Immune surveillance: The immune system can recognize and destroy nascent malignant cells

Size: px
Start display at page:

Download "Immune surveillance: The immune system can recognize and destroy nascent malignant cells"

Transcription

1 Immune surveillance: The immune system can recognize and destroy nascent malignant cells Control Escape APC T C T H B NKT NK Innate Tumor T cells are believed to play a major role in controlling tumor growth.

2 T cell-based Immunotherapy Activated CTL CD8+ T cell precursor Tumor CD4+ T cell TA HLA class I TA peptide complex Immunization APC Tumor Cell lysate TA TA derived peptides Peptide-pulsed APC Tumor HSP

3 T cell-based immunotherapy clinical trials: lessons learned Immunization strategies have been successful in eliciting tumor antigen-specific CTL in at least a proportion of the immunized patients Disappointing clinical response rates have been obtained A tumor antigen-specific CTL immune response is often not accompanied by a clinical response

4 Why does a TA-specific CTL immune response not correlate with clinical response in patients with malignant disease treated with immunotherapy? defects in CTL resistance of tumor cells to CTL recognition

5 HLA class I antigen-peptide complex expression is necessary for tumor antigen derived recognition by CTL TA derived peptide CTL TCR Target cell HLA class I Killing TA derived peptide HLA class I peptide HLA class I No killing

6 How are HLA class I antigen-tumor antigen peptide complexes generated? Antigen processing and presentation pathway DRiPs Cytosolic peptidases cytosol Protein Tumor antigen (TA) Ub Proteasome/ Immunoproteasome Peptide TAP Translocon DRiPs ERp57 Tapasin Calnexin Calnexin Heavy chain Calreticulin ERAP1 ER Cell membrane Kill No killing TCR TA-specific CTL

7 Immunohistochemical staining of formalin fixed, paraffin embedded malignant lesions by HLA class I specific mab Heavy chain β 2 -microglobulin Heterogeneous expression Loss of expression in undifferentiated cells Serial Sections of a Breast Carcinoma Lesion

8 Different frequency of HLA class I antigen downregulation in different tumor types Monomorphic Polymorphic

9 Correlation of LMP2 and tapasin expression with HLA class I antigen expression in primary laryngeal squamous cell carcinoma lesions 1 LMP2 TAP1 6 % Positive 2 1 tapasin r=.41 p=.55 calnexin r=.23 p= r=.7 p< r=.25 p= HLA class I antigen

10 Association of APM component and HLA class I antigen expression with CD8+ T cell infiltration in primary laryngeal squamous cell carcinoma lesions 1 LMP2 TAP1 6 % Positive 2 1 tapasin r=.45 p=.21 r=.43 p=.37 HLA class I antigen 6 2 r=.56 p<.1 r=.53 p< CD8 + T cell infiltration

11 Association of HLA class I antigen expression and CD8+ T cell infiltration in primary laryngeal squamous carcinoma lesions with poor survival Cause-specific survival HLA class I antigen Positive vs. negative: p=.2 Positive vs. heterogeneous: p=.42 Heterogeneous vs. negative: p=.1 β 2 m Positive vs. negative: p=.52 Positive vs. heterogeneous: p=.52 Heterogeneous vs. negative: p= Months

12 Restoration by IFN-γ of recognition of SCCHN PCI 13 cells by HLA class I antigen restricted, TA-specific CTL. IFN-γ spots / 3, cells CTL + Tumor CTL + Tumor + BB7.2 CTL + Tumor + L243 PCI 13 PCI 13 + IFN-γ

13 Relationship between upregulation of TAP1 and tapasin level and recognition of IFN-γ treated SCCHN cells PCI-13 and SCC4 by HLA class I antigen restricted, TA-specific CTL PCI-13 PCI-13 SCC4 IFN-γ spots SCC4 TAP1 Tapasin PCI-13 cells SCC4 cells HLA A*21

14 Phage display antibody libraries V H V L A sailor Thewas went toa man frsee see We are fa Immunoglobulin Semi-synthetic single chain fragment of antibody variable region (scfv) phage displayed scfv

15 Panning phage display antibody libraries with HLA class I allele-ta peptide complexes B. Binding C. Wash A. Incubation Phage bound HLA class I allele-ta peptide complexes D. Elution scfv library HLA class I allele-ta peptide complex Eluted phage E. Amplification

16 Enriched phage displayed scfv recognize purified HLA-A*21-peptide complexes HLA-A2-MART (ELAGIGILTV) HLA-A2-HER2/neu (RLLQETELV) HLA-A2-HER2/neu (KIFGSLAFL) 45 nm scfv

17 Isolation of unique HLA class I allele-ta peptide complex specific scfv Clone Heavy chains a Light chains Family Segment CDR3 Family Segment HLA-A*21-MART specific scfv CDR3 8.3 VH3 DP-45 ARSSSLCTWGQ Vκ2 DPK-15 MQALQTQC 24.3 VH3 DP-45 ARSSSLCTWGQ Vλ3 DPL-16 NSRDSSGF 25.3 VH3 DP-45 ARSSSLCTWGQ Vκ3 DPK-1D QQYDNLPS HLA-A*21-HER2/neu specific scfv VH3 DP-13*1 AGPAGAGPWGQ Vκ2 DPK-29*1 MQSIQLHT VH3 DP-13*1 AGPAGAGPWGQ Vλ3 DPL-19*1 NSRDSSGNHPDV HLA-A*21-HER2/neu specific scfv VH3 DP-23*1 ARGEFRTYFPT Vκ1 DPK-39*1 QQANSFLSST

18 scfv 8.3 does not bind to MART peptide alone 1 8 % Inhibition HLA-A*21-MART MART HLA-A*21-HER2/neu :1 1:1 25:1 5:1 1:1 2:1 4:1 8:1 Molar ratio (inhibitor:scfv)

19 scfv 8.3 binds to a determinant located on the α1/α2 domains of HLA-A*21 and MART peptide α1 α2 α β2m - α3 α TM 17 - Intracellular tail

