Localization and Retention of Glycosyltransferases And the Role of Vesicle Trafficking in Glycosylation

Size: px
Start display at page:

Download "Localization and Retention of Glycosyltransferases And the Role of Vesicle Trafficking in Glycosylation"

Transcription

1 Localization and Retention of Glycosyltransferases And the Role of Vesicle Trafficking in Glycosylation Richard Steet, Ph.D. 2/21/17 glycosylation is a non-template derived phenomenon - the presence of certain sugars within a given oligosaccharide chain is not determined by a pre-defined plan (like transcription and translation) but depends on multiple factors: - expression level of glycosylation enzymes - enzyme specificity - availability of substrates - compartmentalization and localization of glycosylation enzymes 1

2 How are the glycosyltransferases and nucleotide-sugar transporters kept in the proper compartment and in the proper order? multiple mechanisms involved - 1) information is contained within the structure or sequence of the enzymes (intrinsic) 2) dynamics and composition of the Golgi (global) 3) COPI-mediated retrograde transport (vesicle-based) Intrinsic mechanisms: ER retention sequences - the localization of protein O-fucosyltransferase 1 to the ER is mediated by the presence of a KDEL-like sequence in its C-terminal tail human OFut1: rpssffgmdrppklrdef fly OFut1: fwgfpkekdrkhtnvheel (KDEL: classic sequence for receptor-mediated retention of ER resident proteins) * search for similar retention sequences in Golgi glycosylation enzymes has not been conclusive 2

3 Intrinsic mechanisms: physical and functional associations (part 1) GlcNAcTI was retained in the ER by grafting the cytoplasmic tail of Iip33 to its own tail; endogenous ManII was also retained in the ER suggesting that enzymes interact EMBO J Feb 1;13(3): these enzymes were later shown to associate via their stem regions (helps ensure that these enzymes act sequentially in N-glycan processing); referred to as kin recognition J Cell Sci Jul;109 ( Pt 7): Intrinsic mechanisms: physical and functional associations (part 2) pathways of glycolipid biosynthesis GalT, SiaT1, SiaT2 form a trimeric complex associations between enzymes involved in glycolipid biosynthesis help to shunt substrates along certain pathways and generate specifically glycosylated products J Biol Chem Oct 10;278(41):

4 Intrinsic mechanisms: physical and functional associations (part 3) GalCer synthase binds to UDP-galactose transporter and selectively retains a fraction of the total transporter in the ER Mol Biol Cell Aug;14(8): Intrinsic mechanisms: physical and functional associations (part 4) GlcA IdoA association of EXT1 and EXT2 produces a highly active polymerase for HS biosynthesis and is required for Golgi localization association of GlcA epimerase and 2OST ensures that IdoA is sulfated, limiting its reversion 4

5 Important caveats regarding the intrinsic mechanisms - Observations made with one enzyme are not necessarily applicable to others - Golgi-retention properties of any given glycosyltransferase may vary depending on the cell type - Variations in the expression level of a glycosyltransferase in an experimental system can have MAJOR influence on its localization/retention - Many studies have used chimeric proteins composed of segments of GTs fused to reporter protein but conclusions not always verified using intact GTs - In vitro studies using intact Golgi compartments indicate some spatial and functional overlap among enzymes that were previously thought to be segregated - Almost nothing is known about the mechanisms that govern the localization of nucleotide-sugar transporters Global mechanisms: Golgi structure and dynamics Two main Golgi functions are: SORTING and GLYCOSYLATION plasma membrane trans Golgi network (TGN) trans Golgi medial cis ERGIC ER 5

6 2/20/17 What does the Golgi apparatus actually look like and what is it composed of? electron micrograph % of total Golgi proteome Golgi membranes are composed of several different types of lipid molecules; Golgi proteins can be integral membrane proteins ( resident ) or peripheral proteins that associate with the cytosolic face of the Golgi How are proteins distributed within Golgi membranes? UCE and CD-MPR: TGN proteins immunogold electron microscopy although Golgi proteins and enzymes are often concentrated in certain stacks or cisternae, they really exist in a distribution gradient within the Golgi and can also be found in other subcellular compartments (i.e. endosomes or ER) 6

7 The Dynamic Nature of the Golgi Apparatus Vesicular transport vs. cisternal maturation: competing models of Golgi dynamics * these two models differ in how secreted proteins move through the Golgi, how Golgi enzymes are retained within the organelle and the nature of the Golgi itself TGN: trans-golgi network CGN: cis-golgi network 7

8 The vesicular transport model views the Golgi as a stable organelle with secreted proteins being moved between cisternae or stacks in small vesicles cargo: secreted glycoproteins enzymes: nucleotide-sugar transporters and glycosyltransferases cargo enzymes glycosylation enzymes are stable residents of the Golgi (this model depends heavily on intrinsic mechanisms for Golgi retention) The cisternal maturation model views the Golgi as a highly dynamic organelle that continuously arises from the ER and is consumed at the trans-golgi network enzymes cargo modes of retrograde transport: - intra-golgi (enzyme localization) - Golgi-to-ER (lipid balancing) cargo cargo enzymes enzymes Golgi membranes and glycosylation enzymes are highly mobile (this model depends heavily on retrograde transport and protein/lipid recycling) 8

9 The Secretory Apparatus Contains Several Anterograde (forward) and Retrograde (backward) Pathways * vesicles that mediate transport in these pathways are often defined by their coat proteins (i.e. COPI, COPII, clathrin) What is involved in retrograde transport and vesicle trafficking within the Golgi? - recruitment of proteins into COPI-coated vesicles - budding of vesicles from membranes (ARFs, Rabs, etc.) - transport of vesicles to target membranes (Rab effectors, dynein, kinesin, microtubules) - tethering of vesicles to target membranes (multiprotein complexes - TRAPP, COG, GARP) - binding and fusion of acceptor and target membranes (SNAREs, SNAP) 9

