Good As DXA Omnisense: At Least As Good As DXA The following document summarizes a series of clinical studies that have been conducted to compare between different qualities of the Sunlight support the claim that

More information

Standard for Performance of Adult Dual - or Single-Energy X-Ray Absorptiometry (DXA/pDXA/SXA)

Standard for Performance of Adult Dual - or Single-Energy X-Ray Absorptiometry (DXA/pDXA/SXA) Standard for Performance of Adult Dual - or Single-Energy X-Ray Absorptiometry (DXA/pDXA/SXA) Last update: 2002-03-11 Modified by Brian C. Lentle, MD, after principle drafter William T. Thorwarth, Jr.,

More information

LUMBAR IS IT IMPORTANT? S. Tantawy,, M.D.

LUMBAR IS IT IMPORTANT? S. Tantawy,, M.D. بسم االله الرحمن الرحيم DEXA LATERAL LUMBAR IS IT IMPORTANT? By S. Tantawy,, M.D. Osteopenia,, bone mineral deficiency in the absence of fracture, is an indicator of the bone structural integrity and compared

More information

AN APPROACH TO THE PATIENT WITH OSTEOPOROSIS. Malik Mumtaz

AN APPROACH TO THE PATIENT WITH OSTEOPOROSIS. Malik Mumtaz Malaysian Journal of Medical Sciences, Vol. 8, No. 1, Januari 2001 (11-19) BRIEF ARTICLE Department of Medicine School of Medical Sciences, Universiti Sains Malaysia 16150 Kubang Kerian, Kelantan, Malaysia

More information

Obesity Increases Precision Errors in Dual X-ray Absorptiometry Measurements.

Obesity Increases Precision Errors in Dual X-ray Absorptiometry Measurements. Obesity Increases Precision Errors in Dual X-ray Absorptiometry Measurements. 1 K.M.Knapp, 1 J.R.Welsman, 1 S.J.Hopkins, 2 I.Fogelman and 2 G.M.Blake 1. University of Exeter, Exeter, UK 2. King s College

More information

Preliminary technical data

Preliminary technical data Preliminary technical data 2D-FanBeam Whole Body Densitometer PROGRESS THROUGH INNOVATION 2D-Fan Beam Whole Body Densitometer Acquisition chain parameters Dual Emission X-ray Absorptiometry (DEXA) 2D-FanBeam

More information

Use of DXA / Bone Density in the Care of Your Patients. Brenda Lee Holbert, M.D. Associate Professor Senior Staff Radiologist

Use of DXA / Bone Density in the Care of Your Patients. Brenda Lee Holbert, M.D. Associate Professor Senior Staff Radiologist Use of DXA / Bone Density in the Care of Your Patients Brenda Lee Holbert, M.D. Associate Professor Senior Staff Radiologist Important Websites Resources for Clinicians and Patients www.nof.org www.iofbonehealth.org

More information

DXA Best Practices. What is the problem? 9/29/2017. BMD Predicts Fracture Risk. Dual-energy X-ray Absorptiometry: DXA

DXA Best Practices. What is the problem? 9/29/2017. BMD Predicts Fracture Risk. Dual-energy X-ray Absorptiometry: DXA BMD Predicts Fracture Risk Ten Year Fracture Probability (%) 50 40 30 20 10 Age 80 70 60 50 E. Michael Lewiecki, MD Director, New Mexico Clinical Research & Osteoporosis Center Director, Bone TeleHealth

More information

Mineral Density Of Subchondral Bone May Be Quantitatively Evaluated Using A Clinical Cone Beam Computed Tomography Scanner

Mineral Density Of Subchondral Bone May Be Quantitatively Evaluated Using A Clinical Cone Beam Computed Tomography Scanner Mineral Density Of Subchondral Bone May Be Quantitatively Evaluated Using A Clinical Cone Beam Computed Tomography Scanner Mikael J. Turunen, PhD 1, Juha Töyräs, PhD 1, Harri Kokkonen, PhD 2, Jukka S.

