BIOCHEMISTRY 302 / BIOLOGY 302 / 502 BIOCHEMISTRY: METABOLIC ASPECTS

Size: px
Start display at page:

Download "BIOCHEMISTRY 302 / BIOLOGY 302 / 502 BIOCHEMISTRY: METABOLIC ASPECTS"

Transcription

1 BIOCHEMISTRY 302 / BIOLOGY 302 / 502 BIOCHEMISTRY: METABOLIC ASPECTS Dr. Anna Tan-Wilson Spring 2004 For more information on the course including how to contact your instructor and teaching assistant, log on to Also purchase the course pack available at the campus bookstore. OBJECTIVES AND EXPECTATIONS Goals: to learn (i) how the structures of major macromolecular components of cells make them suitable for their function; (ii) the biochemical reactions that are central to cell function; and (iii) the regulation of such reactions. Students will apply these basic concepts to understanding of cellular and physiological functions as well as to practical medical and industrial applications. Another set of goals: to develop skills needed in scientific work such as formulating and testing hypotheses, constructing and analyzing graphs, retrieval of information, computation, problem-solving and communication skills. PREREQUISITE You must have completed and remembered the basic principles learned in: Organic Chemistry I and II, especially bonding and the reactions / mechanisms relating to alcohols, aldehydes, ketones, carboxylic acids, carboxylic acid derivatives, amines, saturated and unsaturated aliphatic hydrocarbons Introductory Chemistry, especially bonding, free energy, enthalpy, entropy, chemical equilibria, chemical kinetics, electrochemistry, and uv-visible spectroscopy Introductory Cell and Molecular Biology - concepts of protein structure, how enzymes catalyze reactions, membranes and subcellular compartments, glycolysis and the TCA cycle, electron transport, oxidative phosphorylation, photophosphorylation, signal transduction. In this course, you will review these concepts, learn more detail, and do so in the context of chemical principles and chemical structures. CREDITS Four credits, also W credit as partial fulfillment of Harpur College writing requirement COURSE FORMAT Four one-hour sessions a week. Each session may be a combination of lecture, discussion, in-class work, and quizzes. Attendance of all sessions is mandatory. Lectures and in-class work define the scope and depth of the information that you are expected to learn. Classes are also designed to strengthen skills that scientists need: data analysis and interpretation, experimental design, information retrieval and selflearning, practical problem-solving and communication. Skills learned during these sessions will be needed to do well in all the exams.. 1

2 TESTS Scope and depth - based on lectures and in-class work Some questions are based on factual information. Others test your ability to relate one fact to another, and to suggest solutions to hypothetical problem situations. Although questions focus on new lessons, I presume that you will have understood and remembered the most important points covered in previous tests. Three one-hour essay tests, plus a fourth given during finals week. All four tests are mandatory. Part of each test will be take-home essay format. Test details: There will be 110 points on each test, but 100 will be counted as maximum. This will allow students to skip 10 points worth of questions or miss answering 10 points correctly without penalty. However, there will be a cut-off at 105. In other words, a grade of 108 will be recorded as 105. Due to the nature of the material covered, students will be allowed to bring notes on a 4 x6 card in to Tests III and IV. [not the first two exams]. Test average will be calculated as follows: Test with highest grade 30% Test with lowest grade 20% Other two tests each 25% Missed tests: If you have a conflict with an interview, official athletic competition, or other event that cannot be rescheduled - arrange to take the test earlier. In case of illness or unexpected calamity that prevents a student from taking any one of the first three tests, you must inform me ahead of the test. No acceptable reason for missing a test student gets a zero for the missed test. WRITTEN PROJECTS, GRADED IN-CLASS WORK, QUIZZES From time to time, we will assign homework, give an unannounced quiz, or collect and grade in-class work. There will be no make-up for these. Students who miss one due to illness, unexpected calamity or unavoidable circumstance such as interviews must inform the TA before class. Only in such circumstances will the absence of a score not be counted; ie. if 10 quizzes are given and one is missed, the sum of the 9 scores will be averaged over 9 quizzes. Students should not keep missing class, however. Note the following excerpt from the Academic Bulletin: Students are expected to attend all scheduled classes and laboratories. An instructor may deny a student the privilege of taking the final examination or of receiving credit for the course, or may prescribe other academic penalties, if the student misses more than 25 percent of the total class sessions. Excessive tardiness may count as absence. In cases of excessive absence, the instructor may request the appropriate academic advising office to investigate. 2

3 GRADUATE CREDIT Students earning graduate credit will have additional assigned work such as additional written assignment, to be graded on Pass/Fail basis. All such assigned work MUST be completed. Aside from that, final grades will be calculated as described below. CALCULATION OF FINAL GRADES Test average - 90% Projects, graded in-class work, quizzes - 10% LETTER GRADES Students who get grades of 90% and above will receive an A for the course. Grades in the B and C range are usually pegged to the average, which may be the mean. [In cases where there are some unusually low grades, the median may be taken instead.] The passing grade is usually 60%. D is a passing grade. INC is given only for a missed final exam due to illness or unexpected calamity GRADES OF INCOMPLETE ARE NOT GIVEN IN LIEU OF FAILING GRADES! Please do not ask! Every student gets the same chance to earn a good grade. This is why work for extra credit to make up for low grades is NOT given on an individual basis. Please do not ask! All students in the class will be given ample opportunity to earn extra credit through extra questions in tests. ACADEMIC HONESTY For all incidences of cheating or plagiarism, a student will receive a grade of zero for the test, project, or assigned work. Note that aside from the usual definitions of cheating with regard to tests and quizzes, working beyond the circle of accepted partnerships is also considered cheating. In other words, if you are assigned individual work, do it alone. If you have group work, keep to your own group. Furthermore, all incidences will be prosecuted according to the guidelines set by Harpur College. RESOURCES AND OTHER MATERIALS 1. Course booklet - bring to all lectures 2. Textbook Lehninger Principles of Biochemistry, by Nelson and Cox, 3 rd edition, Worth Publishers, 2000 [If 2004 edition is available, purchase that instead.] 3. Blackboard you must be registered and your university computer account must be active. If not, go to a computer pod and activate your account. 3