20 Can we enhance the sensitivity of HLA class I allele-ta peptide complex specific probes? HLA class I-TA specific probe HLA-A2, TA specific CTL TCR Tumor HLA-A2-TA peptide complex HLA class I-TA specific probe CTL killing - +

21 Generation of HLA class I allele-ta peptide complex specific scfv tetramers scfv tetramer scfv tetramer V l V H VH V l V H V l Site specific biotinylation site Streptavidin V l V H V l V l VH VH V H V H V l V l Biotin Phycoerythrin VH Vl

22 scfv tetramerization enhances their ability to detect HLA class I allele-ta peptide complexes on target cells 9 scfv 8.3 tetramer (A2/MART1) scfv 8.3 monomer (A2/MART1) scfv tetramer (A2/HER2/neu) 7 MFI 5 3 Tetramer kd=.2 nm Monomer kd=4 nm scfv tetramer (nm)

23 Heterogeneous HLA-A*21 surface expression and intracellular MART1 protein expression in human melanoma cells 4 HLA-A* MART1 - IFN-γ + IFN-γ Fold change over background

24 Heterogeneous APM component expression in human melanoma cells - IFN-γ + IFN-γ 3 TAP1 TAP calreticulin 2 1 tapasin Fold change over background

25 Heterogeneous HLA-A*21-MART peptide complex expression on human melanoma cells 4 HLA-A*21-MART Fold change over background IFN-γ + IFN-γ HLA-A*21 (+)

26 Lack of correlation between HLA-A*21, MART1 and HLA-A*21-MART peptide complex expression 4 HLA-A*21 MART IFN-γ + IFN-γ HLA-A*21-MART HLA-A*21-MART Fold change over background

27 Lack of relationship between HLA-A2 antigen and HLA- A2 antigen-her2/neu peptide complex expression by SCCHN cell lines A complex B HLA-A2 PCI-13 SCC-4 PCI-3 T2+Peptide 1mM PCI-13+ Peptide 1mM

28 Conclusions The level of APM components and HLA class I antigens markedly vary in malignant cells Measure of the level of APM component and HLA antigen expression provides only limited information about their functional properties The level of HLA class I antigen-tumor antigen peptide complexes on tumor cells does not correlate with the level of APM components, HLA class I antigens and tumor antigens These results stress the need to measure the level of HLA class I antigen-tumor antigen peptide complexes on tumor cells to characterize their interactions with CTL

29

30 HLA class I antigen-peptide complexes mediate recognition of target cells by cytotoxic T lymphocytes (CTL) Kill Target cell HLA class I antigen CTL peptide TCR

31 Reactivity of scfv 8.3 with peptide pulsed T2 cells is dependant on scfv & MART concentration Mean fluorescence intensity T2-MART T2-HER2/neu [peptide] [scfv] kd= peptide (µm) scfv (nm)

32 scfv 8.3 mimics the reactivity of HLA-A*21- MART specific TCR 64 MART : AAGIGILTV CTL (+) E AAGIGILTV CTL (+) EL AAGIGILTV CTL (+) A AAGIGILTV CTL (+) AL AGIGILTV CTL (+) Cell count 64 Y AAGIGILTV CTL (+) Log fluorescence intensity (PE) HER2/neu : F AAGIGILTV AL GIGILTV KIFGSLAFL CTL (+) CTL (-) CTL (+) Antibody scfv 8.3 tetramer mab CR mab 9E1 scfv tetramer

33 Enriched phage displayed scfv recognize peptide pulsed T2 cells T2-HER2/neu T2-MART Antibody Specificity Cell count Log fluorescence intensity (PE) scfv 8.3 HLA-A2-MART scfv HLA-A2-HER2/neu mab CR HLA-A2, -A24, -A28 mab 9E1 JH1 c-myc scfv JH1 Human VEGF

34 HLA class I allele-ta peptide complex specific scfv tetramers retain their specificity MART1(+) HER2/neu(-) LG2 MART1(-) HER2/neu(-) 553 MART1(+) HER2/neu(-) SCC4 MART1(-) HER2/neu(+) A2/MART A2/HER2/neu Antibody Specificity Cell count Log fluorescence intensity (PE) scfv 8.3 HLA-A2-MART mab CR HLA-A2, -A24, -A28 mab 9E1 c-myc scfv HLA-A2-HER2/neu

35 Lack of correlation between APM component and HLA-A*21-MART peptide complex expression 4 TAP1 Proteasome subunit (LMP2) 16 Fold change over background HLA-A*21-MART HLA-A*21-MART IFN-γ + IFN-γ

MHC class I MHC class II Structure of MHC antigens:

MHC class I MHC class II Structure of MHC antigens: MHC class I MHC class II Structure of MHC antigens: MHC class I antigens consist of a transmembrane heavy chain (α chain) that is non-covalently associated with β2- microglobulin. Membrane proximal domain

More information

General information. Cell mediated immunity. 455 LSA, Tuesday 11 to noon. Anytime after class.

General information. Cell mediated immunity. 455 LSA, Tuesday 11 to noon. Anytime after class. General information Cell mediated immunity 455 LSA, Tuesday 11 to noon Anytime after class T-cell precursors Thymus Naive T-cells (CD8 or CD4) email: lcoscoy@berkeley.edu edu Use MCB150 as subject line

More information

Basic Immunology. Lecture 5 th and 6 th Recognition by MHC. Antigen presentation and MHC restriction

Basic Immunology. Lecture 5 th and 6 th Recognition by MHC. Antigen presentation and MHC restriction Basic Immunology Lecture 5 th and 6 th Recognition by MHC. Antigen presentation and MHC restriction Molecular structure of MHC, subclasses, genetics, functions. Antigen presentation and MHC restriction.