10 2/20/17 Budding of Vesicles from Donor Membranes and Fusion with Acceptor Membranes Is a Highly Orchestrated Process What is involved in retrograde transport and vesicle trafficking within the Golgi? - recruitment of proteins into COPI-coated vesicles - budding of vesicles from membranes (ARFs, Rabs, etc.) - transport of vesicles to target membranes (Rab effectors, dynein, kinesin, microtubules) - tethering of vesicles to target membranes (multiprotein complexes - TRAPP, COG, GARP) - binding and fusion of acceptor and target membranes (SNAREs, SNAP) 10

11 Recruitment of Recycling GTs into COPI-coated Vesicles - proteins involved in COPI-mediated transport are peripheral Golgi proteins that cycle between the cytosol and the Golgi membrane - they are not able to bind to the lumenal portion of GTs - only the short cytoplasmic tails of GTs (10-30 amino acids) are accessible to these peripheral Golgi proteins Are there short sequences within glycosylation enzymes (i.e. in their cytoplasmic portions) that mediate Golgi localization and retention? - studies in yeast have shown that a sorting protein Vps74p can recognize specific sequences in the cytoplasmic tails of some glycosyltransferases; Vps74p also binds to COPI subunits What is involved in retrograde transport and vesicle trafficking within the Golgi? - recruitment of proteins into COPI-coated vesicles - budding of vesicles from membranes (ARFs, Rabs, etc.) - transport of vesicles to target membranes (Rab effectors, dynein, kinesin, microtubules) - tethering of vesicles to target membranes (multiprotein complexes - TRAPP, COG, GARP) - binding and fusion of acceptor and target membranes (SNAREs, SNAP) 11

12 Vesicle Fusion is Governed by SNARE proteins SNARE: Soluble NSF Attachment protein REceptor NSF: N-ethylmaleimide-Sensitive Factor SNAP: Soluble NSF Attachment Protein What is involved in retrograde transport and vesicle trafficking within the Golgi? - recruitment of proteins into COPI-coated vesicles - budding of vesicles from membranes (ARFs, Rabs, etc.) - transport of vesicles to target membranes (Rab effectors, dynein, kinesin, microtubules) - tethering of vesicles to target membranes (multiprotein complexes - TRAPP, COG, GARP) - binding and fusion of acceptor and target membranes (SNAREs, SNAP) 12

13 The movement of proteins between different compartments is mediated in part by multisubunit protein complexes Structural studies on Dsl1 reveals its role in tethering and other aspects of vesicle targeting such as uncoating and fusion 13

14 - loss of COG complex subunits in CHO cells (and in human patients) cause glycosylation defects - four LDL-receptor deficient CHO mutants characterized in mid 80s by Monty Krieger (ldla, ldlb, ldlc, ldld) ldlb, ldlc - pleiotropic effects on glycosylation abnormal glycosylation of receptors leads to rapid degradation at cell surface - human patients with defects in nearly all the COG complex subunits have now been identified; the mechanisms whereby loss of COG complex function affect glycosylation are still being debated Molecular Organization of the COG Complex - the eight subunits of COG are thought to be organized into two lobes 14

15 COG complex subunits interact with distinct components of the vesicle transport pathway Fisher and Ungar Front Cell Dev Biol. 2016; 4:15 Single particle EM studies of the COG Complex reveal a Y-shaped structure with three flexible, highly extended legs Molecular organization of the COG vesicle tethering complex. Lees JA, Yip CK, Walz T, Hughson FM. Nat Struct Mol Biol Nov;17(11) :

16 The COG complex acts as an intra-golgi COPI-coated vesicle tether Fisher and Ungar Front Cell Dev Biol. 2016; 4:15 Functional distribution of glycosyltransferases within the Golgi is maintained by active tether-mediated retrograde transport of COPI vesicles Fisher and Ungar Front Cell Dev Biol. 2016; 4:15 16

17 Fisher and Ungar Front Cell Dev Biol. 2016; 4:15 Key Points: - the fidelity of glycan biosynthesis depends, in part, on the order of glycosylation enzymes within the Golgi apparatus - both structural features of the enzymes and the overall dynamics of the Golgi contribute to enzyme localization - physical and functional interactions between glycosylation enzymes ensures that modifications are properly made - the two competing models of Golgi organization, the vesicular transport model and the cisternal maturation model, differ in how secreted proteins move through the Golgi, how Golgi enzymes are retained within the organelle and the nature of the Golgi itself - details regarding the protein machinery that executes retrograde transport of glycosylation enzymes within the Golgi and other compartments is slowly emerging 17

18 Much of our progress in understanding the Golgi and vesicle trafficking has been made by visualizing intracellular structures using fluorescence microscopy two basic types of fluorescence microscopy: 1) widefield or epifluorescence microscopy 2) laser scanning confocal microscopy Widefield vs. confocal microscopy widefield confocal 18

19 Differences Between Widefield/Epifluorescence and Confocal Microscopy 1) Mode of excitation: cone of light in widefield vs. laser focused on a single point in confocal, the laser scans in the xy plane within a stack of optical sections (z-series) 2) Collection of light: selective in confocal (pinhole); secondary fluorescence in areas is removed from the focal plane; much thicker samples can be imaged 3) Image can visualized directly in widefield/epifluorescence but must be reconstructed by a computer in confocal Basic Features of a Confocal Microscope Contrast and definition are dramatically improved over widefield techniques due to the reduction in background fluorescence and improved signal-to-noise 19

20 The Basic Principle of Confocal Microscopy 20

21 Use of Confocal Microscopy to Determine Co-localization Of Two Proteins 21

Localization and Retention of Glycosyltransferases And the Role of Vesicle Trafficking in Glycosylation

