COMPARISON OF ATTENUATION AND PHASE VELOCITY MEASUREMENTS IN

Size: px
Start display at page:

Download "COMPARISON OF ATTENUATION AND PHASE VELOCITY MEASUREMENTS IN"

Transcription

1 COMPARISON OF ATTENUATION AND PHASE VELOCITY MEASUREMENTS IN COMPOSITES MADE USING UNIPOLAR AND BIPOLAR PULSES INTRODUCTION M. S. Hughes 1, D. K. Hsu 1, S.J. Wormleyl, J. M. Mann 1, C. M. Fortunk 2, and D. O. Thompson 1 1Center for NDE Iowa State University Ames, IA 511 2Air Scan Corp. 919 Sunset Drive Costa Mesa, CA We have made a comparison of the ultrasonic attenuation coefficient and phase velocity obtained from two different experimental systems. The first set-up employed unipolar (either one relative maximum or minimum) ultrasonic pulses to interogate a speeimen of porous woven graphite/epoxy composite. In the second, bipolar (one relative maximum and one relative minimum) ultrasonic pulses were used to interogate the same speeimen. The replacement of bipolar pulses by unipolar pulses lead to an increase in fractional bandwidth of at least 2% for measurements of both phase veloeity and attenuation coeffieient. Most of this inerease arose from improvements in sensitivity at lower frequencies. Gains of this nature will signifieantly improve the stability of flaw inversion algorithms in either thick composites or porous eomposites where attenuation los ses prevent the acquisition of data at high frequeneies. Use of unipolar pulses also doubles the temporal (spatial) resolution that may be obtained using ultra sound generated by any partieular transducer; this is a eonsequenee of the fact that the unipolar pulse will be one half as long as the bipolar pulse produeed by the same transdueer. Inereased resolution will permit eharaeterization of thinner eomposites than may be analyzed with presently available bipolar inspection equipment. In addition, unipolar pulses may offer improved ability to deteet aeoustie impedanee gradients[l] and may thus find applieations in the analysis of two phase systems. BACKGROUND Conventional broadband ultrasonic inspection techniques are based on the use of bipolar pulses. However, pulses with an even greater number of relative maxima and minima are frequently employed. The greater the number of relative extrema the smaller the bandwidth. This can be seen by noting that a tripolar pulse may be obtained from a bipolar pulse by differentiation, that a quadrupolar pulse may be obtained by differentiating a tripolar pulse and so on. Operationally, this differentiation is equivalent to highpass filtering the reeeived ultrasonic signal and thus has the effeet of redueing signal sensitivity at the lower end of the bandwidth of the inspeetion system. 1111

2 Maximum bandwidth may be obtained if this transmitted waveform is composed of just one relative maximum (minimum). In this case the spectral energy distribution of the wave pulse will extend down to D.C. This idealization can only be approximated for immersion bath measurments since the presence of a true D.C. component would imply mass transport in the system. In addition, any ultrasonic system employing piston source transducers will have a radiation pattern in which low frequencies suffer greater diffraction los ses than do the high frequency components of the emitted waveform. Consequently, even if a perfectly unipolar waveform is generated it will evolve into abipolar waveform due to the high-pass filtering effects it experiences as it propagates. Such effects can be minimized to some extent by placing the transmitting and receiving transducers in close proximity to each other. This is the approach adopted for the purposes of our study. APPROACH For our study a.31 cm thick specimen of woven graphite/epoxy composite (density = 1.59 gm/cm, with 3.41% volume fraction of porosity) was insonified at perpendicular incidence. The frequency dependent attenuation coefficient was measured in transmission-mode using the technique of log-spectral-subtraction[2]. The phase velocity was measured, also in transmission-mode, using the technique of ultrasonic phase spectrscopy[3]. UNIPOLAR VS. BIPOLAR PULSE GENERATION Both a Ritec BP94 pulser with a square wave output (Amplitude = 4 V, pulse duration = 7 ms, 2 ns transition from 4 V to ground) and a QMI Square wave pulser (Amplitude = -4 V, pulse duration = 7 ms, 15 ns transition from ground to -4 V) were used to exeit unipolar pulses in a piezoelectric transducer (Panametrics V11,.25" dia., 5. MHz center frequency). The pulses generated by the falling (Ritec BP94) or rising edge (QMI Pulser) of this excitation were used for this study. The duration of the Squarc Wave Pulser Conventional Pulser Transmitter W a ter Tank Receiver Sampli ng Digital O scilliscope CHI Trig Controller/Computer Fig. 1 Diagram of the apparatus used to carry out a eomparison of phase velocity and attenuation for both unipolar and bipolar pulses.,,, 2

3 / Transmitter ::;~: ~!~!~~ili \ Receiver Reference Trace 2mm --l I-- / SampIe SampIe Trace Fig. 2 A diagram showing the two types of time domain traces required for the measurement of frequency dependent attenuation and phase velocity. The top portion of Fig. 2 shows the acquisition of a reference tr'ace used to calibrate out instrumental effects. The bottom portion of the figure shows the acquisition of a sample trace. square wave excitation was made long enough to avoid interference from the ultrasonic pulses generated by the rising edge (Ritec BP94), or falling edge (QMI Pulser), of the applied excitation. In this way a good approximation to the perfect step function excitat ion, required for the generation of a unipolar pulse, was obtained. The transmitted ultrasound was received by a.75" 5. MHz Center Frequency PZT transducer (Panametrics Vl15) placed 7 cm from the transmitting transducer. A panameterics 552/PR pulser was used to generate bipolar pulses in the same transmitting transducer as was used for the unipolar pulse measurements. In this case, the pulse is generated by a negative going spike (Amplitude = -175 V, duration < l~s) which is considered to be a good approximation to a delta function. The apparatus used for the diagram is indicated in Fig. 1. As the figure indicates the only difference between the unipolar and bipolar systems is the type of pulser used to drive the transducer, all other aspects of the two systems are identical. METHODS Both attenuation coefficient and phase velocity measurements require the acquisition of two types of time domain traces. The first is a reference trace which contains the system response of the experimental apparatus. The second is a sampie trace which 1113

4 contains the system response of the experimental specimen. Both types of traces were acquired using a water bath as shown in Fig. 2. These traces were then transformed to the frequency domain and the magnitudes and unwrapped phases, phase ref (CO) and phase ample (CO)'. computed. From these data the phase veloclty was computed accordlng to. where CO = 21tf, v is the velocity of sound in water, and d is the sampie thickness. Using these phase velocity data the acoustic impedance of the sampie, Z = PC(CO), was computed and used to correct the magnitude of the sampie trace for insertion los ses using the formula [ (1) 4Z wzs ]2 (2) Magsarrp1e,aorrected(c.o) = 1-2 Magsarrple,uncorrected(c.o) (Zw+ Zs). '"' ' 1.2.~ ca.8 r:: '-".4 ca. r:: bo CI) ' ;> 'ö C,,) CI:: Water Only Path Data Point Number Fig. 3 '"' ' 1.2 N ~.8.4 r:: '-" «l c. bo CI) -.4 ' ;> 'ö -.8 C,,) CI:: "1.2 Water Only Path lfvvr Data Point Number A comparison of pulses obtained from a conventional pulser and a step function pulser. The top portion of the figure shows a bipolar pulse obtained using a Panametrics 552 pulser receiver. The bottom half of the figure shows a quasi-unipolar pulse obtained using a Ritec BP94 step function pulser. The imperfections in the pulse are due to diffraction los ses in the low frequency portion of transmitted wave. 1114