More information

Antigen presenting cells

Antigen presenting cells Antigen recognition by T and B cells - T and B cells exhibit fundamental differences in antigen recognition - B cells recognize antigen free in solution (native antigen). - T cells recognize antigen after

More information

B F. Location of MHC class I pockets termed B and F that bind P2 and P9 amino acid side chains of the peptide

B F. Location of MHC class I pockets termed B and F that bind P2 and P9 amino acid side chains of the peptide Different MHC alleles confer different functional properties on the adaptive immune system by specifying molecules that have different peptide binding abilities Location of MHC class I pockets termed B

More information

Chapter 6. Antigen Presentation to T lymphocytes

Chapter 6. Antigen Presentation to T lymphocytes Chapter 6 Antigen Presentation to T lymphocytes Generation of T-cell Receptor Ligands T cells only recognize Ags displayed on cell surfaces These Ags may be derived from pathogens that replicate within

More information

Antigen processing and presentation. Monika Raulf

Antigen processing and presentation. Monika Raulf Antigen processing and presentation Monika Raulf Lecture 25.04.2018 What is Antigen presentation? AP is the display of peptide antigens (created via antigen processing) on the cell surface together with

More information

Key Concept B F. How do peptides get loaded onto the proper kind of MHC molecule?

Key Concept B F. How do peptides get loaded onto the proper kind of MHC molecule? Location of MHC class I pockets termed B and F that bind P and P9 amino acid side chains of the peptide Different MHC alleles confer different functional properties on the adaptive immune system by specifying

More information

Significance of the MHC

Significance of the MHC CHAPTER 8 Major Histocompatibility Complex (MHC) What is MHC? HLA H-2 Minor histocompatibility antigens Peter Gorer & George Sneell (1940) - MHC molecules were initially discovered during studies aimed

More information

Antigen Presentation to T lymphocytes

Antigen Presentation to T lymphocytes Antigen Presentation to T lymphocytes Immunology 441 Lectures 6 & 7 Chapter 6 October 10 & 12, 2016 Jessica Hamerman jhamerman@benaroyaresearch.org Office hours by arrangement Antibodies and T cell receptors

More information

EBV Infection and Immunity. Andrew Hislop Institute for Cancer Studies University of Birmingham

EBV Infection and Immunity. Andrew Hislop Institute for Cancer Studies University of Birmingham EBV Infection and Immunity Andrew Hislop Institute for Cancer Studies University of Birmingham EBV Introduction Large ds DNA virus Spread by saliva contact Lifelong infection Predominantly B-lymphotropic

More information

Significance of the MHC

Significance of the MHC CHAPTER 8 Major Histocompatibility Complex (MHC) What is is MHC? HLA H-2 Minor histocompatibility antigens Peter Gorer & George Sneell (1940) Significance of the MHC role in immune response role in organ

More information

MHC Tetramers and Monomers for Immuno-Oncology and Autoimmunity Drug Discovery

MHC Tetramers and Monomers for Immuno-Oncology and Autoimmunity Drug Discovery MHC Tetramers and Monomers for Immuno-Oncology and Autoimmunity Drug Discovery Your Partner in Drug Discovery and Research MHC Tetramer Background T-Cell Receptors recognize and bind to complexes composed

More information

LG-APM s for MHC-Peptide Screening

LG-APM s for MHC-Peptide Screening LG-APM s for MHC-Peptide Screening S. Stanley*, I. A. Dodi* #, C.R. Evans*, S. J. Paston #, R.C. Rees*, C.J. Percival $, Glen McHale* and M.I Newton* *School of Biomedical & Natural Sciences, Nottingham

More information

Dendritic Cell-Based Immunotherapy Vaccines for Melanoma and Hepatocellular Cancer

Dendritic Cell-Based Immunotherapy Vaccines for Melanoma and Hepatocellular Cancer Dendritic Cell-Based Immunotherapy Vaccines for Melanoma and Hepatocellular Cancer Lisa H. Butterfield, Ph.D. Assistant Professor of Medicine, Surgery and Immunology University of Pittsburgh Cancer Institute

More information

The Major Histocompatibility Complex (MHC)

The Major Histocompatibility Complex (MHC) The Major Histocompatibility Complex (MHC) An introduction to adaptive immune system before we discuss MHC B cells The main cells of adaptive immune system are: -B cells -T cells B cells: Recognize antigens

More information

HLA and antigen presentation. Department of Immunology Charles University, 2nd Medical School University Hospital Motol

HLA and antigen presentation. Department of Immunology Charles University, 2nd Medical School University Hospital Motol HLA and antigen presentation Department of Immunology Charles University, 2nd Medical School University Hospital Motol MHC in adaptive immunity Characteristics Specificity Innate For structures shared

More information

Lecture 6. Burr BIO 4353/6345 HIV/AIDS. Tetramer staining of T cells (CTL s) Andrew McMichael seminar: Background

Lecture 6. Burr BIO 4353/6345 HIV/AIDS. Tetramer staining of T cells (CTL s) Andrew McMichael seminar: Background Lecture 6 Burr BIO 4353/6345 HIV/AIDS Andrew McMichael seminar: Background Tetramer staining of T cells (CTL s) 1. Vβ 19: There are 52 T cell receptor (TCR) Vβ gene segments in germ line DNA (See following

More information

Structure and Function of Antigen Recognition Molecules

Structure and Function of Antigen Recognition Molecules MICR2209 Structure and Function of Antigen Recognition Molecules Dr Allison Imrie allison.imrie@uwa.edu.au 1 Synopsis: In this lecture we will examine the major receptors used by cells of the innate and

More information

LESSON 2: THE ADAPTIVE IMMUNITY

LESSON 2: THE ADAPTIVE IMMUNITY Introduction to immunology. LESSON 2: THE ADAPTIVE IMMUNITY Today we will get to know: The adaptive immunity T- and B-cells Antigens and their recognition How T-cells work 1 The adaptive immunity Unlike

More information

HLA and antigen presentation. Department of Immunology Charles University, 2nd Medical School University Hospital Motol

HLA and antigen presentation. Department of Immunology Charles University, 2nd Medical School University Hospital Motol HLA and antigen presentation Department of Immunology Charles University, 2nd Medical School University Hospital Motol MHC in adaptive immunity Characteristics Specificity Innate For structures shared