Localization and Retention of Glycosyltransferases And the Role of Vesicle Trafficking in Glycosylation Localization and Retention of Glycosyltransferases And the Role of Vesicle Trafficking in Glycosylation Richard Steet, Ph.D. 3/8/2011 glycosylation is a non-template derived phenomenon - the presence of

More information

endomembrane system internal membranes origins transport of proteins chapter 15 endomembrane system

endomembrane system internal membranes origins transport of proteins chapter 15 endomembrane system endo system chapter 15 internal s endo system functions as a coordinated unit divide cytoplasm into distinct compartments controls exocytosis and endocytosis movement of molecules which cannot pass through

More information

Molecular Cell Biology - Problem Drill 17: Intracellular Vesicular Traffic

Molecular Cell Biology - Problem Drill 17: Intracellular Vesicular Traffic Molecular Cell Biology - Problem Drill 17: Intracellular Vesicular Traffic Question No. 1 of 10 1. Which of the following statements about clathrin-coated vesicles is correct? Question #1 (A) There are

More information

Vesicle Transport. Vesicle pathway: many compartments, interconnected by trafficking routes 3/17/14

Vesicle Transport. Vesicle pathway: many compartments, interconnected by trafficking routes 3/17/14 Vesicle Transport Vesicle Formation Curvature (Self Assembly of Coat complex) Sorting (Sorting Complex formation) Regulation (Sar1/Arf1 GTPases) Fission () Membrane Fusion SNARE combinations Tethers Regulation

More information

1. endoplasmic reticulum This is the location where N-linked oligosaccharide is initially synthesized and attached to glycoproteins.

1. endoplasmic reticulum This is the location where N-linked oligosaccharide is initially synthesized and attached to glycoproteins. Biology 4410 Name Spring 2006 Exam 2 A. Multiple Choice, 2 pt each Pick the best choice from the list of choices, and write it in the space provided. Some choices may be used more than once, and other

More information

Homework Hanson section MCB Course, Fall 2014

Homework Hanson section MCB Course, Fall 2014 Homework Hanson section MCB Course, Fall 2014 (1) Antitrypsin, which inhibits certain proteases, is normally secreted into the bloodstream by liver cells. Antitrypsin is absent from the bloodstream of

More information

Mechanism of Vesicular Transport

Mechanism of Vesicular Transport Mechanism of Vesicular Transport Transport vesicles play a central role in the traffic of molecules between different membrane-enclosed enclosed compartments. The selectivity of such transport is therefore

More information

Protein Trafficking in the Secretory and Endocytic Pathways

Protein Trafficking in the Secretory and Endocytic Pathways Protein Trafficking in the Secretory and Endocytic Pathways The compartmentalization of eukaryotic cells has considerable functional advantages for the cell, but requires elaborate mechanisms to ensure

More information

Summary of Endomembrane-system

Summary of Endomembrane-system Summary of Endomembrane-system 1. Endomembrane System: The structural and functional relationship organelles including ER,Golgi complex, lysosome, endosomes, secretory vesicles. 2. Membrane-bound structures

More information

1. This is the location where N-linked oligosaccharide is initially synthesized and attached to glycoproteins.

1. This is the location where N-linked oligosaccharide is initially synthesized and attached to glycoproteins. Biology 4410 Name Spring 2006 Exam 2 A. Multiple Choice, 2 pt each Pick the best choice from the list of choices, and write it in the space provided. Some choices may be used more than once, and other

More information

Molecular Trafficking

Molecular Trafficking SCBM 251 Molecular Trafficking Assoc. Prof. Rutaiwan Tohtong Department of Biochemistry Faculty of Science rutaiwan.toh@mahidol.ac.th Lecture outline 1. What is molecular trafficking? Why is it important?

More information

Intracellular vesicular traffic. B. Balen

Intracellular vesicular traffic. B. Balen Intracellular vesicular traffic B. Balen Three types of transport in eukaryotic cells Figure 12-6 Molecular Biology of the Cell ( Garland Science 2008) Endoplasmic reticulum in all eucaryotic cells Endoplasmic

More information

CELL BIOLOGY - CLUTCH CH INTRACELLULAR PROTEIN TRANSPORT.

CELL BIOLOGY - CLUTCH CH INTRACELLULAR PROTEIN TRANSPORT. !! www.clutchprep.com CONCEPT: MEMBRANE ENCLOSED ORGANELLES Table of eukaryotic organelles and their functions Organelle Function % volume of cell Cytosol Aqueous fluid where metabolic pathways and chemical

More information

Chapter 13: Vesicular Traffic

Chapter 13: Vesicular Traffic Chapter 13: Vesicular Traffic Know the terminology: ER, Golgi, vesicle, clathrin, COP-I, COP-II, BiP, glycosylation, KDEL, microtubule, SNAREs, dynamin, mannose-6-phosphate, M6P receptor, endocytosis,

More information

Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell

Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell October 26, 2006 1 Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell 1. Secretory pathway a. Formation of coated vesicles b. SNAREs and vesicle targeting 2. Membrane fusion a. SNAREs

More information

Chapter 1: Vesicular traffic. Biochimica cellulare parte B 2017/18

Chapter 1: Vesicular traffic. Biochimica cellulare parte B 2017/18 Chapter 1: Vesicular traffic Biochimica cellulare parte B 2017/18 Major Protein-sorting pathways in eukaryotic cells Secretory and endocytic pathways Unifying principle governs all protein trafficking

More information

Intracellular Vesicular Traffic Chapter 13, Alberts et al.