4 4. Course prerequisites are Organic Chemistry II (and the general chemistry courses that are prerequisite to Organic Chemistry) and Biology 113 / 114. These courses must be completed since Biochemistry relies heavily on them. 5. Science library and Internet resources Several other Biochemistry textbooks will be on reserve at the Science Library. Learn how to use the library databases on the web. 6. Electronic listserv You must check your university account regularly for supplemental information and instruction. Also use to ask questions and to share information with the rest of the class. Off-campus, you can access university through webmail.binghamton.edu 7. Consultation with instructor and teaching assistants My office is in Science III Room 110 Graduate TA is Zhenzhen Zhou. Her office is in Science III, Room 108. Hours will be announced. 8. Form a study group and meet regularly to review lectures and to answer practice questions. HOW TO DO WELL IN THE COURSE Biochemistry is cumulative. Keep up week by week. Do not assume that once a lesson is over that you can forget it. Study by reading AND writing. 4

5 Schedule of Topics Biochemistry, Spring 2004 UNIT I PROTEIN STRUCTURE AND FUNCTION Biomolecules: macromolecules & their monomeric subunits Water: weak interactions in aqueous systems, ionization, buffering, water as reactant Amino acids, Peptides and Proteins: amino acids, peptides and proteins, working with proteins, covalent structure of proteins The Three-dimensional Structure of Proteins: overview, protein secondary structure, tertiary and quaternary structures, protein domains, denaturation and folding Protein function: reversible binding of ligand to a protein, complementary structures between proteins and ligands, protein interactions Laboratory procedures: protein separation, isolation, analysis, study of protein-protein interactions Test I on Monday, February 15 UNIT II MEMBRANE STRUCTURE AND FUNCTION ENZYME KINETICS AND MECHANISM Lipids: structural lipids in membranes Biological Membranes and Transport: transporters and receptors on plasma membrane, molecular constituents of membranes, supramolecular architecture of membranes, solute transport across membranes Major Structural Features of Eukaryotic Cells Thermodynamics of Enzyme Reactions Enzyme Kinetics: Michaelis-Menten assumptions, kinetic parameters, inhibitors, two-substrate reactions Enzyme Mechanism: basis of enzyme catalysis, experimental evidence for mechanism using classical examples Enzyme Regulation: environmental factors that affect rates of enzyme reactions, inhibitors, activators, covalent modifications especially proteolysis and phosphorylation, allosteric regulation Biosignaling: molecular mechanisms of signal transduction, receptor enzymes, G-protein coupled receptors and second messengers, phosphorylation as a regulatory mechanism Test II on Wednesday, March 10 5

6 UNIT III BIOENERGETICS [CARBOHYDRATE METABOLISM] Carbohydrates and Glycobiology: monosaccharides, disaccharides, polysaccharides glycoconjugates, glycoproteins, glycolipids Principles of Bioenergetics: bioenergetics and thermodynamics, phosphoryl group transfers and ATP, biological oxidation-reduction reactions Glycolysis and the Catabolism of Hexoses: glycolysis, fates of pyruvate, feeder pathways for glycolysis, regulation of carbohydrate catabolism, pentose pathway pathway of glucose oxidation Citric Acid Cycle: production of acetate, reactions of the citric acid cycle, regulation of the citric acid cycle, glyoxylate cycle Oxidative Phosphorylation: electron transfer reactions in mitochondria, ATP synthesis, regulation of oxidative phosphorylation Carbohydrate Biosynthesis: gluconeogenesis, biosynthesis of glycogen, starch, sucrose Photosynthesis: general features, light absorption, light-driven electron flow, ATP synthesis by photophosphorylation Carbohydrate Biosynthesis: photosynthetic carbohydrate synthesis, regulation of carbohydrate metabolism in plants Test III on Wednesday, April 14 UNIT IV BIOENERGETICS [LIPID METABOLISM] NITROGEN METABOLISM INTEGRATION OF METABOLISM Lipids: storage lipids Oxidation of Fatty Acids: digestion, mobilization and transport of fatty acids,?-oxidation, ketone bodies Lipid Biosynthesis: biosynthesis of fatty acids and eicosanoids, biosynthesis of triglycerides, biosynthesis of membrane phospholipids, biosynthesis of cholesterol, steroids and isoprenoids Amino Acid Oxidation and Production of Urea: metabolic fates of amino groups, nitrogen excretion and urea cycle, pathways of amino acid degradation Biosynthesis of Amino Acids: overview of nitrogen metabolism, biosynthesis of amino acids Integration and Hormonal Regulation of Mammalian Metabolism: tissuespecific metabolism, hormonal regulation of fuel metabolism, hormones: diverse structures for diverse functions, long-term regulation of body mass Test IV during Finals Week, as scheduled by the Registrar 6

Sul Ross State University Syllabus for Biochemistry II: CHEM 4302 (Fall 2017) (Alpine and Midland)

Sul Ross State University Syllabus for Biochemistry II: CHEM 4302 (Fall 2017) (Alpine and Midland) Sul Ross State University Syllabus for Biochemistry II: CHEM 4302 (Fall 2017) (Alpine and Midland) Class: Biochemistry II Instructor: Dr. David Leaver Room: WSB 321 (Alpine) Office: WSB 318 Time: MWF 11:00-11:50am