More information

THE DIAGNOSIS OF OSTEOPOROSIS BY MEASURING LUMBAR VERTEBRAE DENSITY WITH MDCT: A COMPARATIVE STUDY WITH QUANTITATIVE COMPUTERIZED TOMOGRAPHY (QCT)

THE DIAGNOSIS OF OSTEOPOROSIS BY MEASURING LUMBAR VERTEBRAE DENSITY WITH MDCT: A COMPARATIVE STUDY WITH QUANTITATIVE COMPUTERIZED TOMOGRAPHY (QCT) Acta Medica Mediterranea, 2013, 29: 775 THE DIAGNOSIS OF OSTEOPOROSIS BY MEASURING LUMBAR VERTEBRAE DENSITY WITH MDCT: A COMPARATIVE STUDY WITH QUANTITATIVE COMPUTERIZED TOMOGRAPHY (QCT) KEMAL KARA 1,

More information

New Dual-energy X-ray Absorptiometry Machines (idxa) and Vertebral Fracture Assessment

New Dual-energy X-ray Absorptiometry Machines (idxa) and Vertebral Fracture Assessment Case 1 New Dual-energy X-ray Absorptiometry Machines (idxa) and Vertebral Fracture Assessment (VFA) History and Examination Your wealthy friend who is a banker brings his 62-year-old mother to your office

More information

Lunar idxa. The intelligent DXA. gehealthcare.com

Lunar idxa. The intelligent DXA. gehealthcare.com Lunar idxa The intelligent DXA gehealthcare.com The best of DXA technology for bone and metabolic health assessment With a state-of-the-art design, Lunar idxa offers research-grade image resolution and

More information

Predicting the Risk of Fracture at Any Site in the Skeleton: Are All Bone Mineral Density Measurement Sites Equally Effective?

Predicting the Risk of Fracture at Any Site in the Skeleton: Are All Bone Mineral Density Measurement Sites Equally Effective? Calcif Tissue Int (2006) 78:9 17 DOI: 10.1007/s00223-005-0127-3 Predicting the Risk of Fracture at Any Site in the Skeleton: Are All Bone Mineral Density Measurement Sites Equally Effective? G. M. Blake,

More information

Using GE Lunar DXA to Quantify, Visualize, and Trend Incipient Atypical Femoral Fractures

Using GE Lunar DXA to Quantify, Visualize, and Trend Incipient Atypical Femoral Fractures Using GE Lunar DXA to Quantify, Visualize, and Trend Incipient Atypical Femoral Fractures The management of osteoporosis underwent a paradigm shift in 1995 with the approval of the first bisphosphonate,

More information

pqct Measurement of Bone Parameters in Young Children

pqct Measurement of Bone Parameters in Young Children Journal of Clinical Densitometry, vol. 3, no. 1, 9 14, Spring 2000 Copyright 2000 by Humana Press Inc. All rights of any nature whatsoever reserved. 0169-4194/00/3:9 14/$11.50 Original Article pqct Measurement

More information

In-vivo precision of the GE Lunar idxa for the measurement of visceral adipose tissue in

In-vivo precision of the GE Lunar idxa for the measurement of visceral adipose tissue in 1 2 In-vivo precision of the GE Lunar idxa for the measurement of visceral adipose tissue in adults: the influence of body mass index 3 4 Running title: Precision of the idxa for the measurement of visceral

More information

Advanced Point-of-Care Bone Health Assessment HOLOGIC OSTEOPOROSIS ASSESSMENT

Advanced Point-of-Care Bone Health Assessment HOLOGIC OSTEOPOROSIS ASSESSMENT O S T E O P O R O S I S A S S E S S M E N T Advanced Point-of-Care Bone Health Assessment HOLOGIC OSTEOPOROSIS ASSESSMENT Identify Patients at Risk The evaluation of bone health has become an essential

More information

Bone Densitometry at the Point of Care

Bone Densitometry at the Point of Care Bone Densitometry at the Point of Care EchoS is the first radiation free solution for the early diagnosis of Osteoporosis at the axial sites. A breakthrough echographic device for bone characterization

More information

Whole Body Dual X-Ray Absorptiometry to Determine Body Composition

Whole Body Dual X-Ray Absorptiometry to Determine Body Composition Page: 1 of 6 Last Review Status/Date: March 2015 Determine Body Composition Description Using low dose x-rays of two different energy levels, whole body dual x-ray absorptiometry (DXA) measures lean tissue

More information

Journal of Biomedical Graphics and Computing, 2014, Vol. 4, No. 2

Journal of Biomedical Graphics and Computing, 2014, Vol. 4, No. 2 ORIGINAL RESEARCH Short-term precision error in dual energy x-ray absorptiometry, bone mineral density and trabecular bone score measurements; and effects of obesity on precision error Susan J Hopkins,