More information

Alleles: the alternative forms of a gene found in different individuals. Allotypes or allomorphs: the different protein forms encoded by alleles

Alleles: the alternative forms of a gene found in different individuals. Allotypes or allomorphs: the different protein forms encoded by alleles Nomenclature Alleles: the alternative forms of a gene found in different individuals Allotypes or allomorphs: the different protein forms encoded by alleles Genotype: the collection of genes in an individual,

More information

Tumor Immunology. Wirsma Arif Harahap Surgical Oncology Consultant

Tumor Immunology. Wirsma Arif Harahap Surgical Oncology Consultant Tumor Immunology Wirsma Arif Harahap Surgical Oncology Consultant 1) Immune responses that develop to cancer cells 2) Escape of cancer cells 3) Therapies: clinical and experimental Cancer cells can be

More information

Supplementary Table 1. Functional avidities of survivin-specific T-cell clones against LML-peptide

Supplementary Table 1. Functional avidities of survivin-specific T-cell clones against LML-peptide Supplementary Table 1. Functional avidities of survivin-specific T-cell clones against LML-peptide pulsed T2 cells. clone avidity by 4-hour 51 Cr-release assay 50% lysis at E:T 10:1 [LML peptide, M] #24

More information

Immunity and Cancer. Doriana Fruci. Lab di Immuno-Oncologia

Immunity and Cancer. Doriana Fruci. Lab di Immuno-Oncologia Immunity and Cancer Doriana Fruci Lab di Immuno-Oncologia Immune System is a network of cells, tissues and organs that work together to defend the body against attacks of foreign invaders (pathogens, cancer

More information

Andrea s SI Session PCB Practice Test Test 3

Andrea s SI Session PCB Practice Test Test 3 Practice Test Test 3 READ BEFORE STARTING PRACTICE TEST: Remember to please use this practice test as a tool to measure your knowledge, and DO NOT use it as your only tool to study for the test, since

More information

The Good, the Bad and the Ugly: Clinical trials which assess vaccine characteristics. ISBT Meeting, San Francisco, CA November 4-8, 2004

The Good, the Bad and the Ugly: Clinical trials which assess vaccine characteristics. ISBT Meeting, San Francisco, CA November 4-8, 2004 The Good, the Bad and the Ugly: Clinical trials which assess vaccine characteristics ISBT Meeting, San Francisco, CA November 4-8, 2004 Ideal cancer vaccine trial 1. An informative immune assay 2. Ability

More information

Nomenclature. HLA genetics in transplantation. HLA genetics in autoimmunity

Nomenclature. HLA genetics in transplantation. HLA genetics in autoimmunity Nomenclature Alleles: the alternative forms of a gene found in different individuals Allotypes or allomorphs: the different protein forms encoded by alleles During pregnancy the mother tolerates the expression

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. NKT ligand-loaded tumour antigen-presenting B cell- and monocyte-based vaccine induces NKT, NK and CD8 T cell responses. (A) The cytokine profiles of liver

More information

Principles of Adaptive Immunity

Principles of Adaptive Immunity Principles of Adaptive Immunity Chapter 3 Parham Hans de Haard 17 th of May 2010 Agenda Recognition molecules of adaptive immune system Features adaptive immune system Immunoglobulins and T-cell receptors

More information

T Cell Receptor Optimized Peptide Skewing of the T-Cell Repertoire Can Enhance Antigen Targeting

T Cell Receptor Optimized Peptide Skewing of the T-Cell Repertoire Can Enhance Antigen Targeting T Cell Receptor Optimized Peptide Skewing of the T-Cell Repertoire Can Enhance Antigen Targeting Julia Ekeruche-Makinde 1*, Mathew Clement 1*, David K Cole 1*, Emily S J Edwards 1, Kristin Ladell 1, John

More information

all of the above the ability to impart long term memory adaptive immunity all of the above bone marrow none of the above

all of the above the ability to impart long term memory adaptive immunity all of the above bone marrow none of the above 1. (3 points) Immediately after a pathogen enters the body, it faces the cells and soluble proteins of the innate immune system. Which of the following are characteristics of innate immunity? a. inflammation

More information

Immune surveillance hypothesis (Macfarlane Burnet, 1950s)

Immune surveillance hypothesis (Macfarlane Burnet, 1950s) TUMOR-IMMUNITÄT A.K. Abbas, A.H. Lichtman, S. Pillai (6th edition, 2007) Cellular and Molecular Immunology Saunders Elsevier Chapter 17, immunity to tumors Immune surveillance hypothesis (Macfarlane Burnet,

More information

AG MHC HLA APC Ii EPR TAP ABC CLIP TCR

AG MHC HLA APC Ii EPR TAP ABC CLIP TCR !! AG MHC HLA APC Ii EPR TAP ABC CLIP TCR Antigen Major Histocompartibility Complex Human Leukocyte Antigen Antigen Presenting Cell Invariant Chain Endoplasmatic Reticulum Transporters Associated with

More information

Tumors arise from accumulated genetic mutations. Tumor Immunology (Cancer)

Tumors arise from accumulated genetic mutations. Tumor Immunology (Cancer) Tumor Immunology (Cancer) Tumors arise from accumulated genetic mutations Robert Beatty MCB150 Mutations Usually have >6 mutations in both activation/growth factors and tumor suppressor genes. Types of

More information

COURSE: Medical Microbiology, PAMB 650/720 - Fall 2008 Lecture 16

COURSE: Medical Microbiology, PAMB 650/720 - Fall 2008 Lecture 16 COURSE: Medical Microbiology, PAMB 650/720 - Fall 2008 Lecture 16 Tumor Immunology M. Nagarkatti Teaching Objectives: Introduction to Cancer Immunology Know the antigens expressed by cancer cells Understand

More information

Attribution: University of Michigan Medical School, Department of Microbiology and Immunology

Attribution: University of Michigan Medical School, Department of Microbiology and Immunology Attribution: University of Michigan Medical School, Department of Microbiology and Immunology License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution

More information

Scott Abrams, Ph.D. Professor of Oncology, x4375 Kuby Immunology SEVENTH EDITION

Scott Abrams, Ph.D. Professor of Oncology, x4375 Kuby Immunology SEVENTH EDITION Scott Abrams, Ph.D. Professor of Oncology, x4375 scott.abrams@roswellpark.org Kuby Immunology SEVENTH EDITION CHAPTER 13 Effector Responses: Cell- and Antibody-Mediated Immunity Copyright 2013 by W. H.

