seed embryo microscopic gametophytes Gymnospermes Angiosperms

Size: px
Start display at page:

Download "seed embryo microscopic gametophytes Gymnospermes Angiosperms"

Transcription

1 Gymnosperms

2 Spermatophytes It is the group that includes seed-producing plants. The seed contains embryo, protects it during adverse conditions and contains all nutrients needed for the seedling development. They show microscopic gametophytes. They do not need anymore of water for reproduction. Male gametophyte (polle grain) is released at maturity and dispersed by wind, insects or animals. They comprises Gymnospermes (plants with ovule/seed naked) and Angiosperms (flowering plants with ovule/seed protected by ovary).

3 Gymnosperms They are seed plants in which the ovules are carried naked on the cone scales, in contrast to the angiosperms, in which they are enclosed by an ovary. Gymnosperms date from the Carboniferous ( millions years ago) and subsequently they dominated the floras of the world until the Cretaceous (65 millions years ago), since when they have been progressively displaced by the angiosperms (flowering plants). Gymnosperm is used only informally to describe what are now classified as 4 separate divisions: Cycadophyta (100 species), Ginkgophyta (1 living fossil species), Coniferophyta (550 species), Gnetophyta (70 species). Although they comprises only 720 species, they form the dominant vegetation in large areas of the world (e.g. taiga = forest of conifers). Numerous species are used for pharmaceutical purposes, notably conifers for the preparation of resin derivatives employed in the treatment of respiratory disorders.

4 Gymnosperms They are heterosporous plants, bearing megasporangia (ovules) producing megaspore retained inside the sporangium (endosporic development); they give rise to the female gametophyte, and microsporangia producing microspores that give rise to the male gametophyte (pollen grain). Ovule is composed of a central mass of tissue (nucellus), surrounded by 1 or 2 protective layers (integuments), which eventually give rise to the seed coat. Within the nucellus is a large structure, the embryo sac, which has developed from the megaspore and contains the naked egg cell. Nucellus bears a canal in the coverings called micropyle through which the pollen tube usually passes during fertilization; later, when the seed matures and starts to germinate, the micropyle serves as a minute pore through which water enters. Seed is a fertilized ovule, composed of integuments, embryo and nutritive substances. It replaces spore as diffusion unit. Fertilization is not more linked to the presence of water: male gametophyte (pollen grain), transported to the female gametophyte inside the ovule, emits the pollen tube releasing the male gamete (without flagella) directly to the female gamete.

5 Gymnosperms Pollination is the transfer of pollen grains from male to female gametophytes or from micro- to macro-sporangium. This process facilitates contact between male gametes and the female ovum, leading to fertilization, development of seed, and thence a new plant. Gymnosperms have anemophilous pollination. In gymnosperms, the pollen tube developing from a pollen grain grows down and penetrates the neck of the archegonium, facilitating contact between the sperm cells (male gametes) and the ova (female gametes). Most archegonia contain many ova, so that multiple fertilization can occur, although only 1 sperm can fertilize an egg cell. Unlike angiosperms, which do not possess archegonia, pollen cones and seed cones mature at different times within a season, so that there is usually a long interval between pollination and fertilization. Gymnosperm have an alternation of 2 heteromorphic generations with large sporophytes (dominant) and microscopic, dipendent gametophytes (only 4 cells in the male gametophyte).

6 Gymnosperms consist of tree or shrubs, anyway woody plants possessing secondary thickening by vascular and cork cambium. They have homoxil wood with only tracheids having conducting and supporting functions.

7

8

9 briophytes and pteridophytes spermatophytes (gymnosperms and angiosperms)

10 Relations between gametophyte and sporophyte

11 ovule female gametophyte Ovule is a megasporangium containing a megasporocyte that undergoes meiosis giving 4 haploid cells: one is the megaspore, while the other 3 degenerate. The megaspore gives rise to the femal gametophyte, containing nucellus with one or more archegonia; so, more than one egg cell may be fertilized, but only one embryo may survive. Nucellus is composed of a nutritive tissue feeding embryo during ontogeny.

12 Different stages leading to the fertilization of the egg cell. In gymnosperms, pollination is known as micropylar, because the pollen grain attaches directly to this canal of the naked ovule. Female gametophyte and so embryo develop inside parent sporophyte (endosporic development).

13 Ovules and seeds are unprotected and beared on the external surface of specialized leaves known as megasporophylls that in conifers are grouped in cones or strobila.

14 Cones are groups of closely packed sporophylls arranged around a central axis.

15 Each microspore germinates to form the male gametophyte, a structure made up of winged pollen grains (for wind pollination) containing 2 protallial cells, one generative cell (forming 2 sperms) and one tube cell (generating the pollen tube). In gymnosperms there are not antheridia (water is no more needed for reproduction).

16 The pollen grain contains 3 haploid nuclei (a tube nucleus and 2 sperm nuclei), which pass down the pollen tube to the ovum. One of the sperm nuclei fertilizes the ovum, and the second degenerates as well as the tube nucleus.

17 Seed of conifers is composed of 2 diploid generations (the outer integuments and the embryo) and one haploid generation (food store tissue). Embryo is composed of an hypocotyl-root axis with a root cap protecting root merystems and an apical meristem to the endings. Gymnosperm have usually numerous cotyledons.

18 Life cyle of a pine

19 CONIFEROPHYTA The biggest division of gymnosperm, with a long fossil history, comprising trees (e.g. sequoia) and shrubs (e.g. juniper), nearly all of which are evergreen, commonly with monopodial crowns. The leaves are often needle- or scale-like. Branches with short (brachyblasts) and long shoot (macroblasts). The wood (homoxil) lacks vessels (trachea); only tracheids with areolate pits. Most conifers are resinous due to the presence of resin canals. Fertile parts occur in unisexual cones, variously containing sterile scales. The ovule and seed are naked and borne on a scale. Are important for timber and paper production. There are about 550 extant species.