More information

Diagnostische Präzision von DXL im Vergleich zu DXA bei pmp Frauen mit Frakturen

Diagnostische Präzision von DXL im Vergleich zu DXA bei pmp Frauen mit Frakturen Diagnostische Präzision von DXL im Vergleich zu DXA bei pmp Frauen mit Frakturen Christian Muschitz II. Medizinische Abteilung mit Rheumatologie, Osteologie & Gastroenterologie Akademisches Lehrkrankenhaus

More information

QCT BMD Imaging vs DEXA BMD Imaging

QCT BMD Imaging vs DEXA BMD Imaging QCT BMD Imaging vs DEXA BMD Imaging by Charles (Chuck) Maack Prostate Cancer Advocate/Activist Disclaimer: Please recognize that I am not a Medical Doctor. I have been an avid student researching and studying

More information

TigerPrints. Clemson University. Nadia Marie Ghassan Najm Clemson University

TigerPrints. Clemson University. Nadia Marie Ghassan Najm Clemson University Clemson University TigerPrints All Theses Theses 8-2015 Mathematical Properties that Influence Least Significant Change of Body Composition and Bone Mineral Density Measured by Dual Energy X-Ray Absorptiometry

More information

Validation of the Osteoporosis Self-Assessment Tool in US Male Veterans

Validation of the Osteoporosis Self-Assessment Tool in US Male Veterans Journal of Clinical Densitometry: Assessment & Management of Musculoskeletal Health, vol. 17, no. 1, 32e37, 2014 Published by Elsevier Inc. on behalf of The International Society for Clinical Densitometry

More information

Clinical Application of Computed Radiography in Orthopedic Surgery

Clinical Application of Computed Radiography in Orthopedic Surgery Clinical Application of Computed Radiography in Orthopedic Surgery Satoru Fujita, Masamichi Tanaka, Sigeaki Hirota, and Takeshi Fuji Since 1988, Fuji Computed Radiography (FCR) system (Fuji Medical Systems,

More information

Bone Mineral Density Studies in Adult Populations

Bone Mineral Density Studies in Adult Populations Bone Mineral Density Studies in Adult Populations Last Review Date: July 14, 2017 Number: MG.MM.RA10aC6 Medical Guideline Disclaimer Property of EmblemHealth. All rights reserved. The treating physician

More information

Cross-calibration of fat and lean measurements by dualenergy X-ray absorptiometry to pig carcass analysis in the pediatric body weight range13

Cross-calibration of fat and lean measurements by dualenergy X-ray absorptiometry to pig carcass analysis in the pediatric body weight range13 Cross-calibration of fat and lean measurements by dualenergy X-ray absorptiometry to pig carcass analysis in the pediatric body weight range13 Stephen J Pintauro, Tim R Nagy, Christa M Duthie, and Michael

More information

Medical Policy. MP Whole Body Dual X-Ray Absorptiometry to Determine Body Composition

Medical Policy. MP Whole Body Dual X-Ray Absorptiometry to Determine Body Composition Medical Policy MP 6.01.40 BCBSA Ref. Policy: 6.01.40 Last Review: 09/28/2017 Effective Date: 09/28/2017 Section: Radiology End Date: 09/18/2018 Related Policies 6.01.44 Vertebral Fracture Assessment With

More information

Relationship between Family History of Osteoporotic Fracture and Femur Geometry

Relationship between Family History of Osteoporotic Fracture and Femur Geometry Iranian J Publ Health, 2007, Iranian A supplementary J Publ Health, issue 2007, on Osteoporosis, A supplementary pp.70-74 issue on Osteoporosis, pp.70-74 Relationship between Family History of Osteoporotic

More information

CT Imaging of skeleton in small animals. Massimo Marenzana

CT Imaging of skeleton in small animals. Massimo Marenzana CT Imaging of skeleton in small animals Massimo Marenzana Introduction Osteoporosis is a disease in which bones become fragile and more likely to break. It can be defined as a systemic skeletal disease

More information

X-Ray Board Reviewing Rules

X-Ray Board Reviewing Rules Volume 24, Issue 3 July-Sept 2018 Tennessee X-Ray X-Ray Board Reviewing Rules The Tennessee Board of Radiologic Imaging and Radiation Therapy had their first meeting on January 25, 2018. The minutes from

More information