5 where Z is the acoustic impedance of water (we note that Eq.2 gives the compensated magnitude in terms of the uncompensated magnitude for either particle velocity or pressure). The attenuation coefficient was then computed from the magnitude of the reference trace, Mag f(ffi), and the corrected sampie magnitude, Mag ::rnple,corrected (ffi), according to DISCUSSION attenuation «) log [magref (ffi) - Magsarnple, corrected (ffi) lid, (3) The reference data acquired for the comparison of unipolar and bipolar systems are shown in Fig. 3. The trace in the top panel of Fig. 3 was obtained using the conventional pulser and is clearly bipolar. The positive peak of the received signal is nearly equal in magnitude to that of the negative portion of the pulse. However, the reference trace obtained using the square wave pulser, shown in the bottom panel of Fig. 2, exhibits a positive peak which is 2.5 times greater than the negative portion of the peak. This negative portion of the received signal arises from several causes. Perhaps the most important are diffraction losses which high-pass-filter the transmitted pulse. The time domain data shown in Fig. 2 were Fourier transformed and the magnitudes and unwrapped phases were computed. The sampie magnitude data for both systems are compared in Fig. 4 which shows the uncorrected sampie magnitude data sets plot ted against a logarithimic frequency scale. Both the unipolar and the bipolar magnitude traces have been normalized to their respective peak amplitudes; thus, differences in pulser output voltage have been removed to allow a fair comparison of the outputs of both systems. The upper limit of the useful bandwidth, about 1 MHz, is the same for both data sets. However, the unipolar data set extends to a lower frequency of 2 khz versus 5 khz for the bipolar system. The unipolar system thus exhibits a 5% increase in fractional bandwidth (upper bound of bandwidth/lower bound of bandwidth) over that obtained using the bipolar pulses. The same conclusion may be drawn from a comparison of the reference magnitudes obtained from both systems. Figure 4 shows that the frequency domain data obtained using the unipolar pulses have relatively more energy at low frequencies than the data obtained from the bipolar pulses. In addition, the unipola~ pulser system has greater energy output at higher frequencies. This is due to the larger excitation voltage used in the unipolar system. This point is illustrated in Figure 5 which shows a comparison of the sampie magnitude data obtained from both systems. Both curves have been normalized to the output voltage of the step function pulser used in the unipolar system. This normalization was accomplished by first normalizing each curve to its respective peak and then by rescaling the bipolar system magnitude curve by the ratio of the output voltages of the two systems; ratio = 175/4. As Fig. 5 shows, the energy output by the unipolar system is greater than that output by the bipolar system in absolute, as weil as relative, terms. Furthermore, the energy output of the unipolar system remains greater than the output by the bipolar system at high frequencies as weil. Thus, the unipolar system offers two improvements over the bipolar system; fractional bandwidth is increased by 5% and system sensitivity is increased over the entire usable bandwidth of the system. Fractional bandwidth was chosen as the relevant parameter for characterizing system performance, based on the requirements for stable flaw inversion algorithms. The range of frequencies required for stable inversion must span ka =.5 to 2.5 where ka = 2 nfa/v, a = flaw diameter, and v = velocity of sound in the host medium. Thus, to accurately size a flaw with a diameter of a = 1!!I1l requires a bandwidth extending from 1 to 5 MHz; to size a flaw of a = 5 ~m requires a bandwidth extending from 2 to 1 MHz. The upper 111 5

6 bound of the bandwidth is fixed by the center frequency of the transmitting transducer and is the same for both bipolar and unipolar systems (see fig. 5). Only the lower bound of the bandwidth changes, depending on which pulser is used. Thus the ratio, f If i = fractional bandwidth, is sufficient to determine whether tne requirement for stable flaw inversion is satisfied. : cl) N oa E S cl) " a., 2: '2 r>i) Unipolar Frequency (MHz) Unipolar Frequency (MHz) Fig. 4a Top panel. A comparison of the energy content of the received ultrasound obtained from the conventional pulser and the step function pulser. Both magnitude curves have been normalized to their peak amplitudes to permit fair comparison of the curves in spite of the different pulser voltages used in both systems. Fig. 4b Bottom panel. A comparison of the energy content of the received ultrasound obtained from the conventional pulser and the step function pulser. Both magnitude curves have been normalized to the peak amplitude of the step function pulser (4 v) to permit an absolute comparison of the energy output by both systems at each frequency. 1116

7 15 - Unipolar Data Bipolar Data E "-' c::.9 C;; ::l c:: ~.;;: 1 5 Freq min=.292 MHz OL...-_-~... _~-~~~ Freq/Freqmin Fig. 6 A comparison of the attenuation curves obtained using unipolar pulses with those obtained using bipolar pulses. The unipolar based data has a fractional bandwidth which is approximately 3 times that of the bipolar based data. The magnitude data are used to compute the attenuation coefficient according to Eq. 3. The resulting curves for both the unipolar and bipolar data are plotted in Figure 6 against a logarithmic frequency axis which has been normalized to a reference frequency Freq min. The reference frequency of Freqmin =.292 MHz has been chosen as a cut toff for the range over which the attenuation coefficient has been reliably determined; below this frequency the standard errors associated with each data point are greater than 5% of the measured value, above this point the associated standard errors are all less than 5% (in fact they are all less than 3 %). As we would expect from the plots in Figures 4 and 5 this cutoff is determined by the unipolar data set which extends to lower frequencies than do the data sets obtained using bipolar pulses. Only data points for which the associated standard error is less than 1% are plotted. As the plot shows the curve obtained using the unipolar system extends to lower frequencies. Figure 7 shows a similar comparison of the phase velocity data sets obtained from the bipolar and unipolar systems. Even using conservative criterion for acceptance of valid data that has been adopted in Figures 6 and 7 we see that the unipolar system has twice the bandwidth of the bipolar system. 1117

8 Unipolar Data 3 Bipolar Dala / ~ 28 :g '".' ~ 'ü 26,. -f :; > 24..,.c '" "" Frcqmin=O.292 MHz 18 I 1 1 Freq/Freq "';. Fig. 7 A comparison of the phase velocity curves obtained using unipolar pulses with those obtained using bipolar pulses. The the unipolar based data has a fractional bandwidth which is approximately 3 times that of the bipolar based data. CONCLUSIONS The use of unipolar pulses allows significant improvements in the bandwidth, with the greatest improvement occuring at lower frequencies. This improvement can be used to increase the reliability of flaw characterization, e.g. determination of porosity, in composite materials. The significant improvements in sensitivity observed at lower frequencies suggests that this approach will be particularly useful in thick composites where the ability to make reliable measurements is limited by attenuation losses. ACKNOWLEDGEMENTS This work was supported under Department of Commerce Grant No. ITA and was carried out under the auspices of the Center for New Industrial Materials at Iowa State University. REFERENCES 1. D. O. Thompson and D. K. Hsu, "Technique for Generation of Unipolar Ultrasonic Pulses," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 35, No.4, pp J. Ophir, T.H. Shawker. N.F. Maklad, J.G. Miller, S.W. Flax, P.A. Narayana, and J.P. Jones, "Attenuation Estimation in Reflection: Progress and Prospects,"Ultrasonic Imaging, vol. 6, pp , W. Sachse and Y.H. Pao, "On the Determination of Phase and Group Velocities of Dispersive Waves in Solids," Journal of Applied Physics, vol. 49, pp ,