20 CONIFEROPHYTA

21 CONIFEROPHYTA branch of pine with mature and young ovuled cones

22 CONIFEROPHYTA branch of pine with male cones (bearing microsporangia)

23 CONIFEROPHYTA ovuled cones male cones

24 CONIFEROPHYTA ovuled cones of fir

25 CONIFEROPHYTA ovuled cones of larch

26 CONIFEROPHYTA ovuled cones of cypress

27 CONIFEROPHYTA ovuled cones of juniper

28 CONIFEROPHYTA t.s. of a pine leaf

29 CONIFEROPHYTA t.s. of pine stem (secondary thickening) The wood of conifers is composed only of tracheids (homoxil wood), while phloem is composed only of sieve cells.

30 CONIFEROPHYTA Yew seeds surrounded by arils (no cones) that aid seed dispersal by providing food as an attractant and reward to the dispersers. Yew is a dioecious plant, with male and ovuled cones on separate individuals.

31 CONIFEROPHYTA Giant sequoia of California; it can reach about 80 m of height and a weight of 1800 tons.

32 CYCADOPHYTA Cycaodophyta is a division of gymnosperms comprising plants with leaves and habit similar to those of palm trees, although some species are quite small. Cycads are dioecious, and most bear large, coloured, female or male cones. Pollen grains have motile spermatozoa within them, which is a very primitive feature. Cycads have enthomophilic pollination. Formerly they were much more important and, following their appearance in the Permian ( millions years ago), remained important members of the world s Mesozoic floras (up to 65 millions years ago). Their reduction as marked in the late Cretaceous as they were progressively displaced by angiosperm trees. There are 9 or 10 genera, and about 100 extant species. All are tropical or subtropical.

33 CYCADOPHYTA Ovuled cones of an African Cycad seeds of Cycas

34 CYCADOPHYTA 4 genera are American; 5 are Old World (Australian and south-eastern African)

35 GINKGOPHYTA The division of gymnosperms that includes only the extant Ginkgo biloba (maidenhair tree) and its extinct relatives. They first occurred in Triassic ( millions years ago) and in the subsequent Jurassic Period ( millions years ago) their distribution was practically worldwide. The surviving species is restricted in the wild to China, and its leaves are strikingly similar to fossil Ginkgo leaves from the Triassic. The restricted geographical range, the unchanged appearance of the leaves, and the motile male sperms have together led to the maidenhair being referred to as a living fossil.

36 GINKGOPHYTA Gynkgo biloba is a dioecious, deciduous tree native to China, bearing fan-shaped leaves with open dichotomous venation. The naked seed is oily and edible but the embryo is bitter. It is widely cultivated.

37 primitive fertilization occurring in Ginkgo and Cycas flagella

38 GNETOPHYTA A remarkable and probably artificial division of gymnosperms that comprises only the Gnetales. There are 3 constituent genera, embracing trees, shrubs, and lianes (Ephedra and Gnetum), and even turnip-like plants (Welwitschia). They show some features being referred to as the closest living relative of angiosperms. These are: strobyla similar to inflorescences; ovule within the perianth tube of flower-like structures; absence of archegonia; tentative of double fertilization (without the formation of endosperm); enthomophilic pollination (production of nectars); presence of trachea into xylem; leaves in some cases similar to those of angiosperms.

39 GNETOPHYTA The sole genus, with 28 species, of the pantropical gymnosperm family Gnetaceae, of which 26 species are woody climbers with gouty nodes, and 2 are trees. They are dioecious, and often cauliflorous. The seeds are naked, borne on racemes, and edible in many species. hard leaves of Gnetum, similar to those of Angiospems

40 GNETOPHYTA a b Ephedra nebrodensis Ephedra sinica Ephedra is a genus of shrubs which have scalelike leaves and whip-like, slender green stems. Their ovule is naked within the perianth, which becomes woody around the seed. There are 40 species, found in the warm temperate regions of each hemisphere.

41 GNETOPHYTA Welwitschia, the sole genus, with only one species (W. mirabilis) of the remarkable gymnosperm family Welwitschiaceae of the deserts of southwestern Africa. It has a barrel-like stem with a deep tap root, bearing on its rim big, tattering, strap-like leaves, and ovules within the perianth tube of the female flower-like structure.

Botany: An introduction to plant biology, 5 ed. Mauseth. Chapter 22

Botany: An introduction to plant biology, 5 ed. Mauseth. Chapter 22 63 UNIT 5: GYMNOSPERMS th Botany: An introduction to plant biology, 5 ed. Mauseth. Chapter 22 OBJECTIVES This lab considers the gymnosperms, vascular plants that produce seeds but lack flowers and fruits.