More information

CELL BIOLOGY - CLUTCH CH THE IMMUNE SYSTEM.

CELL BIOLOGY - CLUTCH CH THE IMMUNE SYSTEM. !! www.clutchprep.com CONCEPT: OVERVIEW OF HOST DEFENSES The human body contains three lines of against infectious agents (pathogens) 1. Mechanical and chemical boundaries (part of the innate immune system)

More information

The Major Histocompatibility Complex

The Major Histocompatibility Complex The Major Histocompatibility Complex Today we will discuss the MHC The study of MHC is necessary to understand how an immune response is generated. And these are the extra notes with respect to slides

More information

How T cells recognize antigen: The T Cell Receptor (TCR) Identifying the TCR: Why was it so hard to do? Monoclonal antibody approach

How T cells recognize antigen: The T Cell Receptor (TCR) Identifying the TCR: Why was it so hard to do? Monoclonal antibody approach How T cells recognize antigen: The T Cell Receptor (TCR) Identifying the TCR: Why was it so hard to do By the early 1980s, much about T cell function was known, but the receptor genes had not been identified

More information

A second type of TCR TCR: An αβ heterodimer

A second type of TCR TCR: An αβ heterodimer How s recognize antigen: The T Cell Receptor (TCR) Identifying the TCR: Why was it so hard to do By the early 1980s, much about function was known, but the receptor genes had not been identified Recall

More information

Antibodies and T Cell Receptor Genetics Generation of Antigen Receptor Diversity

Antibodies and T Cell Receptor Genetics Generation of Antigen Receptor Diversity Antibodies and T Cell Receptor Genetics 2008 Peter Burrows 4-6529 peterb@uab.edu Generation of Antigen Receptor Diversity Survival requires B and T cell receptor diversity to respond to the diversity of

More information

Immunology - Lecture 2 Adaptive Immune System 1

Immunology - Lecture 2 Adaptive Immune System 1 Immunology - Lecture 2 Adaptive Immune System 1 Book chapters: Molecules of the Adaptive Immunity 6 Adaptive Cells and Organs 7 Generation of Immune Diversity Lymphocyte Antigen Receptors - 8 CD markers

More information

Peptide Repertoire Changes Caused by Defects in Antigen Processing. Kristin Camfield Lind. A dissertation submitted in partial satisfaction of the

Peptide Repertoire Changes Caused by Defects in Antigen Processing. Kristin Camfield Lind. A dissertation submitted in partial satisfaction of the Peptide Repertoire Changes Caused by Defects in Antigen Processing By Kristin Camfield Lind A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in

More information

MHC Class I Antigen Processing and Presenting Machinery: Organization, Function, and Defects in Tumor Cells

MHC Class I Antigen Processing and Presenting Machinery: Organization, Function, and Defects in Tumor Cells DOI:10.1093/jnci/djt184 Advance Access publication July 12, 2013 The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

More information

Supplementary Data 1. Alanine substitutions and position variants of APNCYGNIPL. Applied in

Supplementary Data 1. Alanine substitutions and position variants of APNCYGNIPL. Applied in Supplementary Data 1. Alanine substitutions and position variants of APNCYGNIPL. Applied in Supplementary Fig. 2 Substitution Sequence Position variant Sequence original APNCYGNIPL original APNCYGNIPL

More information

Immunotherapy on the Horizon: Adoptive Cell Therapy

Immunotherapy on the Horizon: Adoptive Cell Therapy Immunotherapy on the Horizon: Adoptive Cell Therapy Joseph I. Clark, MD, FACP Professor of Medicine Loyola University Chicago Stritch School of Medicine Maywood, IL June 23, 2016 Conflicts of Interest

More information

IMMUNE CELL SURFACE RECEPTORS AND THEIR FUNCTIONS

IMMUNE CELL SURFACE RECEPTORS AND THEIR FUNCTIONS LECTURE: 07 Title: IMMUNE CELL SURFACE RECEPTORS AND THEIR FUNCTIONS LEARNING OBJECTIVES: The student should be able to: The chemical nature of the cellular surface receptors. Define the location of the

More information

Test Bank for Basic Immunology Functions and Disorders of the Immune System 4th Edition by Abbas

Test Bank for Basic Immunology Functions and Disorders of the Immune System 4th Edition by Abbas Test Bank for Basic Immunology Functions and Disorders of the Immune System 4th Edition by Abbas Chapter 04: Antigen Recognition in the Adaptive Immune System Test Bank MULTIPLE CHOICE 1. Most T lymphocytes

More information

08/02/59. Tumor Immunotherapy. Development of Tumor Vaccines. Types of Tumor Vaccines. Immunotherapy w/ Cytokine Gene-Transfected Tumor Cells

08/02/59. Tumor Immunotherapy. Development of Tumor Vaccines. Types of Tumor Vaccines. Immunotherapy w/ Cytokine Gene-Transfected Tumor Cells Tumor Immunotherapy Autologous virus Inactivation Inactivated virus Lymphopheresis Culture? Monocyte s Dendritic cells Immunization Autologous vaccine Development of Tumor Vaccines Types of Tumor Vaccines

More information

Supplemental Figure 1. Cell-bound Cetuximab reduces EGFR staining intensity. Blood

Supplemental Figure 1. Cell-bound Cetuximab reduces EGFR staining intensity. Blood Antibody-mediated depletion of CD19-CAR T cells Supplemental 1 Supplemental Materials Supplemental Figure 1. Supplemental Figure 1. Cell-bound Cetuximab reduces EGFR staining intensity. Blood cells were