Descriptions of NDT Projects Fall 2004 October 31, 2004

Descriptions of NDT Projects Fall 2004 October 31, 2004 Descriptions of NDT Projects Fall 2004 October 31, 2004 Introduction There are two separate NDT labs in Magister: ULTRA for ultrasound and EDDY for eddy current. Both labs are equipped with mechanical

More information

Ultrasonic Testing Level I:

Ultrasonic Testing Level I: Ultrasonic Testing Level I: 1- Sound Wave - Introduction - ASNT Level I - Sound Wave Propagation - Velocity / Frequency / Wave Length - Acoustic Impedance - Energy / Intensity 2- Ultrasound Wave Modes

More information

Ultrasound Measurements and Non-destructive Testing Educational Laboratory

Ultrasound Measurements and Non-destructive Testing Educational Laboratory Session 3548 Ultrasound Measurements and Non-destructive Testing Educational Laboratory Vladimir Genis, Horacio Sosa Goodwin College of Professional Studies, Drexel University, Philadelphia, 19104 Emil

More information

Diploma of Medical Ultrasonography (DMU) Physical Principles of Ultrasound and Instrumentation Syllabus

Diploma of Medical Ultrasonography (DMU) Physical Principles of Ultrasound and Instrumentation Syllabus Diploma of Medical Ultrasonography (DMU) Physical Principles of Ultrasound and Instrumentation Syllabus Page 1 of 7 11/18 Candidates are expected to cover all of the content of this syllabus when preparing

More information

Evaluation of the Quality of Thick Fibre Composites Using Immersion and Air- Coupled Ultrasonic Techniques

Evaluation of the Quality of Thick Fibre Composites Using Immersion and Air- Coupled Ultrasonic Techniques ECNDT 2006 - We.1.6.4 Evaluation of the Quality of Thick Fibre Composites Using Immersion and Air- Coupled Ultrasonic Techniques Kaj K. BORUM, Risø National Laboratory, Materials Research Department, Roskilde,

More information

VISUALIZATION OF TRANSDUCER-PRODUCED SOUND FIELDS IN SOLIDS

VISUALIZATION OF TRANSDUCER-PRODUCED SOUND FIELDS IN SOLIDS VISUALIZATION OF TRANSDUCER-PRODUCED SOUND FIELDS IN SOLIDS Wolfgang Sachse* Department of Theoretical and Applied Mechanics Cornell University, Ithaca, New York - 14853 ABSTRACT Broadband ultrasonic pulses

More information

Linear Ultrasonic Wave Propagation in Biological Tissues

Linear Ultrasonic Wave Propagation in Biological Tissues Indian Journal of Biomechanics: Special Issue (NCBM 7-8 March 29) Linear Ultrasonic Wave Propagation in Biological Tissues Narendra D Londhe R. S. Anand 2, 2 Electrical Engineering Department, IIT Roorkee,

More information

Application of Phased Array Radar Theory to Ultrasonic Linear Array Medical Imaging System

Application of Phased Array Radar Theory to Ultrasonic Linear Array Medical Imaging System Application of Phased Array Radar Theory to Ultrasonic Linear Array Medical Imaging System R. K. Saha, S. Karmakar, S. Saha, M. Roy, S. Sarkar and S.K. Sen Microelectronics Division, Saha Institute of

More information

The Evolution and Benefits of Phased Array Technology for the Every Day Inspector

The Evolution and Benefits of Phased Array Technology for the Every Day Inspector ECNDT 2006 - Poster 198 The Evolution and Benefits of Phased Array Technology for the Every Day Inspector Dan KASS, Tom NELLIGAN, and Erich HENJES Olympus NDT, Waltham, USA Abstract. Phased arrays were

More information

PORTABLE AND HYBRID LASER GENERATION / AIR-COUPLED DETECTION SYSTEM FOR NON DESTRUCTIVE INSPECTION

PORTABLE AND HYBRID LASER GENERATION / AIR-COUPLED DETECTION SYSTEM FOR NON DESTRUCTIVE INSPECTION PORTABLE AND HYBRID LASER GENERATION / AIR-COUPLED DETECTION SYSTEM FOR NON DESTRUCTIVE INSPECTION E. Guilliorit and H. Tretout Dassault Aviation, Argenteuil, France Abstract: This review presents a portable

More information

Non-Destructive Inspection of Composite Wrapped Thick-Wall Cylinders

Non-Destructive Inspection of Composite Wrapped Thick-Wall Cylinders Non-Destructive Inspection of Composite Wrapped Thick-Wall Cylinders Jikai Du, John Feldhacker, Christopher Jerred and Fereidoon Delfanian May 17-19, 2010 Joint Armaments Conference, Exhibition and Firing

More information

Ultrasonic Testing of Composite Structures

Ultrasonic Testing of Composite Structures I. Introduction Ultrasonic Testing of Composite Structures This section of this work defines ultrasound basic concepts and Ultrasonic Technique. It describes the details of how ultrasonic testing works,

More information

Principles of Ultrasound. Cara C. Prideaux, M.D. University of Utah PM&R Sports Medicine Fellow March 14, 2012

Principles of Ultrasound. Cara C. Prideaux, M.D. University of Utah PM&R Sports Medicine Fellow March 14, 2012 Principles of Ultrasound Cara C. Prideaux, M.D. University of Utah PM&R Sports Medicine Fellow March 14, 2012 None Disclosures Outline Introduction Benefits and Limitations of US Ultrasound (US) Physics

More information

NMIJ measurement service on ultrasonic field parameters available to demonstrate performance and safety of ultrasonic medical equipment

NMIJ measurement service on ultrasonic field parameters available to demonstrate performance and safety of ultrasonic medical equipment NMIJ measurement service on ultrasonic field parameters available to demonstrate performance and safety of ultrasonic medical equipment Masahiro Yoshioka National Metrology Institute of Japan (NMIJ) National

More information

ULTRASOUND IMAGING EE 472 F2018. Prof. Yasser Mostafa Kadah

ULTRASOUND IMAGING EE 472 F2018. Prof. Yasser Mostafa Kadah ULTRASOUND IMAGING EE 472 F2018 Prof. Yasser Mostafa Kadah www.k-space.org Recommended Textbook Diagnostic Ultrasound: Physics and Equipment, 2nd ed., by Peter R. Hoskins (Editor), Kevin Martin (Editor),

More information

Performance of phased array and conventional ultrasonic probes on the new ISO reference block