More information

DEPARTMENT OF SCIENCE COURSE OUTLINE Fall 2018 BC 2000 INTRODUCTORY BIOCHEMISTRY 3 (3-0-0) 45 HOURS FOR 15 WEEKS

DEPARTMENT OF SCIENCE COURSE OUTLINE Fall 2018 BC 2000 INTRODUCTORY BIOCHEMISTRY 3 (3-0-0) 45 HOURS FOR 15 WEEKS DEPARTMENT OF SCIENCE COURSE OUTLINE Fall 2018 BC 2000 INTRODUCTORY BIOCHEMISTRY 3 (3-0-0) 45 HOURS FOR 15 WEEKS INSTRUCTOR: Beatrice Amar Ph.D. PHONE: 780-539-2031 OFFICE: J208 E-MAIL: Bamar@gprc.ab.ca

More information

DEPARTMENT OF SCIENCE

DEPARTMENT OF SCIENCE DEPARTMENT OF SCIENCE COURSE OUTLINE Winter 2017-18 BC 2000 INTRODUCTORY BIOCHEMISTRY 3 (3-0-0) 45 HOURS FOR 15 WEEKS INSTRUCTOR: Philip Johnson PHONE: 780-539-2863 OFFICE: J224 E-MAIL: PJohnson@gprc.ab.ca

More information

DEPARTMENT: Chemistry

DEPARTMENT: Chemistry CODE: CHEM-236 TITLE: Biochemistry Institute: STEM DEPARTMENT: Chemistry COURSE DESCRIPTION: Upon completion of this course the student will be able to recognize and draw the structure and state the nature

More information

DEPARTMENT OF SCIENCE

DEPARTMENT OF SCIENCE DEPARTMENT OF SCIENCE COURSE OUTLINE Fall 2017 BC 2000 INTRODUCTORY BIOCHEMISTRY 3 (3-0-0) 45 HOURS FOR 15 WEEKS INSTRUCTOR: Philip Johnson PHONE: 780-539-2863 OFFICE: J224 E-MAIL: PJohnson@gprc.ab.ca

More information

Course Outline Biochemistry 301 Winter 2016 Brad Hamilton. Office: 1410A Office Phone:

Course Outline Biochemistry 301 Winter 2016 Brad Hamilton. Office: 1410A Office Phone: Course Outline Biochemistry 301 Winter 2016 Brad Hamilton Office: 1410A Office Phone: 403-342-3212 E-mail: Bradley.Hamilton@rdc.ab.ca Class Time: M T Th 12:30-1:20 Credit hours: 3 Academic Calendar Entry

More information

DEPARTMENT OF SCIENCE

DEPARTMENT OF SCIENCE DEPARTMENT OF SCIENCE COURSE OUTLINE Fall 2015 BC 2000 INTRODUCTORY BIOCHEMISTRY INSTRUCTOR: Philip Johnson PHONE: 780-539-2863 OFFICE: J224 E-MAIL: PJohnson@gprc.ab.ca OFFICE HOURS: Tuesdays 1000-1120

More information

COURSE SYLLABUS BCH 4024: INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY COURSE COORDINATOR: Dr. Brian D. Cain. Spring Semester, 2018

COURSE SYLLABUS BCH 4024: INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY COURSE COORDINATOR: Dr. Brian D. Cain. Spring Semester, 2018 Credit: four (4) hours COURSE SYLLABUS BCH 4024: INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY COURSE COORDINATOR: Dr. Brian D. Cain Spring Semester, 2018 Course Description: BCH 4024 surveys the

More information

COURSE SYLLABUS GMS 5905: FUNDAMENTALS OF BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D.

COURSE SYLLABUS GMS 5905: FUNDAMENTALS OF BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D. Credit: four (4) hours COURSE SYLLABUS GMS 5905: FUNDAMENTALS OF BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D. Brown Spring Semester, 2019 Course Description: GMS

More information

Summer A/C Semester, 2018

Summer A/C Semester, 2018 Credit: four (4) hours COURSE SYLLABUS BCH 4024: INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY COURSE COORDINATOR: Dr. William L. Zeile Summer A/C Semester, 2018 Course Description: BCH 4024 surveys

More information

COURSE OUTLINE CHEMISTRY II 2018

COURSE OUTLINE CHEMISTRY II 2018 COURSE OUTLINE CHEMISTRY II 2018 Course: Course Code: Times & Location: Course Coordinator: Instructors/Teaching Assistants: E-mail: Office Hours: Office Location: Chemistry II : Foundations of Chemistry

More information

COURSE SYLLABUS GMS 5905: FUNDAMENTALS OF BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D.

COURSE SYLLABUS GMS 5905: FUNDAMENTALS OF BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D. Credit: four (4) hours COURSE SYLLABUS GMS 5905: FUNDAMENTALS OF BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D. Brown Fall Semester, 2017 Course Description: GMS

More information

COURSE SYLLABUS GMS 5905: FUNDAMENTALS OF BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D.

COURSE SYLLABUS GMS 5905: FUNDAMENTALS OF BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D. Credit: four (4) hours COURSE SYLLABUS GMS 5905: FUNDAMENTALS OF BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D. Brown Summer Semester, 2016 Course Description: GMS

More information

COURSE SYLLABUS BCH 4024: INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY SECTION 06D2 DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D.

