A short summary of ARDENT

Size: px
Start display at page:

Download "A short summary of ARDENT"

Transcription

1 A short summary of ARDENT Advanced Radiation Dosimetry European Network Training Marco Silari (DGS-RP) CERN Medical Applications, 2 December 2015 Marco Silari for 1

2 ARDENT February 2012 January 2016 Marie Curie Initial Training Network under EU FP7 4 M 8 Full Partners and 6 Associate Partners Coordinator: CERN, Scientist-in-Charge: Dr. M. Silari CERN (coordinator), Geneva, Switzerland AIT Vienna, Austria CTU - IAEP Prague, Czech Republic IBA Dosimetry, Schwarzenbruck, Germany Jablotron, Jablonec nad Nisou, Czech Republic MI.AM, Piacenza, Italy Politecnico of Milano, Italy Seibersdorf Laboratories, Austria INFN Legnaro National Laboratories, Italy ST Microelectronics, Italy University of Erlangen, Germany University of Houston, USA University of Ontario, Canada University of Wollongong, Australia CERN Medical Applications, 2 December 2015 Marco Silari for 2

3 The 18 ARDENT researchers Francesca Bisello ESR 10 CERN Medical Applications, 2 December 2015 Marco Silari for 3

4 Development of advanced instrumentation for radiation monitoring Three technologies Gas detectors: gas electron multipliers (GEM), ion chambers Solid state detectors: Medipix, silicon detectors Combined silicon-gas detector Track detector techniques: CR-39 CERN Medical Applications, 2 December 2015 Marco Silari for 4

5 Development of advanced instrumentation for radiation monitoring Main objectives Radiation dosimetry Microdosimetry Neutron and photon spectrometry Applications Characterization of radiation fields at particle accelerators Characterization of radiation fields on-board aircrafts and in space Medical applications: diagnostics and therapy CERN Medical Applications, 2 December 2015 Marco Silari for 5

6 GEM/Timepix measurements at CERF Eleni Aza and Silvia Puddu (GEM), Stuart George (Timepix) 120 GeV/c p/π CERN: mixed field of secondary particles (p, π, e, γ, n) from spallation reactions Measurements with Timepix: mixed field analysis Measurements with GEM: beam monitoring measurements of individual radiation components CERN Medical Applications, 2 December 2015 Marco Silari for 6

7 The Triple GEM detector as beam monitor Experimental set-up Beam image ± % efficiency Beam profile comparison to a MWPC during an intensity scan GEM MWPC (saturates) Good correlation with IC reference monitor CERN Medical Applications, 2 December 2015 Marco Silari for 7

8 Fast neutron detection with GEM Fast neutrons: Head on detector Converter: PE + Al Low sensitivity to γ background at chosen WP Constant: 3640 ± 40 Mean1: 5.9 ± 1.8 cm Mean2: 5.5 ± 1.8 cm CERN Medical Applications, 2 December 2015 Marco Silari for 8

9 Thermal neutron detection with GEM Side-On detector Thermal neutrons Alphas Thermal neutrons: Converter: series of slices of 10 Bo Delay: 12 ms Low sensitivity to γ background at chosen WP Beam image reconstructed from several step positions CERN Medical Applications, 2 December 2015 Marco Silari for 9

10 Characterization of neutron time-of-flight facility with the GEM detector (ntof, CERN) 20 GeV/c protons on lead target Neutron detectors placed at EAR1 and Beam dump (185 and 200 m) Active area 10x10 cm 2 and pad size 8x8 mm 2 Slow and fast neutron profile at 200 m Energy spectrum measured at 200 m CERN Medical Applications, 2 December 2015 Marco Silari for 10

11 The GEMPix - An Ultra Pixellated Gas Detector Stuart P. George (CERN) The Gempix combines two CERN developed technologies, GEM detectors and the Timepix to produce a gas detector with 55 µm readout granularity (1) Gas Supply (2) High Voltage (3) Entrance Window (4) GEM Foils (5) FITPix Readout Sensitive area = 3 x 3 x 1.2 cm 3 CERN Medical Applications, 2 December 2015 Marco Silari for 11

12 GEMPix: two working modes Particles to be analysed Triple GEM Mylar window Gas flux AR CO 2 Head-on Length analysed Triple GEM Side-on Particles to be analysed Gas flux The detector is a naked quad Medipix : The active area is 9 cm 2 The particle track is analysed with 512 pixel in 3 cm length This is equivalent to 30 microns of tissue with 17 samples/micron CERN Medical Applications, 2 December 2015 Marco Silari for 12

13 Determination of 55 Fe in radioactive waste The sample is reduced to a powder with a milling machine Silvia Puddu and Stuart George (CERN) Filtered at 50 mm grain with a mesh Finally the sample is put below the detector for the measurement Next the powder is attached to a double-side tape in a small plastic box 3x3 cm 2 CERN Medical Applications, 2 December 2015 Marco Silari for 13

14 Results: GEMPix versus radiochemical analysis CERN Medical Applications, 2 December 2015 Marco Silari for 14

15 GEMPIX: detector for tissue samples Tissue sample to be analysed Kapton window Triple GEM Particles to be analysed Gas flux The detector is a quad naked medipix : The active area is 9 cm 2 The particle track is analysed with 512 pixel in 3 cm length This is equivalent to 30 microns of tissue with 17 samples/microns CERN Medical Applications, 2 December 2015 Marco Silari for 15

16 Track reconstruction (Microdosimetry?) 3D Path Angular Resolution Spatial resolution of track reconstruction is 120 µm, should be further improvable in the future. CERN Medical Applications, 2 December 2015 Marco Silari for 16

17 GEM-based Neutron Spectrometer Eleni Aza (CERN) Neutron conversion board read-out by a GEM detector Active area 35x21 cm 2 and pad size 22x13 mm 2 (256 pads) Regions defined for different energy ranges Reg 1-4 employ B 4 C and PE for 1 mev 5 MeV Reg 5 & 6 employ PE and Al for MeV Inside Outside CERN Medical Applications, 2 December 2015 Marco Silari for 17

18 LUPIN Chris Cassell (POLIMI) Moderator Proportional counter 3 + (response function reproduces the curve + He or BF 3 of the neutron fluence to H*(10) conversion coefficients) Innovative front end electronics CERN Medical Applications, 2 December 2015 Marco Silari for 18

19 Measurements in pulsed neutron fields at CERN (just two examples) HiRadMat Access to the PS tunnel Example of signal acquired with the LUPIN PROMPT NEUTRONS THERMALIZED NEUTRONS SCATTERED NEUTRONS Detectors mounted on carousel CERN Medical Applications, 2 December 2015 Marco Silari for 19