Performance of phased array and conventional ultrasonic probes on the new ISO reference block Performance of phased array and conventional ultrasonic probes on the new ISO 19675 reference block C. Udell, D. Chai 1 and F. Gattiker Proceq S.A., Ringstrasse 2, Schwerzenbach, Switzerland. More info

More information

Flaw Assessment Using Shear wave Phased array Ultrasonic Transducer

Flaw Assessment Using Shear wave Phased array Ultrasonic Transducer 18th World Conference on Nondestructive Testing, 16-20 April 2012, Durban, South Africa Flaw Assessment Using Shear wave Phased array Ultrasonic Transducer Byungsik YOON AUTHOR 1, Hee-Jong LEE CO-AUTHOR

More information

w. D. Jolly, F. A. Bruton, and C. Fedor

w. D. Jolly, F. A. Bruton, and C. Fedor ULTRASONIC TRANSDUCER CHARACTERIZATION STATION w. D. Jolly, F. A. Bruton, and C. Fedor Southwest Research Institute 6220 Culebra Road San Antonio, Texas 78284 INTRODUCTION The portable ultrasonic transducer

More information

Physical Principles of Ultrasound

Physical Principles of Ultrasound Physical Principles of Ultrasound Grateful appreciation to Richard A. Lopchinsky, MD, FACS and Nancy H. Van Name, RDMS, RTR, and MarleneKattaron, RDMS 2000 UIC All Rights Reserved. Course Objectives Identify

More information

Ultrasonic Thickness Procedure Pulse-Echo Thickness Gage TABLE OF CONTENTS. 1.0 Introduction Reference Documents Summary of Practice 2

Ultrasonic Thickness Procedure Pulse-Echo Thickness Gage TABLE OF CONTENTS. 1.0 Introduction Reference Documents Summary of Practice 2 Page: 1 of 6 TABLE OF CONTENTS SECTION PAGE NO. 1.0 Introduction 2 2.0 Reference Documents 2 3.0 Summary of Practice 2 4.0 Significance & Use 3 5.0 Apparatus 3 6.0 Calibration & Adjustment of Apparatus

More information

ULTRASOUND. OB/Gyn (Core) Ultrasound PIEZOELECTRIC EFFECT. Principles of Ultrasound Physics and Instrumentation. Nathan Pinkney, BS, CDOS

ULTRASOUND. OB/Gyn (Core) Ultrasound PIEZOELECTRIC EFFECT. Principles of Ultrasound Physics and Instrumentation. Nathan Pinkney, BS, CDOS 1 OB/Gyn (Core) Ultrasound Principles of Ultrasound Physics and Instrumentation Nathan Pinkney, BS, CDOS Philadelphia College of Osteopathic Medicine 2016 ULTRASOUND CATEGORIES OF SOUND INFRASOUND = below

More information

Flip Chips and Acoustic Micro Imaging: An Overview of Past Applications, Present Status, And Roadmap for the Future

Flip Chips and Acoustic Micro Imaging: An Overview of Past Applications, Present Status, And Roadmap for the Future Flip Chips and Acoustic Micro Imaging: An Overview of Past Applications, Present Status, And Roadmap for the Future Janet E. Semmens Sonoscan, Inc. 2149 E. Pratt Boulevard Elk Grove Village, IL 60007 USA

More information

Research on a Transmit-Receive Method of Ultrasonic Array for Planar Defects

Research on a Transmit-Receive Method of Ultrasonic Array for Planar Defects 7 th Asia-Pacific Workshop on Structural Health Monitoring November 12-15, 2018 Hong Kong SAR, P.R. China Research on a Transmit-Receive Method of Ultrasonic Array for Planar Defects Zhenggan Zhou 1,2,3

More information

NON-CONTACT ULTRASOUND (NCU)

NON-CONTACT ULTRASOUND (NCU) NON-CONTACT ULTRASOUND (NCU) PHENOMENALLY HIGH EFFICIENCY TRANSDUCERS -- khz to >5.0 MHz Modern ultrasound for materials process analysis, bio-medical, liquid-sensitive materials, sensing, and other applications

More information

ULTRASONIC ARRAY APPROACH FOR THE EVALUATION OF ELECTROFUSION JOINTS OF POLYETHYLENE GAS PIPING

ULTRASONIC ARRAY APPROACH FOR THE EVALUATION OF ELECTROFUSION JOINTS OF POLYETHYLENE GAS PIPING ULTRASONIC ARRAY APPROACH FOR THE EVALUATION OF ELECTROFUSION JOINTS OF POLYETHYLENE GAS PIPING H. J. Shin 1, Y. H. Jang 1, J. R. Kwan 2, H. D. Lee 3 1 INDE System Co., Ltd., Suwon, Kyunggi-do, 440-746,

More information

Employer s Unit of Competence Ultrasonic testing of materials, products and plant

Employer s Unit of Competence Ultrasonic testing of materials, products and plant Employer s Unit of Competence Ultrasonic testing of materials, products and plant Document: AA064 Issue 2 May 2016 Image - if cover page required Supported by lead employer Overview This standard identifies

More information

Feng Xiujuan National Institute of Metrology (NIM),China

Feng Xiujuan National Institute of Metrology (NIM),China The acoustic calibration service in transportation at NIM Feng Xiujuan National Institute of Metrology (NIM),China 1. Calibration requirements 2. Calibration service at NIM 2.1 Microphone 2.2 Ultrasonic

More information

(12) United States Patent (10) Patent No.: US 6,691,578 B1

(12) United States Patent (10) Patent No.: US 6,691,578 B1 USOO6691578B1 (12) United States Patent (10) Patent No.: US 6,691,578 B1 Puskas (45) Date of Patent: Feb. 17, 2004 (54) MEASUREMENT SYSTEMS FOR 4,710,233 A 12/1987 Hohmann et al.... 205/701 ULTRASOUND

More information

Research on Digital Testing System of Evaluating Characteristics for Ultrasonic Transducer

Research on Digital Testing System of Evaluating Characteristics for Ultrasonic Transducer Sensors & Transducers 2014 by IFSA Publishing, S. L. http://www.sensorsportal.com Research on Digital Testing System of Evaluating Characteristics for Ultrasonic Transducer Qin Yin, * Liang Heng, Peng-Fei

More information

DIAGNOSTIC TECHNIQUE OF ABNORMALITIES IN BALL BEARINGS WITH AN ULTRASONIC METHOD

DIAGNOSTIC TECHNIQUE OF ABNORMALITIES IN BALL BEARINGS WITH AN ULTRASONIC METHOD 12 th A-PCNDT 2006 Asia-Pacific Conference on NDT, 5 th 10 th Nov 2006, Auckland, New Zealand DIAGNOSTIC TECHNIQUE OF ABNORMALITIES IN BALL BEARINGS WITH AN ULTRASONIC METHOD Akitoshi Takeuchi 1 1 Kochi

More information

Developments in Ultrasonic Inspection II

Developments in Ultrasonic Inspection II Developments in Ultrasonic Inspection II An Ultrasonic Technique for the Testing of Plates Embedded in Concrete with Synthesis of Signals from a Multi-element Probe H. Ishida, Y. Kurozumi, Institute of

More information

INSPECTION THROUGH AN OVERLAY REPAIR WITH A SMART FLEXIBLE ARRAY PROBE.

