Dendritic Cell Development in Long-Term Spleen Stromal Cultures

Size: px
Start display at page:

Download "Dendritic Cell Development in Long-Term Spleen Stromal Cultures"

Transcription

1 ConciseReview Dendritic Cell Development in Long-Term Spleen Stromal Cultures HELEN C. O NEILL, HEATHER L. WILSON, BEN QUAH, JANICE L. ABBEY, GENEVIÈVE DESPARS, KEPING NI School of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra, Australia Key Words. Dendritic cells Stromal cells Hematopoiesis Differentiation ABSTRACT The cellular microenvironments in which dendritic cells (DCs) develop are not known. DCs are commonly expanded from CD34 + bone marrow precursors or blood monocytes using a cocktail of growth factors including GM-CSF. However, cytokine-supported cultures are not suitable for studying the intermediate stages of DC development, since progenitors are quickly driven to become mature DCs that undergo limited proliferation and survive for only a short period of time. This lab has developed a long-term culture (LTC) system from spleen which readily generates a high yield of DCs. Hematopoietic cells develop under more normal physiological conditions than in cultures supplemented with cytokines. A spleen stromal cell monolayer supports stem cell maintenance, renewal, and the specific differentiation of only DCs and no other hematopoietic cells. Cultures maintain continuous production of a small population of smallsized progenitors and a large population of fully developed DCs. Cell cell interaction between stromal cells and progenitor cells is critical for DC differentiation. The progenitors maintained in LTC appear to be quite distinct from bone marrow derived DC progenitors that respond to GM-CSF. The majority of cells produced in LTC are large-sized cells with a phenotype reflecting myeloid-like DC precursors or immature DCs. These cells are highly endocytotic and weakly immunostimulatory for T cells. This model system predicts in situ production of DCs in spleen from endogenous progenitors, as well as a central role for spleen in DC hematopoiesis. Stem Cells 2004;22: INTRODUCTION The study of the dendritic cell (DC) lineage and of the signals and factors regulating cell development and function is an area of intense interest to immunologists. DCs are highly endocytotic and the most efficient antigen-presenting cells for the immune system. They are therefore the ultimate controllers of the immune response and an extremely important target in the development of strategies for immunotherapy. Multiple DC subsets have now been defined in many organs on the basis of cell surface marker expression and function [reviewed in 1, 2]. DC subsets can also interact with a range of immune cells, presenting antigen to naïve or memory T cells and inducing activation of natural killer cells [3]. They also present unprocessed antigen to B cells and modulate B- cell responses [4]. Immature DCs in peripheral tissues are thought to be the predominant DC population in the immune Correspondence: H.C. O Neill, Ph.D., School of Biochemistry and Molecular Biology, Building #41, Linnaeus Way, Australian National University, Canberra, ACT 0200, Australia. Telephone: ; Fax: ; Helen. ONeill@anu.edu.au Received November 9, 2003; accepted for publication January 27, AlphaMed Press / 2004/$12.00/0 STEM CELLS 2004;22:

2 476 O Neill, Wilson, Quah et al. steady-state. They are highly endocytotic but not activated in terms of immunostimulatory capacity. Full maturation or activation depends on exposure to pathogens, inflammatory cytokines, or necrotic cells [5]. Only activated DCs can induce a T-cell response, and different subsets of DCs appear to be responsible for induction of either tolerance or immunity [6]. At this stage, it is unclear whether functional division among DC subsets reflects cell specialization during development from progenitors or functional plasticity of fully differentiated DCs. The answer to this question depends on direct analysis of the development of DCs from progenitors. While there are several ways to study DC development, the procedures involved are only possible in animal models. This review considers current approaches to the study of lineage commitment in DCs. Reference is made primarily to the murine DC lineage(s), although many similarities are known to exist between human and murine DCs [1]. Difficulties Associated with the Study of Dendritic Cell Development DCs are scattered in most organs of the body, including lung, gut, skin, and lymphoid tissues. Unlike other leucocytes, these cells are not present in high numbers in blood. They are widely distributed in most peripheral tissues, but their numbers are so small as to make isolation an extremely difficult task. There are very few markers specific for the DC lineage, although the CD11c marker in mouse has been particularly useful [7]. Cells are identified on the basis of combined expression of a number of markers common to other leucocytes. Langerhans cells in skin represent a distinct lineage of DCs and are identifiable by expression of Langerin [8]. It is well accepted that DCs in peripheral tissues, including Langerhans cells in skin, are immature DCs that take up antigen and mature as they traffic to lymph nodes where they encounter T cells. Lymphoid tissues also contain endogenous populations of immature DCs that are distinguishable from antigen-carrying DCs entering from peripheral tissues [9]. It is not yet known whether endogenous immature DCs in lymphoid tissues differ from immature DCs in peripheral tissue sites. Cells in both sites could have an important role in the maintenance of peripheral tolerance, but it is not known exactly how cells differentiate to acquire those distinctly different functional properties. While endogenous spleen DCs are thought to be blood-derived, at this stage it is unclear whether they undergo differentiation within the spleen from endogenous progenitors or arrive in a more mature state, perhaps as blood-derived DC precursors [10, 11]. Many labs have developed procedures for fractionation of DC subsets of increasingly higher purity. Methods for cell isolation depend on known cell properties or known cell surface marker expression and are fraught with problems of cell contamination [12]. Another problem is that once cells are isolated from tissue and exposed to in vitro culture, they immediately become activated, which can lead to alterations in functional capacity and marker expression [5]. For experimentation, isolated cell fractions enriched for DC precursors are commonly expanded in vitro by culture in medium containing a cocktail of growth factors, usually containing granulocyte-macrophage colony-stimulating factor (GM-CSF), stem cell factor (SCF), and tumor necrosis factor alpha (TNF-α). However, cytokine-supported cultures yield a heterogeneous mixture of cells, including DCs and in some circumstances monocytes and macrophages. Most cytokinesupplemented cultures are not suitable for studying the intermediate stages of DC development, since progenitors are quickly driven to become mature DCs, which undergo limited proliferation and survive for only a short period of time. These in vitro culture conditions do not maintain progenitor cell populations and provide little opportunity to study intermediate stages in development. The pathways that connect intermediate stages in DC development with progenitors and mature cells remain difficult to analyze by studying the population of cells resulting from tissue fractionation or in vitro culture. Ways to Study Dendritic Cell Hematopoiesis The study of DC development from progenitors is inherently difficult because progenitors are present in tissues in very low numbers, and specific markers for progenitors have not yet been defined. Characterization of DC progeny is all the more difficult because it is dependent on the production of identifiable progeny DCs. Progenitor or stem cells are also intimately tied to a niche or microenvironment that provides a complex arrangement of soluble factors, as well as cell cell and cell matrix interactions that are essential for maintenance of stem cells and their eventual differentiation [13,14]. The microenvironments in which DCs develop are, so far, undefined. It is likely that a number of signaling events apart from cytokines combine to drive progenitor cells to differentiate into DCs. While growth factors like Flt3L and GM- CSF can support DC development both in vivo and in vitro, these cytokines do not have an essential or even a specific role in lineage commitment [15, 16]. The study of progenitors requires a suitable model system in which to study their differentiation into functional DCs. There are three main approaches to the study of hematopoiesis: subset analysis, lineage analysis, and production of cells in long-term cultures. A more thorough understanding of developmental pathways could stem from the application of all three approaches. Subset analysis involves identification of cells on the basis of differential expression of multiple cell surface

3 Dendritic Cell Development 477 markers and predictions about their lineage relationship. This is usually the first approach, and it uses isolated cells, flow cytometry, and any available antibodies. Multiple DC subsets have been identified in murine lymphoid tissues on the basis of expression of markers including CD11c, CD11b, CD205, CD80, CD86, B220, MHC-II (major histocompatibility complex-2), CD40, CD8α, and CD4. Currently there are three known subsets in spleen [17], two in thymus [17], and five in lymph node [18]. More recently, the distinct lineage of murine plasmacytoid DCs was identified in multiple organs on the basis of B220 expression [19]. DC subsets in murine spleen are located in two distinct locations: some are located in the marginal zone, and others, notable by expression of CD205 and CD8α, are located in T-cell areas [20]. Marker combinations have been identified which can distinguish Langerhans cells, thymic lymphoid DCs, plasmacytoid DCs, and the distinct populations of myeloid CD8a + and CD8a DCs. Definition of the functional capacity of the many known DC subsets lags behind phenotypic definition. Furthermore, the developmental origin of each of the different subsets is one of the most controversial areas of DC biology. To date, very little is known about the lineage relationship among these DC subsets. Lineage analysis involves ex vivo isolation of a cell subset containing progenitor cells and transfer of these into a syngeneic host that may have been sublethally irradiated to destroy host hematopoietic cells. This can be done effectively if donor and host express different allelic markers delineating the different cells. Progeny cells are identified by antibody staining to detect cell surface markers that indicate the lineage of donor-derived cells. The drawback with these studies is that information obtained is limited by knowledge of the starting cell population. It is difficult to clearly delineate lineage when the progenitor population contains more than one progenitor type. The most definitive experiments involve isolation of a pure starting population of otherwise rare cells. Another requirement is that a sufficient number of progeny cells is produced so that it is possible to detect them with certainty among the cells of the host. Using the lineage approach, both DCs and T cells were shown to develop in thymus from thymic CD4 lo lymphoid precursors following intrathymic injection of cells into syngeneic host mice [21]. This finding led to the hypothesis for a separate lymphoid-like lineage of DCs in thymus. Recently this approach was used to demonstrate plasticity in DC development. DCs of different phenotype, previously thought to be representative of distinct myeloid and lymphoid lineage subtypes, could be derived from both the common myeloid and the common lymphoid progenitor subsets in bone marrow following transplantation into host mice [22]. This study predicted the existence of a common DC precursor derived from both myeloid and lymphoid progenitors and questioned hypotheses about the existence of separate myeloid and lymphoid lineages of DCs. The third approach to cell development is the study of hematopoiesis in long-term stroma-dependent cultures. In these cultures, hematopoiesis is dependent on the establishment of a layer of stromal cells that support stem cell survival, self-renewal, and differentiation [23]. Hematopoiesis was first achieved in vitro in long-term bone marrow cultures in which granulopoiesis predominated [23, 24]. Whitlock et al. [25] also developed a long-term culture (LTC) system that supported production of cells representing early stages in B-cell development. Similarly, thymic organ cultures have been used to study the development of T cells in contact with the thymic stromal cell environment [26]. In each of these culture systems, early progenitors are maintained in a complex cellular environment conducive to lineage commitment. The main advantage of these cultures is that the microenvironment supports self-renewal and maintenance of a population of progenitor cells which would otherwise be impossible to isolate. Long-term cultures mimic the normal developmental process within tissue niches. The niche established in a long-term culture supports a variety of interactions between stem cells, stromal cells, extracellular matrix, and growth and differentiation factors [27]. Cells develop under more normal physiological conditions than in cultures supplemented with cytokines alone. This approach has limitations in that it represents in vitro development and any findings need to subsequently be tested in vivo. However, cell development and function can be observed in vitro, and cells can be isolated for study at various time points. This lab has developed a long-term culture system that produces DCs. While some success has been obtained in establishing cultures from cells derived from a number of lymphoid sites, by far the most productive long-term cultures have been those derived from spleen [28, 29]. Areadily identifiable common class of immature DCs has been found to develop in spleen long-term cultures [28 32]. The ease with which these cultures are established and their consistent production of DCs of a common phenotype suggest that an equivalent normal process of DC hematopoiesis may occur in spleen. Our prediction is that spleen contains DC progenitors that develop into DCs in situ and are supported by stromal cells and other factors. An endogenous population of spleen immature DCs could develop from progenitor cells resident in spleen. This hypothesis is under further test. LONG-TERM SPLEEN CULTURES PRODUCING DENDRITIC CELLS The preparation of long-term cultures involves culturing a suspension of cells prepared from dissociated lymphoid tissue of young mice. This ensures maintenance of all stromal