20 Neutron spectrometry with the BSS (Proton Therapy Centre, Essen) Eleni Aza (CERN) and Chris Cassell (POLIMI) 230 MeV/c protons on water phantom Spectrum measured inside the treatment room Neutron fluence per unit lethargy (/cm 2 /proton) 1.E-07 1.E-08 1.E-09 MAXED GRAVEL GUESS 1.E-10 1E-9 1E-6 1E-3 1E+0 1E+3 Neutron energy [MeV] CERN Medical Applications, 2 December 2015 Marco Silari for 20

21 Neutron dosimetry with structured plastic converters Stuart P. George (CERN) Multilayer plastic converters should be able to provide an energy independent response for fast neutron dosimetry Experimental evaluation of 3D printer prototypes over fast energy range CERN Medical Applications, 2 December 2015 Marco Silari for 21

22 Development of low cost radiation monitor Czech Radiation Protection Institute (SURO) Low cost radiation monitors Deploy all across the country Wired or wireless based device Cloud connectivity to monitor remotely Prototype Raspberry-Pi based device First prototype ready Ongoing experiments and calibration activity Next steps Include other blocks like Temperature, Humidity, Pressure Ensure the device environment Mechanical design Testing and deployment Vijayaragavan Viswanathan (Jablotron) Remote monitoring CERN Medical Applications, 2 December 2015 Marco Silari for 22

23 BrachyView Medipix in cancer treatment Use Medipix to develop brand new, ultrafunctional, in-body imaging probe Currently, doctors use a combination of ultrasound, X-rays, CT for implant verification Kevin Loo (CTU Prague) CERN Medical Applications, 2 December 2015 Marco Silari for 23

24 Ionization Chamber Array for External Beam Radiotherapy Michele Togno (IBA Dosimetry) Development and characterization of a new air vented ionization chamber array technology for machine & patient quality assurance in external beam radiotherapy. MV X-Rays ~ MeV protons CERN Medical Applications, 2 December 2015 Marco Silari for 24

25 Ionization Chamber Array for External Beam Radiotherapy Proton beams characterization: example of measured Pristine Bragg peak at different energies Example of patient plan verification for an Intensity Modulated PT treatment of prostate tumor. CERN Medical Applications, 2 December 2015 Marco Silari for 25

26 Scattered radiation in a CT room Erik Frojdh (CERN) Dosepix and Timepix detectors with a 300 µm Si sensor Measurements performed at CHUV in Lausanne Ge Medical Systems Discovery CT750 HD CT-scanner at 80 kvp and 120 kvp Measured scattered radiation during scan of an abdomen phantom CERN Medical Applications, 2 December 2015 Marco Silari for 26

27 Silicon microdosimeter Elena Sagia (Polytechnic of Milano) Monolithic silicon telescope n + p + ΔE stage ( 1.9 μm) p + Segmented ΔE stage E element 9 µm ~2 μm Guard E stage ( 500 μm) n µm E stage 14 µm Silicon telescope: a thin E stage (1.9 μm thick) coupled to a residual energy stage E (500 μm thick) on the same silicon wafer pixels in parallel Sensitive area 0.5 mm 2 Minimum detectable energy limited to about 20 kev by the electronic noise CERN Medical Applications, 2 December 2015 Marco Silari for 27

28 y d(y) Depth dose curve (a.u.) y (kev µm -1 ) 62 MeV proton Distal part of SOBP silicon telescope 20.5 mm cylindrical TEPC 20.1 mm (threshold) cylindrical TEPC 20.1 mm (no threshold) depth in PMMA (mm) y d(y) y d(y) y (kev µm -1 ) silicon telescope 21.2 mm cylindrical TEPC 21.4 mm (threshold) cylindrical TEPC 21.4 mm (no threshold) silicon telescope 21.8 mm cylindrical TEPC 22 mm (threshold) 0.4 cylindrical TEPC 22 mm (no threshold) y (kev µm -1 ) CERN Medical Applications, 2 December 2015 Marco Silari for 28 y d(y) y d(y) y (kev µm -1 ) silicon telescope 21.4 mm cylindrical TEPC 21.6 mm (threshold) cylindrical TEPC 21.6 mm (no threshold) silicon telescope 21.6 mm cylindrical TEPC 21.8 mm (threshold) cylindrical TEPC 21.8 mm (no threshold) y (kev µm -1 ) Event-by-event TE correction!!!

29 GEMPix: 3D energy deposition in water phantom Stuart George (CERN) CNAO 3D motorized water phantom CERN Medical Applications, 2 December 2015 Marco Silari for 29

30 GEMPix: 3D energy deposition in water phantom Bragg Peak Entry Fragment Tail 23 depths in water with the CNAO (Pavia Italy) clinical carbon ion beam ( ions/depth). CERN Medical Applications, 2 December 2015 Marco Silari for 30

31 Neutron dosimetry with CR-39 detectors Alvin Sashala Naik (MI.AM) Intercast CR-39 track detector Fast neutron dosimeter based on the intercast CR-39 Politrack TM instrument The Politrack TM instrument was developed by the Politecnico di Milano and commercialised by Mi.am SRL. CERN Medical Applications, 2 December 2015 Marco Silari for 31

32 Spectrometry using CR-39 detectors for hadron therapy beam diagnostics (Carbon ions) CR-39 stack Carbon ions Experiment at CNAO hadron therapy centre in Pavia, Italy Irradiation of CR-39 detectors with Carbon ions of MeV/nucleon CERN Medical Applications, 2 December 2015 Marco Silari for 32

33 In-beam LET spectrometry and dosimetry of heavy ions (a) (b) Preliminary results from measurements of the fragmentation of Carbon ions in a stack of CR-39 detectors at CNAO. (a) Fluence to depth curve, (b) Dose to Depth curve, (c) mean lineal energy of the Carbon beam with respect to depth in the CR-39 stack. CERN Medical Applications, 2 December 2015 Marco Silari for 33 (c)

34 In-beam LET spectrometry and dosimetry in proton beam Detector 6 Dose Equivalent 2D map along the beam path Detector 5 Detector 4 Detector 3 Detector 2 Detector 1 CERN Medical Applications, 2 December 2015 Marco Silari for 34

35 Heterogeneous Breathing Thorax Phantom Andrej Sipaj (AIT) Objective: Measure dose to moving lung tumor (online and offline) in order to validate treatment planning system CERN Medical Applications, 2 December 2015 Marco Silari for 35

36 ACKNOWLEDGEMENTS All supervisors and scientists from the various partner institutions At CERN, special thanks to: Michael Campbell, Jerome Alozy Fabrizio Murtas, Matteo Magistris, Daniel Perrin, Doris Forkel-Wirth CERN Medical Applications, 2 December 2015 Marco Silari for 36