INSPECTION THROUGH AN OVERLAY REPAIR WITH A SMART FLEXIBLE ARRAY PROBE. INSPECTION THROUGH AN OVERLAY REPAIR WITH A SMART FLEXIBLE ARRAY PROBE. Ph. Brédif (*), G. Selby (**), S. Mahaut (*), O. Casula (*) (*) CEA/DRT, Saclay, France (**) EPRI, USA 1. ABSTRACT Contact inspection

More information

Ultrasonic Transducer for the Hydrothermal Method

Ultrasonic Transducer for the Hydrothermal Method Journal of the Korean Physical Society, Vol. 57, No. 4, October 2010, pp. 1122 1126 Ultrasonic Transducer for the Hydrothermal Method Peter Bornmann and Tobias Hemsel Mechatronics and Dynamics, University

More information

The Physics of Ultrasound. The Physics of Ultrasound. Claus G. Roehrborn. Professor and Chairman. Ultrasound Physics

The Physics of Ultrasound. The Physics of Ultrasound. Claus G. Roehrborn. Professor and Chairman. Ultrasound Physics The Physics of Ultrasound Pipe Organ 10-8000 Emission Dog 452-1080 Man 85-1100 Spectrum Bat 10,000-120,000 Porpoise 7000-120,000 Claus G. Roehrborn Professor and Chairman 10 20 Cycles per second Reception

More information

Latest Trends in Circuits, Control and Signal Processing

Latest Trends in Circuits, Control and Signal Processing Bone Fracture Evaluation Using A-Mode Ultrasound *ALWIN ARUL ALEXANDER, **MAHEZA IRNA MOHAMAD SALIM, *SALLEHUDDIN IBRAHIM AND **EKO SUPRIYANTO. *Faculty of Electrical Engineering **Faculty of Biosciences

More information

DETECTION OF EVENTS AND WAVES 183

DETECTION OF EVENTS AND WAVES 183 DETECTON OF EVENTS AND WAVES 183 4.3.1 Derivative-based methods for QRS detection Problem: Develop signal processing techniques to facilitate detection of the QRS complex, given that it is the sharpest

More information

Annular Array Transducer and Matched Amplifier for Therapeutic Ultrasound

Annular Array Transducer and Matched Amplifier for Therapeutic Ultrasound ARCHIVES OF ACOUSTICS 35, 4, 653 660 (2010) DOI: 10.2478/v10168-010-0049-6 Annular Array Transducer and Matched Amplifier for Therapeutic Ultrasound Wojciech SECOMSKI, Andrzej NOWICKI, Janusz WÓJCIK, Marcin

More information

Application of ultrasonic phased array in acoustic logging

Application of ultrasonic phased array in acoustic logging 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China Application of ultrasonic phased array in acoustic logging Bixing ZHANG, Xianmei WU, Junie GONG, Fangfang SHI, and Yiing

More information

Technical Discussion HUSHCORE Acoustical Products & Systems

Technical Discussion HUSHCORE Acoustical Products & Systems What Is Noise? Noise is unwanted sound which may be hazardous to health, interfere with speech and verbal communications or is otherwise disturbing, irritating or annoying. What Is Sound? Sound is defined

More information

APPLICATION AND DEPLOYMENT OF ADVANCED NDE TECHNIQUES IN HIGH PRESSURE VESSELS

APPLICATION AND DEPLOYMENT OF ADVANCED NDE TECHNIQUES IN HIGH PRESSURE VESSELS APPLICATION AND DEPLOYMENT OF ADVANCED NDE TECHNIQUES IN HIGH PRESSURE VESSELS Jeffrey P. Milligan, Daniel T. Peters, Structural Integrity Associates, Inc., USA Many advances in Non-Destructive Examination

More information

Numerical Modelling of Ultrasonic Phased Array Transducers and Their Application

Numerical Modelling of Ultrasonic Phased Array Transducers and Their Application ECNDT 2006 - Mo.2.7.5 Numerical Modelling of Ultrasonic Phased Array Transducers and Their Application Prashanth Kumar CHINTA, René MARKLEIN, University of Kassel, Department of Electrical Engineering

More information

1. SCOPE ELIGIBILITY EXAMINATION CONTENT RENEWAL & RECERTIFICATION PROCEDURE ESSENTIAL READING...

1. SCOPE ELIGIBILITY EXAMINATION CONTENT RENEWAL & RECERTIFICATION PROCEDURE ESSENTIAL READING... Certification Services Division Newton Building, St George s Avenue Northampton, NN2 6JB United Kingdom Tel: +44(0)1604-893-811. Fax: +44(0)1604-893-868. E-mail: pcn@bindt.org PCN/GEN ISO 20807 Appendix

More information

PIEZOTRANSDUCERS WITH ACOUSTIC LENSES FORMING NARROW WEAKLY DIVERGING ULTRASONIC BEAMS

PIEZOTRANSDUCERS WITH ACOUSTIC LENSES FORMING NARROW WEAKLY DIVERGING ULTRASONIC BEAMS ECNDT 2006 - Mo.2.7.2 PIEZOTRANSDUCERS WITH ACOUSTIC LENSES FORMING NARROW WEAKLY DIVERGING ULTRASONIC BEAMS Alex Karpelson, Kinectrics Inc., Toronto, Canada The properties of acoustic fields produced

More information

STUDY OF PHASED ARRAY TECHNIQUES FOR CONCRETE INSPECTION

STUDY OF PHASED ARRAY TECHNIQUES FOR CONCRETE INSPECTION The 8 th International Conference of the Slovenian Society for Non-Destructive Testing»Application of Contemporary Non-Destructive Testing in Engineering«September 1-3, 2005, Portorož, Slovenia, pp. 11-17

More information

T.J. Meitzler US Army, TARDEC Warren, MI J. S. Steckenrider Illinois College Jacksonville, IL. L. P. Franks US Army, TARDEC Warren, MI

T.J. Meitzler US Army, TARDEC Warren, MI J. S. Steckenrider Illinois College Jacksonville, IL. L. P. Franks US Army, TARDEC Warren, MI A COMPARISON OF NDE METHODS FOR INSPECTION OF COMPOSITE CERAMIC ARMOR W. A. Ellingson and E.R. Koehl Argonne National Laboratory Argonne, Illinois USA T.J. Meitzler US Army, TARDEC Warren, MI J. S. Steckenrider

More information

Ultrasonic Testing. Basic Principles

Ultrasonic Testing. Basic Principles Ultrasonic Testing Ultrasonic Testing (UT) uses high frequency sound waves (typically in the range between 0.5 and 15 MHz) to conduct examinations and make measurements. Besides its wide use in engineering

More information

Development of Indigenous Ultrasonic Data Acquisition and Recording System for ISI of Pressure Tubes of PHWR

Development of Indigenous Ultrasonic Data Acquisition and Recording System for ISI of Pressure Tubes of PHWR Development of Indigenous Ultrasonic Data Acquisition and Recording System for ISI of Pressure Tubes of PHWR More info about this article: http://www.ndt.net/?id=22319 S. MOITRA 1, S. K. LALWANI 1, R.