4 478 O Neill, Wilson, Quah et al. and hematopoietic cell types present in the original tissue. Lymphoid tissues from many different strains of mice have been used successfully to generate long-term cultures. However, spleen cultures are unique in their capacity to continuously support the production of DCs [28]. Within a week of culture, stromal cells are adhered to the tissue culture flask and begin to slowly divide to produce a confluent cell layer. The stroma comprises a mixture of cell types that is characteristic of the starting tissue type [29]. For example, thymic stroma is quite distinct from spleen stroma in that it contains epithelial cells. Spleen stroma, however, comprises a mixture of fibroblasts and endothelial cells with some adherent DCs and macrophages detectable in early cultures. The presence of endothelial cells has been confirmed by staining cells with antibody specific to Factor VIII related antigen [29]. Spleen long-term cultures were the easiest to produce and became immediately of interest when it was discovered that they yielded a population of cells resembling immature DCs. Spleen stromal layers also support secondary LTC and the outgrowth of allogeneic DCs from overlaid bone marrow [30]. Most of our work has therefore concentrated on the characterization of spleen long-term cultures. Cells reflecting various stages in development can be identified in these cultures (Fig. 1). Aphotomicrograph showing the cells in an early LTC is shown in Figure 2, and adherent large endothelial cells and fibroblasts are evident (Fig. 2A, B). Foci of dividing hematopoietic cells are attached to the stromal cells, and scattered hematopoietic cells are loosely attached before they are released into the supernatant. In Figure 2C, nonadherent cells released into supernatant have the morphological characteristics of DCs with long membrane extensions, or pseudopodia. Cells are cultured in medium without the addition of cytokines commonly used to expand DCs from isolated precursor populations. Supplemented Dulbecco s Minimal Essential Medium containing 10% endotoxin-free fetal calf serum is used routinely [33]. Within 3 weeks of establishment of spleen cultures, stroma becomes confluent and most mature lymphoid cells and erythrocytes have died off. Frequent medium change is needed between 2 and 3 weeks of culture to dilute out debris from dying cells [34]. Foci of small round dividing cells then become detectable above the stroma (Fig. 2A, B) [33]. Over time, larger round cells appear above the foci and are then released into the culture medium (Fig. 2C). These show the characteristic smallmembrane extensions of developing DCs. Large, granular DCs with long pseudopodia are also detectable in the medium. The establishment of productive cultures requires selection of cultures with an appropriate mixture of both fibroblastic and endothelial cells from an early stage. The relative contribution of these two cell types to DC hematopoiesis is not yet completely understood but is under further investigation. The characteristics of cloned stromal cell lines are under investigation for functional capacity to support DC differentiation, and gene profiling is being used to confirm cell types. Aproductive 30-ml long-term culture will yield nonadherent DCs every 48 hours. A homogeneous population of cells is produced in long-term cultures, and no further enrichment of cells is needed to obtain DCs. Figure 1. Stromal cell niche which supports dendritic cell (DC) development in long-term cultures.

5 Dendritic Cell Development 479 Figure 2. Photomicrographs of cell types detectable in long-term cultures. (A): Low-power (100 ) view showing endothelial and fibroblastic cells in stroma supporting small hematopoietic cells. (B): Large focus of hematopoietic cells attached to stroma (100 ). (C): Nonadherent cells present in the supernatant have dendritic cell morphology (320 ). For experimentation, culture flasks are gently rocked and nonadherent cells are collected by pipetting off supernatant without disturbing the stroma. The longevity of the culture is maintained by passaging both stromal cells and nonadherent cells into new tissue culture flasks every 2 3 months. Asmall section of stroma is scraped from the donor flask. Medium containing stromal and nonadherent cells is transferred to a fresh flask with fresh medium. Subcultures then take 3 4 weeks to form a stromal layer and to become productive. DCs can be collected from a single long-term culture line for experimental use over a period of years if cultures are maintained by passage [31]. Passage of cultures is necessary to prevent fibroblast overgrowth in the culture and to maintain progenitors that are essential for continuity of long-term cultures. Nonadherent cells alone seeded into a flask of medium will not survive beyond about 7 days [28, 29, 32]. Passage of the stromal cell layer is essential for maintenance of the culture. One can argue that stroma-supported hematopoiesis in vitro simulates conditions much closer to normal physiological conditions than do cultures supplemented with high concentrations of growth factors. Long-term spleen cultures are unique in terms of DC production because they rely entirely on endogenously produced growth factors. While soluble factors are known to be important in this system [32], GM-CSF and TNF-α, commonly used for in vitro generation of DCs from isolated precursors, are not produced in LTC [28, 32]. Consistent with this is evidence that DCs that produce long-term cultures can be derived from GM-CSF / mice [35]. Our hypothesis is that steady-state or homeostatic DC development in spleen LTC occurs in the absence of GM-CSF. Addition of GM-CSF does not increase the production of DC from progenitors, although it has been shown to amplify the number of large DCs in culture [35]. This finding is consistent with a role for GM- CSF in an alternative pathway for development. In fact, GM-CSF could be an important factor for DC development under inflammatory conditions. The important role for inflammatory factors like GM-CSF, SCF, and TNF-α in DC development is supported by the many studies that effectively use the factors to amplify DC numbers for immunotherapy. However, this should not be taken to mean that cytokine-induced cultures are the only or most effective way to produce DCs for clinical or immunotherapeutic use [16]. CHARACTERISTICS OF DENDRITIC CELLS PRODUCED IN LONG-TERM SPLEEN CULTURES Nonadherent cells produced in long-term cultures have been characterized over many years as DCs on the basis of multiple parameters, including morphology, cell surface phenotype, and antigen-presenting capacity [28 30]. The size distribution of nonadherent cells collected from long-term cultures has also been measured using flow cytometry to record light scatter properties of cells. LTC produces two clear subpopulations of small and large cells, as defined by Forward and Side scatter profiles [33]. These have been referred to as small LTC-DC and large LTC-DC (Fig. 3). While the division into subsets on the basis of size appears arbitrary, it represents the best division to delineate a phenotypically homogeneous population of fully differentiated large-sized DCs. The small-cell subset is not so homogeneous and reflects less-differentiated cells with only some cells expressing the markers of DCs [33].

6 480 O Neill, Wilson, Quah et al. Figure 3. The major cell subsets produced in long-term cultures (LTCs). Abbreviations: FSC, forward scatter; SSC, side scatter. The cell surface phenotype of small and large cells produced in long-term cultures has been analyzed using flow cytometry and antibodies specific for a range of surface markers. The collective data from many different long-term lines maintained over a 4-year period are shown in Table 1. These data clearly delineate the phenotype of the small and large cells produced in long-term culture and also demonstrate the consistency in the percentage of positive cells and mean fluorescence achieved over many repeat experiments. The cell population produced in long-term cultures has remained remarkably constant in terms of cell size and surface marker expression over many years and over many lines established from different strains of mice [31]. The majority of cells produced in long-term cultures are large-sized cells with a clear DC phenotype of CD11c + CD11b + CD80 + CD86 + MHC-II /lo (Table 1; Fig. 3). Absence of CD40, B200, and CD8α reflects precursor or immature myeloid-like DCs (Table 1) [33, 36, 37]. Numerous tests have shown these cells to be highly endocytotic and immunostimulatory for T cells [31, 33, 37]. Small DCs represent a minor subset of cells expressing variable levels of CD117 (c-kit), CD80, CD11c, and CD11b. They are only weakly endocytotic and do not stimulate T cells [33]. A minor (1% 3%) subset of large cells produced in LTC is MHC-II + and is thought to represent DCs activated in culture [33]. Large LTC-DCs collected from stromal cultures can be weakly activated if they are cultured directly on plastic surfaces. This leads to upregulation of CD86 and MHC-I, although not of MHC-II [38]. These cells also respond weakly to activation with known DC-activating agents like lipopolysaccharide (LPS), TNF-α, and CD40 ligand. While these factors typically induce upregulation of CD86, MHC- I, CD44, and MHC-II in bone marrow derived or monocytederived DCs, LTC-DCs respond to these particular stimuli by upregulation of MHC-I and CD86 but not MHC-II or CD80 [37 39]. The significance of this response is under further investigation. One hypothesis is that DCs in different sites may have different functional capacity with respect to activation consistent with exposure to different types of pathogens or activators. This would be consistent with sitespecific immune responses and compartmentalization of the immune system to best meet the invasion of a range of different pathogens. In relation to known DC subsets, large LTC-DCs represent fully developed myeloid DCs that are unusual in that they do not express MHC-II and CD40. An in vivo equivalent cell type can be characterized in mouse spleen (unpublished data). In terms of cell surface phenotype, these cells resemble recently described murine CD11c + CD11b + MHC- II CD40 blood DC precursors (Fig. 3) [10, 11, 40]. Asimilar subset of DCs in spleen has also been described, which can activate marginal zone B cells to respond to bloodborne bacterial antigen [41]. DCs produced in long-term cultures are phenotypically and functionally distinct from the gold