Highlights from the Advanced Radiation Dosimetry European Network Training initiative (ARDENT) Marco Silari (CERN) on behalf of the ARDENT consortium

Highlights from the Advanced Radiation Dosimetry European Network Training initiative (ARDENT) Marco Silari (CERN) on behalf of the ARDENT consortium Highlights from the Advanced Radiation Dosimetry European Network Training initiative (ARDENT) Marco Silari (CERN) on behalf of the ARDENT consortium 1 ARDENT February 2012 January 2016 Advanced Radiation

More information

Venue: IEEE NSS/MIC/RTSD Conference, Seoul, South Korea, 27 th October 2013 Workshop: NWK3/RD1 Radiation Protection and Dosimetry

Venue: IEEE NSS/MIC/RTSD Conference, Seoul, South Korea, 27 th October 2013 Workshop: NWK3/RD1 Radiation Protection and Dosimetry Venue: IEEE NSS/MIC/RTSD Conference, Seoul, South Korea, 27 th October 2013 Workshop: NWK3/RD1 Radiation Protection and Dosimetry M. Caresana a, A. Sashala Naik a,c, S. Rollet b, M. Ferrarini a,d a Polytechnic

More information

Dosimetric characterization with 62 MeV protons of a silicon segmented detector for 2D dose verifications in radiotherapy

Dosimetric characterization with 62 MeV protons of a silicon segmented detector for 2D dose verifications in radiotherapy Dosimetric characterization with 62 MeV protons of a silicon segmented detector for 2D dose verifications in radiotherapy C. Talamonti M. Bruzzi,M. Bucciolini, L. Marrazzo, D. Menichelli University of

More information

Dosimetric characterization with 62 MeV protons of a silicon segmented detector for 2D dose verifications in radiotherapy

Dosimetric characterization with 62 MeV protons of a silicon segmented detector for 2D dose verifications in radiotherapy Dosimetric characterization with 62 MeV protons of a silicon segmented detector for 2D dose verifications in radiotherapy C. Talamonti a*, M. Bucciolini a, L. Marrazzo a, D. Menichelli a. a) Department

More information

Radiation qualities in carbon-ion radiotherapy at NIRS/HIMAC

Radiation qualities in carbon-ion radiotherapy at NIRS/HIMAC Radiation qualities in carbon-ion radiotherapy at NIRS/ Shunsuke YONAI Radiological Protection Section Research Center for Charged Particle Therapy National Institute of Radiological Sciences (NIRS) E-mail:

More information

COMPARISON OF RADIOBIOLOGICAL EFFECTS OF CARBON IONS TO PROTONS ON A RESISTANT HUMAN MELANOMA CELL LINE

COMPARISON OF RADIOBIOLOGICAL EFFECTS OF CARBON IONS TO PROTONS ON A RESISTANT HUMAN MELANOMA CELL LINE COMPARISON OF RADIOBIOLOGICAL EFFECTS OF CARBON IONS TO PROTONS ON A RESISTANT HUMAN MELANOMA CELL LINE I. Petrovi a, A. Risti -Fira a, L. Kori anac a, J. Požega a, F. Di Rosa b, P. Cirrone b and G. Cuttone

More information

Task Test beam infrastructure in Frascati LNF, Ferrara & Perugia INFN structure and University of Bergen

Task Test beam infrastructure in Frascati LNF, Ferrara & Perugia INFN structure and University of Bergen Task 8.2.2 Test beam infrastructure in Frascati LNF, Ferrara & Perugia INFN structure and University of Bergen 1 DAFNE accelerator Complex The BTF (Beam Test Facility) is part of the DAFNE accelerator

More information

Two-Dimensional Thermoluminescence Dosimetry System for Proton Beam Quality Assurance

Two-Dimensional Thermoluminescence Dosimetry System for Proton Beam Quality Assurance Two-Dimensional Thermoluminescence Dosimetry System for Proton Beam Quality Assurance Jan Gajewski Institute of Nuclear Physics, Kraków, Poland German Cancer Research Center, Heidelberg, Germany Existing

More information

A brief presentation of The TERA Foundation

A brief presentation of The TERA Foundation A brief presentation of The TERA Foundation David Watts on behalf of Prof. Ugo Amaldi and all my colleagues at TERA TERA Overview Direction: Prof. Ugo Amaldi AQUA (Advanced QUAlity Assurance) Cyclinac

More information

Topics covered 7/21/2014. Radiation Dosimetry for Proton Therapy

Topics covered 7/21/2014. Radiation Dosimetry for Proton Therapy Radiation Dosimetry for Proton Therapy Narayan Sahoo Department of Radiation Physics University of Texas MD Anderson Cancer Center Proton Therapy Center Houston, USA Topics covered Detectors used for to

More information

Peak temperature ratio of TLD glow curves to investigate the spatial variation of LET in a clinical proton beam

Peak temperature ratio of TLD glow curves to investigate the spatial variation of LET in a clinical proton beam Peak temperature ratio of TLD glow curves to investigate the spatial variation of LET in a clinical proton beam University of Chicago CDH Proton Center LET study C. Reft 1, H. Ramirez 2 and M. Pankuch

More information

Introduction. Measurement of Secondary Radiation for Electron and Proton Accelerators. Introduction - Photons. Introduction - Neutrons.

Introduction. Measurement of Secondary Radiation for Electron and Proton Accelerators. Introduction - Photons. Introduction - Neutrons. Measurement of Secondary Radiation for Electron and Proton Accelerators D. Followill, Ph.D. Radiological Physics Center U. T. M. D. Anderson Cancer Center Introduction Patients undergoing radiation therapy

More information

Y FILMS DOSIMETR Nederland België / Belgique

Y FILMS DOSIMETR Nederland België / Belgique DOSIMETRY FILMS GAFCHROMIC Dosimetry Films The Self-developing Dosimetry Films that Allow You to Go Filmless Do away with the cost and headache of calibrating and maintaining a processor Do away with hazardous

More information

Neutrons. ρ σ. where. Neutrons act like photons in the sense that they are attenuated as. Unlike photons, neutrons interact via the strong interaction

Neutrons. ρ σ. where. Neutrons act like photons in the sense that they are attenuated as. Unlike photons, neutrons interact via the strong interaction Neutrons Neutrons act like photons in the sense that they are attenuated as I = I 0 e μx where Unlike photons, neutrons interact via the strong interaction μ = The cross sections are much smaller than

More information

Neutron Interactions Part 2. Neutron shielding. Neutron shielding. George Starkschall, Ph.D. Department of Radiation Physics

Neutron Interactions Part 2. Neutron shielding. Neutron shielding. George Starkschall, Ph.D. Department of Radiation Physics Neutron Interactions Part 2 George Starkschall, Ph.D. Department of Radiation Physics Neutron shielding Fast neutrons Slow down rapidly by scatter in hydrogenous materials, e.g., polyethylene, paraffin,