More information

30 Plant Diversity II: The Evolution of Seed Plants

30 Plant Diversity II: The Evolution of Seed Plants CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 30 Plant Diversity II: The Evolution of Seed Plants Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Transforming

More information

Seed Plants: An Overview of Terms

Seed Plants: An Overview of Terms Topic 25. Introduction to the Seed Plants: The Gymnosperms Domain Eukarya Kingdom Plantae The Conifers Genus Pinus The Cycads The Ginkgoes Gnetophyes (The Vessel Bearing Gymnosperms) Seed Plants: An Overview

More information

Overview: Transforming the World

Overview: Transforming the World Chapter 30 Plant Diversity II: The Evolution of Seed Plants PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information

Chapter 12. Biology of Non-Flowering Plants

Chapter 12. Biology of Non-Flowering Plants BOT 3015L (Sherdan/Outlaw/Aghoram); Page 1 of 12 Chapter 12 Biology of Non-Flowering Plants Objectives Overview of Non-Flowering Plants. Know the distinguishing characteristics of plants. Know the plant

More information

The plant kingdom is in the domain Eukarya and in the supergroup Archaeplastida

The plant kingdom is in the domain Eukarya and in the supergroup Archaeplastida Kingdom Plantae The plant kingdom is in the domain Eukarya and in the supergroup Archaeplastida The closest living relative of plants are in the green algae are charophytes. At one time the had a common

More information

Kingdom Plantae, Part II - Gymnosperms and Angiosperms

Kingdom Plantae, Part II - Gymnosperms and Angiosperms Kingdom Plantae, Part II - Gymnosperms and Angiosperms I. Introduction Reproduction in the seed plants (Gymnosperms and Angiosperms) has been greatly influenced by the requirements of a terrestrial existence.

More information

Plant Diversity II: The Evolution of Seed Plants

Plant Diversity II: The Evolution of Seed Plants Plant Diversity II: The Evolution of Seed Plants Overview: Feeding the World Seeds changed the course of plant evolution Enabling their bearers to become the dominant producers in most terrestrial ecosystems

More information

The Land Plants. Chapter 23 Part 2

The Land Plants. Chapter 23 Part 2 The Land Plants Chapter 23 Part 2 23.5 Ancient Carbon Treasures In the Carboniferous, plants with ligninreinforced tissues flourished, died, and became compacted into coal, a nonrenewable fossil fuel Lepidodendron,

More information

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings Introduction It has been said that an oak is an acorn s way of making more acorns. In a Darwinian view of life, the fitness of an organism is measured only by its ability to replace itself with healthy,

More information

Chapter 22 The Land Plants. Cengage Learning 2016

Chapter 22 The Land Plants. Cengage Learning 2016 Chapter 22 The Land Plants 22.2 Plant Ancestry and Diversity Plants Multicelled Photosynthetic eukaryotes Adapted to life on land Close relatives of red algae and green algae Contain cellulose cell walls

More information

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings Introduction It has been said that an oak is an acorn s way of making more acorns. In a Darwinian view of life, the fitness of an organism is measured only by its ability to replace itself with healthy,

More information

plant reproduction Alternation of Generations chapter 38

plant reproduction Alternation of Generations chapter 38 Alternation of Generations Haploid (n) plant reproduction chapter 38 Diploid (2n) Sporangium Spore dispersal Spore (n) Young Mature (n) ARCHEGONIUM ANTHERIDIUM Sperm Mature Sorus Sporangium sporophyte

More information

Plant Reproduction. In a nutshell

Plant Reproduction. In a nutshell Plant Reproduction In a nutshell 2007-2008 Plant Diversity mosses ferns conifers flowering plants Bryophytes non-vascular land plants Pteridophytes seedless vascular plants Gymnosperm pollen & naked seeds

More information

Plants II Reproduction: Adaptations to Life on Land

Plants II Reproduction: Adaptations to Life on Land Plants II Reproduction: Adaptations to Life on Land Objectives: Understand the evolutionary relationships between plants and algae. Know the features that distinguish plants from algae. Understand the

More information

PRESENT

PRESENT Chapter 29 Plants 29.1 Evolutionary History of Plants Domain Eukarya, kingdom Plantae Plants evolved from freshwater green algae 450 million years ago Both contain chlorophyll a and b and accessory pigments

More information

Unit 16.3: Variation in Plant Life Cycles

Unit 16.3: Variation in Plant Life Cycles Unit 16.3: Variation in Plant Life Cycles Lesson Objectives Describe a general plant life cycle. Outline the life cycle of nonvascular plants. Describe the life cycle of seedless vascular plants. Summarize

More information

plant reproduction chapter 40 Alternation of Generations

plant reproduction chapter 40 Alternation of Generations Alternation of Generations plant reproduction chapter 40 Haploid (n) Diploid (2n) Sporangium Spore dispersal Spore (n) Young Mature (n) Archegonium Antheridium Sperm Sporangium Mature sporophyte (2n) New

More information

Chapter 38 Angiosperm Reproduction and Biotechnology

Chapter 38 Angiosperm Reproduction and Biotechnology Chapter 38 Angiosperm Reproduction and Biotechnology Concept 38.1 Pollination enables gametes to come together within a flower Diploid (2n) sporophytes produce spores by meiosis; these grow into haploid

More information

Chapter 31: Plant Reproduction

Chapter 31: Plant Reproduction Chapter 31: Plant Reproduction Plants and Pollinators Pollen had evolved by 390 million years ago Sperm packed inside a nutritious package Transferred first by wind currents Later transferred by insects

More information

Alternation of generations

Alternation of generations Plant Life Cycles Allplants alternate between two phases in their life cycles Alternation of generations Sporophyte (diploid) Begins when sperm fertilizes egg (zygote) Diploid zygote divides by mitosis

More information

Reproductive Development and Structure

Reproductive Development and Structure Reproductive Development and Structure Bởi: OpenStaxCollege Sexual reproduction takes place with slight variations in different groups of plants. Plants have two distinct stages in their lifecycle: the

More information

Plants II Reproduction: Adaptations to Life on Land

Plants II Reproduction: Adaptations to Life on Land Plants II Reproduction: Adaptations to Life on Land Objectives: Be able to describe/illustrate the evolutionary relationships of embryophytes. Be able to map major events in the evolution of plant reproduction