More information

Class I Ag processing. TAP= transporters associated with antigen processing Transport peptides into ER

Class I Ag processing. TAP= transporters associated with antigen processing Transport peptides into ER Antigen processing Class I Ag processing TAP= transporters associated with antigen processing Transport peptides into ER Proteosome degrades cytosolic proteins Large, multi-subunit complex Degrades foreign

More information

Supporting Information

Supporting Information Supporting Information Chapuis et al. 10.1073/pnas.1113748109 SI Methods Selection of Patients, Targets, Isolation, and Expansion of Melanoma- Specific CTL Clones. Patients were HLA-typed, and their tumors

More information

Supplementary Figure 1. Enhanced detection of CTLA-4 on the surface of HIV-specific

Supplementary Figure 1. Enhanced detection of CTLA-4 on the surface of HIV-specific SUPPLEMENTARY FIGURE LEGEND Supplementary Figure 1. Enhanced detection of CTLA-4 on the surface of HIV-specific CD4 + T cells correlates with intracellular CTLA-4 levels. (a) Comparative CTLA-4 levels

More information

Antigen Recognition by T cells

Antigen Recognition by T cells Antigen Recognition by T cells TCR only recognize foreign Ags displayed on cell surface These Ags can derive from pathogens, which replicate within cells or from pathogens or their products that cells

More information

Immunocore Ltd isbtc Washington 30 th October 2009

Immunocore Ltd isbtc Washington 30 th October 2009 Ltd isbtc Washington 30 th October 2009 Bent Jakobsen Chief Scientific Officer Breaking immune tolerance to cancer The immune system has more cytotoxic potential and versatility than can be achieved with

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Complete but curtailed T-cell response to very-low-affinity antigen Dietmar Zehn, Sarah Y. Lee & Michael J. Bevan Supp. Fig. 1: TCR chain usage among endogenous K b /Ova reactive T cells. C57BL/6 mice

More information

Antigen sampling and presentation

Antigen sampling and presentation Antigen sampling and presentation ntigen sampling ntigen recognition ntigen clearance What is an antigen How antigens are sampled when they enter the body How do B and T lymphocytes recognize antigens

More information

TCR, MHC and coreceptors

TCR, MHC and coreceptors Cooperation In Immune Responses Antigen processing how peptides get into MHC Antigen processing involves the intracellular proteolytic generation of MHC binding proteins Protein antigens may be processed

More information

Newsletter 2018 vol

Newsletter 2018 vol August 30, 2018 Newsletter 2018 vol.2 23-32 TARGETING TOOLS FOR A DNA VACCINE CARRIER, A DESIGN IN PREVENTION OF CANCER Sharif Mohammad Shaheen* and Mustafezur Rahman Faculty of Allied Health Sciences,

More information

Daniel Cortland Chapman

Daniel Cortland Chapman Identification of Targeting Factors Involved in the US2- and US11- Mediated Degradation of Major Histocompatibility Complex Class I Molecules by Daniel Cortland Chapman A thesis submitted in conformity

More information

Immunology. T-Lymphocytes. 16. Oktober 2014, Ruhr-Universität Bochum Karin Peters,

Immunology. T-Lymphocytes. 16. Oktober 2014, Ruhr-Universität Bochum Karin Peters, Immunology T-Lymphocytes 16. Oktober 2014, Ruhr-Universität Bochum Karin Peters, karin.peters@rub.de The role of T-effector cells in the immune response against microbes cellular immunity humoral immunity

More information

Antigen Presentation and T Lymphocyte Activation. Abul K. Abbas UCSF. FOCiS

Antigen Presentation and T Lymphocyte Activation. Abul K. Abbas UCSF. FOCiS 1 Antigen Presentation and T Lymphocyte Activation Abul K. Abbas UCSF FOCiS 2 Lecture outline Dendritic cells and antigen presentation The role of the MHC T cell activation Costimulation, the B7:CD28 family

More information

How T cells recognize antigen. How T cells recognize antigen -concepts

How T cells recognize antigen. How T cells recognize antigen -concepts Adaptive immunity How T cells recognize antigen Starting point: 2. Diversity in antigen recognition is accomplished, in part, by rearrangements in the TCR loci. This occurs in the thymus 3. The T cell

More information

The Adaptive Immune Response. T-cells

The Adaptive Immune Response. T-cells The Adaptive Immune Response T-cells T Lymphocytes T lymphocytes develop from precursors in the thymus. Mature T cells are found in the blood, where they constitute 60% to 70% of lymphocytes, and in T-cell

More information

Bihong Zhao, M.D, Ph.D Department of Pathology

Bihong Zhao, M.D, Ph.D Department of Pathology Bihong Zhao, M.D, Ph.D Department of Pathology 04-28-2009 Is tumor self or non-self? How are tumor antigens generated? What are they? How does immune system respond? Introduction Tumor Antigens/Categories

More information

TWO NOVEL MECHANISMS OF MHC CLASS I DOWN- REGULATION IN HUMAN CANCER: ACCELERATED DEGRADATION OF TAP-1 mrna AND DISRUPTION OF TAP-1 PROTEIN FUNCTION

TWO NOVEL MECHANISMS OF MHC CLASS I DOWN- REGULATION IN HUMAN CANCER: ACCELERATED DEGRADATION OF TAP-1 mrna AND DISRUPTION OF TAP-1 PROTEIN FUNCTION TWO NOVEL MECHANISMS OF MHC CLASS I DOWN- REGULATION IN HUMAN CANCER: ACCELERATED DEGRADATION OF TAP-1 mrna AND DISRUPTION OF TAP-1 PROTEIN FUNCTION DISSERTATION Presented in Partial Fulfillment of the

More information

Supplemental materials

Supplemental materials Supplemental materials 1 Supplemental Fig. 1 Immunogram This immunogram summarizes patient clinical data and immune parameters at corresponding time points for Patient IMF-32. The top panel illustrates