Intracellular Vesicular Traffic Chapter 13, Alberts et al. Intracellular Vesicular Traffic Chapter 13, Alberts et al. The endocytic and biosynthetic-secretory pathways The intracellular compartments of the eucaryotic ell involved in the biosynthetic-secretory

More information

In the previous chapter we explored how proteins are targeted

In the previous chapter we explored how proteins are targeted 17 VESICULAR TRAFFIC, SECRETION, AND ENDOCYTOSIS Electron micrograph of clathrin cages, like those that surround clathrin-coated transport vesicles, formed by the in vitro polymerization of clathrin heavy

More information

PROTEIN TRAFFICKING. Dr. SARRAY Sameh, Ph.D

PROTEIN TRAFFICKING. Dr. SARRAY Sameh, Ph.D PROTEIN TRAFFICKING Dr. SARRAY Sameh, Ph.D Overview Proteins are synthesized either on free ribosomes or on ribosomes bound to endoplasmic reticulum (RER). The synthesis of nuclear, mitochondrial and peroxisomal

More information

Intracellular Compartments and Protein Sorting

Intracellular Compartments and Protein Sorting Intracellular Compartments and Protein Sorting Intracellular Compartments A eukaryotic cell is elaborately subdivided into functionally distinct, membrane-enclosed compartments. Each compartment, or organelle,

More information

BIOL 4374/BCHS 4313 Cell Biology Exam #2 March 22, 2001

BIOL 4374/BCHS 4313 Cell Biology Exam #2 March 22, 2001 BIOL 4374/BCHS 4313 Cell Biology Exam #2 March 22, 2001 SS# Name This exam is worth a total of 100 points. The number of points each question is worth is shown in parentheses. Good luck! 1. (2) In the

More information

Advanced Cell Biology. Lecture 33

Advanced Cell Biology. Lecture 33 Advanced Cell Biology. Lecture 33 Alexey Shipunov Minot State University April 22, 2013 Shipunov (MSU) Advanced Cell Biology. Lecture 33 April 22, 2013 1 / 38 Outline Questions and answers Intracellular

More information

October 26, Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell

October 26, Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell October 26, 2006 Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell 1. Secretory pathway a. Formation of coated vesicles b. SNAREs and vesicle targeting 2. Membrane fusion a. SNAREs

More information

Section 6. Junaid Malek, M.D.

Section 6. Junaid Malek, M.D. Section 6 Junaid Malek, M.D. The Golgi and gp160 gp160 transported from ER to the Golgi in coated vesicles These coated vesicles fuse to the cis portion of the Golgi and deposit their cargo in the cisternae

More information

Molecular Cell Biology 5068 In class Exam 1 October 2, Please print your name: Instructions:

Molecular Cell Biology 5068 In class Exam 1 October 2, Please print your name: Instructions: Molecular Cell Biology 5068 In class Exam 1 October 2, 2012 Exam Number: Please print your name: Instructions: Please write only on these pages, in the spaces allotted and not on the back. Write your number

More information

MCB130 Midterm. GSI s Name:

MCB130 Midterm. GSI s Name: 1. Peroxisomes are small, membrane-enclosed organelles that function in the degradation of fatty acids and in the degradation of H 2 O 2. Peroxisomes are not part of the secretory pathway and peroxisomal

More information

MOLECULAR CELL BIOLOGY

MOLECULAR CELL BIOLOGY 1 Lodish Berk Kaiser Krieger scott Bretscher Ploegh Matsudaira MOLECULAR CELL BIOLOGY SEVENTH EDITION CHAPTER 22 NERVE CELLS Copyright 2013 by W. H. Freeman and Company Figure 22.1 Typical morphology of

More information

17/01/2017. Protein trafficking between cell compartments. Lecture 3: The cytosol. The mitochondrion - the power plant of the cell

17/01/2017. Protein trafficking between cell compartments. Lecture 3: The cytosol. The mitochondrion - the power plant of the cell ell biology 2017 version 13/1 2017 ote endosome vs lysosome handout Lecture 3: Text book Alberts et al.: hapter 12-14 (Topics covered by the lecture) A lot of reading! Focus on principles ell Biology interactive

More information

AP Biology

AP Biology Tour of the Cell (1) 2007-2008 Types of cells Prokaryote bacteria cells - no organelles - organelles Eukaryote animal cells Eukaryote plant cells Cell Size Why organelles? Specialized structures - specialized

More information

Subcellular biochemistry

Subcellular biochemistry Department of Medical Biochemistry Semmelweis University Subcellular biochemistry February-March 2017 Subcellular biochemistry (biochemical aspects of cell biology) Miklós Csala Semmelweis University Dept.

More information

Introduction and protein sorting

Introduction and protein sorting Introduction and protein sorting Membrane proteins Major components of cells Nucleic acids Carbohydrates Proteins Lipids (50% of mass of plasma membranes, 30% of mitochondrial membranes, 80% of myelin

More information

Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting

Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting Question No. 1 of 10 Question 1. Which of the following statements about the nucleus is correct? Question #01 A. The

More information

The endoplasmic reticulum is a network of folded membranes that form channels through the cytoplasm and sacs called cisternae.

The endoplasmic reticulum is a network of folded membranes that form channels through the cytoplasm and sacs called cisternae. Endoplasmic reticulum (ER) The endoplasmic reticulum is a network of folded membranes that form channels through the cytoplasm and sacs called cisternae. Cisternae serve as channels for the transport of

More information

Practice Exam 2 MCBII

Practice Exam 2 MCBII 1. Which feature is true for signal sequences and for stop transfer transmembrane domains (4 pts)? A. They are both 20 hydrophobic amino acids long. B. They are both found at the N-terminus of the protein.