More information

Reproduction in Plants

Reproduction in Plants 23 Reproduction in Plants section 1 Introduction to Plant Reproduction Before You Read On the lines below, describe the characteristics you use to recognize friends and family members in old photos. In

More information

MICROSPORANGIA, MICROSPORES, MALE GAMETOPHYTES

MICROSPORANGIA, MICROSPORES, MALE GAMETOPHYTES LAB 06: Seed Plant Synapomorphies Introduction to non-flowering seed plants (Gymnosperms) A seed is a highly modified megasporangium, so seed plants are heterosporous. We will review important differences

More information

NOTES: CH 38 Plant Reproduction

NOTES: CH 38 Plant Reproduction NOTES: CH 38 Plant Reproduction *Modifications in reproduction were key adaptations enabling plants to spread into a variety of terrestrial habitats. * Water has been replaced by wind and animals as a

More information

Plant Life Cycles. Plant life cycles alternate between. producing gametes. Life cycle phases look different among various

Plant Life Cycles. Plant life cycles alternate between. producing gametes. Life cycle phases look different among various Plant Life Cycles Plant life cycles alternate between two cycles: Producing spores and producing gametes A two phase life cycle is called alternation of generations Diploid phase Haploid phase Alternates

More information

2014 Pearson Education, Inc. 1

2014 Pearson Education, Inc. 1 1 Stamen Anther Filament Stigma Carpel Style Ovary Petal Sepal Ovule 2 A B Sepals Petals Stamens Carpels C A + B gene activity B + C gene activity C gene activity Carpel Petal (a) A schematic diagram of

More information

Seed Plants Lab. Learning Objectives. Procedure and Questions

Seed Plants Lab. Learning Objectives. Procedure and Questions Seed Plants Lab Learning Objectives Define the terms (meanings of the names) angiosperm and gymnosperm State what type of cells create eggs and what type of cells create sperm in gymnosperms and angiosperms

More information

2. When and where does reduction division take place in the life cycle of a liverwort, a moss, a fern, a gymnosperm and an angiosperm?

2. When and where does reduction division take place in the life cycle of a liverwort, a moss, a fern, a gymnosperm and an angiosperm? CLASS XI BIOLOGY Plant Kingdom 1. What is the basis of classification of algae? Answer: The main basis of classification of algae has been done on the basis of presence or absence of pigments, which impart

More information

Plant Reproduction fertilization

Plant Reproduction fertilization Plant Reproduction In the plant kingdom, both sexual and asexual reproduction occur. Recall from Chapter 3 that plants reproduce sexually by sporic reproduction, which is also called alternation of generations.

More information

Angiosperm Reproduction

Angiosperm Reproduction Name Angiosperm Reproduction Today you will examine closely the reproductive aspects of the Anthophyta (aka Magnoliophyta aka Angiosperms) to finish your phylogenetic study of reproduction and evolution

More information

Chapter 38: Angiosperm Reproduction and Biotechnology

Chapter 38: Angiosperm Reproduction and Biotechnology Name: Chapter 38: Angiosperm Reproduction and Biotechnology 38.1 Flowers, double fertilization, and fruits are unique features of the angiosperm life cycle This may be a good time for you to go back and

More information

Chapter 38. Plant Reproduction. AP Biology

Chapter 38. Plant Reproduction. AP Biology Chapter 38. Plant Reproduction 1 Animal vs. Plant life cycle Animal multicellular 2n Plant multicellular sporophyte 2n gametes 1n spores 1n unicellular gametes 1n multicellular gametophyte 1n 2 Alternation

More information

Chapter 38. Plant Reproduction. AP Biology

Chapter 38. Plant Reproduction. AP Biology Chapter 38. Plant Reproduction 1 Animal vs. Plant life cycle Animal multicellular 2n Plant multicellular sporophyte 2n gametes 1n spores 1n unicellular gametes 1n multicellular gametophyte 1n 2 Alternation

More information

Ontwikkeling; bevruchting

Ontwikkeling; bevruchting Ontwikkeling; bevruchting http://www.lima.ohiostate.edu/biology/archive/flowers. html Young Lily anther x40. Four pollen sacs and a cross section of the fillament are visible. Diploid (2N chromosomes)

More information

NCERT Solutions for Class 12 Biology Chapter 2

NCERT Solutions for Class 12 Biology Chapter 2 NCERT Solutions for Class 12 Biology Chapter 2 Sexual Reproduction in Flowering Plants Class 12 Chapter 2 Sexual Reproduction in Flowering Plants Exercise Solutions Exercise : Solutions of Questions on

More information

Chapter 17. Part 1 Plants. Plants, Fungi, and the Colonization of Land. Lecture by Dr. Prince

Chapter 17. Part 1 Plants. Plants, Fungi, and the Colonization of Land. Lecture by Dr. Prince Chapter 17 Plants, Fungi, and the Colonization of Land Part 1 Plants Lecture by Dr. Prince Plants and Fungi A Beneficial Partnership Plants and fungi colonized land together Mycorrhizae, mutually beneficial

More information

Sexual Reproduction in Flowering Plants

Sexual Reproduction in Flowering Plants Sexual Reproduction in Flowering Plants Four main events must occur in order for sexual reproduction to take place. 1. The organism must be developed and mature sexually. 2. Gametogenesis; production of

More information

Flowering Plant Reproduction

Flowering Plant Reproduction Lab Exercise Flowering Plant Reproduction Objectives - To be able to identify the parts of a flower - Be able to distinguish between dicots and monocots based on flower morphology - Become familiar with

