The Cerebellum. Little Brain. Neuroscience Lecture. Dr. Laura Georgescu

Size: px
Start display at page:

Download "The Cerebellum. Little Brain. Neuroscience Lecture. Dr. Laura Georgescu"

Transcription

1 The Cerebellum Little Brain Neuroscience Lecture Dr. Laura Georgescu

2 Learning Objectives 1. Describe functional anatomy of the cerebellum- its lobes, their input and output connections and their functions. 2. Draw and label the circuitry of the cerebellum cortex, assign the functional role of each neuron type and give its synaptic action (excitatory/inhibitory). 3. Describe what is known about the role of the cerebellum in the regulation of skilled movement and in motor learning. 4. Explain servo-control mechanisms as a model for cerebellar regulation of movements. 5. Predict the neurological disturbances that can result from disease or damage in different regions of the cerebellum.

3 Introduction The basal ganglia and cerebellum modify movement on a minute to minute basis. The motor cortex sends information to both, and both structures send information back via the thalamus (no direct projections to lower motor neurons of skeletal muscles) The balance between these two systems allows for smooth, coordinated movement, and a disturbance in either system will show up as movement disorders.

4 The Cerebellum Cerebellum (Latin, little brain)= little brain 10 % total volume of the brain but more than half of all its neurons. Arranged in a highly regular manner as repeating units but with input and outputs from virtually all motor cortical regions as well as the spinal cord (in particular proprioceptive input) the cerebellum is provided with extensive information (40 times more axons project into the cerebellum than exit from it) the cerebellum is not necessary to basic elements of perception or movement. damage to the cerebellum disrupts the spatial accuracy and temporal coordination of movement. It impairs balance and reduces muscle tone and motor learning and certain cognitive functions.

5 Functions of the Cerebellum Maintenance of balance and posture. Through its input from vestibular receptors and proprioceptors, it modulates commands to motor neurons Coordination of voluntary movements. Most movements are composed of a number of different muscle groups acting together in a temporally coordinated fashion Motor learning. The cerebellum - a major role in adapting and finetuning motor programs to make accurate movements through a trial-and-error process (e.g., learning to hit a baseball). Cognitive functions. Involved in certain cognitive functions - language. Thus, like the basal ganglia, the cerebellum is historically considered as part of the motor system, but its functions extend beyond motor control in ways that are not yet well understood.

6 The Cerebellum Shape: Oval shaped, with an approximate weight of 150 gm Location: Situated in the posterior cranial fossa, dorsal to the pons and medulla, separated from the overlying cerebral cortex by a tough flap in the dura, the cerebellar tentorium Outer mantle of grey matter Internal layer of white matter that contain deep nuclei

7 Cerebellum - General view Gross features of the cerebellum, including the nuclei, cerebellar peduncles, lobes, folia, and fissures. (Adapted from Nieuwenhuys et al. 1988) A. Dorsal view. Part of the right hemisphere has been cut out to show the underlying cerebellar peduncles. B. Ventral view of the cerebellum detached from the brain stem. C. Midsagittal section through the brain stem and cerebellum, showing the branching structures of the cerebellum.

8 Cerebellar Functional Anatomy 1. Vestibulocerebellum (flocculo-nodular lobe)- lateral vestibular nuclei- Control of eye & head movements, postural maintenance 2. Spinocerebellum (vermis and intermediate zone) - fastigial and interposed nuclei - Control of limbs and trunk, adaptative motor coordination 3. Cerebrocerebellum (lateral zones)- dentate nuclei Planning and timing of movement+ cognitive functions

9 The Cerebellum - Three Functionally Distinct Regions

10 The Cerebellum - Three Functionally Distinct Regions The three functional regions of the cerebellum have different inputs and outputs.

11 Input-output Organization. Cerebellar nuclei. Cerebellar cortex Deep Cerebellar Nuclei: Fastigial Interposed Dendate + + Cortex - Nuclei + Output Vestibular nuclei Extrinsic inputs: mossy fiber climbing fiber All outputs from the cerebellum originate from the cerebellar deep nuclei. Thus, a lesion to the cerebellar nuclei has the same effect as a complete lesion of the entire cerebellum.

12 Input and output pathways of the The cerebellar deep nuclei are the sole outputs of the cerebellum All cerebellar nuclei and all regions of cerebellum get special inputs from the inferior olive of the medulla The anatomical locations of the cerebellar nuclei correspond to the cerebellar cortex regions from which they receive input. The medially located fastigial nucleus receives input from the medially located vermis; the slightly lateral interposed nuclei receive input from the slightly lateral intermediate zone The most lateral dentate nucleus receives input from the lateral hemispheres. cerebellum.

13 Functional organization of cerebellum Cerebellar peduncles = Three fiber bundles carry the input and output of the cerebellum. 1. The inferior cerebellar peduncle (also called the restiform body) primarily contains afferent fibers from the medulla, as well as efferents to the vestibular nuclei. 2. The middle cerebellar peduncle (also called the brachium pontis) primarily contains afferents from the pontine nuclei. 3. The superior cerebellar peduncle (also called the brachium conjunctivum) primarily contains efferent fibers from the cerebellar nuclei, as well as some afferents from the spinocerebellar tract.

14 Functional organization of cerebellum All output is via the deep nuclei except flocculonodular lobe which outputs via lateral and medial vestibular nuclei. 40 times more input than output fibres Cerebellar lesions lead to ipsilateral symptoms because of a double crossing of the output fibres The cerebellum projects to the contralateral motor cortex, via the thalamus, and the corticospinal pathway recrosses the midline at the lower medulla

15 Histology and Connectivity of Cerebellar Cortex The cerebellar cortex is divided into three layers The innermost layer, the granule cell layer, is made of 5 x small, tightly packed granule cells. The middle layer, the Purkinje cell layer, is only 1-cell thick. The outer layer, the molecular layer, is made of the axons of granule cells and the dendrites of Purkinje cells, as well as a few other cell types. The Purkinje cell layer forms the border between the granule and molecular layers.