7 Dendritic Cell Development 481 Table 1. Marker expression on small and large subsets of cells produced in long-term cultures Small LTC-DCs a Large LTC-DCs Surface marker No. of Positive cells b Median fluorescence Positive cells Median fluorescence experiments (%) ratio c (%) ratio CD11c ± 4.2 d 5.1 ± ± ± 1.5 CD11b ± ± ± ± 9.7 MHC class II ± ± ± ± 0.3 CD ± ± ± ± 3.9 CD ± ± ± ± 0.2 CD ± ± ± ± 2.3 CD ± ± ± ± 0.1 CD117 (c-kit) ± ± ± ± 0.6 CD8α ± ± ± ± 0.9 F4/ ± ± ± ± 0.3 CD ± ± ± ± 7.8 CD16/32 (FcγR) ± ± ± ± D ± ± ± ± 0.3 MHC class I ± ± ± ± 0.2 a Small and large LTC-DCs were delineated by flow cytometry using postacquisitional gating. b The percentage of positive-staining cells was calculated by subtracting background from specific antibody staining. Background was obtained by replacement of primary antibody with medium or isotype control antibody. c Shift in median fluorescence intensity of positive cells relative to background (signal-to-noise ratio). This was calculated to allow for variation in voltage amplification used over the course of many experiments. d Data represent mean ± standard error across multiple experiments. Abbreviation: LTC-DCs, long-term culture dendritic cells. standard CD11c + CD11b + MHC-II + DCs generated in cytokine-supported cultures. The commonly described DC subsets isolated by cell enrichment from the spleen and from lymph nodes are also different in that they have high MHC-II expression. Indeed, many of the procedures used to isolate DCs would eliminate subsets of cells resembling LTC-DCs on the basis of no MHC-II expression. However, it is difficult to determine from combined studies whether MHC-II levels are low to medium or high on spleen DC subsets, and, in fact, contradictory reports exist [9, 42]. DCs produced in the LTC system described here also differ from other cytokine-dependent DC-producing lines, like the D1 line described by Rescigno et al. [43]. D1 cells are myeloid DCs that express high levels of immunostimulatory markers, including MHC-II. These levels also increase after activation of cells with LPS and other bacterial activators [44]. Low expression of MHC-II in LTC-DC could be a result of in vitro culture conditions, however. LTC-DCs have been shown to synthesize the MHC-II invariant chain by reverse transcription polymerase chain reaction (RT-PCR) (unpublished data). It is possible that with their extremely high endocytotic capacity, cells lose surface MHC-II due to rapid turnover of the plasma membrane. DCs with a high rate of endocytosis have been shown to reabsorb and degrade MHC-II/peptide complexes faster than weakly endocytotic DCs [45]. Spleen also contains subsets of DCs that resemble LTC-DCs in terms of their absence of the CD8α and CD205 markers [46]. Low to nondetectable expression of CD205 in LTC-DCs is indicative of DCs residing outside the T-cell area of spleen [20, 47], suggesting that LTC-DCs may represent a marginal zone population of DCs. CD8α was originally thought to be a stable marker of spleen DC subsets, but it is now thought to fluctuate with activation and differentiation of cells. CD8α DCs can develop into CD8α + DCs [48] in a process that also involves upregulation of CD205 and is thought to be associated with maturation and movement of DCs into the T-cell areas. Alternatively, there is also evidence for a CD8α + blood precursor of spleen CD8α + DCs, which suggests that separate lineages of CD8α + cells may exist [49]. Large DCs produced in long-term cultures also express high levels of the FcγII/III receptor and are highly endocytotic [34 and unpublished data]. This is consistent with immature DCs that have a high capacity to endocytose antigen in preparation for processing and presentation to Tcells [6]. The capacity of cells to present antigen leading to T-cell activation has been demonstrated in vitro using both the

8 482 O Neill, Wilson, Quah et al. conalbumin-specific D10.G4.1 Th cell clone [31] and hen egg lysosome (HEL) specific T cells isolated from T-cell receptor 3A9 (TCR)-transgenic (Tg) mice [37, 38]. Since CD4 + T cells derived from 3A9 TCR-Tg mice are naïve, LTC-DCs have a distinct antigen-presenting capacity for unprimed T cells, which is a defining property of DCs. LTC- DCs pulsed with tumor cell membranes can induce a specific antitumor CD8 + cytotoxic T-cell response following adoptive transfer into mice [50]. This response has also been shown to be protective and to reduce mortality among tumor-bearing mice. DCs derived from most long-term cultures have no or weak capacity to stimulate allogeneic T cells in a mixed lymphocyte reaction [31 and unpublished data]. It is possible that incapacity to stimulate T cells in mixed lymphocyte reaction (MLR) is related to low expression of immunostimulatory molecules on cells. While LTC-DCs have high expression of CD80, CD86, and MHC-I, they have low or no expression of other immunostimulatory markers such as MHC-II, CD40, and CD40L. Some DC subsets have been shown to induce tolerance rather than immunity [51]. It is not yet known whether the limited CD4 + T-cell stimulation by LTC-DCs is immunogenic or whether it leads to abortive T-cell proliferation and apoptosis of cells, but this is under further investigation. However, this inability to stimulate an MLR could be due to the immature nature of LTC-DCs and a lack of MHC- II expression on most cells. There could also be differences in the activation threshold of T-cell clones or TCR-Tg T cells, compared with the heterogeneously responding T-cell population used in MLR. Recent studies have also demonstrated that the response in T cells generated by DCs in an allogeneic MLR may depend on the presence of syngeneic DCs that present allogeneic antigens to the responding leucocyte population [52]. Another consideration is that LTC-DCs have a distinct functional capacity for stimulation of B cells or natural killer cells, in line with their location in spleen and exposure to bloodborne pathogens [41]. In summary, DCs produced in long-term spleen cultures represent immature or precursor CD8α CD205 /lo DCs. These could be representative of marginal zone type DCs that show some weak expression of CD205. Long-term cultures could provide an environment that promotes DC differentiation to the immature DC state but limits development of cells whose end result might well have been to reside in T- cell areas. Alternatively, low expression of CD205 could place these cells on the periphery of T-cell areas. As early immature or precursor DCs lacking expression of MHC-II and CD40, they could also represent a DC subclass with distinct functional capacity for mediating early natural killer or B-cell immune responses. These hypotheses are under further test. CULTURED STROMAL CELLS SUPPORT DENDRITIC CELL DEVELOPMENT FROM PROGENITORS Very little is known about stromal niches that support DC development. In long-term culture, spleen stroma provides both cell cell contact and growth factors that support DC development [34]. Assays for common growth factors released into the supernatant of long-term cultures have detected only interleukin-6 (IL-6) and no factors like GM- CSF and TNF-α [28], which are known to support the production of DCs under different conditions. However, spleen stroma has the specific capacity to support only DC development, and no hematopoietic cell types other than DCs are detectable in long-term cultures [28 30]. The unique importance of spleen stroma for DC development is evident, since it not only supports DC production from spleen progenitors but also from bone marrow cells overlaid onto stroma [30]. The developmental potential of cells produced in long-term cultures has also been analyzed in colony assays in the presence of various known hematopoietic growth factors. Again, colony assays supported development of only DCs and no other lymphomyeloid cells [32]. A small number of stromal cells was found necessary for production of large DC colonies, while conditioned medium from long-term spleen cultures supported proliferation of many small clusters of DCs. Cell cell contact between small progenitor cells produced in long-term cultures and the stromal layer is essential for DC development. Production of DCs ceases when small cells are overlaid in a transwell above stroma, which prevents cell contact [33, 34]. Direct contact with stroma is necessary for the proliferation and differentiation of small progenitor cells into DCs. In contrast, large LTC-DCs are dividing cells that do not need contact with the stromal layer for survival [34], although the stroma does provide soluble factors that prolong the lifespan of large cells [32]. When isolated small cells from long-term cultures are cocultured with stromal cells, the small-cell population does not selfrenew. Instead, small cells differentiate into a population of large-sized DCs within about 15 days [33], and the small-cell population disappears [34]. While the nonadherent smallcell population produced in long-term cultures does contain DC progenitors, these are not capable of self-renewal. The prediction is that self-renewing progenitor cells are either adhered to or resident within the stromal cell monolayer [34] and not present in the nonadherent cell population collected at medium change. Recently the HJC cell line was isolated from a long-term culture that began to produce large DCs at a higher rate. The naturally transformed cell line was obtained after many passages to grow large cells independently of stroma. This DC cell line retains all the phenotypic and functional characteristics of immature DCs produced in spleen