More information

Sexual Reproduction in Flowering Plants

Sexual Reproduction in Flowering Plants Sexual Reproduction in Flowering Plants Question 1: Name the parts of an angiosperm flower in which development of male and female gametophyte take place. Answer :- The male gametophyte or the pollen grain

More information

SPINE ROAD HIGH SCHOOL

SPINE ROAD HIGH SCHOOL SPINE ROAD HIGH SCHOOL LIFE SCIENCES DEPARTMENT LIFE SCIENCES CONTROL TEST 2-2017 EXAMINER: T. GABRIELS MODERATOR: Z. SHADE GRADE 11 TIME: 1 HOUR MARKS: 60 INSTRUCTIONS AND INFORMATION Read the following

More information

Biology Class 12 th NCERT Solutions

Biology Class 12 th NCERT Solutions Chapter.2 Sexual Reproduction in Flowering Plants Class XII Subject Biology 1. Name the parts of an angiosperm flower in which development of male and female gametophyte take place. Answer 1. Pollen grains

More information

Unit E: Plant Propagation. Lesson 1: Understanding Sexual Reproduction

Unit E: Plant Propagation. Lesson 1: Understanding Sexual Reproduction Unit E: Plant Propagation Lesson 1: Understanding Sexual Reproduction 1 Vocabulary Cross-pollination Diploid Endosperm Fertilization Gametes Genes Haploid Hybrids Pollination Seed Self-pollination Sexual

More information

Downloaded from CHAPTER 2 SEXUAL REPRODUCTION IN FLOWERING PLANTS POINTS TO REMEMBER

Downloaded from   CHAPTER 2 SEXUAL REPRODUCTION IN FLOWERING PLANTS POINTS TO REMEMBER CHAPTER 2 SEXUAL REPRODUCTION IN FLOWERING PLANTS POINTS TO REMEMBER Autogamy : When pollen grains of a flower are transferred from anther to stigma of the same flower. Coleorhiza : A protective sheath

More information

Reproduction and Development in Flowering Plants

Reproduction and Development in Flowering Plants Reproduction and Development in Flowering Plants Sexual Reproduction in Flowering Plants The flower functions in sexual reproduction of plants and precedes the development of seeds and fruits. Flowers

More information

BIOLOGY 3201 REPRODUCTION

BIOLOGY 3201 REPRODUCTION BIOLOGY 3201 REPRODUCTION Asexual vs. Sexual Reproduction MODES OF REPRODUCTION (1) Asexual one parent cell divides into two by mitosis to produce 2 identical cells which are clones of the parent (2) Sexual

More information

Angiosperm Reproduction (Ch.24) (Ch. 38)

Angiosperm Reproduction (Ch.24) (Ch. 38) Angiosperm Reproduction (Ch.24) (Ch. 38) Charophyceans Bryophytes (nonvascular plants) Seedless vascular plants Gymnosperms Angiosperms Rafflesia arnoldii, monster flower of Indonesia Orchid (Lemboglossum

More information

Plants Provision for Life. Chapter 2 7 th Grade

Plants Provision for Life. Chapter 2 7 th Grade Plants Provision for Life Chapter 2 7 th Grade Lesson 2.1- Structure of Flowers Pistil- female reproductive structure Stigma- sticky top part. Traps pollen. Style- slender tube connecting stigma and ovary.

More information

Dr. Maninder Kaur. Associate Professor Botany Post Graduate Government College for Girls Sector-11, Chandigarh

Dr. Maninder Kaur. Associate Professor Botany Post Graduate Government College for Girls Sector-11, Chandigarh Dr. Maninder Kaur Associate Professor Botany Post Graduate Government College for Girls Sector-11, Chandigarh Systematic Position Gymnospermae Division: Coniferophyta Class: Coniferopsida Order: Coniferales

More information

Reproduction in plants

Reproduction in plants Reproduction in plants No individual organism can live forever, but reproduction makes sure that organisms do not become extinct. Organisms reproduce sexually or asexually and some organisms, such as angiosperms

More information

Flowering plants can be pollinated by wind or animals.

Flowering plants can be pollinated by wind or animals. Wed 4/5 Activities Learning Target Class Activities *attached below (scroll down)* Website: my.hrw.com Username: bio678 Password:a4s5s Describe the reproductive organs and fertilization of flowering plants.

More information

ANGIOSPERM L.S. POLLEN GRAIN

ANGIOSPERM L.S. POLLEN GRAIN ANGIOSPERM 2 L.S. POLLEN GRAIN ANGIOSPERM T 2 CELLS L.S. POLLEN GRAIN ANGIOSPERM TUBE CELL G L.S. POLLEN GRAIN ANGIOSPERM TUBE CELL > L.S. GENERATIVE CELL POLLEN GRAIN ANGIOSPERM TUBE CELL GENERATIVE CELL

More information

STROBILUS HOMOSPOROUS LYCOPODIUM

STROBILUS HOMOSPOROUS LYCOPODIUM STROBILUS HOMOSPOROUS LYCOPODIUM I SPORES HOMOSPOROUS LYCOPODIUM EUSPORANGIUM L.S. ISOSPORES HOMOSPOROUS LYCOPODIUM EUSPORANGIUM L.S. SPOROPHYTE STROBILUS LYCOPODIUM ISOSPORE M ISOSPORES SPOROPHYLL L.S.

More information

Angiosperms. The most diverse group of plants, with about 14,000 genera and 257,000 species.