More information

Name: Multiple choice questions. Pick the BEST answer (2 pts ea)

Name: Multiple choice questions. Pick the BEST answer (2 pts ea) Exam 1 202 Oct. 5, 1999 Multiple choice questions. Pick the BEST answer (2 pts ea) 1. The lipids of a red blood cell membrane are all a. phospholipids b. amphipathic c. glycolipids d. unsaturated 2. The

More information

Intracellular Vesicle Trafficking

Intracellular Vesicle Trafficking Intracellular Vesicle Trafficking Chi-Kuang Yao (IBC, Academia Sinica) 11-6-2017 ckyao@gate.sinica.edu.tw 1 Compartmentalization makes difference between bacteria and yeast 1. More compartments with specific

More information

Molecular Cell Biology 5068 In Class Exam 1 October 3, 2013

Molecular Cell Biology 5068 In Class Exam 1 October 3, 2013 Molecular Cell Biology 5068 In Class Exam 1 October 3, 2013 Exam Number: Please print your name: Instructions: Please write only on these pages, in the spaces allotted and not on the back. Write your number

More information

The contribution of proteins and lipids to COPI vesicle formation and consumption. Fredrik Kartberg

The contribution of proteins and lipids to COPI vesicle formation and consumption. Fredrik Kartberg The contribution of proteins and lipids to COPI vesicle formation and consumption Fredrik Kartberg Institute of Biomedicine Department of Medical Genetics 2008 A doctoral thesis at a Swedish University

More information

Functional characterization of the secretory pathway and the role of COPI vesicles. Johan Hiding

Functional characterization of the secretory pathway and the role of COPI vesicles. Johan Hiding Functional characterization of the secretory pathway and the role of COPI vesicles Johan Hiding Institute of Biomedicin Department of Medical Genetics Sahlgrenska Academy Göteborg University 2007 Functional

More information

Lecture 6 - Intracellular compartments and transport I

Lecture 6 - Intracellular compartments and transport I 01.25.10 Lecture 6 - Intracellular compartments and transport I Intracellular transport and compartments 1. Protein sorting: How proteins get to their appropriate destinations within the cell 2. Vesicular

More information

Molecular Cell Biology 5068 In Class Exam 1 September 29, Please print your name:

Molecular Cell Biology 5068 In Class Exam 1 September 29, Please print your name: Molecular Cell Biology 5068 In Class Exam 1 September 29, 2015 Exam Number: Please print your name: Instructions: Please write only on these pages, in the spaces allotted and not on the back. Write your

More information

Protein sorting (endoplasmic reticulum) Dr. Diala Abu-Hsasan School of Medicine

Protein sorting (endoplasmic reticulum) Dr. Diala Abu-Hsasan School of Medicine Protein sorting (endoplasmic reticulum) Dr. Diala Abu-Hsasan School of Medicine dr.abuhassand@gmail.com An overview of cellular components Endoplasmic reticulum (ER) It is a network of membrane-enclosed

More information

2013 John Wiley & Sons, Inc. All rights reserved. PROTEIN SORTING. Lecture 10 BIOL 266/ Biology Department Concordia University. Dr. S.

2013 John Wiley & Sons, Inc. All rights reserved. PROTEIN SORTING. Lecture 10 BIOL 266/ Biology Department Concordia University. Dr. S. PROTEIN SORTING Lecture 10 BIOL 266/4 2014-15 Dr. S. Azam Biology Department Concordia University Introduction Membranes divide the cytoplasm of eukaryotic cells into distinct compartments. The endomembrane

More information

Summary and Discussion antigen presentation

Summary and Discussion antigen presentation Summary and Discussion antigen presentation 247 248 Summary & Discussion Summary and discussion: antigen presentation For a cell to communicate information about its internal health and status to the immune

More information

Renáta Schipp Gergely Berta Department of Medical Biology

Renáta Schipp Gergely Berta Department of Medical Biology The cell III. Renáta Schipp Gergely Berta Department of Medical Biology Size and Biology Biology is a visually rich subject many of the biological events and structures are smaller than the unaided human

More information

BIO 5099: Molecular Biology for Computer Scientists (et al)

BIO 5099: Molecular Biology for Computer Scientists (et al) BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being a Eukaryote: From DNA to Protein, A Tour of the Eukaryotic Cell. Christiaan van Woudenberg Being A Eukaryote Basic eukaryotes

More information

Essential Cell Biology

Essential Cell Biology Alberts Bray Hopkin Johnson Lewis Raff Roberts Walter Essential Cell Biology FOURTH EDITION Chapter 15 Intracellular Compartments and Protein Transport Copyright Garland Science 2014 CHAPTER CONTENTS MEMBRANE-ENCLOSED

More information

Zool 3200: Cell Biology Exam 4 Part I 2/3/15

Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Name: Key Trask Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Answer each of the following questions in the space provided, explaining your answers when asked to do so; circle the correct answer or answers

More information

BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being A Eukaryote. Eukaryotic Cells. Basic eukaryotes have:

BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being A Eukaryote. Eukaryotic Cells. Basic eukaryotes have: BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being a Eukaryote: From DNA to Protein, A Tour of the Eukaryotic Cell. Christiaan van Woudenberg Being A Eukaryote Basic eukaryotes

More information

Cellular compartments

Cellular compartments Cellular compartments 1. Cellular compartments and their function 2. Evolution of cellular compartments 3. How to make a 3D model of cellular compartment 4. Cell organelles in the fluorescent microscope

More information

Renata Schipp Medical Biology Department

Renata Schipp Medical Biology Department Renata Schipp Medical Biology Department Deffinition of cell The cell is the smallest structural and functional unit of all known living organisms The cell was discovered by Robert Hooke in 1665 and also

More information

Lysosomes and endocytic pathways 9/27/2012 Phyllis Hanson

Lysosomes and endocytic pathways 9/27/2012 Phyllis Hanson Lysosomes and endocytic pathways 9/27/2012 Phyllis Hanson General principles Properties of lysosomes Delivery of enzymes to lysosomes Endocytic uptake clathrin, others Endocytic pathways recycling vs.