More information

M. J. Maryanski, Three Dimensional BANG Polymer Gel Dosimeters AAPM'99, CE Course

M. J. Maryanski, Three Dimensional BANG Polymer Gel Dosimeters AAPM'99, CE Course Three Dimensional BANG Polymer Gel Dosimeters Marek J. Maryanski MGS Research, Inc. Guilford, CT Educational objectives: Describe the need for high-resolution 3D dosimetry in 3D CRT. Explain the physics

More information

PROGRESS IN HADRONTHERAPY

PROGRESS IN HADRONTHERAPY PROGRESS IN HADRONTHERAPY Saverio Braccini TERA Foundation for Oncological Hadrontherapy IPRD06 - Siena - 01.10.06 - SB 1 Outline Introduction Radiation therapy with X rays and hadrontherapy Hadrontherapy

More information

High-Level Dosimetry systems used at CERN

High-Level Dosimetry systems used at CERN High-Level Dosimetry systems used at CERN Markus Fuerstner 1, Doris Forkel-Wirth 1, Helmut Vincke 1, Sabine Mayer 1, Isabel Brunner 1, Idelette Floret 2 1 CERN, CH-1211 Geneva 23, Switzerland 2 EIG, Ecole

More information

PHYS 383: Applications of physics in medicine (offered at the University of Waterloo from Jan 2015)

PHYS 383: Applications of physics in medicine (offered at the University of Waterloo from Jan 2015) PHYS 383: Applications of physics in medicine (offered at the University of Waterloo from Jan 2015) Course Description: This course is an introduction to physics in medicine and is intended to introduce

More information

Practical Reference Dosimetry Course April 2015 PRDC Program, at a glance. Version 1.0. Day 1 Day 2 Day 3 Day 4

Practical Reference Dosimetry Course April 2015 PRDC Program, at a glance. Version 1.0. Day 1 Day 2 Day 3 Day 4 Practical Reference Dosimetry Course 21-24 April 2015 PRDC 2015 Program, at a glance Version 1.0 Day 1 Day 2 Day 3 Day 4 Quantities and Units Free air chambers Uncertainties Brachytherapy traceability

More information

Monte Carlo Modelling: a reliable and efficient tool in radiation dosimetry

Monte Carlo Modelling: a reliable and efficient tool in radiation dosimetry Monte Carlo Modelling: a reliable and efficient tool in radiation dosimetry G. Gualdrini, P. Ferrari ENEA Radiation Protection Institute, Bologna (Italy) Contribution to the Italy in Japan 2011 initiative

More information

Nuclear Data for Radiation Therapy

Nuclear Data for Radiation Therapy Symposium on Nuclear Data 2004 Nov. 12, 2004 @ JAERI, Tokai Nuclear Data for Radiation Therapy ~from macroscopic to microscopic~ Naruhiro Matsufuji, Yuki Kase and Tatsuaki Kanai National Institute of Radiological

More information

III. Proton-therapytherapy. Rome SB - 5/5 1

III. Proton-therapytherapy. Rome SB - 5/5 1 Outline Introduction: an historical review I Applications in medical diagnostics Particle accelerators for medicine Applications in conventional radiation therapy II III IV Hadrontherapy, the frontier

More information

Absolute Dosimetry. Versatile solid and water phantoms. Introduction Introduction Introduction Introtro Intro Intro

Absolute Dosimetry. Versatile solid and water phantoms. Introduction Introduction Introduction Introtro Intro Intro In Phantoms Vivo treatment for Absolute Dosimetry verification Versatile solid and water phantoms Introduction Introduction Introduction Introtro Intro Intro The rapid development of advanced treatment

More information

Neutron dose evaluation in radiotherapy

Neutron dose evaluation in radiotherapy Neutron dose evaluation in radiotherapy Francesco d Errico University of Pisa, Italy Yale University, USA Radiation therapy with a linear accelerator (LINAC) Photoneutron production in accelerator head

More information

THERMOLUMINESCENT (TL) DOSIMETRY OF SLOW-NEUTRON FIELDS AT RADIOTHERAPY DOSE LEVEL

THERMOLUMINESCENT (TL) DOSIMETRY OF SLOW-NEUTRON FIELDS AT RADIOTHERAPY DOSE LEVEL THERMOLUMINESCENT (TL) DOSIMETRY OF SLOW-NEUTRON FIELDS AT RADIOTHERAPY DOSE LEVEL G. Gambarini Dipartimento di Fisica dell Università, Milano, Italy e-mail grazia.gambarini http://users.unimi.it/~frixy/

More information

A comparison of dose distributions measured with two types of radiochromic film dosimeter MD55 and EBT for proton beam of energy 175 MeV

A comparison of dose distributions measured with two types of radiochromic film dosimeter MD55 and EBT for proton beam of energy 175 MeV A comparison of dose distributions measured with two types of radiochromic film dosimeter MD55 and EBT for proton beam of energy 175 MeV M. Mumot, G. V. Mytsin, Y. I. Luchin and A. G. Molokanov Medico-Technical

More information

Real Time Spectrometer for thermal neutrons from Radiotherapic Accelerators

Real Time Spectrometer for thermal neutrons from Radiotherapic Accelerators Real Time Spectrometer for thermal neutrons from Radiotherapic Accelerators Aldo Mozzanica, Università degli Studi di Brescia, INFN sezione di Pavia mozzanica@bs.infn.it 2 Outlines The Boron Neutron Capture

More information

Medical applications round table. Radiotherapy Diagnostic radiology Nuclear medicine Radiation protection

Medical applications round table. Radiotherapy Diagnostic radiology Nuclear medicine Radiation protection Medical applications round table Radiotherapy Diagnostic radiology Nuclear medicine Radiation protection Will be discussing Ion beam therapy/radiotherapy Diagnostic radiology Nuclear medicine Radiation

More information

5th ADAMAS Workshop at GSI December 15-16, 2016, Darmstadt, Germany

5th ADAMAS Workshop at GSI December 15-16, 2016, Darmstadt, Germany Evaluation of 3D diamond detectors for application in medical radiation dosimetry K. Kanxheri (1,2), L. Servoli (2), C. Zucchetti (5), A. C. Dipilato (5), M. Iacco (5), S. Lagomarsino (3,4), A. Morozzi

More information

Medical- and Radiation Physics Research at Surrey

Medical- and Radiation Physics Research at Surrey Medical- and Radiation Physics Research at Surrey D.A. Bradley Department of Physics Centre for Nuclear and Radiation Physics University of Surrey Guildford United Kingdom * d.a.bradley@surrey.ac.uk Topic