9 Dendritic Cell Development 483 long-term cultures (unpublished data). It is under further investigation for functional capacity. Early experiments involved stromal layers from longterm cultures that had been washed free of hematopoietic cells and irradiated to prevent cell proliferation [30]. Subsequent experiments have used the spleen stromal cell population, ST-X3. This mixed cell line was isolated from a long-term culture that had been selectively washed free of hematopoietic cells to derive a line which had lost hematopoietic progenitor cells and no longer produced DCs [33, 34]. ST-X3 is a mixed cell population of endothelial and fibroblastic cells and supports the outgrowth of DCs from unfractionated bone marrow and spleen cells within 4 weeks of coculture [29, 30]. These are termed secondary long-term cultures. Many cloned lines derived from ST-X3 are now under analysis for functional capacity to support DC development. Gene profiling using Affymetrix (Santa Clara, CA) microarrays has been used to detect gene expression in ST- X3 spleen stroma. The differential expression of genes between ST-X3 and an unrelated lymph node stromal population 2RL22 will be used to delineate genes of importance for DC development. 2RL22 is a mixed stromal cell line derived from a long-term culture established from lymph nodes and does not support DC development [30]. Gene profiling will subsequently be used to identify the cell type of cloned stromal lines that do support DC differentiation. GENE EXPRESSION DURING DENDRITIC CELL DEVEL- OPMENT IN LONG-TERM CULTURES The spleen long-term cultures described here are ideal for the study of differential gene expression, since progenitors and their progeny are maintained within the same culture environment. Subtracted cdna libraries have been generated; these contain sequences that are differentially expressed in either small minus large or large minus small subsets of LTC-DCs [53]. Differential screening was used to select clones expressed in either the small or the large LTC- DC populations for sequencing and identification. Known genes isolated from subtracted libraries relate to different stages in DC development and support previous findings regarding the function of the small and large cell subsets (Fig. 3) [53]. This lab has had very good success with this procedure, with no overlapping clones detected in the two cell subsets. Large LTC-DCs express a number of immunologically important genes, including CD86, CCR1, osteopontin, and lysozyme. Small LTC-DCs resemble progenitors expressing genes relating to organization of the cytoskeleton and regulation of antigen processing. Novel transcripts have been isolated from both small and large LTC-DC subtracted libraries that could encode novel proteins important in DC development. The individual small- and large-cell subsets are also highly suitable for gene profiling using Affymetrix microarrays. Multiple cell sorts have been performed to isolate subsets of small and large cells from long-term cultures and RNA isolated for probe preparation. Procedures have been developed to prepare labels from small quantities of RNA isolated from the rare small-cell subset. This type of analysis should identify genes that are differentially expressed between progenitors and DCs generated in spleen long-term cultures and should help to identify factors and genes important in early DC development. CONCLUSION: A MODEL FOR DENDRITIC CELL DEVELOPMENT IN SPLEEN The replicative and developmental potential of cells produced in long-term spleen cultures has been investigated as a model for production of DCs. The model predicts the in situ production of DCs in spleen from endogenous progenitors and identifies a central role for spleen in DC hematopoiesis. While other models are possible, they depend on a continuous influx of DC precursors into spleen from blood. Our preliminary evidence, however, favors the existence of a selfrenewing DC progenitor within spleen. The identity of a resident spleen DC progenitor is not yet clear. An endogenous population of immature DCs in spleen has recently been distinguished from DCs entering spleen from peripheral sites [9]. Amodel for DC development is shown in Figure 4, which incorporates the four distinct hematopoietic cell types identified in long-term cultures: a self-renewing stem cell, the small-cell subset of DC progenitors, a large population of immature DCs, and a small population of mature or activated MHC-II + DCs. Most research to date on spleen DCs has focused on the mature MHC-II + cells and the concept that maturing DCs migrate into spleen from the periphery after encounter with antigen and activation by inflammatory factors. This study focuses instead on early DC development and emphasizes the need to use in vitro methods of hematopoiesis in order to study the differentiative process within lymphoid tissues. The essential role for stromal cells is identified, and the potential exists using cloned stromal lines to identify celladhesion molecules, soluble factors, and signaling cascades that are essential to early DC development. DCs produced in long-term cultures are clearly immature or partially mature DCs and are quite distinct from DCs in peripheral tissue sites, which express MHC-II and CD40 and which migrate to lymph nodes to present antigen to T cells. A resident immature spleen DC subset may be expected to express a different range of genes and receptors to peripheral DCs located in tissues. Development of this distinct subset may depend on the presence of a unique niche environment in

10 484 O Neill, Wilson, Quah et al. Figure 4. Model for development of dendritic cells (DCs) in long-term cultures (LTCs). spleen-containing stromal cells that support stem cell maintenance, self-renewal, and DC differentiation. Several different stromal cell types may contribute to the niche, and a unique set of signaling pathways may operate to maintain cell production. One model proposes the presence of a distinct, endogenous DC subset in spleen that functions specifically to control bloodborne antigen. This immature DC subset would be generated from self-renewing progenitors maintained within the spleen environment. In the steady-state these cells could function to maintain tolerance to bloodborne self-antigens. They could also have a distinct role in initiating early-phase responses such as the T-independent antibody response or the natural killer cell response. Upon activation with environmental antigens, these DCs could mature, migrate into T- cell areas, and become immunostimulatory for T cells. The HJC cell line representing large LTC-DCs has recently been isolated as a continuous stroma-independent cell line that maintains all phenotypic characteristics and known functions of large LTC-DCs. This cell line should be invaluable in future studies to investigate the functional capacity of spleen-derived DCs. LTC provides a means to generate DCs that are immature. Most other procedures for DC culture involve procedures and cytokines that lead to activation of DCs. Activation heralds the end of DC differentiation, and so only limited cell replication is possible. While questions still remain unanswered about the immunogenic capacity of DCs produced in LTC, this system has advantages over other procedures for generating DCs in that cell production is continuous and long term. In the clinical setting one could envisage establishment of secondary LTC involving DC progenitors isolated from blood or bone marrow cocultured with an established allogeneic stromal cell line. DCs produced continu- ously in this system could be used over time for intermittent immunotherapy of tumor patients. In the least, DCs could be exposed to tumor membranes and then adoptively transferred for induction of a protective cytotoxic T-cell response as achieved previously in a mouse tumor model [50]. ACKNOWLEDGMENTS This work was supported by grants to H.O. from the National Health and Medical Research Council of Australia, the Australian Research Council, the Clive & Vera Ramaciotti Foundation, and the Australian National University Faculties Research Grant Scheme. H.W. and B.Q. were supported by Australian Postgraduate Awards. J.A. was supported by an ANU Graduate Scholarship. G.D. was supported by a scholarship from the Fonds Nature et Technologies-Fonds de la Recherche en Santé du Québec.

11 Dendritic Cell Development 485 REFERENCES 1 Shortman K, Liu Y-J. Mouse and human dendritic cell subtypes. Nat Rev Immunol 2002;2: Ardavin C, Martinez del Hoyo G, Martin P et al. Origin and differentiation of dendritic cells. Trends Immunol 2001;21: Ferlazzo G, Tsang M, Moretta L et al. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 2002;195: Wykes M, Pombo A, Jenkins C et al. Dendritic cells interact directly with naïve B lymphocytes to transfer antigen and initiate class switching in a primary T- dependent response. J Immunol 1998;161: Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: endogenous activators of dendritic cells. Nat Med 1999;5: Steinman RM. The control of immunity and tolerance by dendritic cell. Pathol Biol (Paris) 2003;51: Metlay JP, Witmer-Pack MD, Agger R et al. The distinct leukocyte integrins of mouse spleen dendritic cells as identified with new hamster monoclonal antibodies. J Exp Med 1990;171: Valladeau J, Ravel O, Dezutter-Dambuyant C et al. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytotic receptor that induces the formation of Birbeck granules. Immunity 2000;12: Wilson N, El-Sukkari D, Belz G et al. Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood 2003;102: Martinez del Hoyo G, Martin P, Hernandez Vargas H et al. Characterization of a common precursor population for dendritic cells. Nature 2002;415: O Keeffe M, Hochrein H, Vremec D et al. Dendritic cell precursor populations of mouse blood: identification of the murine homologues of human blood plasmacytoid pre-dc2 and CD11c + DC1 precursors. Blood 2003; 101: Martin P, Del Hoyo GM, Anjuere F et al. Characterization of a new subpopulation of mouse CD8alpha+ B220 + dendritic cells endowed with type 1 interferon production capacity and tolerogenic potential. Blood 2002; 100: Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell 1997;88: Orkin SH, Zon LI. Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat Immunol 2002;3: Sitnicka E, Bryder D, Theilgaard-Monch K et al. Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity 2002;17: O Neill HC, Wilson HL. Limitations with in vitro production of dendritic cells using cytokines. J Leukoc Biol 2004;75: Vremec D, Pooley J, Hochrein H et al. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J Immunol 2000;164: Henri S, Vremec D, Kamath A et al. The dendritic cell populations of mouse lymph nodes. J Immunol 2001; 167: Nakano H, Yanagita M, Gunn M. CD11c + B220 + Gr-1 + cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med 2001;194: Leenen P, Radosevic K, Voerman J et al. Heterogeneity of mouse spleen dendritic cells: in vivo phagocytic activity, expression of macrophage markers, and subpopulation turnover. J Immunol 1998;160: Ardavin C, Wu L, Li C-Let al. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 1993;362: Manz MG, Traver D, Miyamoto T et al. Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood 2001;97: Dexter T, Testa N. In vitro methods in haemopoiesis and lymphopoiesis. J Immunol Methods 1980;38: Dexter T, Lajtha L. Proliferation of haemopoietic stem cells in vitro. Br J Haematol 1974;28: Whitlock C, Robertson D, Witte O. Murine B cell lymphopoiesis in long term culture. J Immunol Methods 1984;67: Suniara RK, Jenkinson EJ, Owen JJ. An essential role for thymic mesenchyme in early T cell development. J Exp Med 2000;191: Tsai R, Kittappa R, McKay R. Plasticity, niches, and the use of stem cells. Dev Cell 2002;2: Ni K, O Neill HC. Long-term stromal cultures produce dendritic-like cells. Br J Haematol 1997;97: Ni K, O Neill HC. Hemopoiesis in long-term stromadependent cultures from lymphoid tissue: production of cells with myeloid/dendritic characteristics. In Vitro Cell Dev Mol Biol 1998;34: Ni K, O Neill HC. Spleen stromal cells support haemopoiesis and in vitro growth of dendritic cells from bone marrow. Br J Haematol 1999;105: O Neill HC. Ni, K, Wilson H. Long-term stromadependent cultures are a consistent source of immunostimulatory dendritic cells. Immunol Cell Biol 1999;77: Wilson H, Ni K, O Neill HC. Proliferation of dendritic cells in long term culture is not dependent on granulo-