More information

04_polarity. The formation of synaptic vesicles

04_polarity. The formation of synaptic vesicles Brefeldin prevents assembly of the coats required for budding Nocodazole disrupts microtubules Constitutive: coatomer-coated Selected: clathrin-coated The formation of synaptic vesicles Nerve cells (and

More information

CELLS. Cells. Basic unit of life (except virus)

CELLS. Cells. Basic unit of life (except virus) Basic unit of life (except virus) CELLS Prokaryotic, w/o nucleus, bacteria Eukaryotic, w/ nucleus Various cell types specialized for particular function. Differentiation. Over 200 human cell types 56%

More information

10 The Golgi Apparatus: The First 100 Years

10 The Golgi Apparatus: The First 100 Years 2 Structure With no cell compartment or organelle has morphology served such a pivotal role in its discovery and investigation as with the apparatus of Golgi. The original description of the apparato reticulo

More information

General information. Cell mediated immunity. 455 LSA, Tuesday 11 to noon. Anytime after class.

General information. Cell mediated immunity. 455 LSA, Tuesday 11 to noon. Anytime after class. General information Cell mediated immunity 455 LSA, Tuesday 11 to noon Anytime after class T-cell precursors Thymus Naive T-cells (CD8 or CD4) email: lcoscoy@berkeley.edu edu Use MCB150 as subject line

More information

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins Lecture 6: Membranes and Cell Transport Biological Membranes I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins 1. Characteristics a. Phospholipids form bilayers

More information

A Model for the Self-Organization of Vesicular Flux and Protein Distributions in the Golgi Apparatus

A Model for the Self-Organization of Vesicular Flux and Protein Distributions in the Golgi Apparatus A Model for the Self-Organization of Vesicular Flux and Protein Distributions in the Golgi Apparatus Iaroslav Ispolatov 1 *, Anne Müsch 2 1 Departamento de Física, Universidad de Santiago de Chile, Santiago,

More information

Cell morphology. Cell organelles structure and function. Chapter 1: UNIT 1. Dr. Charushila Rukadikar

Cell morphology. Cell organelles structure and function. Chapter 1: UNIT 1. Dr. Charushila Rukadikar UNIT 1 Cell morphology Cell organelles structure and function Chapter 1: Dr. Charushila Rukadikar Assistant Professor Department Of Physiology ZMCH, Dahod Physiology The science that is concerned with

More information

Q&A: What is the Golgi apparatus, and why are we asking?

Q&A: What is the Golgi apparatus, and why are we asking? Q U E S T I O & ASWER Q&A: What is the Golgi apparatus, and why are we asking? Sean Munro* Open Access Don t we all know what the Golgi apparatus is? Yes and no. The Golgi apparatus (or Golgi to its friends)

More information

10/13/11. Cell Theory. Cell Structure

10/13/11. Cell Theory. Cell Structure Cell Structure Grade 12 Biology Cell Theory All organisms are composed of one or more cells. Cells are the smallest living units of all living organisms. Cells arise only by division of a previously existing

More information

Chapter 17: Vesicular traffic, secretion, and endocytosis

Chapter 17: Vesicular traffic, secretion, and endocytosis Chapter 17: Vesicular traffic, secretion, and endocytosis SEM of the formation of clathrin-coated vesicles on the cytosolic face of the plasma membrane Outline: 1. Techniques for studying the secretory

More information

4/12/17. Cells. Cell Structure. Ch. 2 Cell Structure and Func.on. Range of Cell Sizes BIOL 100

4/12/17. Cells. Cell Structure. Ch. 2 Cell Structure and Func.on. Range of Cell Sizes BIOL 100 Ch. 2 Cell Structure and Func.on BIOL 100 Cells Fundamental units of life Cell theory All living things are composed of one or more cells. The cell is the most basic unit of life. All cells come from pre-existing

More information

AP Biology Cells: Chapters 4 & 5

AP Biology Cells: Chapters 4 & 5 AP Biology Cells: Chapters 4 & 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The was the first unifying principle of biology. a. spontaneous generation

More information

Lysosomes, Peroxisomes and Centrioles. Hüseyin Çağsın

Lysosomes, Peroxisomes and Centrioles. Hüseyin Çağsın Lysosomes, Peroxisomes and Centrioles Hüseyin Çağsın Lysosomes Outline Endosomes Molecule transport to the lysosomes Endocytosis Exocytosis Autophagy Vacuoles Peroxisomes Centrioles Lysosomes Lysosomes

More information

Endocytosis and Intracellular Trafficking of Notch and Its Ligands

Endocytosis and Intracellular Trafficking of Notch and Its Ligands CHA P T E R F IVE Endocytosis and Intracellular Trafficking of Notch and Its Ligands Shinya Yamamoto, *,1 Wu-Lin Charng, *,1 and Hugo J. Bellen *,,, Contents 1. Notch Signaling and its Regulation by Endocytosis

More information

Cell Overview. Hanan Jafar BDS.MSc.PhD

Cell Overview. Hanan Jafar BDS.MSc.PhD Cell Overview Hanan Jafar BDS.MSc.PhD THE CELL is made of: 1- Nucleus 2- Cell Membrane 3- Cytoplasm THE CELL Formed of: 1. Nuclear envelope 2. Chromatin 3. Nucleolus 4. Nucleoplasm (nuclear matrix) NUCLEUS

More information

Chapter 3. Expression of α5-megfp in Mouse Cortical Neurons. on the β subunit. Signal sequences in the M3-M4 loop of β nachrs bind protein factors to

Chapter 3. Expression of α5-megfp in Mouse Cortical Neurons. on the β subunit. Signal sequences in the M3-M4 loop of β nachrs bind protein factors to 22 Chapter 3 Expression of α5-megfp in Mouse Cortical Neurons Subcellular localization of the neuronal nachr subtypes α4β2 and α4β4 depends on the β subunit. Signal sequences in the M3-M4 loop of β nachrs