COURSE SYLLABUS BCH 4024: INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY SECTION 06D2 DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D. Credit: four (4) hours COURSE SYLLABUS BCH 4024: INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY SECTION 06D2 DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D. Brown Spring Semester, 2018 Course Description:

More information

Plant Biochemistry, Spring 2017 BOT 6935, section 1E55, 4 credits

Plant Biochemistry, Spring 2017 BOT 6935, section 1E55, 4 credits Plant Biochemistry, Spring 2017 BOT 6935, section 1E55, 4 credits Meeting time and place MTWTh, 4 th Period, 236 Cancer/Genetics Research Complex Instructors Dr. Alice Harmon, 621 Carr Hall, harmon@ufl.edu,

More information

*For complete material(s) information, refer to

*For complete material(s) information, refer to Butler Community College Science, Technology, Engineering, and Math Division Robert Carlson New Fall 2017 Implemented Fall 2018 COURSE OUTLINE Biochemistry Course Description CH 275. Biochemistry. 4 hours

More information

DEPARTMENT OF SCIENCE

DEPARTMENT OF SCIENCE DEPARTMENT OF SCIENCE COURSE OUTLINE WINTER 2012-13 BC 3200 STRUCTURE & CATALYSIS INSTRUCTOR: Philip Johnson PHONE: 780-539-2863 OFFICE: J224 E-MAIL: PJohnson@gprc.ab.ca OFFICE HOURS: Mondays 1000-1120

More information

COURSE SYLLABUS BCH 4024: INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D.

COURSE SYLLABUS BCH 4024: INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D. Credit: four (4) hours COURSE SYLLABUS BCH 4024: INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D. Brown Fall Semester, 2018 Course Description: BCH

More information

Plant Biochemistry, Spring 2018 BOT 6935, section 1E55, 4 credits

Plant Biochemistry, Spring 2018 BOT 6935, section 1E55, 4 credits Plant Biochemistry, Spring 2018 BOT 6935, section 1E55, 4 credits Meeting time and place MTWTh, 4 th Period, 236 Cancer/Genetics Research Complex Instructors Dr. Alice Harmon, 621 Carr Hall, harmon@ufl.edu,

More information

SYLLABUS MBMB/CHEM/BCHM 451b 2013 This class meets from pm every Tuesday and Thursday in Room 1059 (Auditorium) LS III.

SYLLABUS MBMB/CHEM/BCHM 451b 2013 This class meets from pm every Tuesday and Thursday in Room 1059 (Auditorium) LS III. 1 SYLLABUS MBMB/CHEM/BCHM 451b 2013 This class meets from 12.35-1.50 pm every Tuesday and Thursday in Room 1059 (Auditorium) LS III. FACULTY P. M. D. Hardwicke, Room 210W, Neckers "C" Wing, Tel. 618-453-6469;

More information

The University of Jordan. Accreditation & Quality Assurance Center. COURSE Syllabus

The University of Jordan. Accreditation & Quality Assurance Center. COURSE Syllabus The University of Jordan Accreditation & Quality Assurance Center COURSE Syllabus 1 Course title Practical Biochemistry 2 Course number 1203252 Credit hours (theory, practical) 1(Practical) 3 Contact hours

More information

We will use the text, Lehninger: Principles of Biochemistry, as the primary supplement to topics presented in lecture.

We will use the text, Lehninger: Principles of Biochemistry, as the primary supplement to topics presented in lecture. Biochemical Pathways Biology 361, Spring 2015 Instructor: Office: Office Time: Email: Lecture: Text: Lecture Notes: Course Website: Gregory Johnson, Ph.D. Thompson 257d T, 1-2:30 pm and W, 10:00-11:30

More information

CHEM/MBIO 2370 Biochemistry 2: Catabolism, Synthesis and Information Pathways--Syllabus

CHEM/MBIO 2370 Biochemistry 2: Catabolism, Synthesis and Information Pathways--Syllabus An introductory course dealing with the basic metabolic processes that occur in living cells including the production and use of metabolic energy, the breakdown and synthesis of biomolecules, the synthesis

More information

Plant Biochemistry, Spring 2014 BOT 6935, section 4264, 4 credits

Plant Biochemistry, Spring 2014 BOT 6935, section 4264, 4 credits Plant Biochemistry, Spring 2014 BOT 6935, section 4264, 4 credits Meeting time and place MTWTh, 4 th Period, 133 Cancer/Genetics Research Complex Instructors Dr. Alice Harmon, 621 Carr Hall, harmon@ufl.edu,

More information

SYLLABUS. Departmental Syllabus DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS

SYLLABUS. Departmental Syllabus DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS SYLLABUS DATE OF LAST REVIEW: 05/2018 CIP CODE: 24.0101 SEMESTER: COURSE TITLE: COURSE NUMBER: Departmental Syllabus Biochemistry CHEM-0250 CREDIT HOURS: 4 INSTRUCTOR: OFFICE LOCATION: OFFICE HOURS: TELEPHONE:

More information

BIOC*3560. Structure and Function in Biochemistry. Summer 2016

BIOC*3560. Structure and Function in Biochemistry. Summer 2016 BIOC*3560 Structure and Function in Biochemistry Summer 2016 Instructor: Dr. Manfred Brauer Rm. 3520 Science Complex, Ext. 53795 E-mail: mbrauer@uoguelph.ca Lectures: Tuesday & Thursday: 8:30 a.m. - 9:50

More information

Plant Biochemistry, Spring 2016 BOT 6935, section 1E55, 4 credits

Plant Biochemistry, Spring 2016 BOT 6935, section 1E55, 4 credits Plant Biochemistry, Spring 2016 BOT 6935, section 1E55, 4 credits Meeting time and place MTWTh, 4 th Period, 133 Cancer/Genetics Research Complex Instructors Dr. Alice Harmon, 621 Carr Hall, harmon@ufl.edu,

More information

Unit 2 Biology Course Outline Winter BIOC 305 Molecular Biochemistry (3) TTh 8 a.m.- 9:20 a.m. Art 376