Angiosperms. The most diverse group of plants, with about 14,000 genera and 257,000 species. Angiosperms The most diverse group of plants, with about 14,000 genera and 257,000 species. Angiosperms How do angiosperms differ from gymnosperms? Angiosperms How do angiosperms differ from gymnosperms?

More information

Chapter 40 Flowering Plant Sexual Reproduction

Chapter 40 Flowering Plant Sexual Reproduction 3.6 Reproduction & Growth 3.6.1 Reproduction of The Flowering Plant Chapter 40 Flowering Plant Sexual Reproduction Learning Objectives 1. Give the structure and function of the floral parts. 2. Outline

More information

THE GYMNOSPERMS. Springer-Verlag. Chhaya Biswas C B.M. Johri. Narosa Publishing House

THE GYMNOSPERMS. Springer-Verlag. Chhaya Biswas C B.M. Johri. Narosa Publishing House THE GYMNOSPERMS Chhaya Biswas C B.M. Johri Springer-Verlag Narosa Publishing House Preface Acknowledgements vii ix 1. Introduction 1-11 Antiquity and Fossil History 1 Geographical Distribution 4 Cycadales

More information

BIOLOGY CLASS: VIII TOPIC: Life Processes: Growth, Reproduction & Development (plants) Difference between self-pollination & cross pollination

BIOLOGY CLASS: VIII TOPIC: Life Processes: Growth, Reproduction & Development (plants) Difference between self-pollination & cross pollination BIOLOGY CLASS: VIII TOPIC: Life Processes: Growth, Reproduction & Development (plants) Difference between self-pollination & cross pollination Self -Pollination 1. It is transfer of pollen grains from

More information

The Flower, Pollination, and Seeds

The Flower, Pollination, and Seeds The Flower, Pollination, and Seeds Class 9 th Chapters 6,7,8 1 The Flower A complete or a perfect flower, has all the four Whorls. If, even one whorl is missing, it is an Incomplete Flower. The fourth

More information

Angiosperm Reproduction and Biotechnology

Angiosperm Reproduction and Biotechnology Chapter 38 Angiosperm Reproduction and Biotechnology PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

A GLAUCA (MOENCH) VOSS EMBRYOLOGY OF PIC. R. M. Rauter 2/ and J. L. Farrar INTRODUCTION

A GLAUCA (MOENCH) VOSS EMBRYOLOGY OF PIC. R. M. Rauter 2/ and J. L. Farrar INTRODUCTION 2/ EMBRYOLOGY OF PIC A GLAUCA (MOENCH) VOSS R. M. Rauter 2/ and J. L. Farrar INTRODUCTION In a tree improvement program, it is important to understand the morphological and physiological development of

More information

BIO-BOTANY important questions to discuss for NEET 2018/Matric Exam HOPE ACADEMY HOSUR

BIO-BOTANY important questions to discuss for NEET 2018/Matric Exam HOPE ACADEMY HOSUR Questions = 45 REPRODUCTION IN FLOWERING PLANTS 1 1. Which is the characteristics for ornithophily (1) Scented flowers (2) Bright red colored flowers and infloresnce (3) White colored funnel shaped large

More information

SEXUAL REPRODUCTION IN FLOWERING PLANTS

SEXUAL REPRODUCTION IN FLOWERING PLANTS SEXUAL REPRODUCTION IN FLOWERING PLANTS 9 CHAPTER 2 SEXUAL REPRODUCTION IN FLOWERING PLANTS MULTIPLE-CHOICE QUESTIONS 1. Among the terms listed below, those that of are not technically correct names for

More information

A2 WJEC BIOLOGY UNIT 4 Sexual reproduction in plants

A2 WJEC BIOLOGY UNIT 4 Sexual reproduction in plants A2 WJEC BIOLOGY UNIT 4 Sexual reproduction in plants Biology Department - Gower College Swansea The generalised structure of flowers to be able to compare wind and insect pollinated flowers Learners should

More information

Chapter-4 Plant Kingdom

Chapter-4 Plant Kingdom Chapter-4 Plant Kingdom Very Short Answer Questions 1. What is the basis of classification of Algae? A: Pigments and types of stored food. 2. When and where does reduction division takes place in the life

More information

BIOLOGI UMUM Priyambodo, M.Sc.

BIOLOGI UMUM Priyambodo, M.Sc. BIOLOGI UMUM Priyambodo, M.Sc. KONSEP REPRODUKSI TUMBUHAN KONSEP REPRODUKSI TUMBUHAN Vegetatif vs generatif VEGETATIF VS GENERATIF Menurut pendapat Anda, makanah jenis reproduksi yang lebih baik bagi tumbuhan?

More information

13.3. Sexual Reproduction in Seed Plants. Seed Function and Structure

13.3. Sexual Reproduction in Seed Plants. Seed Function and Structure Sexual Reproduction in Seed Plants In the previous section you saw that plants can reproduce by asexual reproduction, which can quickly establish a population of plants. However, asexual reproduction cannot

More information

CHAPTER 2 Reproduction of Flowering Plants. Bui Tan Anh College of Natural Sciences

CHAPTER 2 Reproduction of Flowering Plants. Bui Tan Anh College of Natural Sciences CHAPTER 2 Reproduction of Flowering Plants Bui Tan Anh College of Natural Sciences Rafflesiaarnoldii in Indonesia Asexual Reproduction Sexual Reproduction Seeds and Fruits Flower Plant Reproduction Many

More information

Plant Science 1203L Laboratory 5 - Sexual Reproduction (Pollination and Double Fertilization)

Plant Science 1203L Laboratory 5 - Sexual Reproduction (Pollination and Double Fertilization) Plant Science 1203L Laboratory 5 - Sexual Reproduction (Pollination and Double Fertilization) Today s lab is about sexual reproduction in plants. As with stem or root structure there are numerous definitions

