A2 LEVEL. A chain COOH. Gly Ile Val Glu Gln Cys Cys Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn H 2 N. B chain

Size: px
Start display at page:

Download "A2 LEVEL. A chain COOH. Gly Ile Val Glu Gln Cys Cys Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn H 2 N. B chain"

Transcription

1 Blood insulin concentration Meal atural insulin release in nondiabetic person Diabetic person after insulin injection Insulin injection Time/h Figure 7 Insulin concentrations in the blood of a diabetic person following an insulin injection (injections also contain a slowacting form of insulin which produces an effect for up to 12 hours; after that the insulin level falls to zero). Insulin injection Blood kin and muscle tissue Muscle tissue Blood capillary Figure 9 Injecting insulin. lthough the insulin hexamers are too large to pass through the blood capillary membrane, the monomers are able to do so. chain 2 2 ly Ile Val lu ln ys ys Thr er Ile ys er Leu Tyr ln Leu lu sn Tyr ys sn 1 B chain 5 10 he Val sn ln is Leu ys ly er is Leu Val lu la Leu Tyr Leu Val ys ly lu rg ly 15 Thr Lys ro Thr 30 he Try he 25 Figure 11 uman insulin. The two chains are held together by links.

2 ribose base: uracil (U) phosphate 2 base: cytosine () 2 base: adenine () 2 base: guanine () sugarphosphate backbone bases 2 U 2 2 sugar phosphate backbone or simply U bases U (a) (b) (c) Figure 14 epresentations of the structure of : (a) how groups join together; (b) a skeletal formula; and (c) two simpler ways of showing the structure.

3 group forms an ester link to the amino acid in this case alanine (la) (a) U U Messenger (m) carries the code for protein synthesis m (b) t la la nticodon for binding to a codon on m: in this example it would bind to, the codon for alanine t t codon m Figure 15 chematic representation of a t molecule showing the three bases which form the anticodon. (c) ibosome Transfer (t) collects an amino acid and takes it to the m strand ibosomes contain ribosomal (r) They move along the m chain, reading the code and catalysing protein synthesis Figure 16 The roles of the different types of. 3 aving delivered its amino acid, t leaves the ribosome 2 mino acids are assembled into the growing protein chain is Leu t Figure 17 rotein synthesis and the reading of codons on m. U Val t ibosome lu t U U 2 2 U ibosome moves along the m chain ly Ile Val lu ln ys ys Thr er Ile ys er Leu Tyr ln Leu lu sn Tyr ys sn he Val sn ln is Leu ys ly er is Leu Val lu la Leu Tyr Leu Val ys ly lu rg This part of the insulin chain is being assembled below t la m ly he Thr Lys ro Thr Try he 1 Transfer (t) molecules bring amino acids to the m in the ribosome

4 chain or U chain hydrogen bonding between uracil and adenine chain hydrogen bonding between cytosine and guanine T T T T ugar phosphate backbone Figure 20 n illustration of the D double helix. or chain Figure 18 Molecular recognition and bases on (the symbol is used to represent two hydrogen bonds; represents three hydrogen bonds). D ell nucleus Membrane of nucleus m carries the codons for a protein from the nucleus to the ribosomes where protein synthesis takes place m t collects amino acids r in ribosomes ell material outside nucleus Figure 23 summary of protein synthesis in higher organisms. rotein

5 ome bacterial cells, unlike human cells, contain plasmids tiny circular pieces of D which are able to pass between cells plasmid ther bacterial D (in reality this is much bigger than the plasmid) The human gene responsible for insulin production can be built up from insulin m using viruses uman gene The modified plasmid is put back into bacterial cells ther enzymes reform sugar phosphate links and splice the human gene into the plasmid lasmids can be extracted and cut with restriction enzymes which break a sugar phosphate link in the D backbone The cells multiply in the fermenter The modified bacteria produce human insulin ( ) from the insulin gene Waste bacterial cells are destroyed The protein is extracted and modified if necessary to give the final product Figure 29 n illustration of the general approach used to produce a sample of insulin by genetic engineering. (a) (b) Figure 34 The secondary structure of a protein involves folding as a result of hydrogen bonding. This figure shows the protein chain folded into (a) a helix and (b) a sheet.

6 The centre of the hexamer contains polar groups which coordinate with Zn 2+ ion onpolar regions are brought into contact by dimerisation emaining nonpolar regions are brought into contact in the hexamer The outside of the hexamer is almost totally polar and interacts strongly with water Figure 38 n insulin hexamer. Insulin monomers Figure 40 ribbon diagram of the insulin hexamer. B9 Insulin B chain Leu ys ly er is Leu mino acids 6 11 Insulin gene in D TT TT T T TT trand 1 codons for insulin B chain trand 2 complementary D strand T eparation of double helix of D trand 1 trand 2 Figure 45 art of the human insulin gene which codes for the B chain around B9 (serine). TT TT T TT