Unit 2 Biology Course Outline Winter BIOC 305 Molecular Biochemistry (3) TTh 8 a.m.- 9:20 a.m. Art 376 Unit 2 Biology Course Outline 2013 Winter BIOC 305 Molecular Biochemistry (3) TTh 8 a.m.- 9:20 a.m. Art 376 Instructor: Dr. Joyce Boon Office: Science 316 Phone: (250-807- 9545) Email: Joyce.Boon@ubc.ca

More information

BIOC*3560. Structure and Function in Biochemistry. Fall 2015

BIOC*3560. Structure and Function in Biochemistry. Fall 2015 BIOC*3560 Structure and Function in Biochemistry Fall 2015 Instructors: Dr. Marc Coppolino Dr. Rod Merrill Rm. 2245 Science Complex Rm. 2250 Science Complex Ext. 53031 Ext. 53806 E-mail: bioc356w@uoguelph.ca

More information

Biochemistry 1 ( ) Credit hours 2 Level 2 nd year Pre-requisite Biology I ( Coordinator/ Lecturer

Biochemistry 1 ( ) Credit hours 2 Level 2 nd year Pre-requisite Biology I ( Coordinator/ Lecturer The University of Jordan Faculty: Pharmacy Department: Biopharmaceutics and Clinical Pharmacy Program: Pharmacy Academic Year/ Fall Semester: 2013/14 Biochemistry 1 (1203251) Credit hours 2 Level 2 nd

More information

Instructor: Jill Paterson, PhD Chemistry A608. Office Hours: Mondays from 8-10 am, Chemistry A608

Instructor: Jill Paterson, PhD Chemistry A608. Office Hours: Mondays from 8-10 am, Chemistry A608 Instructor: Jill Paterson, PhD jpaterso@indiana.edu Chemistry A608 Biological Chemistry, Chemistry C483 Department of Chemistry, Indiana University, Bloomington, IN Fall 2010, 3 Credits MWF, 10:10 am,

More information

3. Hydrogen bonds form between which atoms? Between an electropositive hydrogen and an electronegative N, O or F.

3. Hydrogen bonds form between which atoms? Between an electropositive hydrogen and an electronegative N, O or F. Chemistry of Life Answers 1. Differentiate between an ionic and covalent bond. Provide an example for each. Ionic: occurs between metals and non-metals, e.g., NaCl Covalent: occurs between two non-metals;

More information

Biochemistry: The Molecular Basis of Life

Biochemistry: The Molecular Basis of Life Biochemistry: The Molecular Basis of Life McKee, Trudy ISBN-13: 9780195305753 Table of Contents * New to this edition Preface 1. WHAT IS LIFE? 1.1 The Living World Bacteria Archaea Eukarya 1.3 Biomolecules

More information

Introductory Biochemistry

Introductory Biochemistry BCH3023 Introductory Biochemistry BCH3023 Introductory Biochemistry Course Description: This course surveys the fundamental components of biochemistry. In this course, students will learn concepts such

More information

BMB 401 Summer 2018 Comprehensive Biochemistry

BMB 401 Summer 2018 Comprehensive Biochemistry BMB 401 Summer 2018 Comprehensive Biochemistry Class begins 5/14/18 Midterm Exam Times: 3-4 PM Eastern on these Thursdays ONLY: June 7, June 28, July 19, and August 9 from 3-4pm EST. Comprehensive 5th

More information

Basic Sciences Department

Basic Sciences Department SYLLABUS Name of Course: Biochemistry 2, CHEM 133 Length of Course: Course Description: Prerequisites: Course Offered by: Required Texts: 3.5 units; 55 hours (5 hrs lecture per week) Biochemistry 2 studies

More information

A. Lipids: Water-Insoluble Molecules

A. Lipids: Water-Insoluble Molecules Biological Substances found in Living Tissues Lecture Series 3 Macromolecules: Their Structure and Function A. Lipids: Water-Insoluble Lipids can form large biological molecules, but these aggregations

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

The Building blocks of life. Macromolecules

The Building blocks of life. Macromolecules The Building blocks of life Macromolecules 1 copyright cmassengale 2 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 3 LIFE ON EARTH IS CARBON-BASED

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Kingdom of Saudi Arabia. The National Commission for Academic Accreditation & Assessment

Kingdom of Saudi Arabia. The National Commission for Academic Accreditation & Assessment Course Specifications Kingdom of Saudi Arabia The National Commission for Academic Accreditation & Assessment Course Specifications (CS) Course Specifications Institution: University of Dammam College/Department

More information

The University of Jordan. Accreditation & Quality Assurance Center. COURSE Syllabus

The University of Jordan. Accreditation & Quality Assurance Center. COURSE Syllabus The University of Jordan Accreditation & Quality Assurance Center COURSE Syllabus 1 Course title Biochemistry for Medical students 2 Course number 0501213 Credit hours (theory, practical) 3 3 Contact hours

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules NAME DATE Chapter 5 - The Structure and Function of Large Biological Molecules Guided Reading Concept 5.1: Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall

More information

Biochemistry 2: CHEM-UA

Biochemistry 2: CHEM-UA Biochemistry 2: CHEM-UA.882001 Dr. Burt Goldberg, Professor of Biochemistry/Chemistry Chemistry Department Room: 664 Brown MDI Email: bg43@nyu.edu or burt.goldberg@nyu.edu or burt.goldberg@gmail.com Phone:

More information

Essential Biology 3.2 Carbohydrates, Lipids, Proteins. 1. Define organic molecule.

Essential Biology 3.2 Carbohydrates, Lipids, Proteins. 1. Define organic molecule. 1. Define organic molecule. An organic molecule is a molecule that contains carbon and is found in living things. There are many organic molecules in living things. The same (or very similar) molecules

More information

Why Carbon? What does a carbon atom look like?