16 Connectivity The cerebellar cortex has a relatively simple, stereotyped connectivity pattern that is identical throughout the whole structure. Cerebellar input can be divided into two distinct classes: 1. Mossy fibers originate in the pontine nuclei, the spinal cord, the brainstem reticular formation, and the vestibular nuclei, and they make excitatory projections onto the cerebellar nuclei and onto granule cells in the cerebellar cortex. They are called mossy fibers because of the tufted appearance of their synaptic contacts with granule cells. 2. Climbing fibers originate exclusively in the inferior olive and make excitatory projections onto the cerebellar nuclei and onto the Purkinje cells of the cerebellar cortex. They are called climbing fibers because their axons climb and wrap around the dendrites of the Purkinje cell like a climbing vine.

17 Neurons in the Cerebellar Cortex Are Organized into Three Layers

18 Geometrical Plan of Parallel and Climbing Fibers The geometry of the mossy and parallel fiber system contrasts with that of the climbing fiber system. Mossy fibers excite granule cells whose parallel fibers branch transversely to excite hundreds of Purkinje cells several millimeters from the branch point, both medially and laterally. By contrast, climbing fibers branch in the sagittal dimension to excite 10 or so Purkinje cells anterior and posterior to the branch point. The transverse connections of the parallel fibers and the sagittal connections of the climbing fibers thus form an orthogonal matrix.

19 Neurons in the Cerebellar Cortex Are Organized into Three Layers The cerebellar cortex is organized into three layers and contains five types of neurons. A vertical section of a single cerebellar folium, in both longitudinal and transverse planes, illustrates the general organization of the cerebellar cortex. The detail of a cerebellar glomerulus in the granular layer is also shown. A glomerulus is a clear space where the bulbous terminal of a mossy fiber makes synaptic contact with Golgi and granule cells.

20 Functions of the cerebellum The primary function of the cerebellum is to modulate motor output. It compares what will happen with what is intended to happen and makes adjustments. This is referred to as a feed-forward mechanism

21 Functions of the cerebellum 1. Smoothening postural and skilled movements resulting from skeletal muscle contraction (including eyeball movements) 2. Comparison of intent and action (ie., errors) and generates corrective signals 3. Motor learning and adaptation plays a role in automating and optimizing behavior

22 Functions of the cerebellum Feedback systems Reactive Responds to the current state of affairs Depends on sensory signals Feed Forward Systems Anticipatory Depends on sensory information but also through experience Can modify the operation of negative feedback mechanisms Essential for rapid action

23 Functions of the cerebellum Referred to as a silent area as electrical stimulation produces: No movement No sensation However removal or lesions cause severe motor deficits: Movements become uncoordinated and erratic

24 Internal circuitry Simple three layer arrangement: 1. Molecular 2. Purkinje 3. Granule Five cell types: 1. Granule Cells (excitatory) 2. Purkinje Cells (output cells) 3. Golgi Cells 4. Basket Cells 5. Stellate Cells (these are all inhibitory)

25 Internal Circuitry Granule cells Layer (innermost) A very small, densely packed neurons that account for the huge majority of neurons in the cerebellum-10 billion granule cells + interneurons known as Golgi cells These cells receive input from mossy fibers and project to the Purkinje cells Cerebellar glomeruli confluence of mossy fibers on granule cells and golgi cells

26 Internal Circuitry The Purkinje cell Layer (middle) Consists of Purkinje cell bodies (50-80 micrometers) Purkinje cell is one of the most striking cell types in the mammalian brain. Its apical dendrites form a large fan of finely branched processes that extends into the outer molecular The dendritic tree is almost two-dimensional; looked at from the side, the dendritic tree is flat. All Purkinje cells are oriented in parallel. This arrangement has important functional considerations Axons descend to the deep nuclei Release GABA

27 Internal Circuitry Molecular Cell Layer (outermost) Parallel fibers axons from granule cells which synapse with Purkinje cells Interneurons basket cells and stellate cells

28 Internal Circuitry Input to cerebellum is excitatory and via: 1. Mossy fibers 2. Climbing fibers Both inputs go first to the deep nuclei to excite them and then ascend upward into the cerebellum

29 The Purkinje Cells Receive Excitatory Input From Two Afferent Fiber Systems and Are Inhibited by Three Local Interneurons Synaptic organization of the basic cerebellar circuit module. Mossy and climbing fibers convey output from the cerebellum via a main excitatory loop through the deep nuclei. This loop is modulated by an inhibitory side-loop passing through the cerebellar cortex. This figure shows the excitatory (+) and inhibitory (-) connections among the cell types.

30 Output from Purkinje neurons through deep nuclei, to: Cerebral cortex Brainstem Spinal cord Output of Purkinje cells is inhibitory. Output of deep nuclei is excitatory Internal Circuitry

31 Motor circuit

32 Mossy Fibers Originate from nuclei in the spinal cord and brain stem as well as carrying sensory information from the periphery and cortex Terminate on the dendrites of granule cells and excite Purkinje cells via parallel fibers Each Purkinje cell can receive input from as many as 1 million granule cells

33 Mossy and Climbing Fibers Encode Peripheral and Descending Information Differently Simple and complex spikes recorded intracellularly from cerebellar Purkinje cells. Complex spikes (right bracket) are evoked by climbing fiber synapses, while simple spikes (left bracket) are produced by mossy fiber input. (From Martinez et al ) Prolonged depolarization (due to opening of voltage gated calcium channels) with an initial large amplitude spike followed by a high-frequency burst of smalleramplitude action potentialsbelieved to have an important role in motor learning.