7 1 ynthetic D (shown in green) sticks to correct sequence of bases on trand 2 trand 2 TT TT T T TT 2 ormal cell processes recreate the plasmid double helix TT trand 1 trand 2 TT T T TT Figure 46 The cell recognises the small piece of synthetic D and incorporates it into a plasmid. Figure 47 The cell tolerates a change to one of the bases in the piece of D and incorporates the synthetic D into a plasmid. When the cell divides, two different plasmids are formed one carries the normal human insulin gene, the other the gene for modified insulin. Blood insulin concentration Meal Diabetic person after modified insulin injection Diabetic person after human insulin injection Insulin injections Time/h Figure 48 Insulin concentrations in diabetic patients using human insulin and modified insulin: human insulin is injected 30 min before the meal; modified insulin is injected immediately before the meal. trand 2 trand 1 carrying 'mistake' T codon for sp TT TT T T T TT egion where bases on different strands cannot interact riginal plasmid carrying codon for er at B9 ew type of plasmid carrying codon for sp at B9 TT TT T T TT TT TT T T TT ubstrate binds reversibly eaction is catalysed roducts leave Enzyme ubstrate Enzyme substrate Enzyme product Enzyme roducts complex complex E + E E E + Figure 52 Illustration of the lock and key model of enzyme catalysis.

8 Without enzyme With enzyme ctivation enthalpy for uncatalysed reaction Enthalpy eactants ctivation enthalpy for enzymecatalysed reaction rogress of reaction roducts E + E E E + Figure 53 Lowering of the activation enthalpy barrier in an enzymecatalysed reaction.

Short polymer. Dehydration removes a water molecule, forming a new bond. Longer polymer (a) Dehydration reaction in the synthesis of a polymer

Short polymer. Dehydration removes a water molecule, forming a new bond. Longer polymer (a) Dehydration reaction in the synthesis of a polymer HO 1 2 3 H HO H Short polymer Dehydration removes a water molecule, forming a new bond Unlinked monomer H 2 O HO 1 2 3 4 H Longer polymer (a) Dehydration reaction in the synthesis of a polymer HO 1 2 3

More information

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 06

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 06 01) Match the following structures to their names. a. b. c. d. 02) ame the following structures (i) (iv) i) H ii) 2 iii) iv) H 2 CH 3 H H H H H H a. Deoxyadenosine = b. Deoxyguanosine = c. Deoxythymidine

More information

Objective: You will be able to explain how the subcomponents of

Objective: You will be able to explain how the subcomponents of Objective: You will be able to explain how the subcomponents of nucleic acids determine the properties of that polymer. Do Now: Read the first two paragraphs from enduring understanding 4.A Essential knowledge:

More information

If DNA resides in the nucleus, and proteins are made at the ribosomes, how can DNA direct protein production?

If DNA resides in the nucleus, and proteins are made at the ribosomes, how can DNA direct protein production? Protein Synthesis If DN resides in the nucleus, and proteins are made at the ribosomes, how can DN direct protein production? cell nucleus? ribosome Summary of Protein Synthesis DN deoxyribonucleic acid

More information

Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A

Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A Homework Watch the Bozeman video called, Biological Molecules Objective:

More information

2 3 Carbon Compounds. Proteins. Proteins

2 3 Carbon Compounds. Proteins. Proteins 2 3 Carbon Compounds Proteins Proteins Proteins are macromolecules that contain nitrogen, carbon, hydrogen, and oxygen. Proteins are polymers of molecules called amino acids. There are 20 amino acids,

More information

Name: Date: Block: Biology 12

Name: Date: Block: Biology 12 Name: Date: Block: Biology 12 Provincial Exam Review: Cell Processes and Applications January 2003 Use the following diagram to answer questions 1 and 2. 1. Which labelled organelle produces most of the

More information

Four Classes of Biological Macromolecules. Biological Macromolecules. Lipids

Four Classes of Biological Macromolecules. Biological Macromolecules. Lipids Biological Macromolecules Much larger than other par4cles found in cells Made up of smaller subunits Found in all cells Great diversity of func4ons Four Classes of Biological Macromolecules Lipids Polysaccharides

More information

Chapter 2. Chemical Composition of the Body

Chapter 2. Chemical Composition of the Body Chapter 2 Chemical Composition of the Body Carbohydrates Organic molecules that contain carbon, hydrogen and oxygen General formula C n H 2n O n -ose denotes a sugar molecule Supply energy Glucose Complex

More information

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water.

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water. BIOCHEMISTRY Organic compounds Compounds that contain carbon are called organic. Inorganic compounds do not contain carbon. Carbon has 4 electrons in outer shell. Carbon can form covalent bonds with as

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 2 FUNDAMENTAL CHEMISTRY FOR MICROBIOLOGY WHY IS THIS IMPORTANT? An understanding of chemistry is essential to understand cellular structure and function, which are paramount for your understanding

More information

CARBOHYDRATES. Produce energy for living things Atoms? Monomer Examples? Carbon, hydrogen, and oxygen in 1:2:1 ratio.