More information

Chapter 38: Angiosperm Reproduction and Biotechnology: To Seed or Not to Seed

Chapter 38: Angiosperm Reproduction and Biotechnology: To Seed or Not to Seed Chapter 38: Angiosperm Reproduction and Biotechnology: To Seed or Not to Seed The parasitic plant Rafflesia arnoldi produces huge flowers that produce up to 4 million seeds Many angiosperms reproduce sexually

More information

Flower Morphology. Flower Structure

Flower Morphology. Flower Structure wrong 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 right 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 score 100 98.8 97.6 96.4 95.2 94.0 92.9 91.7 90.5 89.3 88.1 86.9 85.7 84.5

More information

THE LIFE CYCLE OF A HETEROSPOROUS PTERIDOPHYTE.

THE LIFE CYCLE OF A HETEROSPOROUS PTERIDOPHYTE. Jan., 1905.] Heterosporous Pteridophyte. 255 THE LIFE CYCLE OF A HETEROSPOROUS PTERIDOPHYTE. JOHN H SCHAFFNER. The Heterosporous Pteridophytes represent the highest stage of development in the second or

More information

Flowers, Fruit and Seeds Notes Flower Structure and Reproduction Taken from

Flowers, Fruit and Seeds Notes Flower Structure and Reproduction Taken from Flowers, Fruit and Seeds Notes Flower Structure and Reproduction Taken from http://www.biologycorner.com/worksheets/flower_coloring.html Flowers are the plant's reproductive structures. Angiosperms are

More information

On the Use of Some Common Botanical Terms

On the Use of Some Common Botanical Terms The Ohio State University Knowledge Bank kb.osu.edu Ohio Journal of Science (Ohio Academy of Science) Ohio Journal of Science: Volume 2, Issue 5 (March, 1902) 1902-03 On the Use of Some Common Botanical

More information

BIOLOGY 210 Lab #9 Page 72 ANGIOSPERMS

BIOLOGY 210 Lab #9 Page 72 ANGIOSPERMS BIOLOGY 210 Lab #9 Page 72 ANGIOSPERMS Angiosperm (Flowering Plant) Reproduction Raven 6 th, p. 495-515; 7 th, p. 434-451 A. Introduction You studied the morphology and anatomy of the stems, roots, and

More information

SEXUAL REPRODUCTION IN PLANTS WITH SEEDS

SEXUAL REPRODUCTION IN PLANTS WITH SEEDS There are several stages in the process of sexual reproduction in plants with seeds (spermatophytes): gamete formation, pollintation, fertilisation, seed and fruit formation, seed disemination and seed

More information

POLYGONUM EMBRYO SAC CHALAZAL END ANTIPODAL CELL EMBRYO SAC OVULE L.S.

POLYGONUM EMBRYO SAC CHALAZAL END ANTIPODAL CELL EMBRYO SAC OVULE L.S. POLYGONUM EMBRYO SAC? CHALAZAL END ANTIPODAL CELL EMBRYO SAC OVULE L.S. POLYGONUM EMBRYO SAC C CHALAZAL END ANTIPODAL CELL? EMBRYO SAC OVULE L.S. POLYGONUM EMBRYO SAC? CHALAZAL END ANTIPODAL CELL CENTRAL

More information

Sexual Reproduction in Flowering Plants

Sexual Reproduction in Flowering Plants Sexual Reproduction in Flowering Plants Pre Fertilisation Events Several hormonal and structural changes result in the development of a flower. Inflorescences bear the flower buds, and then the flowers.

More information

b. What is the difference between asexual and sexual reproduction?

b. What is the difference between asexual and sexual reproduction? Unit 4: Reproduction 1. Reproduction function 2. Reproduction in animals 2.1. Asexual reproduction 2.2. Sexual reproduction 3. Reproduction in plants 3.1. Asexual reproduction 3.2. Sexual reproduction

More information

CHAPTER 2 Sexual reproduction in flowering plants.

CHAPTER 2 Sexual reproduction in flowering plants. CHAPTER 2 Sexual reproduction in flowering plants 8 1 7 CHAPTER 2 SEXUAL REPRODUCTION INFLOWERING PLANTS FLOWERS Site of sexual Reproduction. Male and female reproductive organs are borne on flowers. PARTS

More information

Glossary. The living component or part of the biosphere. An animal's body takes on the same temperature as that of their environment.

Glossary. The living component or part of the biosphere. An animal's body takes on the same temperature as that of their environment. Abiotic component Adventitious roots Amnion Angiosperms Arachnids Arthropods Atmosphere Autotrophic Biodiversity Biosphere Biotic component Coldblooded Contraceptives Crosspollination Crustacea Dicotyledons

More information

Flower Morphology. Flower Structure. Name

Flower Morphology. Flower Structure. Name right 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 score 100 98.8 97.6 96.4 95.2 94.0 92.9 91.7 90.5 89.3 88.1 86.9 85.7 84.5 83.3 82.1 81.0 79.8 Flower Morphology Name You are already familiar

More information

Modes of Reproduction

Modes of Reproduction Modes of Reproduction Very Short answer Questions 1. What is the dominant phase in the life cycle of an angiosperm? A: Sporophyte phase (diploid phase). 2. What is meant by heterospory? Mention the two

More information

PLANT REPRODUCTION CHAPTER. SECTION 1 Plant Life Cycles. SECTION 2 Sexual Reproduction in Flowering Plants. SECTION 3 Dispersal and Propagation

PLANT REPRODUCTION CHAPTER. SECTION 1 Plant Life Cycles. SECTION 2 Sexual Reproduction in Flowering Plants. SECTION 3 Dispersal and Propagation CHAPTER 30 PLANT REPRODUCTION Two pollen grains (yellow) have been deposited on the stigma of a goose-grass (Galium aparine) flower. A pollen tube can be seen growing from the pollen grain on the right.