34 Climbing Fibers: Firing Patterns It is believed that, during movement, climbing fibers ( by synapsing with Purkinje cell) provide an error signal that depresses parallel fibers that are active concurrently and generate the simple spikes. This allows the correct movements (without the error) to emerge. It is also supposed to be important for motor learning

35 Vestibulocerebellum Vestibular organs, Superior colliculus, Striate (visual) cortex, via pons Vestibulocerebellum Vestibular nuclei (lateral & medial) Vestibulospinal / bulbar tracts

36 Vestibulocerebellum Functions: 1. Coordination of movements of head & eyes 2. Control of axial muscles & limb extensors Maintenance of balance/ posture Lesions: Nystagmus: loss of ability to focus Vertigo: loss of balance Ataxia

37 Spinocerebellum There are body maps on the cerebellar cortex and deep nuclei. Functions: 1. Control of axial and proximal muscles (ongoing movements) 2. Maintenance of balance 3. Coordination of head & eye movements Lesions: Vermis (spinocerebellum or associated nucleus) lesion: 1. Ataxia - wide gait 2. Titubation (head or truncal tremor)

38 Spinocerebellum - intermediate Dorsal spinocerebellar tract, ventral spinocerebellar tract- these provide cerebellum with information from the muscle& joint propriocetors Spinocerebellum (intermediate zone) Interposed nucleus (emboliform & globose) 1. Descending Dorsolateral system: Magnocelular red nucleus & rubrospinal tract 2. Motor cortex (distal limb areas) via ventrolateral thalamus

39 Spinocerebellum Lesions 1. Dysarthria - motor speech disorder 2. Dysmetria - loss of control of movement often characterized by overshooting of undershooting the target - results from loss of the feed-forward anticipatory control of movement

40 Spinocerebellum Lesions 3. Intention tremor broad coarse tremor that increases as target is aproached 4. Decreased muscle tone in limbs 5. Pendular movement of limbs

41 Cerebrocerebellum Receives fibers from the motor cortex, premotor cortex via the pontine nuclei Cerebrocerebellum Dentate nucleus 1. Red nucleus sends output to the ipsilateral inferior olivary nucleus which goes back to the cerebellum via the climbing fibers 2. Primary Motor cortex and premotor area via the thalamus

42 Cerebrocerebellum Functions: 1. Planning, initiation and timing of movements 2. Learning of motor skills 3.? Language Connections to prefrontal cortex (Brocca s area via dentate & thalamus)

43 Motor learning

44 Cerebrocerebellum - Lesions Many similar signs as for the spino-cerebellum intermediate zone Dysdiadochokinesia = inability to perform rapid alternating movements especially pronation and supination Decomposition of movement especially involving movement across multiple joints and in the distal limb

The Cerebellum. The Little Brain. Neuroscience Lecture. PhD Candidate Dr. Laura Georgescu

The Cerebellum. The Little Brain. Neuroscience Lecture. PhD Candidate Dr. Laura Georgescu The Cerebellum The Little Brain Neuroscience Lecture PhD Candidate Dr. Laura Georgescu Learning Objectives 1. Describe functional anatomy of the cerebellum - its lobes, their input and output connections

More information

Cerebellum. Steven McLoon Department of Neuroscience University of Minnesota

Cerebellum. Steven McLoon Department of Neuroscience University of Minnesota Cerebellum Steven McLoon Department of Neuroscience University of Minnesota 1 Anatomy of the Cerebellum The cerebellum has approximately half of all the neurons in the central nervous system. The cerebellum

More information

Unit VIII Problem 5 Physiology: Cerebellum

Unit VIII Problem 5 Physiology: Cerebellum Unit VIII Problem 5 Physiology: Cerebellum - The word cerebellum means: the small brain. Note that the cerebellum is not completely separated into 2 hemispheres (they are not clearly demarcated) the vermis

More information

The Cerebellum. Outline. Lu Chen, Ph.D. MCB, UC Berkeley. Overview Structure Micro-circuitry of the cerebellum The cerebellum and motor learning

The Cerebellum. Outline. Lu Chen, Ph.D. MCB, UC Berkeley. Overview Structure Micro-circuitry of the cerebellum The cerebellum and motor learning The Cerebellum Lu Chen, Ph.D. MCB, UC Berkeley 1 Outline Overview Structure Micro-circuitry of the cerebellum The cerebellum and motor learning 2 Overview Little brain 10% of the total volume of the brain,

More information

Located below tentorium cerebelli within posterior cranial fossa. Formed of 2 hemispheres connected by the vermis in midline.

Located below tentorium cerebelli within posterior cranial fossa. Formed of 2 hemispheres connected by the vermis in midline. The Cerebellum Cerebellum Located below tentorium cerebelli within posterior cranial fossa. Formed of 2 hemispheres connected by the vermis in midline. Gray matter is external. White matter is internal,

More information

CASE 48. What part of the cerebellum is responsible for planning and initiation of movement?

CASE 48. What part of the cerebellum is responsible for planning and initiation of movement? CASE 48 A 34-year-old woman with a long-standing history of seizure disorder presents to her neurologist with difficulty walking and coordination. She has been on phenytoin for several days after having

More information

Cerebellum John T. Povlishock, Ph.D.

Cerebellum John T. Povlishock, Ph.D. Cerebellum John T. Povlishock, Ph.D. OBJECTIVES 1. To identify the major sources of afferent inputs to the cerebellum 2. To define the pre-cerebellar nuclei from which the mossy and climbing fiber systems

More information

Medial View of Cerebellum

Medial View of Cerebellum Meds 5371 System Neuroscience D. L. Oliver CEREBELLUM Anterior lobe (spinal) Posterior lobe (cerebral) Flocculonodular lobe (vestibular) Medial View of Cerebellum 1 Ventral View of Cerebellum Flocculus

More information

Strick Lecture 3 March 22, 2017 Page 1

Strick Lecture 3 March 22, 2017 Page 1 Strick Lecture 3 March 22, 2017 Page 1 Cerebellum OUTLINE I. External structure- Inputs and Outputs Cerebellum - (summary diagram) 2 components (cortex and deep nuclei)- (diagram) 3 Sagittal zones (vermal,

More information

Abdullah AlZibdeh. Dr. Maha ElBeltagy. Maha ElBeltagy

Abdullah AlZibdeh. Dr. Maha ElBeltagy. Maha ElBeltagy 19 Abdullah AlZibdeh Dr. Maha ElBeltagy Maha ElBeltagy Introduction In this sheet, we discuss the cerebellum; its lobes, fissures and deep nuclei. We also go into the tracts and connections in which the