Why Carbon? What does a carbon atom look like? Biomolecules Organic Chemistry In the 1800 s it was believed to be impossible to recreate molecules in a lab Thus, the study of organic chemistry was originally the study of molecules in living organisms

More information

What are the molecules of life?

What are the molecules of life? Molecules of Life What are the molecules of life? Organic Compounds Complex Carbohydrates Lipids Proteins Nucleic Acids Organic Compounds Carbon- hydrogen based molecules From Structure to Function Ø Carbon

More information

Anatomy & Physiology I. Macromolecules

Anatomy & Physiology I. Macromolecules Anatomy & Physiology I Macromolecules Many molecules in the human body are very large, consisting of hundreds or even thousands of atoms. These are called macromolecules. Four types of macromolecules are

More information

Biology 12 - Biochemistry Practice Exam

Biology 12 - Biochemistry Practice Exam Biology 12 - Biochemistry Practice Exam Name: Water: 1. The bond between water molecules is a (n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond 2. The water properties: good solvent,

More information

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection From Atoms to Cells: A chemical connection Fundamental Building Blocks Matter - all materials that occupy space & have mass Matter is composed of atoms Atom simplest form of matter not divisible into simpler

More information

Chemistry of Carbon. All living things rely on one particular type of molecule: carbon

Chemistry of Carbon. All living things rely on one particular type of molecule: carbon Ach Chemistry of Carbon All living things rely on one particular type of molecule: carbon Carbon atom with an outer shell of four electrons can form covalent bonds with four atoms. In organic molecules,

More information

SYLLABUS. 3.5 units; 55 hours (5 hrs lecture per week)

SYLLABUS. 3.5 units; 55 hours (5 hrs lecture per week) SYLLABUS NAME OF COURSE: Biochemistry 1 - CHEM 121 LENGTH OF COURSE: 3.5 units; 55 hours (5 hrs lecture per week) COURSE DESCRIPTION: Biochemistry 1 studies the structure, function and performance relationships

More information

Macromolecules. copyright cmassengale

Macromolecules. copyright cmassengale Macromolecules 1 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 2 Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water.

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water. BIOCHEMISTRY Organic compounds Compounds that contain carbon are called organic. Inorganic compounds do not contain carbon. Carbon has 4 electrons in outer shell. Carbon can form covalent bonds with as

More information

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules.

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Macromolecules Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond Biology 12 - Biochemistry Practice Exam KEY Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond 2. The water properties: good solvent,

More information

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids Biological Molecules Carbohydrates, Proteins, Lipids, and Nucleic Acids Organic Molecules Always contain Carbon (C) and Hydrogen (H) Carbon is missing four electrons Capable of forming 4 covalent bonds

More information

Chapter 2 The Chemistry of Life Part 2

Chapter 2 The Chemistry of Life Part 2 Chapter 2 The Chemistry of Life Part 2 Carbohydrates are Polymers of Monosaccharides Three different ways to represent a monosaccharide Carbohydrates Carbohydrates are sugars and starches and provide

More information

SOUTHERN CONNECTICUT STATE UNIVERSITY CHE 451 Biochemistry II Spring Semester, 2011

SOUTHERN CONNECTICUT STATE UNIVERSITY CHE 451 Biochemistry II Spring Semester, 2011 SOUTHERN CONNECTICUT STATE UNIVERSITY CHE 451 Biochemistry II Spring Semester, 2011 Name: Dr. J. Pang Office: 323 Jennings Hall Phone: 203-392-6272 E-mail: pangj1@southernct.edu Office Hours: MTWF 11-12

More information

2 nd. Associate Professor Sanja Dabelić (e-learning - is not included in standard hours, but is used in teaching)

2 nd. Associate Professor Sanja Dabelić (e-learning - is not included in standard hours, but is used in teaching) 1. COURSE DECRIPTION GENERAL INFORMATION 1.1. Course teacher Associate Professor Sanja Dabelić 1.6. Year of study 1.2. Name of the course Biological Chemistry 1.7. Credit value (ECTS) 6 1.3. Associate

More information

Most life processes are a series of chemical reactions influenced by environmental and genetic factors.

Most life processes are a series of chemical reactions influenced by environmental and genetic factors. Biochemistry II Most life processes are a series of chemical reactions influenced by environmental and genetic factors. Metabolism the sum of all biochemical processes 2 Metabolic Processes Anabolism-

More information

Revision Sheet Final Exam Term

Revision Sheet Final Exam Term Revision Sheet Final Exam Term-1 2018-2019 Name: Subject: Chemistry Grade: 12 A, B, C Required Materials: Chapter: 22 Section: 1,2,3,4 (Textbook pg. 669-697) Chapter: 23 Section: 1,2 (Textbook pg. 707-715)

More information

Organic Molecules. 8/27/2004 Mr. Davenport 1

Organic Molecules. 8/27/2004 Mr. Davenport 1 Organic Molecules 8/27/2004 Mr. Davenport 1 Carbohydrates Commonly called sugars and starches Consist of C, H, O with H:O ration 2:1 Usually classified as to sugar units Monosaccharide are single sugar

More information

Disaccharides. Compound dehydration synthesis puts sugars together Hydrolysis (hydro-water, lysisbreakdown)

Disaccharides. Compound dehydration synthesis puts sugars together Hydrolysis (hydro-water, lysisbreakdown) Carbohydrate Carbo-hydrate -carbon, water Cn(H2O) n Monosaccharides Hexose hex = 6 [carbons], "-ose" means sugar Glucose monosaccaccharide usually assume a ring structure Disaccharides Compound dehydration

More information

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2.