More information

Sound in medicine. CH.12. Dr.Rajaa أ.م.د. رجاء سهيل جنم جامعة تكريت كلية طب االسنان. General Properties of Sound

Sound in medicine. CH.12. Dr.Rajaa أ.م.د. رجاء سهيل جنم جامعة تكريت كلية طب االسنان. General Properties of Sound CH.12. Dr.Rajaa Sound in medicine أ.م.د. رجاء سهيل جنم جامعة تكريت كلية Sound : It is the audible waves of frequency between 20 Hz and 20 khz. Infrasound : refers to the sound of frequency below the normal

More information

Preamble (disclaimer)

Preamble (disclaimer) Preamble (disclaimer) PHYSICS AND PRINCIPLES OF HEAD/NECK ULTRASOUND Joseph C. Sniezek, MD FACS LTC, MC, USA Otolaryngology/H&N Surgery Tripler Army Medical Center 1. I am not a physicist 2. ACS has recommended

More information

PZT/ZnO EXPERIMENT MODELLING

PZT/ZnO EXPERIMENT MODELLING Mat. Res. Soc. Symp. Proc. Vol. 655 2001 Materials Research Society High Frequency Thin Film Acoustic Ferroelectric Resonators Paul Kirby a, Qing-Xin Su a, Eiju Komuro b, Masaaki Imura b, Qi Zhang, and

More information

DEVELOPMENT OF ULTRASONIC TESTING TECHNIQUE TO INSPECT CONTAINMENT LINERS EMBEDDED IN CONCRETE ON NUCLEAR POWER PLANTS

DEVELOPMENT OF ULTRASONIC TESTING TECHNIQUE TO INSPECT CONTAINMENT LINERS EMBEDDED IN CONCRETE ON NUCLEAR POWER PLANTS DEVELOPMENT OF ULTRASONIC TESTING TECHNIQUE TO INSPECT CONTAINMENT LINERS EMBEDDED IN CONCRETE ON NUCLEAR POWER PLANTS H. Ishida 1, Y. Kurozumi 1, and Y. Kaneshima 2 1 Institute of Nuclear Safety System,

More information

1. Fig. 1 shows data for the intensity of a parallel beam of X-rays after penetration through varying thicknesses of a material

1. Fig. 1 shows data for the intensity of a parallel beam of X-rays after penetration through varying thicknesses of a material 1. Fig. 1 shows data for the intensity of a parallel beam of X-rays after penetration through varying thicknesses of a material. intensity / MW m 2 thickness / mm 0.91 0.40 0.69 0.80 0.52 1.20 0.40 1.60

More information

Implementation of Spectral Maxima Sound processing for cochlear. implants by using Bark scale Frequency band partition

Implementation of Spectral Maxima Sound processing for cochlear. implants by using Bark scale Frequency band partition Implementation of Spectral Maxima Sound processing for cochlear implants by using Bark scale Frequency band partition Han xianhua 1 Nie Kaibao 1 1 Department of Information Science and Engineering, Shandong

More information

IEC 87: Ultrasonics Overview update July 2002

IEC 87: Ultrasonics Overview update July 2002 - 1 - CCAUV/02-07 IEC 87: Ultrasonics Overview update July 2002 Roy C Preston Secretary IEC TC 87: Ultrasonics British Electrotechnical Committee, British Standards Institution, 389 Chiswick High Road,

More information

Noninvasive Blood Glucose Analysis using Near Infrared Absorption Spectroscopy. Abstract

Noninvasive Blood Glucose Analysis using Near Infrared Absorption Spectroscopy. Abstract Progress Report No. 2-3, March 31, 1999 The Home Automation and Healthcare Consortium Noninvasive Blood Glucose Analysis using Near Infrared Absorption Spectroscopy Prof. Kamal Youcef-Toumi Principal Investigator

More information

High-frequency Doppler Ultrasound Transducer for the Peripheral Circulatory System

High-frequency Doppler Ultrasound Transducer for the Peripheral Circulatory System Journal of the Korean Physical Society, Vol. 59, No. 6, December 2011, pp. 3578 3582 High-frequency Doppler Ultrasound Transducer for the Peripheral Circulatory System Young Min Bae, Jeongwon Yang, Uk

More information

4.17. RESEARCHING MODELS WITH AN ULTRASONIC ECHOSCOPE

4.17. RESEARCHING MODELS WITH AN ULTRASONIC ECHOSCOPE 4.17. RESEARCHING MODELS WITH AN ULTRASONIC ECHOSCOPE Purpose of experiment Determine the main characteristics of ultrasound waves, and the distances and positions of models using an ultrasonic echoscope.

More information

DIGITAL IMAGE PROCESSING IN ULTRASOUND IMAGES

DIGITAL IMAGE PROCESSING IN ULTRASOUND IMAGES DIGITAL IMAGE PROCESSING IN ULTRASOUND IMAGES Kamaljeet Kaur Computer Science & Engineering Department Guru Nanak Dev Engg. College, Ludhiana. Punjab-India meetk.89@gmail.com ABSTRACT-- Image processing

More information

Lesson 03: Sound Wave Propagation and Reflection. This lesson contains 15 slides plus 14 multiple-choice questions.

Lesson 03: Sound Wave Propagation and Reflection. This lesson contains 15 slides plus 14 multiple-choice questions. Lesson 03: Sound Wave Propagation and Reflection This lesson contains 15 slides plus 14 multiple-choice questions. Accompanying text for the slides in this lesson can be found on pages 8 through 14 in

More information

Ultrasound Physics & Terminology

Ultrasound Physics & Terminology Ultrasound Physics & Terminology This module includes the following: Basic physics terms Basic principles of ultrasound Ultrasound terminology and terms Common artifacts seen Doppler principles Terms for

More information

Supplement (videos)

Supplement (videos) Supplement (videos) Ruben s tube (sound): http://www.youtube.com/watch?v=gpcquuwqayw Doppler US (diagnostic use): http://www.youtube.com/watch?v=fgxzg-j_hfw http://www.youtube.com/watch?v=upsmenyoju8 High

More information

The table below shows the density and velocity of waves in two different substances. Density / kg m 3 Velocity / m s 1

The table below shows the density and velocity of waves in two different substances. Density / kg m 3 Velocity / m s 1 Q1.(a) When ultrasound is incident at an interface between two different media some energy is transmitted and some is reflected. The ratio of the reflected energy intensity I r to the incident energy intensity

More information

Available online at ScienceDirect. Physics Procedia 70 (2015 )

Available online at  ScienceDirect. Physics Procedia 70 (2015 ) Available online at www.sciencedirect.com ScienceDirect Physics Procedia 70 (2015 ) 1139 1143 2015 International Congress on Ultrasonics, 2015 ICU Metz Attenuation Coefficient Estimation of the Healthy

More information

Improved ultrasound-based navigation for robotic drilling at the lateral skull base

Improved ultrasound-based navigation for robotic drilling at the lateral skull base International Congress Series 1268 (2004) 662 666 Improved ultrasound-based navigation for robotic drilling at the lateral skull base U.W. Geisthoff a, *, S.H. Tretbar b, Ph.A. Federspil a, P.K. Plinkert

More information

4.17. RESEARCHING MODELS WITH AN ULTRASONIC ECHOSCOPE

4.17. RESEARCHING MODELS WITH AN ULTRASONIC ECHOSCOPE 4.17. RESEARCHING MODELS WITH AN ULTRASONIC ECHOSCOPE Purpose of experiment Determine the main characteristics of ultrasound waves, and the distances and positions of models using an ultrasonic echoscope.