More information

Connection of the cerebellum

Connection of the cerebellum CEREBELLUM Connection of the cerebellum The cerebellum has external layer of gray matter (cerebellar cortex ), & inner white matter In the white matter, there are 3 deep nuclei : (a) dentate nucleus laterally

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Peter Hitchcock, PH.D., 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Non-commercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

More information

The Cerebellum. Outline. Overview Structure (external & internal) Micro-circuitry of the cerebellum Cerebellum and motor learning

The Cerebellum. Outline. Overview Structure (external & internal) Micro-circuitry of the cerebellum Cerebellum and motor learning The Cerebellum P.T Ji Jun Cheol Rehabilitation Center 1 HansarangAsan Hospital. Outline Overview Structure (external & internal) Micro-circuitry of the cerebellum Cerebellum and motor learning 2 1 Cerebellum

More information

FUNCTION: It COORDINATES movement HOW IT WORKS

FUNCTION: It COORDINATES movement HOW IT WORKS CEREBELLUM Chris Cohan, Ph.D. Dept. of Pathology/Anat Sci University at Buffalo Objectives: Describe the anatomy of the cerebellum, its 3 functions and associated regions Describe how the cerebellum influences

More information

THE CEREBELLUM SUDIVISIONS, STRUCTURE AND CONNECTIONS

THE CEREBELLUM SUDIVISIONS, STRUCTURE AND CONNECTIONS THE CEREBELLUM Damage to the cerebellum produces characteristic symptoms primarily with respect to the coordination of voluntary movements. The cerebellum receives information from the skin, joints, muscles,

More information

Motor System Hierarchy

Motor System Hierarchy Motor Pathways Lectures Objectives Define the terms upper and lower motor neurons with examples. Describe the corticospinal (pyramidal) tract and the direct motor pathways from the cortex to the trunk

More information

Basal nuclei, cerebellum and movement

Basal nuclei, cerebellum and movement Basal nuclei, cerebellum and movement MSTN121 - Neurophysiology Session 9 Department of Myotherapy Basal Nuclei (Ganglia) Basal Nuclei (Ganglia) Role: Predict the effects of various actions, then make

More information

Voluntary Movement. Ch. 14: Supplemental Images

Voluntary Movement. Ch. 14: Supplemental Images Voluntary Movement Ch. 14: Supplemental Images Skeletal Motor Unit: The basics Upper motor neuron: Neurons that supply input to lower motor neurons. Lower motor neuron: neuron that innervates muscles,

More information

Cerebellum: little brain. Cerebellum. gross divisions

Cerebellum: little brain. Cerebellum. gross divisions Cerebellum The anatomy of the cerebellum and its gross divisions Its principal input and output pathways The organization of the cerebellar cortex Role of climbing vs. mossy fibre input The parallel-fibre/

More information

Copy Right- Hongqi ZHANG-Department of Anatomy-Fudan University. Systematic Anatomy. Nervous system Cerebellum. Dr.Hongqi Zhang ( 张红旗 )

Copy Right- Hongqi ZHANG-Department of Anatomy-Fudan University. Systematic Anatomy. Nervous system Cerebellum. Dr.Hongqi Zhang ( 张红旗 ) Systematic Anatomy Nervous system Cerebellum Dr.Hongqi Zhang ( 张红旗 ) Email: zhanghq58@126.com 1 The Cerebellum Cerebellum evolved and developed with the complication of animal movement. Key points about

More information

The Nervous System: Sensory and Motor Tracts of the Spinal Cord

The Nervous System: Sensory and Motor Tracts of the Spinal Cord 15 The Nervous System: Sensory and Motor Tracts of the Spinal Cord PowerPoint Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska Introduction Millions of sensory

More information

Motor systems III: Cerebellum April 16, 2007 Mu-ming Poo

Motor systems III: Cerebellum April 16, 2007 Mu-ming Poo Motor systems III: Cerebellum April 16, 2007 Mu-ming Poo Population coding in the motor cortex Overview and structure of cerebellum Microcircuitry of cerebellum Function of cerebellum -- vestibulo-ocular

More information

Faculty of Dental Medicine and Surgery. Sem 4 Cerebellum Dr. Abbas

Faculty of Dental Medicine and Surgery. Sem 4 Cerebellum Dr. Abbas Faculty of Dental Medicine and Surgery Sem 4 Cerebellum Dr. Abbas Anatomy of the cerebellum Cerebellum Configurations External - located in posterior cranial fossa - communicate with other structure via

More information

Cerebellum: little brain. Cerebellum. gross divisions

Cerebellum: little brain. Cerebellum. gross divisions Cerebellum The anatomy of the cerebellum and its gross divisions Its principal input and output pathways The organization of the cerebellar cortex Role of climbing vs. mossy fibre input The parallel-fibre/

More information

Functions. Traditional view: Motor system. Co-ordination of movements Motor learning Eye movements. Modern view: Cognition

Functions. Traditional view: Motor system. Co-ordination of movements Motor learning Eye movements. Modern view: Cognition The Cerebellum Involved in motor coordination and timing Is simple and well documented Only has one type of output cell (Purkinje) The cerebellum influences motor activity through inhibition The Cerebellum

More information

Basal Nuclei (Ganglia)

Basal Nuclei (Ganglia) Doctor said he will not go deep within these slides because we will take them in physiology, so he will explain the anatomical structures, and he will go faster in the functions sheet in yellow Basal Nuclei

More information

Developmental sequence of brain

Developmental sequence of brain Cerebellum Developmental sequence of brain Fourth week Fifth week Location of cerebellum Lies above and behind the medullar and pons and occupies posterior cranial fossa Location of cerebellum External

More information

THE CEREBELLUM. - anatomy of the cerebellum cerebellar nuclei cerebellar inputs and neuronal structure of the Purkinje cells outputs cerebellum