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. A possible explanation for an event that occurs in nature is

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Activity: Biologically Important Molecules

Activity: Biologically Important Molecules Activity: Biologically Important Molecules AP Biology Introduction We have already seen in our study of biochemistry that the molecules that comprise living things are carbon-based, and that they are thought

More information

Carbon. Isomers. The Chemical Building Blocks of Life

Carbon. Isomers. The Chemical Building Blocks of Life The Chemical Building Blocks of Life Carbon Chapter 3 Framework of biological molecules consists primarily of carbon bonded to Carbon O, N, S, P or H Can form up to 4 covalent bonds Hydrocarbons molecule

More information

Syllabus: General Biochemistry BB450/550 Fall 2018

Syllabus: General Biochemistry BB450/550 Fall 2018 Syllabus: General Biochemistry BB450/550 Fall 2018 Professor: Phil McFadden. Campus office: 2151 ALS. Office hours: TuTh 3-4 pm. Contact: phil.mcfadden@oregonstate.edu Teaching Assistants (TA's): Kayla

More information

Biochemistry Macromolecules and Enzymes. Unit 02

Biochemistry Macromolecules and Enzymes. Unit 02 Biochemistry Macromolecules and Enzymes Unit 02 Organic Compounds Compounds that contain CARBON are called organic. What is Carbon? Carbon has 4 electrons in outer shell. Carbon can form covalent bonds

More information

Chemical Biology - Chem 370 (3 credits)

Chemical Biology - Chem 370 (3 credits) Chemical Biology - Chem 370 (3 credits) Spring Semester 2015 Instructors: Dr. Jeff Jones, Fulmer 406/408, 335-5983, jpj@wsu.edu Dr. ChulHee Kang, Fulmer 264, 509-335-1409, chkang@wsu.edu Class Meeting:

More information

Medical Biochemistry CHEM 1005 Renee LeClair, Ph.D.

Medical Biochemistry CHEM 1005 Renee LeClair, Ph.D. Medical Biochemistry CHEM 1005 Renee LeClair, Ph.D. I. Overview. Medical Biochemistry is a four credit hour course designed to lay the foundation for other basic and clinical medical sciences. The goal

More information

Carbon Compounds. Lesson Overview. Lesson Overview. 2.3 Carbon Compounds

Carbon Compounds. Lesson Overview. Lesson Overview. 2.3 Carbon Compounds Lesson Overview Carbon Compounds Lesson Overview 2.3 THINK ABOUT IT In the early 1800s, many chemists called the compounds created by organisms organic, believing they were fundamentally different from

More information

Macro molecule = is all the reactions that take place in cells, the sum of all chemical reactions that occur within a living organism Anabolism:

Macro molecule = is all the reactions that take place in cells, the sum of all chemical reactions that occur within a living organism Anabolism: Macromolecule Macro molecule = molecule that is built up from smaller units The smaller single subunits that make up macromolecules are known as Joining two or more single units together form a M is all

More information

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester BT 6201 BIOCHEMISTRY

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester BT 6201 BIOCHEMISTRY Ws 5 Reg. No. : Question Paper Code : 27075 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Time : Three hours Second Semester Biotechnology BT 6201 BIOCHEMISTRY (Common to Pharmaceutical Technology)

More information

BIOC/CHEM/MMG 205, Biochemistry I

BIOC/CHEM/MMG 205, Biochemistry I BIOC/CHEM/MMG 205, Biochemistry I University of Vermont Fall Semester, 2003 Instructors Office Phone E-mail Margaret Daugherty Given B409 656-0344 Margaret.Daugherty @uvm.edu Martin Case Cook A321 656-8264

More information

Course Competencies Template - Form 112

Course Competencies Template - Form 112 Course Competencies Template - Form 112 GENERAL INFORMATION Name: Drs. Susan Neimand and Edwin Ginés- Candelaria Course Prefix/Number: BCH 3023 Number of Credits: 3 Degree Type Phone #: (305) 237-6152,

More information

A. Incorrect! No, this is not the description of this type of molecule. B. Incorrect! No, this is not the description of this type of molecule.

A. Incorrect! No, this is not the description of this type of molecule. B. Incorrect! No, this is not the description of this type of molecule. Biochemistry - Problem Drill 08: Carbohydrates No. 1 of 10 1. have one aldehyde (-CHO) or one keto (-C=O) group and many hydroxyl (-OH) groups. (A) Amino acids (B) Proteins (C) Nucleic Acids (D) Carbohydrates

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Name Period Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four main classes. Name them. 2. Circle the three classes that are called

More information

Macromolecules_p1.notebook. September 13, Functional Groups. Monomers and polymers. Monosaccharides. Starch. Starch and glycogen

Macromolecules_p1.notebook. September 13, Functional Groups. Monomers and polymers. Monosaccharides. Starch. Starch and glycogen Macromolecules_p.notebook Macromolecules are huge molecules made of thousands of smaller molecules. (polymer) (monomer) (Aldehyde) Monomers (Ketone) (alcohol) Polymer (carboxylic acid) large molecules

More information

COURSE IN BIOCHEMISTRY FOR STUDENTS OF FACULTY OF MEDICINE DEPARTMENT OF BIOCHEMISTRY

COURSE IN BIOCHEMISTRY FOR STUDENTS OF FACULTY OF MEDICINE DEPARTMENT OF BIOCHEMISTRY COURSE IN BIOCHEMISTRY FOR STUDENTS OF FACULTY OF MEDICINE DEPARTMENT OF BIOCHEMISTRY The name of Unit in which the subject is realized: Department of Biochemistry Head: Prof. Dariusz Chlubek M.D., Ph.D.