12 486 O Neill, Wilson, Quah et al. cyte macrophage-colony stimulating factor. Exp Hematol 2000;28: Wilson HL, Ni K, O Neill HC. Identification of progenitor cells in long-term spleen stromal cultures that produce immature dendritic cells. Proc Natl Acad Sci U S A 2000;97: Wilson H, O Neill HC. Dynamics of dendritic cell development from precursors maintained in stromadependent long-term cultures. Immunol Cell Biol 2003; 81: Ni K, O Neill HC. Development of dendritic cells from GM-CSF / mice in vitro: GM-CSF enhances production and survival of cells. Dev Immunol 2001; 8: Ni K, O Neill HC. Improved FACS analysis confirms generation of immature dendritic cells in long-term stromal-dependent spleen cultures. Immunol Cell Biol 2000;78: Hsieh SM, Pan SC, Hung CC et al. Kinetics of antigeninduced phenotypic and functional maturation of human monocyte-derived dendritic cells. J Immunol 2001;167: Quah B, Nik, O Neill HC. In vitro hematopoiesis produces a distinct class of immature dendritic cells from spleen progenitors with limited T cell stimulation capacity. Int Immunol 2004;16: Szabolcs P, Moore MA, Young JW. Expansion of immunostimulatory dendritic cells among the myeloid progeny of human CD34 + bone marrow precursors cultured with c-kit ligand, granulocyte-macrophage colony-stimulating factor, and TNF-alpha. J Immunol 1995;154: Adachi Y, Toki J, Ikebukuro K et al. Immature dendritic cells (CD11c + CD3 B220 cells) present in mouse peripheral blood. Immunobiology 2002;206: Balazs M, Martin F, Zhou T et al. Blood dendritic cells interact with splenic marginal zone B cells to initiate T- independent immune responses. Immunity 2002;17: Kamath AT, Pooley J, O Keeffe MA. The development, maturation, and turnover rate of mouse spleen dendritic cell populations. J Immunol 2000;165: Rescigno M, Sutherland M, Gold M et al. Dendritic cell survival and maturation are regulated by different signalling pathways. J Exp Med 1998;188: Hofer S, Rescigno M, Granucci F et al. Differential activation of NF-kappa B subunits in dendritic cells in response to Gram-negative bacteria and to lipopolysaccharide. Microbes Infect 2001;3: Kampgen E, Koch N, Koch F et al. Class II major histocompatibility complex molecules of murine dendritic cells: synthesis, sialylation of invariant chain, and antigen processing capacity are down-regulated upon culture. Proc Natl Acad Sci U S A1991;88: Vremec D, Shortman K. Dendritic cell subtypes in mouse lymphoid organs: cross-correlation of surface markers, changes with incubation and differences among thymus, spleen, and lymph nodes. J Immunol 1997;159: Pulendran B, Lingappa J, Kennedy MK et al. Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. J Immunol 1997; 159: Martinez del Hoyo G, Martin P, Arias C et al. CD8alpha + dendritic cells originate from the CD8alpha dendritic cell subset by a maturation process involving CD8alpha, DEC-205, and CD24 upregulation. Blood 2002;99: Wang Y, Zhang Y, Yoneyama H et al. Identification of CD8alpha + CD11c lineage phenotype-negative cells in the spleen as committed precursor of CD8alpha dendritic cells. Blood 2002;100: O Neill HC, Jonas N, Wilson H et al. Immunotherapeutic potential of dendritic cells generated in long-term stroma-dependent cultures. Cancer Biother Radiopharm 1999;14: Mosier M. Dendritic cells in immunity and tolerance: Do they display opposite functions? Immunity 2003;19: Bedford P, Garner K, Knight SC. MHC class II molecules transferred between allogeneic dendritic cells stimulate primary mixed leukocyte reactions. Int Immunol 1999;11: Wilson H, O Neill HC. Identification of differentially expressed genes representing dendritic cell precursors and their progeny. Blood 2003;102:

Concise Review: Dendritic Cell Development in the Context of the Spleen Microenvironment

Concise Review: Dendritic Cell Development in the Context of the Spleen Microenvironment THE STEM CELL NICHE Concise Review: Dendritic Cell Development in the Context of the Spleen Microenvironment JONATHAN K. H. TAN, HELEN C. O NEILL School of Biochemistry and Molecular Biology, The Australian

More information

Question 1. Kupffer cells, microglial cells and osteoclasts are all examples of what type of immune system cell?

Question 1. Kupffer cells, microglial cells and osteoclasts are all examples of what type of immune system cell? Abbas Chapter 2: Sarah Spriet February 8, 2015 Question 1. Kupffer cells, microglial cells and osteoclasts are all examples of what type of immune system cell? a. Dendritic cells b. Macrophages c. Monocytes

More information

ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS. Choompone Sakonwasun, MD (Hons), FRCPT

ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS. Choompone Sakonwasun, MD (Hons), FRCPT ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS Choompone Sakonwasun, MD (Hons), FRCPT Types of Adaptive Immunity Types of T Cell-mediated Immune Reactions CTLs = cytotoxic T lymphocytes

More information

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes:

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes: Interactions between innate immunity & adaptive immunity What happens to T cells after they leave the thymus? Naïve T cells exit the thymus and enter the bloodstream. If they remain in the bloodstream,

More information

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes:

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes: Interactions between innate immunity & adaptive immunity What happens to T cells after they leave the thymus? Naïve T cells exit the thymus and enter the bloodstream. If they remain in the bloodstream,

More information

CD34+ Cells: A Comparison of Stem and Progenitor Cells in Cord Blood, Peripheral Blood, and the Bone Marrow

CD34+ Cells: A Comparison of Stem and Progenitor Cells in Cord Blood, Peripheral Blood, and the Bone Marrow White Paper September 2016 CD34+ Cells: A Comparison of Stem and Progenitor Cells in Cord Blood, Peripheral Blood, and the Bone Marrow Lily C. Trajman, PhD Introduction: Hematopoietic Stem Cells (HSCs)

More information

Hematopoiesis. Hematopoiesis. Hematopoiesis

Hematopoiesis. Hematopoiesis. Hematopoiesis Chapter. Cells and Organs of the Immune System Hematopoiesis Hematopoiesis- formation and development of WBC and RBC bone marrow. Hematopoietic stem cell- give rise to any blood cells (constant number,

More information

General Overview of Immunology. Kimberly S. Schluns, Ph.D. Associate Professor Department of Immunology UT MD Anderson Cancer Center

General Overview of Immunology. Kimberly S. Schluns, Ph.D. Associate Professor Department of Immunology UT MD Anderson Cancer Center General Overview of Immunology Kimberly S. Schluns, Ph.D. Associate Professor Department of Immunology UT MD Anderson Cancer Center Objectives Describe differences between innate and adaptive immune responses

More information

Overview B cell development T cell development

Overview B cell development T cell development Topics Overview B cell development T cell development Lymphocyte development overview (Cont) Receptor diversity is produced by gene rearrangement and is random Includes specificities that will bind to

More information

Dendritic cells in cancer immunotherapy Aimin Jiang

Dendritic cells in cancer immunotherapy Aimin Jiang Dendritic cells in cancer immunotherapy Aimin Jiang Feb. 11, 2014 Dendritic cells at the interface of innate and adaptive immune responses Dendritic cells: initiators of adaptive immune responses Dendritic

More information

ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY

ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY The recognition of specific antigen by naïve T cell induces its own activation and effector phases. T helper cells recognize peptide antigens through

More information

MACROPHAGE "MONOCYTES" SURFACE RECEPTORS

MACROPHAGE MONOCYTES SURFACE RECEPTORS LECTURE: 13 Title: MACROPHAGE "MONOCYTES" SURFACE RECEPTORS LEARNING OBJECTIVES: The student should be able to: Describe the blood monocytes (size, and shape of nucleus). Enumerate some of the monocytes

More information

MATERIALS AND METHODS. Neutralizing antibodies specific to mouse Dll1, Dll4, J1 and J2 were prepared as described. 1,2 All

MATERIALS AND METHODS. Neutralizing antibodies specific to mouse Dll1, Dll4, J1 and J2 were prepared as described. 1,2 All MATERIALS AND METHODS Antibodies (Abs), flow cytometry analysis and cell lines Neutralizing antibodies specific to mouse Dll1, Dll4, J1 and J2 were prepared as described. 1,2 All other antibodies used

More information

DISCOVERING ATCC IMMUNOLOGICAL CELLS - MODEL SYSTEMS TO STUDY THE IMMUNE AND CARDIOVASCULAR SYSTEMS

DISCOVERING ATCC IMMUNOLOGICAL CELLS - MODEL SYSTEMS TO STUDY THE IMMUNE AND CARDIOVASCULAR SYSTEMS DISCOVERING ATCC IMMUNOLOGICAL CELLS - MODEL SYSTEMS TO STUDY THE IMMUNE AND CARDIOVASCULAR SYSTEMS James Clinton, Ph.D. Scientist, ATCC February 19, 2015 About ATCC Founded in 1925, ATCC is a non-profit

More information

Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells

Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells ICI Basic Immunology course Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells Abul K. Abbas, MD UCSF Stages in the development of T cell responses: induction

More information

COURSE: Medical Microbiology, MBIM 650/720 - Fall TOPIC: Antigen Processing, MHC Restriction, & Role of Thymus Lecture 12

COURSE: Medical Microbiology, MBIM 650/720 - Fall TOPIC: Antigen Processing, MHC Restriction, & Role of Thymus Lecture 12 COURSE: Medical Microbiology, MBIM 650/720 - Fall 2008 TOPIC: Antigen Processing, MHC Restriction, & Role of Thymus Lecture 12 FACULTY: Dr. Mayer Office: Bldg. #1, Rm B32 Phone: 733-3281 Email: MAYER@MED.SC.EDU

More information

M.Sc. III Semester Biotechnology End Semester Examination, 2013 Model Answer LBTM: 302 Advanced Immunology

M.Sc. III Semester Biotechnology End Semester Examination, 2013 Model Answer LBTM: 302 Advanced Immunology Code : AS-2246 M.Sc. III Semester Biotechnology End Semester Examination, 2013 Model Answer LBTM: 302 Advanced Immunology A. Select one correct option for each of the following questions:- 2X10=10 1. (b)