More information

ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY

ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY The recognition of specific antigen by naïve T cell induces its own activation and effector phases. T helper cells recognize peptide antigens through

More information

Two categories of immune response. immune response. infection. (adaptive) Later immune response. immune response

Two categories of immune response. immune response. infection. (adaptive) Later immune response. immune response Ivana FELLNEROVÁ E-mail: fellneri@hotmail.com, mob. 732154801 Basic immunogenetic terminology innate and adaptive immunity specificity and polymorphism immunoglobuline gene superfamily immunogenetics MHC

More information

Scott Abrams, Ph.D. Professor of Oncology, x4375 Kuby Immunology SEVENTH EDITION

Scott Abrams, Ph.D. Professor of Oncology, x4375 Kuby Immunology SEVENTH EDITION Scott Abrams, Ph.D. Professor of Oncology, x4375 scott.abrams@roswellpark.org Kuby Immunology SEVENTH EDITION CHAPTER 11 T-Cell Activation, Differentiation, and Memory Copyright 2013 by W. H. Freeman and

More information

Immunology Lecture 4. Clinical Relevance of the Immune System

Immunology Lecture 4. Clinical Relevance of the Immune System Immunology Lecture 4 The Well Patient: How innate and adaptive immune responses maintain health - 13, pg 169-181, 191-195. Immune Deficiency - 15 Autoimmunity - 16 Transplantation - 17, pg 260-270 Tumor

More information

Integrin v 3 targeted therapy for Kaposi s sarcoma with an in vitro evolved antibody 1

Integrin v 3 targeted therapy for Kaposi s sarcoma with an in vitro evolved antibody 1 Integrin v 3 targeted therapy for Kaposi s sarcoma with an in vitro evolved antibody 1 CHRISTOPH RADER, 2 MIKHAIL POPKOV, JOHN A. NEVES, AND CARLOS F. BARBAS III 2 Department of Molecular Biology and The

More information

Significance of the MHC

Significance of the MHC CHAPTER 7 Major Histocompatibility Complex (MHC) What is is MHC? HLA H-2 Minor histocompatibility antigens Peter Gorer & George Sneell (1940) Significance of the MHC role in immune response role in organ

More information

Supplementary Table 1 Clinicopathological characteristics of 35 patients with CRCs

Supplementary Table 1 Clinicopathological characteristics of 35 patients with CRCs Supplementary Table Clinicopathological characteristics of 35 patients with CRCs Characteristics Type-A CRC Type-B CRC P value Sex Male / Female 9 / / 8.5 Age (years) Median (range) 6. (9 86) 6.5 (9 76).95

More information

Adaptive Immune System

Adaptive Immune System Short Course on Immunology Adaptive Immune System Bhargavi Duvvuri Ph.D IIIrd Year (Immunology) bhargavi@yorku.ca Supervisor Dr.Gillian E Wu Professor, School of Kinesiology and Health Sciences York University,

More information

Mechanisms of antagonism of HIVspecific CD4+ T cell responses BSRI

Mechanisms of antagonism of HIVspecific CD4+ T cell responses BSRI Mechanisms of antagonism of HIVspecific CD4+ T cell responses BSRI Problems Virus escape from immune recognition Antagonism of T cell responses Peptide-MHC-TCR interaction T cell antagonism Variants of

More information

T cell Receptor. Chapter 9. Comparison of TCR αβ T cells

T cell Receptor. Chapter 9. Comparison of TCR αβ T cells Chapter 9 The αβ TCR is similar in size and structure to an antibody Fab fragment T cell Receptor Kuby Figure 9-3 The αβ T cell receptor - Two chains - α and β - Two domains per chain - constant (C) domain

More information

chapter 8 Antigen Processing and Presentation Self-MHC Restriction of T Cells

chapter 8 Antigen Processing and Presentation Self-MHC Restriction of T Cells 8536d_ch08_185-199 8/22/02 11:49 AM Page 185 mac100 mac 100: 1268_tm:8536d:Goldsby et al. / Immunology 5e-: Antigen Processing and Presentation chapter 8 RECOGNITION OF FOREIGN PROTEIN ANTIGENS BY a T

More information

Enhancing the Clinical Activity of HER2/neu Specific T Cells. William Gwin, MD Internal Medicine, Resident University of Washington

Enhancing the Clinical Activity of HER2/neu Specific T Cells. William Gwin, MD Internal Medicine, Resident University of Washington Enhancing the Clinical Activity of HER2/neu Specific T Cells William Gwin, MD Internal Medicine, Resident University of Washington Immunotherapy and Cancer Cancer vaccines were originally used in melanoma

More information

The major histocompatibility complex (MHC) is a group of genes that governs tumor and tissue transplantation between individuals of a species.

The major histocompatibility complex (MHC) is a group of genes that governs tumor and tissue transplantation between individuals of a species. Immunology Dr. John J. Haddad Chapter 7 Major Histocompatibility Complex The major histocompatibility complex (MHC) is a group of genes that governs tumor and tissue transplantation between individuals

More information

Four main classes of human tumor antigens recognized by T cells: 1- "Cancer-testis" antigens: non-mutated genes reactivated in neoplastic cells, but

Four main classes of human tumor antigens recognized by T cells: 1- Cancer-testis antigens: non-mutated genes reactivated in neoplastic cells, but Tumor antigens Andrea Anichini Human Tumors Immunobiology Unit, Dept. of Experimental Oncology and Molecular Medicine Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Timeline of the discovery of

More information

RAISON D ETRE OF THE IMMUNE SYSTEM:

RAISON D ETRE OF THE IMMUNE SYSTEM: RAISON D ETRE OF THE IMMUNE SYSTEM: To Distinguish Self from Non-Self Thereby Protecting Us From Our Hostile Environment. Innate Immunity Adaptive Immunity Innate immunity: (Antigen - nonspecific) defense

More information

Cancer Biometrics: Results of the 2003 isbtc Workshop. Theresa L. Whiteside, Ph.D., ABMLI University of Pittsburgh Cancer Institute