More information

Molecule - two or more atoms held together by covalent bonds. Ex. = water, H O

Molecule - two or more atoms held together by covalent bonds. Ex. = water, H O ORGANIC CHEMISTRY NOTES Why study carbon? ORGANIC CHEMISTRY NOTES Why study carbon? * All of life is built on carbon * Cells are made up of about 72% water 3% salts (NaCl, and K) 25% carbon compounds which

More information

Macromolecules. Honors Biology

Macromolecules. Honors Biology Macromolecules onors Biology 1 The building materials of the body are known as macromolecules because they can be very large There are four types of macromolecules: 1. Proteins 2. Nucleic acids 3. arbohydrates

More information

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary Macromolecules 1. If you remove all of the functional groups from an organic molecule so that it has only carbon and hydrogen atoms, the molecule become a molecule. A) carbohydrate B) carbonyl C) carboxyl

More information

Chemical Biology - Chem 370 (3 credits)

Chemical Biology - Chem 370 (3 credits) Chemical Biology - Chem 370 (3 credits) Spring Semester 2016 Instructors: Dr. Jeff Jones, Fulmer 406/408, 335-5983, jpj@wsu.edu Dr. ChulHee Kang, Fulmer 264, 509-335-1409, chkang@wsu.edu Class Meeting:

More information

January 31, Chemistry of Life. Carbohydrates. Lipids. Proteins. Biologically Important Macromolecules. Nucleic Acids

January 31, Chemistry of Life. Carbohydrates. Lipids. Proteins. Biologically Important Macromolecules. Nucleic Acids Chemistry of Life Carbohydrates Lipids Proteins Biologically Important Macromolecules Nucleic Acids Polymers Polymers are large molecules of repeating sub units (building blocks) Individual Building Blocks......can

More information

Macromolecules are polymers, built from monomers.[2]

Macromolecules are polymers, built from monomers.[2] GUIDED READING - Ch. 5 - STRUCTURE & FUNCTION OF LARGE BIOMOLECULES NAME: Please print out these pages and HANDWRITE the answers directly on the printouts. Typed work or answers on separate sheets of paper

More information

Published on Second Faculty of Medicine, Charles University (http://www.lf2.cuni.cz )

Published on Second Faculty of Medicine, Charles University (http://www.lf2.cuni.cz ) Published on Second Faculty of Medicine, Charles University (http://www.lf2.cuni.cz ) Biochemistry Submitted by Marie Havlová on 8. February 2012-0:00 Syllabus of Biochemistry Mechanisms of enzyme catalysis.

More information

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules.

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Macromolecules 1 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 2 Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1 Lesson 2 Biological Molecules Introduction to Life Processes - SCI 102 1 Carbon in Biological Molecules Organic molecules contain carbon (C) and hydrogen (H) Example: glucose (C 6 H 12 O 6 ) Inorganic

More information

Chapter 3- Organic Molecules

Chapter 3- Organic Molecules Chapter 3- Organic Molecules CHNOPS Six of the most abundant elements of life (make up 95% of the weight of all living things)! What are they used for? Structures, enzymes, energy, hormones, DNA How do

More information

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds:

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Biochemistry Organic Chemistry All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Do not contain carbon Organic

More information

Biology: Life on Earth Chapter 3 Molecules of life

Biology: Life on Earth Chapter 3 Molecules of life Biology: Life on Earth Chapter 3 Molecules of life Chapter 3 Outline 3.1 Why Is Carbon So Important in Biological Molecules? p. 38 3.2 How Are Organic Molecules Synthesized? p. 38 3.3 What Are Carbohydrates?

More information

Organic Chemistry. Organic chemistry is the chemistry of carbon compounds. Biochemistry is the study of carbon compounds that crawl.

Organic Chemistry. Organic chemistry is the chemistry of carbon compounds. Biochemistry is the study of carbon compounds that crawl. Organic Chemistry Organic chemistry is the chemistry of carbon compounds. Biochemistry is the study of carbon compounds that crawl. Organic Compounds - have carbon bonded to other atoms and determine structure/function

More information

Chemical Biology - Chem 370 (3 credits) Spring Semester 2018

Chemical Biology - Chem 370 (3 credits) Spring Semester 2018 Chemical Biology - Chem 370 (3 credits) Spring Semester 2018 Instructors: Dr. ChulHee Kang, Fulmer 264, 509-335-1409, chkang@wsu.edu Class Meeting: M/W/F 11:10-12:00 PM, Fulmer 438 Office Hours M/W/F 12:10-13:00

More information

2.3 Carbon Compounds 12/19/2011 BIOLOGY MRS. MICHAELSEN. Lesson Overview. Carbon Compounds The Chemistry of Carbon. Lesson Overview.

2.3 Carbon Compounds 12/19/2011 BIOLOGY MRS. MICHAELSEN. Lesson Overview. Carbon Compounds The Chemistry of Carbon. Lesson Overview. 2.3 The Chemistry of Carbon A. Carbon atoms have four valence electrons 1. Form strong covalent bonds with many other elements: H, O, P, S, N. 2. Living organisms are made up of carbon and these other

More information

BIOLOGY 311C - Brand Spring 2010

BIOLOGY 311C - Brand Spring 2010 BIOLOGY 311C - Brand Spring 2010 NAME (printed very legibly) KEY UT-EID EXAMINATION III Before beginning, check to be sure that this exam contains 8 pages (including front and back) numbered consecutively,

More information

FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY. April CONTACT HOURS: Lecture: 3 Laboratory: 3

FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY. April CONTACT HOURS: Lecture: 3 Laboratory: 3 FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY COURSE OUTLINE: COURSE TITLE: Prepared by Dr. Glen Hinckley April 2017 Biochemistry COURSE CODE: CHM 380 CREDITS: 4 CONTACT HOURS: Lecture: 3 Laboratory:

More information