More information

DPA calculations with FLUKA

DPA calculations with FLUKA DPA calculations with FLUKA A. Lechner, L. Esposito, P. Garcia Ortega, F. Cerutti, A. Ferrari, E. Skordis on behalf of the FLUKA team (CERN) with valuable input from R. Bruce, P.D. Hermes, S. Redaelli

More information

RADIATION PROTECTION IN DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY. L19: Optimization of Protection in Mammography

RADIATION PROTECTION IN DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY. L19: Optimization of Protection in Mammography IAEA Training Material on Radiation Protection in Diagnostic and Interventional Radiology RADIATION PROTECTION IN DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY L19: Optimization of Protection in Mammography

More information

Review of four novel dosimeters developed for use in radiotherapy

Review of four novel dosimeters developed for use in radiotherapy University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2013 Review of four novel dosimeters developed

More information

Learning Objectives. Clinically operating proton therapy facilities. Overview of Quality Assurance in Proton Therapy. Omar Zeidan

Learning Objectives. Clinically operating proton therapy facilities. Overview of Quality Assurance in Proton Therapy. Omar Zeidan Overview of Quality Assurance in Proton Therapy Omar Zeidan AAPM 2012 Charlotte, NC July 30 st, 2012 Learning Objectives Understand proton beam dosimetry characteristics and compare them to photon beams

More information

Protons Monte Carlo water-equivalence study of two PRESAGE formulations for proton beam dosimetry J. Phys.: Conf. Ser.

Protons Monte Carlo water-equivalence study of two PRESAGE formulations for proton beam dosimetry J. Phys.: Conf. Ser. Protons Monte Carlo water-equivalence study of two PRESAGE formulations for proton beam dosimetry T Gorjiara, Z Kuncic, J Adamovics and C Baldock 2013 J. Phys.: Conf. Ser. 444 012090 PRESAGE is a radiochromic

More information

ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER

ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER Bro. Dr. Collie Miller IARC/WHO Based on trends in the incidence of cancer, the International Agency for Research on Cancer (IARC) and WHO

More information

Characterization and implementation of Pencil Beam Scanning proton therapy techniques: from spot scanning to continuous scanning

Characterization and implementation of Pencil Beam Scanning proton therapy techniques: from spot scanning to continuous scanning Characterization and implementation of Pencil Beam Scanning proton therapy techniques: from spot scanning to continuous scanning Supervisors Prof. V. Patera PhD R. Van Roermund Candidate Annalisa Patriarca

More information

Calculated LET spectrum from antiproton beams stopping in water

Calculated LET spectrum from antiproton beams stopping in water Acta Oncologica, 2009; 48: 223226 ORIGINAL ARTICLE Calculated LET spectrum from antiproton beams stopping in water NIELS BASSLER 1,2 & MICHAEL HOLZSCHEITER 3 1 Department of Experimental Clinical Oncology,

More information

2018 Council on Ionizing Radiation Measurements and Standards. Low Energy ( kev) Electron Beam Calibration. Gary Pageau

2018 Council on Ionizing Radiation Measurements and Standards. Low Energy ( kev) Electron Beam Calibration. Gary Pageau 2018 Council on Ionizing Radiation Measurements and Standards Low Energy (80-300 kev) Electron Beam Calibration Gary Pageau GEX Corporation Centennial, Colorado USA ISO 9001 certified manufacturer of dosimetry

More information

Proton and helium beams: the present and the future of light ion beam therapy

Proton and helium beams: the present and the future of light ion beam therapy Proton and helium beams: the present and the future of light ion beam therapy Dr. Andrea Mairani Group Leader Biophysics in Particle Therapy Heidelberg Ion Beam Therapy Center HIT Department of Radiation

More information

Online in vivo dosimetry in conformal radiotherapies with MOSkin detectors

Online in vivo dosimetry in conformal radiotherapies with MOSkin detectors Online in vivo dosimetry in conformal radiotherapies with MOSkin detectors G.Gambarini 1, C.Tenconi 1, N.Mantaut 1 M.Carrara 2, M.Borroni 2, E.Pignoli 2 D.Cutajar 3, M.Petasecca 3, I.Fuduli 3, M.Lerch

More information

Three-dimensional dosimetry imaging of I-125 plaque for eye cancer treatment

Three-dimensional dosimetry imaging of I-125 plaque for eye cancer treatment University of Wollongong Research Online Sydney Business School - Papers Faculty of Business 2011 Three-dimensional dosimetry imaging of I-125 plaque for eye cancer treatment Michael Weaver University

More information

Design and Performance Of A Thermal Neutron Beam for Boron Neutron Capture Therapy At The University Of Missouri Research Reactor

Design and Performance Of A Thermal Neutron Beam for Boron Neutron Capture Therapy At The University Of Missouri Research Reactor Design and Performance Of A Thermal Neutron Beam for Boron Neutron Capture Therapy At The University Of Missouri Research Reactor J.D. Brockman J.C. McKibben In situ activation reaction, 10 B(n, a) 7 Li;

More information

8/3/2016. The EPID Strikes Back! - EPID In-Vivo Dosimetry. EPID Research Number of Publications. Why EPID in-vivo? Detectable errors: patient

8/3/2016. The EPID Strikes Back! - EPID In-Vivo Dosimetry. EPID Research Number of Publications. Why EPID in-vivo? Detectable errors: patient Number of Publications Number of publications 8/3/2016 The Strikes Back! - In-Vivo Dosimetry AAPM, Washington D.C, USA, 2016 Peter Greer 1,2 (1) University of Newcastle, Australia, (2) Calvary Mater Newcastle,

More information

HEALTH RISKS FROM EXPOSURE TO FAST NEUTRONS. Prof. Marco Durante

HEALTH RISKS FROM EXPOSURE TO FAST NEUTRONS. Prof. Marco Durante HEALTH RISKS FROM EXPOSURE TO FAST NEUTRONS Prof. Marco Durante Risk from neutrons Risk from exposure to fission spectrum neutrons has been extensively studied in the 60 s at nuclear reactors using animal

More information

Measurement of Dose to Implanted Cardiac Devices in Radiotherapy Patients

Measurement of Dose to Implanted Cardiac Devices in Radiotherapy Patients Measurement of Dose to Implanted Cardiac Devices in Radiotherapy Patients Moyed Miften, PhD Professor and Chief Physicist University of Colorado Chester Reft, PhD Associate Professor University of Chicago

More information

Efficient Dosimetry for Proton Therapy

Efficient Dosimetry for Proton Therapy Efficient Dosimetry for Proton Therapy Why IBA Dosimetry? IBA Dosimetry offers the full product range tailored to fit any Proton Therapy QA needs. PT treatment safety, as well as most efficient dosimetry