THE CEREBELLUM. - anatomy of the cerebellum cerebellar nuclei cerebellar inputs and neuronal structure of the Purkinje cells outputs cerebellum CHAPTER THE CEREBELLUM Key Terms - anatomy of the cerebellum cerebellar nuclei cerebellar inputs and neuronal structure of the Purkinje cells outputs cerebellum cerebellar disorders Figure 14.9 For each

More information

1/2/2019. Basal Ganglia & Cerebellum a quick overview. Outcomes you want to accomplish. MHD-Neuroanatomy Neuroscience Block. Basal ganglia review

1/2/2019. Basal Ganglia & Cerebellum a quick overview. Outcomes you want to accomplish. MHD-Neuroanatomy Neuroscience Block. Basal ganglia review This power point is made available as an educational resource or study aid for your use only. This presentation may not be duplicated for others and should not be redistributed or posted anywhere on the

More information

Cerebellum 1/20/2016. Outcomes you need to be able to demonstrate. MHD Neuroanatomy Module

Cerebellum 1/20/2016. Outcomes you need to be able to demonstrate. MHD Neuroanatomy Module This power point is made available as an educational resource or study aid for your use only. This presentation may not be duplicated for others and should not be redistributed or posted anywhere on the

More information

Auditory and Vestibular Systems

Auditory and Vestibular Systems Auditory and Vestibular Systems Objective To learn the functional organization of the auditory and vestibular systems To understand how one can use changes in auditory function following injury to localize

More information

The Motor Systems. What s the motor system? Plan

The Motor Systems. What s the motor system? Plan The Motor Systems What s the motor system? Parts of CNS and PNS specialized for control of limb, trunk, and eye movements Also holds us together From simple reflexes (knee jerk) to voluntary movements

More information

Biological Bases of Behavior. 8: Control of Movement

Biological Bases of Behavior. 8: Control of Movement Biological Bases of Behavior 8: Control of Movement m d Skeletal Muscle Movements of our body are accomplished by contraction of the skeletal muscles Flexion: contraction of a flexor muscle draws in a

More information

Chapter 14: Integration of Nervous System Functions I. Sensation.

Chapter 14: Integration of Nervous System Functions I. Sensation. Chapter 14: Integration of Nervous System Functions I. Sensation A. General Organization 1. General senses have receptors a. The somatic senses provide information about & 1. Somatic senses include: a.

More information

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER PETER PAZMANY CATHOLIC UNIVERSITY SEMMELWEIS UNIVERSITY Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework** Consortium leader PETER PAZMANY

More information

Spinal Cord Tracts DESCENDING SPINAL TRACTS: Are concerned with somatic motor function, modification of ms. tone, visceral innervation, segmental reflexes. Main tracts arise form cerebral cortex and others

More information

The Embryology and Anatomy of the Cerebellum

The Embryology and Anatomy of the Cerebellum The Embryology and Anatomy of the Cerebellum Maryam Rahimi Balaei, Niloufar Ashtari, and Hugo Bergen Abstract The cerebellum is an important structure in the central nervous system that controls and regulates

More information

Brainstem. Steven McLoon Department of Neuroscience University of Minnesota

Brainstem. Steven McLoon Department of Neuroscience University of Minnesota Brainstem Steven McLoon Department of Neuroscience University of Minnesota 1 Course News Change in Lab Sequence Week of Oct 2 Lab 5 Week of Oct 9 Lab 4 2 Goal Today Know the regions of the brainstem. Know

More information

Biology 218 Human Anatomy

Biology 218 Human Anatomy Chapter 21 Adapted form Tortora 10 th ed. LECTURE OUTLINE A. Overview of Sensations (p. 652) 1. Sensation is the conscious or subconscious awareness of external or internal stimuli. 2. For a sensation

More information

KINE 4500 Neural Control of Movement. Lecture #1:Introduction to the Neural Control of Movement. Neural control of movement

KINE 4500 Neural Control of Movement. Lecture #1:Introduction to the Neural Control of Movement. Neural control of movement KINE 4500 Neural Control of Movement Lecture #1:Introduction to the Neural Control of Movement Neural control of movement Kinesiology: study of movement Here we re looking at the control system, and what

More information

skilled pathways: distal somatic muscles (fingers, hands) (brainstem, cortex) are giving excitatory signals to the descending pathway

skilled pathways: distal somatic muscles (fingers, hands) (brainstem, cortex) are giving excitatory signals to the descending pathway L15 - Motor Cortex General - descending pathways: how we control our body - motor = somatic muscles and movement (it is a descending motor output pathway) - two types of movement: goal-driven/voluntary

More information

Degree of freedom problem

Degree of freedom problem KINE 4500 Neural Control of Movement Lecture #1:Introduction to the Neural Control of Movement Neural control of movement Kinesiology: study of movement Here we re looking at the control system, and what

More information

SENSORY (ASCENDING) SPINAL TRACTS

SENSORY (ASCENDING) SPINAL TRACTS SENSORY (ASCENDING) SPINAL TRACTS Dr. Jamila El-Medany Dr. Essam Eldin Salama OBJECTIVES By the end of the lecture, the student will be able to: Define the meaning of a tract. Distinguish between the different

More information

1. The cerebellum coordinates fine movement through interactions with the following motor-associated areas:

1. The cerebellum coordinates fine movement through interactions with the following motor-associated areas: DENT/OBHS 131 2009 Take-home test 4 Week 6: Take-home test (2/11/09 close 2/18/09) 1. The cerebellum coordinates fine movement through interactions with the following motor-associated areas: Hypothalamus

More information

Pathways of proprioception

Pathways of proprioception The Autonomic Nervous Assess Prof. Fawzia Al-Rouq Department of Physiology College of Medicine King Saud University Pathways of proprioception System posterior column& Spinocerebellar Pathways https://www.youtube.com/watch?v=pmeropok6v8

More information

I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts.