More information

T Cell Development. Xuefang Cao, MD, PhD. November 3, 2015

T Cell Development. Xuefang Cao, MD, PhD. November 3, 2015 T Cell Development Xuefang Cao, MD, PhD November 3, 2015 Thymocytes in the cortex of the thymus Early thymocytes development Positive and negative selection Lineage commitment Exit from the thymus and

More information

Antigen Presentation and T Lymphocyte Activation. Abul K. Abbas UCSF. FOCiS

Antigen Presentation and T Lymphocyte Activation. Abul K. Abbas UCSF. FOCiS 1 Antigen Presentation and T Lymphocyte Activation Abul K. Abbas UCSF FOCiS 2 Lecture outline Dendritic cells and antigen presentation The role of the MHC T cell activation Costimulation, the B7:CD28 family

More information

Hematopoiesis. BHS Liège 27/1/2012. Dr Sonet Anne UCL Mont-Godinne

Hematopoiesis. BHS Liège 27/1/2012. Dr Sonet Anne UCL Mont-Godinne Hematopoiesis BHS Liège 27/1/2012 Dr Sonet Anne UCL Mont-Godinne Hematopoiesis: definition = all the phenomenons to produce blood cells Leukocytes = White Blood Cells Polynuclear = Granulocytes Platelet

More information

The development of T cells in the thymus

The development of T cells in the thymus T cells rearrange their receptors in the thymus whereas B cells do so in the bone marrow. The development of T cells in the thymus The lobular/cellular organization of the thymus Immature cells are called

More information

Title: NATURAL KILLER CELL FUNCTIONS AND SURFACE RECEPTORS

Title: NATURAL KILLER CELL FUNCTIONS AND SURFACE RECEPTORS LECTURE: 14 Title: NATURAL KILLER CELL FUNCTIONS AND SURFACE RECEPTORS LEARNING OBJECTIVES: The student should be able to: Describe the general morphology of the NK-cells. Enumerate the different functions

More information

4. TEXTBOOK: ABUL K. ABBAS. ANDREW H. LICHTMAN. CELLULAR AND MOLECULAR IMMUNOLOGY. 5 TH EDITION. Chapter 2. pg

4. TEXTBOOK: ABUL K. ABBAS. ANDREW H. LICHTMAN. CELLULAR AND MOLECULAR IMMUNOLOGY. 5 TH EDITION. Chapter 2. pg LECTURE: 03 Title: CELLS INVOLVED IN THE IMMUNE RESPONSE LEARNING OBJECTIVES: The student should be able to: Identify the organs where the process of the blood formation occurs. Identify the main cell

More information

Mon, Wed, Fri 11:00 AM-12:00 PM. Owen, Judy, Jenni Punt, and Sharon Stranford Kuby-Immunology, 7th. Edition. W.H. Freeman and Co., New York.

Mon, Wed, Fri 11:00 AM-12:00 PM. Owen, Judy, Jenni Punt, and Sharon Stranford Kuby-Immunology, 7th. Edition. W.H. Freeman and Co., New York. Course Title: Course Number: Immunology Biol-341/541 Semester: Fall 2013 Location: HS 268 Time: Instructor: 8:00-9:30 AM Tue/Thur Dr. Colleen M. McDermott Office: Nursing Ed 101 (424-1217) E-mail*: mcdermot@uwosh.edu

More information

The Adaptive Immune Response. T-cells

The Adaptive Immune Response. T-cells The Adaptive Immune Response T-cells T Lymphocytes T lymphocytes develop from precursors in the thymus. Mature T cells are found in the blood, where they constitute 60% to 70% of lymphocytes, and in T-cell

More information

Dendritic cells and their role in immunity

Dendritic cells and their role in immunity PART I Dendritic cells and their role in immunity CHAPTER 1 Subpopulations and differentiation of mouse dendritic cells Carlos Ardavín Universidad Autónoma 1.1 DENDRITIC CELL SUBPOPULATIONS Dendritic cells

More information

Generation of monocytederived Dendritic Cells (modcs)

Generation of monocytederived Dendritic Cells (modcs) monocytederived Dendritic (modcs) Application Note Background Dendritic (DCs) are so called because of their characteristic cell surface projections that resemble the dendrites of neurons (see Fig 1 and

More information

Adaptive immune responses: T cell-mediated immunity

Adaptive immune responses: T cell-mediated immunity MICR2209 Adaptive immune responses: T cell-mediated immunity Dr Allison Imrie allison.imrie@uwa.edu.au 1 Synopsis: In this lecture we will discuss the T-cell mediated immune response, how it is activated,

More information

Supplemental Table I.

Supplemental Table I. Supplemental Table I Male / Mean ± SEM n Mean ± SEM n Body weight, g 29.2±0.4 17 29.7±0.5 17 Total cholesterol, mg/dl 534.0±30.8 17 561.6±26.1 17 HDL-cholesterol, mg/dl 9.6±0.8 17 10.1±0.7 17 Triglycerides,

More information

TCR, MHC and coreceptors

TCR, MHC and coreceptors Cooperation In Immune Responses Antigen processing how peptides get into MHC Antigen processing involves the intracellular proteolytic generation of MHC binding proteins Protein antigens may be processed

More information

Effector T Cells and

Effector T Cells and 1 Effector T Cells and Cytokines Andrew Lichtman, MD PhD Brigham and Women's Hospital Harvard Medical School 2 Lecture outline Cytokines Subsets of CD4+ T cells: definitions, functions, development New

More information

5/1/13. The proportion of thymus that produces T cells decreases with age. The cellular organization of the thymus

5/1/13. The proportion of thymus that produces T cells decreases with age. The cellular organization of the thymus T cell precursors migrate from the bone marrow via the blood to the thymus to mature 1 2 The cellular organization of the thymus The proportion of thymus that produces T cells decreases with age 3 4 1

More information

Bases for Immunotherapy in Multiple Myeloma

Bases for Immunotherapy in Multiple Myeloma Bases for Immunotherapy in Multiple Myeloma Paola Neri, MD, PhD Associate Professor of Medicine University of Calgary, Arnie Charbonneau Cancer Institute Disclosures Paola Neri MD, PhD Grants/research

More information

The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep

The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep invaders out of the body (pp. 772 773; Fig. 21.1; Table

More information

Shiv Pillai Ragon Institute, Massachusetts General Hospital Harvard Medical School

Shiv Pillai Ragon Institute, Massachusetts General Hospital Harvard Medical School CTLs, Natural Killers and NKTs 1 Shiv Pillai Ragon Institute, Massachusetts General Hospital Harvard Medical School CTL inducing tumor apoptosis 3 Lecture outline CD8 + Cytotoxic T lymphocytes (CTL) Activation/differentiation

More information

The Development of Lymphocytes: B Cell Development in the Bone Marrow & Peripheral Lymphoid Tissue Deborah A. Lebman, Ph.D.

The Development of Lymphocytes: B Cell Development in the Bone Marrow & Peripheral Lymphoid Tissue Deborah A. Lebman, Ph.D. The Development of Lymphocytes: B Cell Development in the Bone Marrow & Peripheral Lymphoid Tissue Deborah A. Lebman, Ph.D. OBJECTIVES 1. To understand how ordered Ig gene rearrangements lead to the development

More information

Immunology - Lecture 2 Adaptive Immune System 1

Immunology - Lecture 2 Adaptive Immune System 1 Immunology - Lecture 2 Adaptive Immune System 1 Book chapters: Molecules of the Adaptive Immunity 6 Adaptive Cells and Organs 7 Generation of Immune Diversity Lymphocyte Antigen Receptors - 8 CD markers

More information

Examples of questions for Cellular Immunology/Cellular Biology and Immunology

Examples of questions for Cellular Immunology/Cellular Biology and Immunology Examples of questions for Cellular Immunology/Cellular Biology and Immunology Each student gets a set of 6 questions, so that each set contains different types of questions and that the set of questions

More information

1. Overview of Adaptive Immunity

1. Overview of Adaptive Immunity Chapter 17A: Adaptive Immunity Part I 1. Overview of Adaptive Immunity 2. T and B Cell Production 3. Antigens & Antigen Presentation 4. Helper T cells 1. Overview of Adaptive Immunity The Nature of Adaptive

More information

Immune response. This overview figure summarizes simply how our body responds to foreign molecules that enter to it.

Immune response. This overview figure summarizes simply how our body responds to foreign molecules that enter to it. Immune response This overview figure summarizes simply how our body responds to foreign molecules that enter to it. It s highly recommended to watch Dr Najeeb s lecture that s titled T Helper cells and

More information

Immunobiology 7. The Humoral Immune Response

Immunobiology 7. The Humoral Immune Response Janeway Murphy Travers Walport Immunobiology 7 Chapter 9 The Humoral Immune Response Copyright Garland Science 2008 Tim Worbs Institute of Immunology Hannover Medical School 1 The course of a typical antibody

More information

A role for niches in the development of a multiplicity of dendritic cell subsets

A role for niches in the development of a multiplicity of dendritic cell subsets Experimental Hematology 32 (2004) 235 243 A role for niches in the development of a multiplicity of dendritic cell subsets Geneviève Despars and Helen C. O Neill School of Biochemistry and Molecular Biology,

More information

Hematopoiesis. - Process of generation of mature blood cells. - Daily turnover of blood cells (70 kg human)

Hematopoiesis. - Process of generation of mature blood cells. - Daily turnover of blood cells (70 kg human) Hematopoiesis - Process of generation of mature blood cells - Daily turnover of blood cells (70 kg human) 1,000,000,000,000 total cells 200,000,000,000 red blood cells 70,000,000,000 neutrophils Hematopoiesis

More information

Adaptive Immunity. Jeffrey K. Actor, Ph.D. MSB 2.214,

Adaptive Immunity. Jeffrey K. Actor, Ph.D. MSB 2.214, Adaptive Immunity Jeffrey K. Actor, Ph.D. MSB 2.214, 500-5344 Lecture Objectives: Understand role of various molecules including cytokines, chemokines, costimulatory and adhesion molecules in the development

More information

Development of B and T lymphocytes

Development of B and T lymphocytes Development of B and T lymphocytes What will we discuss today? B-cell development T-cell development B- cell development overview Stem cell In periphery Pro-B cell Pre-B cell Immature B cell Mature B cell

More information

Recommended reading: Abbas et al. 5th edition, chapters 7 and 10; Janeway and Travers, 5th edition, chapter 7.