More information

7.06 Cell Biology EXAM #3 April 24, 2003

7.06 Cell Biology EXAM #3 April 24, 2003 7.06 Spring 2003 Exam 3 Name 1 of 8 7.06 Cell Biology EXAM #3 April 24, 2003 This is an open book exam, and you are allowed access to books and notes. Please write your answers to the questions in the

More information

Cell Quality Control. Peter Takizawa Department of Cell Biology

Cell Quality Control. Peter Takizawa Department of Cell Biology Cell Quality Control Peter Takizawa Department of Cell Biology Cellular quality control reduces production of defective proteins. Cells have many quality control systems to ensure that cell does not build

More information

Zool 3200: Cell Biology Exam 4 Part II 2/3/15

Zool 3200: Cell Biology Exam 4 Part II 2/3/15 Name:Key Trask Zool 3200: Cell Biology Exam 4 Part II 2/3/15 Answer each of the following questions in the space provided, explaining your answers when asked to do so; circle the correct answer or answers

More information

Structure & Function of Cells

Structure & Function of Cells Anatomy & Physiology 101-805 Unit 4 Structure & Function of Cells Paul Anderson 2011 Anatomy of a Generalised Cell Attached or bound ribosomes Cilia Cytosol Centriole Mitochondrion Rough endoplasmic reticulum

More information

Thursday, October 16 th

Thursday, October 16 th Thursday, October 16 th Good morning. Those of you needing to take the Enzymes and Energy Quiz will start very soon. Students who took the quiz Wednesday: Please QUIETLY work on the chapter 6 reading guide.

More information

What sort of Science is Glycoscience? (Introductory lecture)

What sort of Science is Glycoscience? (Introductory lecture) Glycosciences: Glycobiology & Glycochemistry e-learning course What sort of Science is Glycoscience? (Introductory lecture) Paula Videira Faculdade de Ciências Médicas Nova University, Lisbon Portugal

More information

C) You find that the Raf kinase is not constitutively active. What was necessary in the previous assay to show any Raf kinase activity?

C) You find that the Raf kinase is not constitutively active. What was necessary in the previous assay to show any Raf kinase activity? PROBLEM SET 3 1. You have obtained immortalized liver cells from a patient who died of Wilson s disease, an inherited disorder of copper metabolism marked by neuronal degeneration and hepatic cirrhosis.

More information

Bio10 Cell Structure SRJC

Bio10 Cell Structure SRJC 3.) Cell Structure and Function Structure of Cell Membranes Fluid mosaic model Mixed composition: Phospholipid bilayer Glycolipids Sterols Proteins Fluid Mosaic Model Phospholipids are not packed tightly

More information

Module 3 Lecture 7 Endocytosis and Exocytosis

Module 3 Lecture 7 Endocytosis and Exocytosis Module 3 Lecture 7 Endocytosis and Exocytosis Endocytosis: Endocytosis is the process by which cells absorb larger molecules and particles from the surrounding by engulfing them. It is used by most of

More information

Chapter 3 Part 2! Pages (10 th and 11 th eds.)! The Cellular Level of Organization! Cellular Organelles and Protein Synthesis!

Chapter 3 Part 2! Pages (10 th and 11 th eds.)! The Cellular Level of Organization! Cellular Organelles and Protein Synthesis! Chapter 3 Part 2! Pages 65 89 (10 th and 11 th eds.)! The Cellular Level of Organization! Cellular Organelles and Protein Synthesis! The Cell Theory! Living organisms are composed of one or more cells.!

More information

Cytosol the fluid Cytoplasm cell interior, everything outside the nucleus but within the cell membrane, includes the organelles, cytosol, and

Cytosol the fluid Cytoplasm cell interior, everything outside the nucleus but within the cell membrane, includes the organelles, cytosol, and Cell Organelles Plasma Membrane comprised of a phospholipid bilayer and embedded proteins Outer surface has oligosaccharides separates the cells s contents from its surroundings Cytosol the fluid Cytoplasm

More information

Main differences between plant and animal cells: Plant cells have: cell walls, a large central vacuole, plastids and turgor pressure.

Main differences between plant and animal cells: Plant cells have: cell walls, a large central vacuole, plastids and turgor pressure. Main differences between plant and animal cells: Plant cells have: cell walls, a large central vacuole, plastids and turgor pressure. Animal cells have a lysosome (related to vacuole) and centrioles (function

More information

Cell wall components:

Cell wall components: Main differences between plant and animal cells: Plant cells have: cell walls, a large central vacuole, plastids and turgor pressure. The Cell Wall The primary cell wall is capable of rapid expansion during

More information

Cells. 1. Smallest living structures. 2. Basic structural and functional units of the body. 3. Derived from pre-existing cells. 4. Homeostasis.

Cells. 1. Smallest living structures. 2. Basic structural and functional units of the body. 3. Derived from pre-existing cells. 4. Homeostasis. Cells The Cell The human body has about 75 trillion cells All tissues and organs are made up of cells Smallest functional unit of life Cytology Histology Cytology Epithelial cells Fibroblasts Erythrocytes

More information

ab CytoPainter Golgi/ER Staining Kit

ab CytoPainter Golgi/ER Staining Kit ab139485 CytoPainter Golgi/ER Staining Kit Instructions for Use Designed to detect Golgi bodies and endoplasmic reticulum by microscopy This product is for research use only and is not intended for diagnostic

More information

Cells and Tissues 3PART A. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

Cells and Tissues 3PART A. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College Cells and Tissues 3PART A Cells and Tissues Carry out all chemical activities needed to sustain life

More information

Structures in Cells. Cytoplasm. Lecture 5, EH1008: Biology for Public Health, Biomolecules