I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts. Descending Tracts I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts. III: To define the upper and the lower motor neurons. 1. The corticonuclear

More information

The Cerebellum. Physiology #13 #CNS1

The Cerebellum. Physiology #13 #CNS1 Physiology #13 #CNS1 The cerebellum consists of cortex and deep nuclei, it is hugely condensed with gray mater (condensed with neurons (1/3 of the neurons of the brain)). Cerebellum contains 30 million

More information

Brain Stem and cortical control of motor function. Dr Z Akbari

Brain Stem and cortical control of motor function. Dr Z Akbari Brain Stem and cortical control of motor function Dr Z Akbari Brain stem control of movement BS nuclear groups give rise to descending motor tracts that influence motor neurons and their associated interneurons

More information

Motor tracts Both pyramidal tracts and extrapyramidal both starts from cortex: Area 4 Area 6 Area 312 Pyramidal: mainly from area 4 Extrapyramidal:

Motor tracts Both pyramidal tracts and extrapyramidal both starts from cortex: Area 4 Area 6 Area 312 Pyramidal: mainly from area 4 Extrapyramidal: Motor tracts Both pyramidal tracts and extrapyramidal both starts from cortex: Area 4 Area 6 Area 312 Pyramidal: mainly from area 4 Extrapyramidal: mainly from area 6 area 6 Premotorarea: uses external

More information

CN V! touch! pain! Touch! P/T!

CN V! touch! pain! Touch! P/T! CN V! touch! pain! Touch! P/T! Visual Pathways! L! R! B! A! C! D! LT! E! F! RT! G! hypothalamospinal! and! ALS! Vestibular Pathways! 1. Posture/Balance!!falling! 2. Head Position! 3. Eye-Head Movements

More information

Subcortical Motor Systems: cerebellum

Subcortical Motor Systems: cerebellum Outline Subcortical Motor Systems: cerebellum 陽明大學醫學院腦科所陳昌明副教授 Anatomy Cerebellar cortex Neuronal circuitry Cerebellar connections Vestibulocerebellum Spinocerebellum Neocerebellum Other cerebellar functions

More information

Chapter 8. Control of movement

Chapter 8. Control of movement Chapter 8 Control of movement 1st Type: Skeletal Muscle Skeletal Muscle: Ones that moves us Muscles contract, limb flex Flexion: a movement of a limb that tends to bend its joints, contraction of a flexor

More information

Cortical Control of Movement

Cortical Control of Movement Strick Lecture 2 March 24, 2006 Page 1 Cortical Control of Movement Four parts of this lecture: I) Anatomical Framework, II) Physiological Framework, III) Primary Motor Cortex Function and IV) Premotor

More information

Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota

Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota 1 Coffee Hour Tuesday (Sept 11) 10:00-11:00am Friday (Sept 14) 8:30-9:30am Surdyk s

More information

Lecturer. Prof. Dr. Ali K. Al-Shalchy MBChB/ FIBMS/ MRCS/ FRCS 2014

Lecturer. Prof. Dr. Ali K. Al-Shalchy MBChB/ FIBMS/ MRCS/ FRCS 2014 Lecturer Prof. Dr. Ali K. Al-Shalchy MBChB/ FIBMS/ MRCS/ FRCS 2014 Dorsal root: The dorsal root carries both myelinated and unmyelinated afferent fibers to the spinal cord. Posterior gray column: Long

More information

Neurophysiology of systems

Neurophysiology of systems Neurophysiology of systems Motor cortex (voluntary movements) Dana Cohen, Room 410, tel: 7138 danacoh@gmail.com Voluntary movements vs. reflexes Same stimulus yields a different movement depending on context

More information

Cranial Nerve VIII (The Vestibulo-Cochlear Nerve)

Cranial Nerve VIII (The Vestibulo-Cochlear Nerve) Cranial Nerve VIII (The Vestibulo-Cochlear Nerve) Please view our Editing File before studying this lecture to check for any changes. Color Code Important Doctors Notes Notes/Extra explanation Objectives

More information

Lecture : Basal ganglia & Cerebellum By : Zaid Al-Ghnaneem

Lecture : Basal ganglia & Cerebellum By : Zaid Al-Ghnaneem Lecture : Basal ganglia & Cerebellum By : Zaid Al-Ghnaneem Some notes in the beginning : #1 : there is a slides file contains the sheet info as notes for those who love slides more than word papers. #2

More information

By Dr. Saeed Vohra & Dr. Sanaa Alshaarawy

By Dr. Saeed Vohra & Dr. Sanaa Alshaarawy By Dr. Saeed Vohra & Dr. Sanaa Alshaarawy 1 By the end of the lecture, students will be able to : Distinguish the internal structure of the components of the brain stem in different levels and the specific

More information

Organization of The Nervous System PROF. SAEED ABUEL MAKAREM

Organization of The Nervous System PROF. SAEED ABUEL MAKAREM Organization of The Nervous System PROF. SAEED ABUEL MAKAREM Objectives By the end of the lecture, you should be able to: List the parts of the nervous system. List the function of the nervous system.

More information

Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY

Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY Objectives At the end of the lecture, the students should be able to: List the parts of the nervous system. List the function

More information

Cortical Organization. Functionally, cortex is classically divided into 3 general types: 1. Primary cortex:. - receptive field:.

Cortical Organization. Functionally, cortex is classically divided into 3 general types: 1. Primary cortex:. - receptive field:. Cortical Organization Functionally, cortex is classically divided into 3 general types: 1. Primary cortex:. - receptive field:. 2. Secondary cortex: located immediately adjacent to primary cortical areas,

More information

CNS MCQ 2 nd term. Select the best answer:

CNS MCQ 2 nd term. Select the best answer: Select the best answer: CNS MCQ 2 nd term 1) Vestibular apparatus: a) Represent the auditory part of the labyrinth. b) May help in initiating the voluntary movements. c) Contains receptors concerned with

More information

Ch 13: Central Nervous System Part 1: The Brain p 374

Ch 13: Central Nervous System Part 1: The Brain p 374 Ch 13: Central Nervous System Part 1: The Brain p 374 Discuss the organization of the brain, including the major structures and how they relate to one another! Review the meninges of the spinal cord and