More information

IN VIVO IMAGING Proton Beam Range Verification With PET/CT

IN VIVO IMAGING Proton Beam Range Verification With PET/CT IN VIVO IMAGING Proton Beam Range Verification With PET/CT Antje-Christin Knopf 1/3 K Parodi 2, H Paganetti 1, T Bortfeld 1 Siemens Medical Solutions Supports This Project 1 Department of Radiation Oncology,

More information

Calibration of Radiation Instruments Used in Radiation Protection and Radiotherapy in Malaysia

Calibration of Radiation Instruments Used in Radiation Protection and Radiotherapy in Malaysia Abstract Calibration of Radiation Instruments Used in Radiation Protection and Radiotherapy in Malaysia Taiman Bin Kadni (taiman@mint.gov.my) Secondary Standard Dosimetry Laboratory (SSDL) Malaysian Institute

More information

Active Scanning Beam 3 Checking Delivery/Dosimetry

Active Scanning Beam 3 Checking Delivery/Dosimetry Active Scanning Beam 3 Checking Delivery/Dosimetry C Algranati, J Salk, A Coray, A Lomax, E Pedroni, T Boeringer, S Lin, E Hug Center for Proton Radiation Therapy Checking Delivery/Dosimetry Contents Absolute

More information

The ANDANTE project: a multidisciplinary approach to neutron RBE

The ANDANTE project: a multidisciplinary approach to neutron RBE The ANDANTE project: a multidisciplinary approach to neutron RBE Andrea Ottolenghi, Klaus Trott, Giorgio Baiocco, Vere Smyth Università degli Studi di Pavia, Italy On behalf of the ANDANTE project MELODI

More information

Heavy Ion Tumor Therapy

Heavy Ion Tumor Therapy Heavy Ion Tumor Therapy Applications Bence Mitlasoczki 25.06.2018 Heidelberg 1. Source (H 2 /CO 2 ) 2. Linac 3. Synchrotron 4. Guide 5. Treatment rooms 6. X-ray system 7. Gantry 8. Treatment room with

More information

Dependence of the thermoluminescent high-temperature ratio (HTR) of LiF:Mg,Ti detectors on proton energy and dose

Dependence of the thermoluminescent high-temperature ratio (HTR) of LiF:Mg,Ti detectors on proton energy and dose Submitted to Radiation Measurements Dependence of the thermoluminescent high-temperature ratio (HTR) of LiF:Mg,Ti detectors on proton energy and dose P. Bilski 1, M. Sadel 1, J. Swakon 1, A. Weber 2 1

More information

Proton and heavy ion radiotherapy: Effect of LET

Proton and heavy ion radiotherapy: Effect of LET Proton and heavy ion radiotherapy: Effect of LET As a low LET particle traverses a DNA molecule, ionizations are far apart and double strand breaks are rare With high LET particles, ionizations are closer

More information

The title of the presentation is: Neutron production with clinical LINACs for BNCT studies in physical, medical and biological fields.

The title of the presentation is: Neutron production with clinical LINACs for BNCT studies in physical, medical and biological fields. The title of the presentation is: Neutron production with clinical LINACs for BNCT studies in physical, medical and biological fields. 1 Neutron production with clinical e-linac s is acheived by in-hospital

More information

HEAVY PARTICLE THERAPY

HEAVY PARTICLE THERAPY HEAVY PARTICLE THERAPY DR. G.V. GIRI KIDWAI MEMORIAL INSTITUTE OF ONCOLOGY ICRO 2012 BHATINDA HEAVY PARTICLES USED IN A EFFORT TO IMPROVE TUMOR CONTROL, THAT DO NOT RESPOND TO PHOTONS OR ELECTRONS BETTER

More information

MAESTRO: Methods and Advanced Equipment for Simulation and Treatment in Radiation Oncology

MAESTRO: Methods and Advanced Equipment for Simulation and Treatment in Radiation Oncology What is MAESTRO? Sixth Framework Program FP6 (2002-2006) European Commission Integrated Project Duration: 5 years MAESTRO: Methods and Advanced Equipment for Simulation and Treatment in Radiation Oncology

More information

What is radiation quality?

What is radiation quality? What is radiation quality? Dudley T Goodhead Medical Research Council, UK DoReMi Radiation Quality workshop Brussels. 9-10 July 2013 What is radiation quality? Let s start at the very beginning. A very

More information

Volumetric Modulated Arc Therapy - Patient Specific QA

Volumetric Modulated Arc Therapy - Patient Specific QA Volumetric Modulated Arc Therapy - Patient Specific QA Daliang Cao, PhD, DABR Swedish Cancer Institute, Seattle, WA VMAT plan QA methods Composite dose measurement Film & ion chamber diode array Mapcheck

More information

Radiation Monitoring Instruments

Radiation Monitoring Instruments Radiation Monitoring Instruments This set of slides is based on Chapter 4 authored byg. Rajan, J. Izewska of the IAEA publication (ISBN 92-0-107304-6): Radiation Oncology Physics: A Handbook for Teachers

More information

Simulations of Preclinical andclinical Scans in Emission Tomography, Transmission Tomography and Radiation Therapy. Using GATE

Simulations of Preclinical andclinical Scans in Emission Tomography, Transmission Tomography and Radiation Therapy. Using GATE GATE Simulations of Preclinical andclinical Scans in Emission Tomography, Transmission Tomography and Radiation Therapy Using GATE Quick tour & Highlights! GATE Training, INSTN-Saclay, October 2015 Albertine

More information

Dosimetry and QA of proton and heavier ion beams

Dosimetry and QA of proton and heavier ion beams Dosimetry and QA of proton and heavier ion beams Stanislav Vatnitskiy EBG MedAustron GmbH Wiener Neustadt, Austria Content Introduction Reference dosimetry Methods, detectors, protocols Dosimetry in non-reference

More information

Chapter 4 RADIATION MONITORING INSTRUMENTS

Chapter 4 RADIATION MONITORING INSTRUMENTS Chapter 4 RADIATION MONITORING INSTRUMENTS G. RAJAN Medical Physics and Safety Section, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India J. I Z E W S K A Division of Human Health, International

More information

Chapter 4: Radiation Monitoring Instruments

Chapter 4: Radiation Monitoring Instruments Chapter 4: Radiation Monitoring Instruments Set of 107 slides based on the chapter authored by G. Rajan, J. Izewska of the IAEA publication (ISBN 92-0-107304-6): Review of Radiation Oncology Physics: A

More information

Neutron Measurements for Intensity Modulated Radiation Therapy

Neutron Measurements for Intensity Modulated Radiation Therapy SLAC-PUB-8443 April 2 Neutron Measurements for Intensity Modulated Radiation Therapy N. E. Ipe et al. Presented at Chicago 2 World Congress on Medical Physics and Biomedical Engineering, 7/23/2 7/28/2,