More information

Announcements: Arb field trip next week on Th, Fr, Sat; sign up for a time this week or next. First lab quiz next week on Wednesday

Announcements: Arb field trip next week on Th, Fr, Sat; sign up for a time this week or next. First lab quiz next week on Wednesday Week 2; Monday Announcements: Arb field trip next week on Th, Fr, Sat; sign up for a time this week or next. First lab quiz next week on Wednesday Plant Morphology - form or structure of a plant and its

More information

o Production of genetically identical offspring from one parent o E.g. - Bacteria Reproduce by binary fission a cell to divide into 2

o Production of genetically identical offspring from one parent o E.g. - Bacteria Reproduce by binary fission a cell to divide into 2 Reproduction (IGCSE Biology Syllabus 2016-2018) Asexual Reproduction o Production of genetically identical offspring from one parent o E.g. - Bacteria Reproduce by binary fission a cell to divide into

More information

Angiosperms * OpenStax

Angiosperms * OpenStax OpenStax-CNX module: m44650 1 Angiosperms * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you will be able to:

More information

Past Questions on Plant Reproduction

Past Questions on Plant Reproduction Past Questions on Plant Reproduction Name the parts labelled A, B, C, D in figure 1 State one function for each A and B. Figure 1 Name the parts labelled A, B, C, D,E and F in figure 2 What is the function

More information

The Flower - what is it? 1/31/18. Magnoliophyta - Flowering Plants. Magnoliophyta - Flowering Plants. Magnoliophyta - Flowering Plants

The Flower - what is it? 1/31/18. Magnoliophyta - Flowering Plants. Magnoliophyta - Flowering Plants. Magnoliophyta - Flowering Plants - what is it? Floral structure will be examined in lab next Mon/Tues save space in your notes! Introduction to Angiosperms "angio-" = vessel; so "angiosperm" means "vessel for the seed [seed encased in

More information

Plant Reproduction. More Exciting Than You Think

Plant Reproduction. More Exciting Than You Think Plant Reproduction More Exciting Than You Think Ever seen Silence of the Lambs?? Fava beans anyone? Check this. Now for Chapter 4 of Survival of the Sickest. Fig. 38.1 2. Flowers are specialized leaves

More information

Academic Achievement Center 524 Cook Library (p)

Academic Achievement Center 524 Cook Library  (p) READING STRATEGIES TO INCREASE COMPREHENSION Academic Achievement Center 524 Cook Library www.towson.edu/aac achieve@towson.edu (p)410-704-2291 After reading a chapter in your textbook Has this ever happened

More information

Structure & Life Cycle of Anthoceros

Structure & Life Cycle of Anthoceros Structure & Life Cycle of Anthoceros Anthoceros General Characters Gametophytic Plant Body (The Adult gametophyte) Vegetative Structure: External Features It occurs in moist, shaded habitats in sub-tropical

More information

Unit -VI Chapter-2. Sexual Reproduction in Flowering Plants

Unit -VI Chapter-2. Sexual Reproduction in Flowering Plants Unit -VI Chapter-2. Sexual Reproduction in Flowering Plants IMPORTANT POINTS - Reproduction is the most important feature of living organisms. - It is a process of producing offspring, ie., the next generation,

More information

Introduction 1. INTRODUCTION

Introduction 1. INTRODUCTION 1. INTRODUCTION Early in their evolution, plants have acquired a life cycle that alternates between a multicellular haploid organism, the gametophyte and a multicellular diploid organism, the sporophyte.

More information

Reproduction 19/02/2016. Asexual Reproduction. Budding: Types of asexual reproduction: SEXUAL VS. ASEXUAL

Reproduction 19/02/2016. Asexual Reproduction. Budding: Types of asexual reproduction: SEXUAL VS. ASEXUAL Asexual Reproduction Reproduction SEXUAL VS. ASEXUAL One parent cell divides by mitosis to produce 2 daughter cells which are clones of the parent Types of asexual reproduction: Budding: 1. Budding 2.

More information

3/18/2012. Chapter 36. Flower Parts. Flower Parts. Reproduction in Angiosperms

3/18/2012. Chapter 36. Flower Parts. Flower Parts. Reproduction in Angiosperms Chapter 36 Reproduction in Angiosperms Bryophytes >450mya 360 mya Fig. 27-4, p. 584 Lily Flower Flower Parts Sepals cover and protect flower parts in bud Collectively calyx Petals Can attract animal pollinators

More information

Angiosperm Reproduction and Biotechnology

Angiosperm Reproduction and Biotechnology LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 38 Angiosperm Reproduction and

More information

6. REPRODUCTION [The generating system] 1. Organisms capable of giving rise to off springs by the process of 2. Budding can be seen in 3. Fragmentation can be seen in 4. The process in which female gametes

More information

Topic 21. The Non-Vascular Plants

Topic 21. The Non-Vascular Plants Topic 21. The Non-Vascular Plants Plants are eukaryotic, photosynthetic organisms with chlorophylls a and b, xanthophylls and carotenoids. they have cell walls with cellulose, and store food as starch

More information

BIOLOGY. Reproduction of flowering Plants CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Reproduction of flowering Plants CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 38 Reproduction of flowering Plants Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Flowers of Deceit Insects

More information