Recommended reading: Abbas et al. 5th edition, chapters 7 and 10; Janeway and Travers, 5th edition, chapter 7. Harvard-MIT Division of Health Sciences and Technology HST.176: Cellular and Molecular Immunology Course Director: Dr. Shiv Pillai 10/05/05; 11 AM Shiv Pillai T Lymphocyte Development Recommended reading:

More information

Dendritic cell subsets and CD4 T cell immunity in Melanoma. Ben Wylie 1 st year PhD Candidate

Dendritic cell subsets and CD4 T cell immunity in Melanoma. Ben Wylie 1 st year PhD Candidate Dendritic cell subsets and CD4 T cell immunity in Melanoma Ben Wylie 1 st year PhD Candidate Melanoma Melanoma is the 4 th most common cancer in Australia. Current treatment options are ineffective resulting

More information

Principles of Adaptive Immunity

Principles of Adaptive Immunity Principles of Adaptive Immunity Chapter 3 Parham Hans de Haard 17 th of May 2010 Agenda Recognition molecules of adaptive immune system Features adaptive immune system Immunoglobulins and T-cell receptors

More information

Natural Killer Cells: Development, Diversity, and Applications to Human Disease Dr. Michael A. Caligiuri

Natural Killer Cells: Development, Diversity, and Applications to Human Disease Dr. Michael A. Caligiuri Natural Killer Cells: Development, Diversity, November 26, 2008 The Ohio State University Comprehensive Cancer Center The James Cancer Hospital and Solove Research Institute Columbus, Ohio, USA 1 Human

More information

IMMUNE CELL SURFACE RECEPTORS AND THEIR FUNCTIONS

IMMUNE CELL SURFACE RECEPTORS AND THEIR FUNCTIONS LECTURE: 07 Title: IMMUNE CELL SURFACE RECEPTORS AND THEIR FUNCTIONS LEARNING OBJECTIVES: The student should be able to: The chemical nature of the cellular surface receptors. Define the location of the

More information

T cell maturation. T-cell Maturation. What allows T cell maturation?

T cell maturation. T-cell Maturation. What allows T cell maturation? T-cell Maturation What allows T cell maturation? Direct contact with thymic epithelial cells Influence of thymic hormones Growth factors (cytokines, CSF) T cell maturation T cell progenitor DN DP SP 2ry

More information

LESSON 2: THE ADAPTIVE IMMUNITY

LESSON 2: THE ADAPTIVE IMMUNITY Introduction to immunology. LESSON 2: THE ADAPTIVE IMMUNITY Today we will get to know: The adaptive immunity T- and B-cells Antigens and their recognition How T-cells work 1 The adaptive immunity Unlike

More information

Prepared by Cyrus H. Nozad, MD, University of Tennessee and John Seyerle, MD, Ohio State University

Prepared by Cyrus H. Nozad, MD, University of Tennessee and John Seyerle, MD, Ohio State University Allergy and Immunology Review Corner: Chapter 21 of Middleton s Allergy Principles and Practice, Seventh Edition, edited by N. Franklin Adkinson, et al. Chapter 21: Antigen-Presenting Dendritic Cells (Pages

More information

T Cell Development II: Positive and Negative Selection

T Cell Development II: Positive and Negative Selection T Cell Development II: Positive and Negative Selection 8 88 The two phases of thymic development: - production of T cell receptors for antigen, by rearrangement of the TCR genes CD4 - selection of T cells

More information

CLINICAL USE OF CELLULAR SUBPOPULATION ANALYSIS IN BM

CLINICAL USE OF CELLULAR SUBPOPULATION ANALYSIS IN BM CLINICAL USE OF CELLULAR SUBPOPULATION ANALYSIS IN BM CANCER RESEARCH CENTRE, UNIVERSITY AND UNIVERSITY HOSPITAL OF SALAMANCA (SPAIN)( Sao Paulo, 18th of April, 2009 IDENTIFICATION OF HPC (I) 1.- In vivo

More information

The T cell receptor for MHC-associated peptide antigens

The T cell receptor for MHC-associated peptide antigens 1 The T cell receptor for MHC-associated peptide antigens T lymphocytes have a dual specificity: they recognize polymporphic residues of self MHC molecules, and they also recognize residues of peptide

More information

The Immune System. A macrophage. ! Functions of the Immune System. ! Types of Immune Responses. ! Organization of the Immune System

The Immune System. A macrophage. ! Functions of the Immune System. ! Types of Immune Responses. ! Organization of the Immune System The Immune System! Functions of the Immune System! Types of Immune Responses! Organization of the Immune System! Innate Defense Mechanisms! Acquired Defense Mechanisms! Applied Immunology A macrophage

More information

Effective activity of cytokine-induced killer cells against autologous metastatic melanoma including cells with stemness features

Effective activity of cytokine-induced killer cells against autologous metastatic melanoma including cells with stemness features Effective activity of cytokine-induced killer cells against autologous metastatic melanoma including cells with stemness features Loretta Gammaitoni, Lidia Giraudo, Valeria Leuci, et al. Clin Cancer Res

More information

Allergy and Immunology Review Corner: Chapter 1 of Immunology IV: Clinical Applications in Health and Disease, by Joseph A. Bellanti.

Allergy and Immunology Review Corner: Chapter 1 of Immunology IV: Clinical Applications in Health and Disease, by Joseph A. Bellanti. Allergy and Immunology Review Corner: Chapter 1 of Immunology IV: Clinical Applications in Health and Disease, by Joseph A. Bellanti. Chapter 1: Overview of Immunology Prepared by David Scott, MD, Scripps

More information

Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases. Abul K. Abbas UCSF

Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases. Abul K. Abbas UCSF Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases Abul K. Abbas UCSF Balancing lymphocyte activation and control Activation Effector T cells Tolerance Regulatory T cells

More information

Supplemental Information. Aryl Hydrocarbon Receptor Controls. Monocyte Differentiation. into Dendritic Cells versus Macrophages

Supplemental Information. Aryl Hydrocarbon Receptor Controls. Monocyte Differentiation. into Dendritic Cells versus Macrophages Immunity, Volume 47 Supplemental Information Aryl Hydrocarbon Receptor Controls Monocyte Differentiation into Dendritic Cells versus Macrophages Christel Goudot, Alice Coillard, Alexandra-Chloé Villani,

More information

LYMPHOCYTES & IMMUNOGLOBULINS. Dr Mere Kende, Lecturer SMHS

LYMPHOCYTES & IMMUNOGLOBULINS. Dr Mere Kende, Lecturer SMHS LYMPHOCYTES & IMMUNOGLOBULINS Dr Mere Kende, Lecturer SMHS Immunity Immune- protection against dangers of non-self/invader eg organism 3 components of immune system 1 st line: skin/mucosa/cilia/hair/saliva/fatty

More information

Defensive mechanisms include :

Defensive mechanisms include : Acquired Immunity Defensive mechanisms include : 1) Innate immunity (Natural or Non specific) 2) Acquired immunity (Adaptive or Specific) Cell-mediated immunity Humoral immunity Two mechanisms 1) Humoral

More information

The Major Histocompatibility Complex (MHC)

The Major Histocompatibility Complex (MHC) The Major Histocompatibility Complex (MHC) An introduction to adaptive immune system before we discuss MHC B cells The main cells of adaptive immune system are: -B cells -T cells B cells: Recognize antigens

More information

Meeting Report. From December 8 to 11, 2012 at Atlanta, GA, U.S.A

Meeting Report. From December 8 to 11, 2012 at Atlanta, GA, U.S.A Meeting Report Affiliation Department of Transfusion Medicine and Cell Therapy Name Hisayuki Yao Name of the meeting Period and venue Type of your presentation Title of your presentation The 54 th Annual

More information

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University Medical Virology Immunology Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University Human blood cells Phases of immune responses Microbe Naïve

More information

Long-term innate immune memory via effects on bone marrow progenitors

Long-term innate immune memory via effects on bone marrow progenitors Long-term innate immune memory via effects on bone marrow progenitors Helen S Goodridge, PhD helen.goodridge@csmc.edu Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, USA Fondation

More information

The Adaptive Immune Response. B-cells

The Adaptive Immune Response. B-cells The Adaptive Immune Response B-cells The innate immune system provides immediate protection. The adaptive response takes time to develop and is antigen specific. Activation of B and T lymphocytes Naive

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 16 THE ADAPTIVE IMMUNE RESPONSE WHY IS THIS IMPORTANT? The adaptive immune system protects us from many infections The adaptive immune system has memory so we are not infected by the same pathogen

More information

Chapter 22: The Lymphatic System and Immunity

Chapter 22: The Lymphatic System and Immunity Bio40C schedule Lecture Immune system Lab Quiz 2 this week; bring a scantron! Study guide on my website (see lab assignments) Extra credit Critical thinking questions at end of chapters 5 pts/chapter Due

More information

T cell development October 28, Dan Stetson

T cell development October 28, Dan Stetson T cell development October 28, 2016 Dan Stetson stetson@uw.edu 441 Lecture #13 Slide 1 of 29 Three lectures on T cells (Chapters 8, 9) Part 1 (Today): T cell development in the thymus Chapter 8, pages

More information

Micro 204. Cytotoxic T Lymphocytes (CTL) Lewis Lanier

Micro 204. Cytotoxic T Lymphocytes (CTL) Lewis Lanier Micro 204 Cytotoxic T Lymphocytes (CTL) Lewis Lanier Lewis.Lanier@ucsf.edu Lymphocyte-mediated Cytotoxicity CD8 + αβ-tcr + T cells CD4 + αβ-tcr + T cells γδ-tcr + T cells Natural Killer cells CD8 + αβ-tcr

More information

Scientific report: Delineating cellular stages and regulation of human NK cell development to improve NK cell-based therapy for cancer (Dnr )

Scientific report: Delineating cellular stages and regulation of human NK cell development to improve NK cell-based therapy for cancer (Dnr ) Scientific report: Delineating cellular stages and regulation of human NK cell development to improve NK cell-based therapy for cancer (Dnr 130259) The main goal of this project focuses on establishing