More information

Progress in Reactor and Accelerator Based BNCT at Kyoto University Research Reactor Institute

Progress in Reactor and Accelerator Based BNCT at Kyoto University Research Reactor Institute Progress in Reactor and Accelerator Based BNCT at Kyoto University Research Reactor Institute Yoshinori Sakurai 1 Kyoto University Research Reactor Institute Asashiro-nishi 2-1010, Kumatori-cho, Sennan-gun,

More information

ABSTRACTS FOR RADIOTHERAPY STANDARDS USERS MEETING. 5 th June 2007

ABSTRACTS FOR RADIOTHERAPY STANDARDS USERS MEETING. 5 th June 2007 ABSTRACTS FOR RADIOTHERAPY STANDARDS USERS MEETING 5 th June 2007 An Overview of Radiotherapy Dosimetry at the NPL Hugo Palmans In relation to radiotherapy applications, The National Physical Laboratory

More information

Introduction to Ion Beam Cancer Therapy

Introduction to Ion Beam Cancer Therapy Introduction to Ion Beam Cancer Therapy Andrew M. Sessler (with some slides from David Robin) Lawrence Berkeley National Laboratory Berkeley, CA 94720 Cyclotron 10, Lanzhou September 10, 2010 Contents

More information

Investigation of the clinical performance of a novel solid-state diagnostic dosimeter

Investigation of the clinical performance of a novel solid-state diagnostic dosimeter JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 4, 2015 Investigation of the clinical performance of a novel solid-state diagnostic dosimeter Jason Tse, a Donald McLean Medical Physics and

More information

Investigation of heavy trace elements in neoplastic and non-neoplastic human thyroid tissue: A study by proton induced X-ray emissions

Investigation of heavy trace elements in neoplastic and non-neoplastic human thyroid tissue: A study by proton induced X-ray emissions Iran. J. Radiat. Res., 2004; (4): 2-26 Investigation of heavy trace elements in neoplastic and non-neoplastic human thyroid tissue: A study by proton induced X-ray emissions J. alimi, K. Moosavi 2,. Vatankhah

More information

ACCELERATORS FOR HADRONTHERAPY

ACCELERATORS FOR HADRONTHERAPY ACCELERATORS FOR HADRONTHERAPY Alberto Degiovanni CERN-BE IVICFA s Fridays: Medical Physics Valencia, 31.10.2014 Introduction: the icon of hadrontherapy Position of the Bragg peak depends on beam energy

More information

Online Care, Online Control, Online Confidence

Online Care, Online Control, Online Confidence Online Care, Online Control, Online Confidence * Online Treatment Monitoring and much more! Designed for Efficiency provides you with online control and online confidence of treating your patients exactly

More information

Plastic scintillation detectors for dose monitoring in digital breast tomosynthesis

Plastic scintillation detectors for dose monitoring in digital breast tomosynthesis Plastic scintillation detectors for dose monitoring in digital breast tomosynthesis J. Antunes 1,2, J. Machado 1,2, L. Peralta 1,2, N. Matela 1,3 1 Departamento de Física da Faculdade de Ciências da Universidade

More information

High Precision Dose Delivery from Electron & X-ray Beam Lines

High Precision Dose Delivery from Electron & X-ray Beam Lines High Precision Dose Delivery from Electron & X-ray Beam Lines J.Mittendorfer F. Gratzl I. Hirschmueller Mediscan GmbH & CoKG, Austria AccApp09, IAEA Vienna May 4th 8th, 2009 1 Industrial Irradiation Product

More information

Cancer Treatment by Charged Particles - Carbon Ion Radiotherapy -

Cancer Treatment by Charged Particles - Carbon Ion Radiotherapy - Cancer Treatment by Charged Particles - Carbon Ion Radiotherapy - Takeshi Murakami Research Center of Charged Particle Therapy National Institute of Radiological Sciences 2012.11.21 1. Introduction to

More information

nuclear science and technology

nuclear science and technology EUROPEAN COMMISSION nuclear science and technology Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields (EVIDOS) Editor: Helmut Schuhmacher, Physikalisch-Technische Bundesanstalt

More information

IBA Dosimetry Company Presentation. Patient Safety & Quality Control

IBA Dosimetry Company Presentation. Patient Safety & Quality Control IBA Dosimetry Company Presentation Patient Safety & Quality Control IBA Mission Protect, enhance and save lives Protect, Enhance, and Save Lives - 2 - The History of IBA Dosimetry A story of innovation

More information

Application(s) of Alanine

Application(s) of Alanine Application(s) of Alanine Simon Duane Radiotherapy Standards User Group, 5 June 2007 Outline Alanine/EPR dosimetry characteristics, usage (dis)advantages for reference dosimetry Traceable dosimetry for

More information

This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author s institution, sharing

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH A COMBINATION OF TLD ALBEDO AND SULPHUR ACTIVATION TECHNIQUES FOR FAST NEUTRON PERSONNEL DOSIMETRY

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH A COMBINATION OF TLD ALBEDO AND SULPHUR ACTIVATION TECHNIQUES FOR FAST NEUTRON PERSONNEL DOSIMETRY : ~ : ; EUROPEAN ORGANZATON FOR NUCLEAR RESEARCH 20 1983 TS-RP/ 113/ CF TS DVSONAL REPORT September 1983 A COMBNATON OF TLD ALBEDO AND SULPHUR ACTVATON TECHNQUES FOR FAST NEUTRON PERSONNEL DOSMETRY J.W.N.

More information

Hampton University Proton Therapy Institute

Hampton University Proton Therapy Institute Hampton University Proton Therapy Institute Brief introduction to proton therapy technology, its advances and Hampton University Proton Therapy Institute Vahagn Nazaryan, Ph.D. Executive Director, HUPTI

More information

THE HIGH-CURRENT DEUTERON ACCELERATOR FOR THE NEUTRON THERAPY. S.V. Akulinichev, A. V. Andreev, V.M. Skorkin

THE HIGH-CURRENT DEUTERON ACCELERATOR FOR THE NEUTRON THERAPY. S.V. Akulinichev, A. V. Andreev, V.M. Skorkin THE HIGH-CURRENT DEUTERON ACCELERATOR FOR THE NEUTRON THERAPY S.V. Akulinichev, A. V. Andreev, V.M. Skorkin Institute for Nuclear Research of the RAS, Russia THE PROJECT OF NEUTRON SOURCES FOR THE NEUTRON

More information

Dosimetric study of 2D ion chamber array matrix for the modern radiotherapy treatment verification

Dosimetric study of 2D ion chamber array matrix for the modern radiotherapy treatment verification JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 11, NUMBER 2, SPRING 2010 Dosimetric study of 2D ion chamber array matrix for the modern radiotherapy treatment verification Sathiyan Saminathan, a Ravikumar