More information

Functional Distinctions

Functional Distinctions Functional Distinctions FUNCTION COMPONENT DEFICITS Start Basal Ganglia Spontaneous Movements Move UMN/LMN Cerebral Cortex Brainstem, Spinal cord Roots/peripheral nerves Plan Cerebellum Ataxia Adjust Cerebellum

More information

Nervous System C H A P T E R 2

Nervous System C H A P T E R 2 Nervous System C H A P T E R 2 Input Output Neuron 3 Nerve cell Allows information to travel throughout the body to various destinations Receptive Segment Cell Body Dendrites: receive message Myelin sheath

More information

Brain anatomy and artificial intelligence. L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia

Brain anatomy and artificial intelligence. L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia Brain anatomy and artificial intelligence L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia The Fourth Conference on Artificial General Intelligence August 2011 Architectures

More information

b. The groove between the two crests is called 2. The neural folds move toward each other & the fuse to create a

b. The groove between the two crests is called 2. The neural folds move toward each other & the fuse to create a Chapter 13: Brain and Cranial Nerves I. Development of the CNS A. The CNS begins as a flat plate called the B. The process proceeds as: 1. The lateral sides of the become elevated as waves called a. The

More information

Motor Functions of Cerebral Cortex

Motor Functions of Cerebral Cortex Motor Functions of Cerebral Cortex I: To list the functions of different cortical laminae II: To describe the four motor areas of the cerebral cortex. III: To discuss the functions and dysfunctions of

More information

DEVELOPMENT OF BRAIN

DEVELOPMENT OF BRAIN Ahmed Fathalla OBJECTIVES At the end of the lecture, students should: List the components of brain stem. Describe the site of brain stem. Describe the relations between components of brain stem & their

More information

Medical Neuroscience Tutorial

Medical Neuroscience Tutorial Pain Pathways Medical Neuroscience Tutorial Pain Pathways MAP TO NEUROSCIENCE CORE CONCEPTS 1 NCC1. The brain is the body's most complex organ. NCC3. Genetically determined circuits are the foundation

More information

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER PETER PAZMANY CATHOLIC UNIVERSITY SEMMELWEIS UNIVERSITY Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework** Consortium leader PETER PAZMANY

More information

Brainstem. Amadi O. Ihunwo, PhD School of Anatomical Sciences

Brainstem. Amadi O. Ihunwo, PhD School of Anatomical Sciences Brainstem Amadi O. Ihunwo, PhD School of Anatomical Sciences Lecture Outline Constituents Basic general internal features of brainstem External and Internal features of Midbrain Pons Medulla Constituents

More information

cortical and brain stem control of motor function

cortical and brain stem control of motor function cortical and brain stem control of motor function cortical and brain stem control of motor function most voluntary movements initiated by the cerebral cortex are achieved when the cortex activates patterns

More information

Lecture - Chapter 13: Central Nervous System

Lecture - Chapter 13: Central Nervous System Lecture - Chapter 13: Central Nervous System 1. Describe the following structures of the brain, what is the general function of each: a. Cerebrum b. Diencephalon c. Brain Stem d. Cerebellum 2. What structures

More information

The Central Nervous System I. Chapter 12

The Central Nervous System I. Chapter 12 The Central Nervous System I Chapter 12 The Central Nervous System The Brain and Spinal Cord Contained within the Axial Skeleton Brain Regions and Organization Medical Scheme (4 regions) 1. Cerebral Hemispheres

More information

Histology of the CNS

Histology of the CNS Histology of the CNS Lecture Objectives Describe the histology of the cerebral cortex layers. Describe the histological features of the cerebellum; layers and cells of cerebellar cortex. Describe the elements

More information

Announcement. Danny to schedule a time if you are interested.

Announcement.  Danny to schedule a time if you are interested. Announcement If you need more experiments to participate in, contact Danny Sanchez (dsanchez@ucsd.edu) make sure to tell him that you are from LIGN171, so he will let me know about your credit (1 point).

More information

General Sensory Pathways of the Trunk and Limbs

General Sensory Pathways of the Trunk and Limbs General Sensory Pathways of the Trunk and Limbs Lecture Objectives Describe gracile and cuneate tracts and pathways for conscious proprioception, touch, pressure and vibration from the limbs and trunk.

More information

SOMATOSENSORY SYSTEMS: Pain and Temperature Kimberle Jacobs, Ph.D.

SOMATOSENSORY SYSTEMS: Pain and Temperature Kimberle Jacobs, Ph.D. SOMATOSENSORY SYSTEMS: Pain and Temperature Kimberle Jacobs, Ph.D. Sensory systems are afferent, meaning that they are carrying information from the periphery TOWARD the central nervous system. The somatosensory

More information

Neural Basis of Motor Control

Neural Basis of Motor Control Neural Basis of Motor Control Central Nervous System Skeletal muscles are controlled by the CNS which consists of the brain and spinal cord. Determines which muscles will contract When How fast To what

More information

OVERVIEW. Today. Sensory and Motor Neurons. Thursday. Parkinsons Disease. Administra7on. Exam One Bonus Points Slides Online

OVERVIEW. Today. Sensory and Motor Neurons. Thursday. Parkinsons Disease. Administra7on. Exam One Bonus Points Slides Online OVERVIEW Today Sensory and Motor Neurons Thursday Parkinsons Disease Administra7on Exam One Bonus Points Slides Online 7 major descending motor control pathways from Cerebral Cortex or Brainstem

More information

A3.1.7 Motor Control. 10 November 2016 Institute of Psychiatry,Psychology and Neuroscience Marinela Vavla

A3.1.7 Motor Control. 10 November 2016 Institute of Psychiatry,Psychology and Neuroscience Marinela Vavla A3.1.7 Motor Control 10 November 2016 Institute of Psychiatry,Psychology and Neuroscience Marinela Vavla marinela.vavla@kcl.ac.uk Learning objectives Motor systems: components & organization Spinal cord

More information

Neocortex. Cortical Structures in the Brain. Neocortex Facts. Laminar Organization. Bark-like (cortical) structures: Shepherd (2004) Chapter 12