More information

Adaptive Immunity: Humoral Immune Responses

Adaptive Immunity: Humoral Immune Responses MICR2209 Adaptive Immunity: Humoral Immune Responses Dr Allison Imrie 1 Synopsis: In this lecture we will review the different mechanisms which constitute the humoral immune response, and examine the antibody

More information

Nature Medicine: doi: /nm.2109

Nature Medicine: doi: /nm.2109 HIV 1 Infects Multipotent Progenitor Cells Causing Cell Death and Establishing Latent Cellular Reservoirs Christoph C. Carter, Adewunmi Onafuwa Nuga, Lucy A. M c Namara, James Riddell IV, Dale Bixby, Michael

More information

Monocyte subsets in health and disease. Marion Frankenberger

Monocyte subsets in health and disease. Marion Frankenberger Monocyte subsets in health and disease Marion Frankenberger main cellular components: Leukocytes Erythrocytes Composition of whole blood Monocytes belong to the cellular components of peripheral blood

More information

Haematopoietic stem cells

Haematopoietic stem cells Haematopoietic stem cells Neil P. Rodrigues, DPhil NIH Centre for Biomedical Research Excellence in Stem Cell Biology Boston University School of Medicine neil.rodrigues@imm.ox.ac.uk Haematopoiesis: An

More information

Prof. Ibtesam Kamel Afifi Professor of Medical Microbiology & Immunology

Prof. Ibtesam Kamel Afifi Professor of Medical Microbiology & Immunology By Prof. Ibtesam Kamel Afifi Professor of Medical Microbiology & Immunology Lecture objectives: At the end of the lecture you should be able to: Enumerate features that characterize acquired immune response

More information

Overview of the Lymphoid System

Overview of the Lymphoid System Overview of the Lymphoid System The Lymphoid System Protects us against disease Lymphoid system cells respond to Environmental pathogens Toxins Abnormal body cells, such as cancers Overview of the Lymphoid

More information

Index. endocytosis, 92 fat cells, 99 myelofibrosis, 390 nerves, 99, 100 sinuses, 90 Bone marrow fatty involution, red and yellow marrow,

Index. endocytosis, 92 fat cells, 99 myelofibrosis, 390 nerves, 99, 100 sinuses, 90 Bone marrow fatty involution, red and yellow marrow, A Adherent layer cell types, 256 adipocytes, 261 endothelial cells, 259-261 function, 262, 263 interactions, 261, 262 macrophage and epitheloid cell, 256-259 Association of hematopoiesis and bone formation,209,210

More information

Nature Immunology: doi: /ni Supplementary Figure 1. Examples of staining for each antibody used for the mass cytometry analysis.

Nature Immunology: doi: /ni Supplementary Figure 1. Examples of staining for each antibody used for the mass cytometry analysis. Supplementary Figure 1 Examples of staining for each antibody used for the mass cytometry analysis. To illustrate the functionality of each antibody probe, representative plots illustrating the expected

More information

Follicular Lymphoma. ced3 APOPTOSIS. *In the nematode Caenorhabditis elegans 131 of the organism's 1031 cells die during development.

Follicular Lymphoma. ced3 APOPTOSIS. *In the nematode Caenorhabditis elegans 131 of the organism's 1031 cells die during development. Harvard-MIT Division of Health Sciences and Technology HST.176: Cellular and Molecular Immunology Course Director: Dr. Shiv Pillai Follicular Lymphoma 1. Characterized by t(14:18) translocation 2. Ig heavy

More information

Frontiers of Science Foundation Scholar. Toby Bothwell. Freshman, University of Arkansas. final research manuscripts

Frontiers of Science Foundation Scholar. Toby Bothwell. Freshman, University of Arkansas. final research manuscripts Frontiers of Science Foundation Scholar Toby Bothwell Oklahoma city, OKlahoma Freshman, University of Arkansas final research manuscripts The Effect of Estradiol and Estrogen Receptors α and β on Bone

More information

Supplemental Information. Granulocyte-Monocyte Progenitors and. Monocyte-Dendritic Cell Progenitors Independently

Supplemental Information. Granulocyte-Monocyte Progenitors and. Monocyte-Dendritic Cell Progenitors Independently Immunity, Volume 47 Supplemental Information Granulocyte-Monocyte Progenitors and Monocyte-endritic ell Progenitors Independently Produce Functionally istinct Monocytes lberto Yáñez, Simon G. oetzee, ndre

More information

Introduction to Immunology Lectures 1-3 by Bellur S. Prabhakar. March 13-14, 2007

Introduction to Immunology Lectures 1-3 by Bellur S. Prabhakar. March 13-14, 2007 Introduction to Immunology Lectures 1-3 by Bellur S. Prabhakar. March 13-14, 2007 TheComponents Of The Immune System and Innate Immunity: Ref: Immunobiology-5 th edition. Janeway et al. Chapters-1 & 2.

More information

The Use of Human Dendritic Cell

The Use of Human Dendritic Cell The Use of Human Dendritic Cell Subsets in Cancer Vaccines Jolien Sweere Student #: 3145298 Master Thesis Infection and Immunity Supervisor: Dr. Jeanette Leusen Immunotherapy University Medical Centre

More information

PBS Class #2 Introduction to the Immune System part II Suggested reading: Abbas, pgs , 27-30

PBS Class #2 Introduction to the Immune System part II Suggested reading: Abbas, pgs , 27-30 PBS 803 - Class #2 Introduction to the Immune System part II Suggested reading: Abbas, pgs. 15-25, 27-30 Learning Objectives Compare and contrast the maturation of B and T lymphocytes Compare and contrast

More information

Institute t of Experimental Immunology University of Bonn, Germany

Institute t of Experimental Immunology University of Bonn, Germany How T cells recognize antigen Christian Kurts Institute t of Experimental Immunology University of Bonn, Germany When do T cells recognize antigen? Antigen uptake Activation phase 1st recognition Effector

More information

Cytokines, adhesion molecules and apoptosis markers. A comprehensive product line for human and veterinary ELISAs

Cytokines, adhesion molecules and apoptosis markers. A comprehensive product line for human and veterinary ELISAs Cytokines, adhesion molecules and apoptosis markers A comprehensive product line for human and veterinary ELISAs IBL International s cytokine product line... is extremely comprehensive. The assays are

More information

Tumor Associated Macrophages as a Novel Target for Cancer Therapy

Tumor Associated Macrophages as a Novel Target for Cancer Therapy Tumor mass Tumor Associated Macrophage Tumor Associated Macrophages as a Novel Target for Cancer Therapy This booklet contains forward-looking statements that are based on Amgen s current expectations

More information

Supplementary Figure 1. Characterization of basophils after reconstitution of SCID mice

Supplementary Figure 1. Characterization of basophils after reconstitution of SCID mice Supplementary figure legends Supplementary Figure 1. Characterization of after reconstitution of SCID mice with CD4 + CD62L + T cells. (A-C) SCID mice (n = 6 / group) were reconstituted with 2 x 1 6 CD4

More information

Chapter 3, Part A (Pages 37-45): Leukocyte Migration into Tissues

Chapter 3, Part A (Pages 37-45): Leukocyte Migration into Tissues Allergy and Immunology Review Corner: Chapter 3, Part A (pages 37-45) of Cellular and Molecular Immunology (Seventh Edition), by Abul K. Abbas, Andrew H. Lichtman and Shiv Pillai. Chapter 3, Part A (Pages

More information

Innate Immunity: (I) Molecules & (II) Cells. Part II: Cells (aka the Sentinels)

Innate Immunity: (I) Molecules & (II) Cells. Part II: Cells (aka the Sentinels) Innate Immunity: (I) Molecules & (II) Cells Stephanie Eisenbarth, M.D., Ph.D. FOCIS Advanced Course 2/19/18 Department of Laboratory Medicine Yale School of Medicine Department of Immunobiology Yale School

More information

Ig light chain rearrangement: Rescue pathway

Ig light chain rearrangement: Rescue pathway B Cell Development Ig light chain rearrangement: Rescue pathway There is only a 1:3 chance of the join between the V and J region being in frame Vk Jk Ck Non-productive Rearrangement Light chain has a

More information

Targeting tumour associated macrophages in anti-cancer therapies. Annamaria Gal Seminar Series on Drug Discovery Budapest 5 January 2018

Targeting tumour associated macrophages in anti-cancer therapies. Annamaria Gal Seminar Series on Drug Discovery Budapest 5 January 2018 Targeting tumour associated macrophages in anti-cancer therapies Annamaria Gal Seminar Series on Drug Discovery Budapest 5 January 2018 Macrophages: Professional phagocytes of the myeloid lineage APC,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10134 Supplementary Figure 1. Anti-inflammatory activity of sfc. a, Autoantibody immune complexes crosslink activating Fc receptors, promoting activation of macrophages, and WWW.NATURE.COM/NATURE

More information

7/6/2009. The study of the immune system and of diseases that occur as a result of inappropriate or inadequate actions of the immune system.

7/6/2009. The study of the immune system and of diseases that occur as a result of inappropriate or inadequate actions of the immune system. Diseases of Immunity 2009 CL Davis General Pathology Paul W. Snyder, DVM, PhD Purdue University Acknowledgements Pathologic Basis of Veterinary Disease, 4 th Ed Veterinary Immunology, An Introduction 8

More information

Third line of Defense

Third line of Defense Chapter 15 Specific Immunity and Immunization Topics -3 rd of Defense - B cells - T cells - Specific Immunities Third line of Defense Specific immunity is a complex interaction of immune cells (leukocytes)

More information

The Adaptive Immune Response: T lymphocytes and Their Functional Types *

The Adaptive Immune Response: T lymphocytes and Their Functional Types * OpenStax-CNX module: m46560 1 The Adaptive Immune Response: T lymphocytes and Their Functional Types * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

Attribution: University of Michigan Medical School, Department of Microbiology and Immunology

Attribution: University of Michigan Medical School, Department of Microbiology and Immunology Attribution: University of Michigan Medical School, Department of Microbiology and Immunology License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution

More information