Structures in Cells. Cytoplasm. Lecture 5, EH1008: Biology for Public Health, Biomolecules Structures in Cells Lecture 5, EH1008: Biology for Public Health, Biomolecules Limian.zheng@ucc.ie 1 Cytoplasm Nucleus Centrioles Cytoskeleton Cilia Microvilli 2 Cytoplasm Cellular material outside nucleus

More information

The Cell Organelles. Eukaryotic cell. The plasma membrane separates the cell from the environment. Plasma membrane: a cell s boundary

The Cell Organelles. Eukaryotic cell. The plasma membrane separates the cell from the environment. Plasma membrane: a cell s boundary Eukaryotic cell The Cell Organelles Enclosed by plasma membrane Subdivided into membrane bound compartments - organelles One of the organelles is membrane bound nucleus Cytoplasm contains supporting matrix

More information

Membranous Organelles

Membranous Organelles Membranous Organelles 1. Membrane-limited organelles 2. Golgi apparatus 3. Lysosomes 4. Peroxisomes (microbodies) 5. Secretory vesicles (granules) 6. Coated vesicles Membrane-limited organelles Endoplasmic

More information

COG Complex-Mediated Recycling of Golgi Glycosyltransferases is Essential for Normal Protein Glycosylation

COG Complex-Mediated Recycling of Golgi Glycosyltransferases is Essential for Normal Protein Glycosylation Traffic 26; 7: 19124 Blackwell Munksgaard Copyright # Blackwell Munksgaard 26 doi: 1.1111/j.16-854.25.376.x COG Complex-Mediated Recycling of Golgi Glycosyltransferases is Essential for Normal Protein

More information

Cell are made up of organelles. An ORGANELLE is a specialized subunit within a cell that has a specific function.

Cell are made up of organelles. An ORGANELLE is a specialized subunit within a cell that has a specific function. Plant and Animal Cells The Cell Theory All living things are made up of one or more cells. All cells come from other cells. Organization of Living Things Cell are made up of organelles. An ORGANELLE is

More information

Zool 3200: Cell Biology Exam 4 Part I 2/3/15

Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Name: Trask Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Answer each of the following questions in the space provided, explaining your answers when asked to do so; circle the correct answer or answers

More information

Problem Set #5 4/3/ Spring 02

Problem Set #5 4/3/ Spring 02 Question 1 Chloroplasts contain six compartments outer membrane, intermembrane space, inner membrane, stroma, thylakoid membrane, and thylakoid lumen each of which is populated by specific sets of proteins.

More information

Significance and Functions of Carbohydrates. Bacterial Cell Walls

Significance and Functions of Carbohydrates. Bacterial Cell Walls Biochemistry 462a - Carbohydrate Function Reading - Chapter 9 Practice problems - Chapter 9: 2, 4a, 4b, 6, 9, 10, 13, 14, 15, 16a, 17; Carbohydrate extra problems Significance and Functions of Carbohydrates

More information

Chapt. 10 Cell Biology and Biochemistry. The cell: Student Learning Outcomes: Describe basic features of typical human cell

Chapt. 10 Cell Biology and Biochemistry. The cell: Student Learning Outcomes: Describe basic features of typical human cell Chapt. 10 Cell Biology and Biochemistry Cell Chapt. 10 Cell Biology and Biochemistry The cell: Lipid bilayer membrane Student Learning Outcomes: Describe basic features of typical human cell Integral transport

More information

lysosomes Ingested materials Defective cell components Degrades macromolecules of all types:

lysosomes Ingested materials Defective cell components Degrades macromolecules of all types: lysosomes Digests Ingested materials Defective cell components Degrades macromolecules of all types: Proteins Nucleic acids Carbohydrates Lipids Single membrane bound vesicle, contains up to 50 digestive

More information

Structures in Cells. Lecture 5, EH1008: Biology for Public Health, Biomolecules.

Structures in Cells. Lecture 5, EH1008: Biology for Public Health, Biomolecules. Structures in Cells Lecture 5, EH1008: Biology for Public Health, Biomolecules Limian.zheng@ucc.ie 1 Cytoplasm Nucleus Centrioles Cytoskeleton Cilia Microvilli 2 Cytoplasm Cellular material outside nucleus

More information

Chapter 2: Exocytosis and endocytosis. Biochimica cellulare parte B 2016/17

Chapter 2: Exocytosis and endocytosis. Biochimica cellulare parte B 2016/17 Chapter 2: Exocytosis and endocytosis Biochimica cellulare parte B 2016/17 Exocytosis and endocytosis Transport from the trans-golgi network to the cell exterior: exocytosis. All eukaryotic cells continuously

More information

Chapter 1 Membrane Structure and Function

Chapter 1 Membrane Structure and Function Chapter 1 Membrane Structure and Function Architecture of Membranes Subcellular fractionation techniques can partially separate and purify several important biological membranes, including the plasma and

More information

Legionella pneumophila: an intracellular pathogen of phagocytes Prof. Craig Roy

Legionella pneumophila: an intracellular pathogen of phagocytes Prof. Craig Roy an intracellular pathogen of phagocytes Section of Microbial Pathogenesis, Yale University School of Medicine 1 Legionella pneumophila Gram-negative bacterium Facultative intracellular pathogen Protozoa

More information

Posttranslational Modification and Targeting of Proteins

Posttranslational Modification and Targeting of Proteins Posttranslational Modification and Targeting of Proteins Graduate Biochemistry Term 2/2016 Assist. Prof. Dr. Panida Khunkaewla School of Chemistry, Institute of Science Suranaree University of Technology

More information

Structure and Function of Cells

Structure and Function of Cells Structure and Function of Cells Learning Outcomes Explain the cell theory Explain why cell size is usually very small Describe the Fluid Mosaic Model of membranes Describe similarities and differences

More information