More information

Recent advances in dosimetry in reference conditions for proton and light-ion beams

Recent advances in dosimetry in reference conditions for proton and light-ion beams Recent advances in dosimetry in reference conditions for proton and light-ion beams S. Vatnitskiy a), P. Andreo b) and D.T.L. Jones c) a) MedAustron, Wiener Neustadt, Austria b) Medical Radiation Physics,

More information

IPPE Iron shell transmission experiment with 14 MeV neutron source and its analysis by the Monte-Carlo method

IPPE Iron shell transmission experiment with 14 MeV neutron source and its analysis by the Monte-Carlo method IPPE Iron shell transmission experiment with 14 MeV neutron source and its analysis by the Monte-Carlo method S.P. Simakov 1,2, M.G. Kobozev 1, A.A. Lychagin 1, V.A. Talalaev 1, U. Fischer 2, U. von Möllendorff

More information

Neutron Detection Spring 2002

Neutron Detection Spring 2002 Neutron Detection 22.104 Spring 2002 Neutrons vs. X-rays Ideal Large Detector Pulse Height Neutron Interactions Total Cross section for Moderators Neutron Slowing Down Neutron Histories in Moderated Detector

More information

Monte Carlo water-equivalence study of two PRESAGE formulations for proton beam dosimetry

Monte Carlo water-equivalence study of two PRESAGE formulations for proton beam dosimetry Monte Carlo water-equivalence study of two PRESAGE formulations for proton beam dosimetry T Gorjiara 1, Z Kuncic 1, J Adamovics 2 and C Baldock 1,3 1 Institute of Medical Physics, School of Physics, University

More information

Large-area Two-Dimensional Thermoluminescence Dosimetry System in Ion Beam Quality Assurance

Large-area Two-Dimensional Thermoluminescence Dosimetry System in Ion Beam Quality Assurance Large-area Two-Dimensional Thermoluminescence Dosimetry System in Ion Beam Quality Assurance J. Gajewski1, M. Kłosowski1, S. Greilich2, P. Olko1 Institute of Nuclear Physics, Kraków, Poland German Cancer

More information

Advanced Semiconductor dosimetry in radiation therapy

Advanced Semiconductor dosimetry in radiation therapy University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2011 Advanced Semiconductor dosimetry in radiation

More information

Semiflex 3D. Always perfectly oriented. 3D Thimble Ionization Chamber for Relative and Absolute Dosimetry

Semiflex 3D. Always perfectly oriented. 3D Thimble Ionization Chamber for Relative and Absolute Dosimetry DETECTORS Always perfectly oriented. Semiflex 3D 3D Thimble Ionization Chamber for Relative and Absolute Dosimetry The New Reference Class Full 3D Geometry For FFF and FF Beams Semiflex 3D 3D Detector

More information

Evaluation of Dosimetry Check software for IMRT patient-specific quality assurance

Evaluation of Dosimetry Check software for IMRT patient-specific quality assurance JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 3, 2015 Evaluation of Dosimetry Check software for IMRT patient-specific quality assurance Ganesh Narayanasamy, Travis Zalman, Chul S. Ha,

More information

SpiderX. Portable Residual Stress X-Ray Diffractometer.

SpiderX. Portable Residual Stress X-Ray Diffractometer. Portable Residual Stress X-Ray Diffractometer www.gnr.it About SpiderX GNR Analytical Instrument offers equipment based on X-Ray Diffraction to measure residual stress state and retained austenite content.

More information

Proton Treatment. Keith Brown, Ph.D., CHP. Associate Director, Radiation Safety University of Pennsylvania

Proton Treatment. Keith Brown, Ph.D., CHP. Associate Director, Radiation Safety University of Pennsylvania Proton Treatment Keith Brown, Ph.D., CHP Associate Director, Radiation Safety University of Pennsylvania Proton Dose vs. Depth Wilson,. R.R. Radiological use of fast protons. Radiology 47:487-491, 1946.

More information

Dosimetry Standards and Dissemination Systems for Radiation Processing in China

Dosimetry Standards and Dissemination Systems for Radiation Processing in China Dosimetry Standards and Dissemination Systems for Radiation Processing in China Zhang Yanli National Institute of Metrology, China April 2017 in Vienna, Austria Organization Founded in 1955, National Institute

More information

Verification of the PAGAT polymer gel dosimeter by photon beams using magnetic resonance imaging

Verification of the PAGAT polymer gel dosimeter by photon beams using magnetic resonance imaging Iran. J. Radiat. Res., 2008; 6 (2): 83-87 Verification of the PAGAT polymer gel dosimeter by photon beams using magnetic resonance imaging B. Azadbakht 1, M.H. Zahmatkesh 2 *, k. Hadad 1, S. Bagheri 2

More information

Progress of Heavy Ion Therapy

Progress of Heavy Ion Therapy Progress of Heavy Ion Therapy Fuminori Soga Division of Accelerator Physics and Engineering, National Institute of Radiological Sciences, 4-9-1 Anagawa. Inage-ku, Chiba 263-8555, Japan 1. Introduction

More information

CHAPTER 5. STUDY OF ANGULAR RESPONSE OF asi 1000 EPID AND IMATRIXX 2-D ARRAY SYSTEM FOR IMRT PATIENT SPECIFIC QA

CHAPTER 5. STUDY OF ANGULAR RESPONSE OF asi 1000 EPID AND IMATRIXX 2-D ARRAY SYSTEM FOR IMRT PATIENT SPECIFIC QA CHAPTER 5 STUDY OF ANGULAR RESPONSE OF asi 1000 EPID AND IMATRIXX 2-D ARRAY SYSTEM FOR IMRT PATIENT SPECIFIC QA 5.1 Introduction With the advent of new techniques like intensity modulated radiotherapy

More information

Semiflex 3D. Always perfectly oriented. 3D Thimble Ionization Chamber for Relative and Absolute Dosimetry

Semiflex 3D. Always perfectly oriented. 3D Thimble Ionization Chamber for Relative and Absolute Dosimetry DETECTORS Always perfectly oriented. Semiflex 3D 3D Thimble Ionization Chamber for Relative and Absolute Dosimetry The New Reference Class Full 3D Geometry For FFF and FF Beams Semiflex 3D 3D Detector

More information

Dosimetric Consideration in Diagnostic Radiology

Dosimetric Consideration in Diagnostic Radiology Dosimetric Consideration in Diagnostic Radiology Prof. Ng Kwan-Hoong Department of Biomedical Imaging University of Malaya ngkh@um.edu.my Radiation Dosimetry Workshop, 28-29 March 2014 2 Why do we measure

More information