More information

Manual Ultrasonic Inspection of Thin Metal Welds

Manual Ultrasonic Inspection of Thin Metal Welds 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic Manual Ultrasonic Inspection of Thin Metal Welds More Info at Open Access Database www.ndt.net/?id=16364

More information

Integrative Solution for In-situ Ultrasonic Inspection of Aero-engine Blades Using Endoscopic Cheap Optical Transducers (CHOTs)

Integrative Solution for In-situ Ultrasonic Inspection of Aero-engine Blades Using Endoscopic Cheap Optical Transducers (CHOTs) 5th International Symposium on NDT in Aerospace, 13-15th November 2013, Singapore Integrative Solution for In-situ Ultrasonic Inspection of Aero-engine Blades Using Endoscopic Cheap Optical Transducers

More information

Original Contribution

Original Contribution doi:1.116/j.ultrasmedbio.28.9.22 Ultrasound in Med. & Biol., Vol. 35, No. 3, pp. 382 394, 29 Copyright 29 World Federation for Ultrasound in Medicine & Biology Printed in the USA. All rights reserved 31-5629/9/$

More information

Ultrasonic Measurement of Aircraft Strut Hydraulic Fluid Level

Ultrasonic Measurement of Aircraft Strut Hydraulic Fluid Level 02WAC-19 Ultrasonic Measurement of Aircraft Strut Hydraulic Fluid Level Sidney G. Allison NASA Langley Research Center ABSTRACT An ultrasonic method is presented for non-intrusively measuring hydraulic

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu Basic principles. Comparison to X-rays Ultrasound > 20kHz

More information

Non-Destructive Inspection of Polyethylene Fusions and Electrofusions Dr. Ken Oliphant, P.Eng. and Dalton Crosswell, JANA Corporation

Non-Destructive Inspection of Polyethylene Fusions and Electrofusions Dr. Ken Oliphant, P.Eng. and Dalton Crosswell, JANA Corporation Non-Destructive Inspection of Polyethylene Fusions and Electrofusions Dr. Ken Oliphant, P.Eng. and Dalton Crosswell, JANA Corporation Abstract For buried gas distribution pipelines, the majority of the

More information

MATCHING LAYER DESIGN OF AN ULTRASONIC TRANS- DUCER FOR WIRELESS POWER TRANSFER SYSTEM

MATCHING LAYER DESIGN OF AN ULTRASONIC TRANS- DUCER FOR WIRELESS POWER TRANSFER SYSTEM MATCHIN LAYE DESIN OF AN ULTASONIC TANS- DUCE FO WIELESS POWE TANSFE SYSTEM unn Hang Electronics and Telecommunications esearch Institute, Multidisciplinary Sensor esearch roup, Daejeon, South Korea email:

More information

TTU Phased Array: Quality and Productivity

TTU Phased Array: Quality and Productivity 6th International Symposium on NDT in Aerospace, 12-14th November 2014, Madrid, Spain - www.ndt.net/app.aerondt2014 TTU Phased Array: Quality and Productivity More Info at Open Access Database www.ndt.net/?id=16959

More information

Underwater Acoustic Measurements in Megahertz Frequency Range.

Underwater Acoustic Measurements in Megahertz Frequency Range. Underwater Acoustic Measurements in Megahertz Frequency Range. Current State and Prospects of Development in Russia Alexander M. Enyakov,, Many medical applications of underwater acoustic measurements

More information

Skin Characterization with High-Frequency Ultrasound

Skin Characterization with High-Frequency Ultrasound Skin Characterization with High-Frequency Ultrasound Stephanie L. Shubert sls6626@rit.edu Advisor: Dr. María Helguera Ultrasound Imaging Lab Chester F. Carlson Center for Imaging Science Rochester Institute

More information

Inspection of Polyethylene Fusions and Electrofusions

Inspection of Polyethylene Fusions and Electrofusions Abstract Inspection of Polyethylene Fusions and Electrofusions Dr. Ken Oliphant, Dr. Peter Angelo and Patrick Vibien, JANA Corporation Dr. Andy Burns and Dr. Michail Kalloudis, Impact Solutions For buried

More information

COWLEY COLLEGE & Area Vocational Technical School

COWLEY COLLEGE & Area Vocational Technical School COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR Student Level: This course is open to students on the college level in either the freshman or sophomore year and to high school vocational

More information

Two-point Method for Arterial Local Pulse Wave Velocity Measurement by Means of Ultrasonic RF Signal Processing

Two-point Method for Arterial Local Pulse Wave Velocity Measurement by Means of Ultrasonic RF Signal Processing ARCHIVES OF ACOUSTICS Arch. Acoust., 35, 1, 3 11 (2010) DOI: 10.2478/v10168-010-0001-9 Two-point Method for Arterial Local Pulse Wave Velocity Measurement by Means of Ultrasonic RF Signal Processing Zbigniew

More information

ACOUSTORAPHY Acousto-Optical (AO) Ultrasonics & Its Applications

ACOUSTORAPHY Acousto-Optical (AO) Ultrasonics & Its Applications ACOUSTORAPHY Acousto-Optical (AO) Ultrasonics & Its Applications International Workshop on Imaging NDE April 2007 IGCAR, kalpakkam, India Dr D S Dulay NDT Consultants Limited Middlemarch House, Siskin

More information

AIR-COUPLED PIEZOELECTRIC ARRAY TRANSDUCERS FOR NDT APPLICATIONS

AIR-COUPLED PIEZOELECTRIC ARRAY TRANSDUCERS FOR NDT APPLICATIONS AIR-COUPLED PIEZOELECTRIC ARRAY TRANSDUCERS FOR NDT APPLICATIONS F. Montero de Espinosa 1, J. A. Chávez 2, Y.Yañez 2,J. Salazar 2, A. Turó 2,F.J. Chinchurreta 1, M. García-Hernandez 1 Instituto de Acústica,CSIC,

More information

Terminology Tissue Appearance

Terminology Tissue Appearance By Marc Nielsen, MD Advantages/Disadvantages Generation of Image Ultrasound Machine/Transducer selection Modes of Ultrasound Terminology Tissue Appearance Scanning Technique Real-time Portable No ionizing

More information

Ultrasound. Principles of Medical Imaging. Contents. Prof. Dr. Philippe Cattin. MIAC, University of Basel. Oct 17th, 2016

Ultrasound. Principles of Medical Imaging. Contents. Prof. Dr. Philippe Cattin. MIAC, University of Basel. Oct 17th, 2016 Ultrasound Principles of Medical Imaging Prof. Dr. Philippe Cattin MIAC, University of Basel Contents Abstract 1 Image Generation Echography A-Mode B-Mode M-Mode 2.5D Ultrasound 3D Ultrasound 4D Ultrasound

More information

PVDF transducer for SAFT imaging of concrete structures.