Neocortex. Cortical Structures in the Brain. Neocortex Facts. Laminar Organization. Bark-like (cortical) structures: Shepherd (2004) Chapter 12 Neocortex Shepherd (2004) Chapter 12 Rodney Douglas, Henry Markram, and Kevan Martin Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks Cortical Structures in the Brain Bark-like (cortical) structures:

More information

Motor systems.... the only thing mankind can do is to move things... whether whispering or felling a forest. C. Sherrington

Motor systems.... the only thing mankind can do is to move things... whether whispering or felling a forest. C. Sherrington Motor systems... the only thing mankind can do is to move things... whether whispering or felling a forest. C. Sherrington 1 Descending pathways: CS corticospinal; TS tectospinal; RS reticulospinal; VS

More information

11/2/2011. Basic circuit anatomy (the circuit is the same in all parts of the cerebellum)

11/2/2011. Basic circuit anatomy (the circuit is the same in all parts of the cerebellum) 11/2/2011 Neuroscientists have been attracted to the puzzle of the Cerebellum ever since Cajal. The orderly structure, the size of the cerebellum and the regularity of the neural elements demands explanation.

More information

Neuroanatomy Dr. Maha ELBeltagy Assistant Professor of Anatomy Faculty of Medicine The University of Jordan 2018

Neuroanatomy Dr. Maha ELBeltagy Assistant Professor of Anatomy Faculty of Medicine The University of Jordan 2018 Neuroanatomy Dr. Maha ELBeltagy Assistant Professor of Anatomy Faculty of Medicine The University of Jordan 2018 Dr Maha ELbeltagy THE BRAIN STEM Dr Maha ELbeltagy It includes: Midbrain - Pons - Medulla

More information

Chapter 12b. Overview

Chapter 12b. Overview Chapter 12b Spinal Cord Overview Spinal cord gross anatomy Spinal meninges Sectional anatomy Sensory pathways Motor pathways Spinal cord pathologies 1 The Adult Spinal Cord About 18 inches (45 cm) long

More information

Department of Neurology/Division of Anatomical Sciences

Department of Neurology/Division of Anatomical Sciences Spinal Cord I Lecture Outline and Objectives CNS/Head and Neck Sequence TOPIC: FACULTY: THE SPINAL CORD AND SPINAL NERVES, Part I Department of Neurology/Division of Anatomical Sciences LECTURE: Monday,

More information

Human Anatomy - Problem Drill 11: The Spinal Cord and Spinal Nerves

Human Anatomy - Problem Drill 11: The Spinal Cord and Spinal Nerves Human Anatomy - Problem Drill 11: The Spinal Cord and Spinal Nerves Question No. 1 of 10 Instructions: (1) Read the problem statement and answer choices carefully, (2) Work the problems on paper as needed,

More information

Role of brainstem in somatomotor (postural) functions

Role of brainstem in somatomotor (postural) functions Role of brainstem in somatomotor (postural) functions (vestibular apparatus) The muscle tone and its regulation VESTIBULAR SYSTEM (Equilibrium) Receptors: Otolith organs Semicircular canals Sensation (information):

More information

Fundamental Neuroscience (2 nd Edition): Section V. MOTOR SYSTEMS Chapter 32: Cerebellum James C. Houk and Enrico Mugnaini

Fundamental Neuroscience (2 nd Edition): Section V. MOTOR SYSTEMS Chapter 32: Cerebellum James C. Houk and Enrico Mugnaini Fundamental Neuroscience (2 nd Edition): Section V. MOTOR SYSTEMS Chapter 32: Cerebellum James C. Houk and Enrico Mugnaini The cerebellum (Latin for little brain ) is a strategic part of the nervous system.

More information

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible:

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: NERVOUS SYSTEM The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: the neuron and the supporting cells ("glial cells"). Neuron Neurons

More information

Internal Organisation of the Brainstem

Internal Organisation of the Brainstem Internal Organisation of the Brainstem Major tracts and nuclei of the brainstem (Notes) The brainstem is the major pathway for tracts and houses major nuclei, that contain sensory, motor and autonomics

More information

FIRST PROOF. Cerebellum. Article Number : EONS : 0736

FIRST PROOF. Cerebellum. Article Number : EONS : 0736 Cerebellum THE HUMAN CEREBELLUM ( little brain ) is a significant part of the central nervous system both in size and in neural structure. It occupies approximately one-tenth of the cranial cavity, sitting

More information

Somatosensory System. Steven McLoon Department of Neuroscience University of Minnesota

Somatosensory System. Steven McLoon Department of Neuroscience University of Minnesota Somatosensory System Steven McLoon Department of Neuroscience University of Minnesota 1 Course News Dr. Riedl s review session this week: Tuesday (Oct 10) 4-5pm in MCB 3-146B 2 Sensory Systems Sensory

More information

Cerebellum, motor and cognitive functions: What are the common grounds? Eyal Cohen, PhD (Engineering, BIU)

Cerebellum, motor and cognitive functions: What are the common grounds? Eyal Cohen, PhD (Engineering, BIU) Cerebellum, motor and cognitive functions: What are the common grounds? 1 Eyal Cohen, PhD (Engineering, BIU) Cerebellum The Little Brain 2 The Cerebellum takes ~10% of the Brain in Volume Small but Hefty

More information

MODULE 6: CEREBELLUM AND BASAL GANGLIA

MODULE 6: CEREBELLUM AND BASAL GANGLIA MODULE 6: CEREBELLUM AND BASAL GANGLIA This module will summarize the important neuroanatomical and key clinical concepts from Chapters 15 and 16 of the textbook for the course. The first part of this

More information

Brainstem. By Dr. Bhushan R. Kavimandan

Brainstem. By Dr. Bhushan R. Kavimandan Brainstem By Dr. Bhushan R. Kavimandan Development Ventricles in brainstem Mesencephalon cerebral aqueduct Metencephalon 4 th ventricle Mylencephalon 4 th ventricle Corpus callosum Posterior commissure

More information