Cancer Biometrics: Results of the 2003 isbtc Workshop. Theresa L. Whiteside, Ph.D., ABMLI University of Pittsburgh Cancer Institute Cancer Biometrics: Results of the 2003 isbtc Workshop Theresa L. Whiteside, Ph.D., ABMLI University of Pittsburgh Cancer Institute The workshop objective The objective was to consider state-of-theart approaches

More information

VHL Mutations and HIF-1alpha Protect Tumors by Regulating Antigen Presentation and

VHL Mutations and HIF-1alpha Protect Tumors by Regulating Antigen Presentation and VHL Mutations and HIF-1alpha Protect Tumors by Regulating Antigen Presentation and Generation of Extracellular Adenosine: Implications for Immunotherapies of Cancer by Shalini Sethumadhavan M.S. in Pharmacology,

More information

Title: NATURAL KILLER CELL FUNCTIONS AND SURFACE RECEPTORS

Title: NATURAL KILLER CELL FUNCTIONS AND SURFACE RECEPTORS LECTURE: 14 Title: NATURAL KILLER CELL FUNCTIONS AND SURFACE RECEPTORS LEARNING OBJECTIVES: The student should be able to: Describe the general morphology of the NK-cells. Enumerate the different functions

More information

Supplementary Table 1. Data collection and refinement statistics (molecular replacement).

Supplementary Table 1. Data collection and refinement statistics (molecular replacement). Supplementary Table 1. Data collection and refinement statistics (molecular replacement). Data set statistics HLA A*0201- ALWGPDPAAA PPI TCR PPI TCR/A2- ALWGPDPAAA PPI TCR/A2- ALWGPDPAAA Space Group P2

More information

Supplemental Figure 1. CD69 antigen-response curves of CAR engrafted Jurkat T cells. Supplemental Figure 2.

Supplemental Figure 1. CD69 antigen-response curves of CAR engrafted Jurkat T cells. Supplemental Figure 2. Supplemental Figure 1. CD69 antigen-response curves of CAR engrafted Jurkat T cells. To evaluate the antigen sensitivity of mutant CARs transduced Jurkat T cells were stimulated with varying concentrations

More information

TEMA 5. ANTICUERPOS Y SUS RECEPTORES

TEMA 5. ANTICUERPOS Y SUS RECEPTORES TEMA 5. ANTICUERPOS Y SUS RECEPTORES The B-cell antigen receptor (left) consists of two identical heavy (H) chains and two identical light (L) chains. In addition, secondary components (Ig-α and Ig-β)

More information

TITLE: Development of Antigen Presenting Cells for adoptive immunotherapy in prostate cancer

TITLE: Development of Antigen Presenting Cells for adoptive immunotherapy in prostate cancer AD Award Number: W8-XWH-5-- TITLE: Development of Antigen Presenting Cells for adoptive immunotherapy in prostate cancer PRINCIPAL INVESTIGATOR: Mathias Oelke, Ph.D. CONTRACTING ORGANIZATION: Johns Hopkins

More information

The T cell receptor for MHC-associated peptide antigens

The T cell receptor for MHC-associated peptide antigens 1 The T cell receptor for MHC-associated peptide antigens T lymphocytes have a dual specificity: they recognize polymporphic residues of self MHC molecules, and they also recognize residues of peptide

More information

RAISON D ETRE OF THE IMMUNE SYSTEM:

RAISON D ETRE OF THE IMMUNE SYSTEM: RAISON D ETRE OF THE IMMUNE SYSTEM: To Distinguish Self from Non-Self Thereby Protecting Us From Our Hostile Environment. Innate Immunity Acquired Immunity Innate immunity: (Antigen nonspecific) defense

More information

Immunology 2011 Lecture 14 Cell Interactions in CMI II 7 October

Immunology 2011 Lecture 14 Cell Interactions in CMI II 7 October Immunology 2011 Lecture 1 Cell Interactions in CMI October OUTLINE Cell Interactions in CMI Cell Mediated Killing (x3) MHC Restricted Recognition Cell interactions (3): APC/TH1, TH1/TC, TC/Target Immunoglobulin

More information

Supplemental Table I.

Supplemental Table I. Supplemental Table I Male / Mean ± SEM n Mean ± SEM n Body weight, g 29.2±0.4 17 29.7±0.5 17 Total cholesterol, mg/dl 534.0±30.8 17 561.6±26.1 17 HDL-cholesterol, mg/dl 9.6±0.8 17 10.1±0.7 17 Triglycerides,

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/22278 holds various files of this Leiden University dissertation. Author: Cunha Carvalho de Miranda, Noel Filipe da Title: Mismatch repair and MUTYH deficient

More information

Major Histocompatibility Complex (MHC) and T Cell Receptors

Major Histocompatibility Complex (MHC) and T Cell Receptors Major Histocompatibility Complex (MHC) and T Cell Receptors Historical Background Genes in the MHC were first identified as being important genes in rejection of transplanted tissues Genes within the MHC

More information

Natural Killer Cells: Development, Diversity, and Applications to Human Disease Dr. Michael A. Caligiuri

Natural Killer Cells: Development, Diversity, and Applications to Human Disease Dr. Michael A. Caligiuri Natural Killer Cells: Development, Diversity, November 26, 2008 The Ohio State University Comprehensive Cancer Center The James Cancer Hospital and Solove Research Institute Columbus, Ohio, USA 1 Human

More information

Docosahexaenoic Acid Modulates Class I Major Histocompatibility Complex Protein Function

Docosahexaenoic Acid Modulates Class I Major Histocompatibility Complex Protein Function Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 1-1-2004 Docosahexaenoic Acid Modulates Class I Major Histocompatibility Complex Protein Function Kaleb Marie Hypes Follow

More information

Generation of the Immune Response

Generation of the Immune Response Generation of the Immune Response Sheet 18 immunity I only added extra notes that were explained in the lecture, refer back to the slides. SLIDE 3: In the generation of Immune response whether by B or

More information