PVDF transducer for SAFT imaging of concrete structures. PVDF transducer for SAFT imaging of concrete structures Sanat Wagle 1,Kamal Raj Chapagain 1, Werner Bjerke 1, Frank Melandsø 2 and Terje Melandsø 1 1 Elop As, Nordvikvegen 50, 2316, Hamar, Norway. More

More information

CEA PROGRAM FOR MULTIPLE-TECHNIQUE NON DESTRUCTIVE

CEA PROGRAM FOR MULTIPLE-TECHNIQUE NON DESTRUCTIVE CEA PROGRAM FOR MULTIPLE-TECHNIQUE NON DESTRUCTIVE TESTING: THE CIVA SYSTEM Luc Paradis, Michel Talvard, Philippe Benoist CEACEREM Saclay, Bat 611, 91191 Gif-sur-Yvette cedex, France Philippe Rizo CEALETI

More information

An Overview of Ultrasound Testing For Lesion Detection in Human Kidney

An Overview of Ultrasound Testing For Lesion Detection in Human Kidney Journal of Tomography System & Sensors Application Vol.1, Issue 1, June 2018 An Overview of Ultrasound Testing For Lesion Detection in Human Kidney Aina Fadhilah Abd Rahim 1, Zawin Najah Abd Halim 1, Jaysuman

More information

DC Unbalance Tolerance Testing in PSE s

DC Unbalance Tolerance Testing in PSE s The PoE Impairment Much like cable attenuation, alien crosstalk, and impedance mismatches present physical layer impairments to packet traffic on 10/100/1000Base-T links, Power-over-Ethernet (PoE) also

More information

COURSE DESCRIPTION FOR NONDESTRUCTIVE TESTING

COURSE DESCRIPTION FOR NONDESTRUCTIVE TESTING COURSE DESCRIPTION FOR NONDESTRUCTIVE TESTING TULSA, OKLAHOMA INTRODUCTION TO NONDESTRUCTIVE TESTING QCT1817 COURSE DESCRIPTION: In this course students will learn about materials and processes, find basic

More information

API. Defined Procedure. for. Ultrasonic Thickness Measurement API-UT-21

API. Defined Procedure. for. Ultrasonic Thickness Measurement API-UT-21 API Defined Procedure for Ultrasonic Thickness Measurement API-UT-21 This Procedure Defines the Recommended Ultrasonic Methods and Techniques for Thickness Measurements Page 1 1.0 PURPOSE 1.1 This procedure

More information

On the feasibility of speckle reduction in echocardiography using strain compounding

On the feasibility of speckle reduction in echocardiography using strain compounding Title On the feasibility of speckle reduction in echocardiography using strain compounding Author(s) Guo, Y; Lee, W Citation The 2014 IEEE International Ultrasonics Symposium (IUS 2014), Chicago, IL.,

More information

Diagnostic Ultrasound. Sutiporn Khampunnip, M.D.

Diagnostic Ultrasound. Sutiporn Khampunnip, M.D. Diagnostic Ultrasound Sutiporn Khampunnip, M.D. Definition of Ultrasound Ultrasound is simply sound waves, like audible sound. High-frequency sound and refers to mechanical vibrations above 20 khz. Human

More information

Basic Ultrasound Physics Board Review Questions

Basic Ultrasound Physics Board Review Questions Basic Ultrasound Physics Board Review Questions Sidney K. Edelman, PhD ESP Ultrasound The Woodlands, TX Question 1 What is the wavelength of 2 MHz sound in soft tissue? 1. 1.54 mm 2. 0.75 mm 3. 0.75 cm

More information

s MASH Mobility (m/s)/n Frequency, Hz 2.5 x x x x x Average mobility

s MASH Mobility (m/s)/n Frequency, Hz 2.5 x x x x x Average mobility Purpose For a long time, users of NDT systems have wished for a rapid, easy to use method for rapid screening of the integrity of structures. The s MASH impulse-response test system fulfills this wish.

More information

Estimation of Systolic and Diastolic Pressure using the Pulse Transit Time

Estimation of Systolic and Diastolic Pressure using the Pulse Transit Time Estimation of Systolic and Diastolic Pressure using the Pulse Transit Time Soo-young Ye, Gi-Ryon Kim, Dong-Keun Jung, Seong-wan Baik, and Gye-rok Jeon Abstract In this paper, algorithm estimating the blood

More information

Supplementary Movie Caption

Supplementary Movie Caption Supplementary Movie Caption 1. Movie S1. Ultrasound-induced blood focusing in vitro (Fig.2b). 2. Movie S2. Acoustic canalization of blood flow in the gap between two capillaries (Fig. 2d). 3. Movie S3.

More information

Development of Ultrasound Based Techniques for Measuring Skeletal Muscle Motion

Development of Ultrasound Based Techniques for Measuring Skeletal Muscle Motion Development of Ultrasound Based Techniques for Measuring Skeletal Muscle Motion Jason Silver August 26, 2009 Presentation Outline Introduction Thesis Objectives Mathematical Model and Principles Methods

More information

CONFOCAL MICROWAVE IMAGING FOR BREAST TUMOR DETECTION: A STUDY OF RESOLUTION AND DETECTION ABILITY

CONFOCAL MICROWAVE IMAGING FOR BREAST TUMOR DETECTION: A STUDY OF RESOLUTION AND DETECTION ABILITY CONFOCAL MICROWAVE IMAGING FOR BREAST TUMOR DETECTION: A STUDY OF RESOLUTION AND DETECTION ABILITY E.C. Fear and M.A. Stuchly Department of Electrical and Computer Engineering, University of Victoria,

More information

Pipeline Technology Conference 2007

Pipeline Technology Conference 2007 The Complete Solution: Combined Crack and Metal Loss Detection Tool using Phased Array Technology By A. Hugger, J. Franz, H. Charbon, R. Bauernschmitt, M. Tschuch, K.-H. Käshammer, I. Lachtchouk, J. Ehrhardt.

More information

Basic Physics of Ultrasound and Knobology

Basic Physics of Ultrasound and Knobology WELCOME TO UTMB Basic Physics of Ultrasound and Knobology By Daneshvari Solanki, FRCA Laura B. McDaniel Distinguished Professor Anesthesiology and Pain Medicine University of Texas Medical Branch Galveston,

More information

High power density prototype for high precision transcranial therapy

High power density prototype for high precision transcranial therapy High power density prototype for high precision transcranial therapy M. Pernot a, R. Berriet b, J-F. Aubry a, O. Le Baron b, M. Tanter a, G. Fleury b, L. Chupin b, L. Gallet b, and M. Fink a a Laboratoire

More information

Oil Transmission Pipelines Condition Monitoring Using Wavelet Analysis and Ultrasonic Techniques

Oil Transmission Pipelines Condition Monitoring Using Wavelet Analysis and Ultrasonic Techniques Engineering, 2013, 5, 551-555 doi:10.4236/eng.2013.56066 Published Online June 2013 (http://www.scirp.org/journal/eng) Oil Transmission Pipelines Condition Monitoring Using Wavelet Analysis and Ultrasonic

More information