CARBOHYDRATES. Produce energy for living things Atoms? Monomer Examples? Carbon, hydrogen, and oxygen in 1:2:1 ratio. CARBOHYDRATES Produce energy for living things Atoms? Carbon, hydrogen, and oxygen in 1:2:1 ratio Monomer Examples? Sugars, starches MONOSACCHARIDES--- main source of energy for cells Glucose Know formula?

More information

Genetic information flows from mrna to protein through the process of translation

Genetic information flows from mrna to protein through the process of translation Genetic information flows from mrn to protein through the process of translation TYPES OF RN (RIBONUCLEIC CID) RN s job - protein synthesis (assembly of amino acids into proteins) Three main types: 1.

More information

The Carbon Atom (cont.)

The Carbon Atom (cont.) Organic Molecules Organic Chemistry The chemistry of the living world. Organic Molecule a molecule containing carbon and hydrogen Carbon has 4 electrons in its outer shell and can share electrons with

More information

Lipids: diverse group of hydrophobic molecules

Lipids: diverse group of hydrophobic molecules Lipids: diverse group of hydrophobic molecules Lipids only macromolecules that do not form polymers li3le or no affinity for water hydrophobic consist mostly of hydrocarbons nonpolar covalent bonds fats

More information

Biological Molecules

Biological Molecules The Chemical Building Blocks of Life Chapter 3 Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent bonds. Carbon may

More information

Sections 12.3, 13.1, 13.2

Sections 12.3, 13.1, 13.2 Sections 12.3, 13.1, 13.2 Now that the DNA has been copied, it needs to send its genetic message to the ribosomes so proteins can be made Transcription: synthesis (making of) an RNA molecule from a DNA

More information

The Chemical Building Blocks of Life. Chapter 3

The Chemical Building Blocks of Life. Chapter 3 The Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Protein Synthesis and Mutation Review

Protein Synthesis and Mutation Review Protein Synthesis and Mutation Review 1. Using the diagram of RNA below, identify at least three things different from a DNA molecule. Additionally, circle a nucleotide. 1) RNA is single stranded; DNA

More information

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids Biological Molecules Carbohydrates, Proteins, Lipids, and Nucleic Acids Organic Molecules Always contain Carbon (C) and Hydrogen (H) Carbon is missing four electrons Capable of forming 4 covalent bonds

More information

AP BIOLOGY: READING ASSIGNMENT FOR CHAPTER 5

AP BIOLOGY: READING ASSIGNMENT FOR CHAPTER 5 1) Complete the following table: Class Monomer Functions Carbohydrates 1. 3. Lipids 1. 3. Proteins 1. 3. 4. 5. 6. Nucleic Acids 1. 2) Circle the atoms of these two glucose molecules that will be removed

More information

Chapter 4. Cellular Metabolism

Chapter 4. Cellular Metabolism hapter 4 ellular Metabolism opyright he Mcraw-ill ompanies, Inc. Permission required for reproduction or display. Introduction. living cell is the site of enzyme-catalyzed metabolic reactions that maintain

More information

A look at macromolecules (Text pages 38-54) What is the typical chemical composition of a cell? (Source of figures to right: Madigan et al.

A look at macromolecules (Text pages 38-54) What is the typical chemical composition of a cell? (Source of figures to right: Madigan et al. A look at macromolecules (Text pages 38-54) What is the typical chemical composition of a cell? (Source of figures to right: Madigan et al. 2002 Chemical Bonds Ionic Electron-negativity differences cause

More information

Most life processes are a series of chemical reactions influenced by environmental and genetic factors.

Most life processes are a series of chemical reactions influenced by environmental and genetic factors. Biochemistry II Most life processes are a series of chemical reactions influenced by environmental and genetic factors. Metabolism the sum of all biochemical processes 2 Metabolic Processes Anabolism-

More information

Organic molecules are molecules that contain carbon and hydrogen.

Organic molecules are molecules that contain carbon and hydrogen. Organic Chemistry, Biochemistry Introduction Organic molecules are molecules that contain carbon and hydrogen. All living things contain these organic molecules: carbohydrates, lipids, proteins, and nucleic

More information

DNA codes for RNA, which guides protein synthesis.

DNA codes for RNA, which guides protein synthesis. Section 3: DNA codes for RNA, which guides protein synthesis. K What I Know W What I Want to Find Out L What I Learned Vocabulary Review synthesis New RNA messenger RNA ribosomal RNA transfer RNA transcription

More information

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary Macromolecules 1. If you remove all of the functional groups from an organic molecule so that it has only carbon and hydrogen atoms, the molecule become a molecule. A) carbohydrate B) carbonyl C) carboxyl

More information

9/16/15. Properties of Water. Benefits of Water. More properties of water

9/16/15. Properties of Water. Benefits of Water. More properties of water Properties of Water Solid/Liquid Density Water is densest at 4⁰C Ice floats Allows life under the ice Hydrogen bond Ice Hydrogen bonds are stable Liquid water Hydrogen bonds break and re-form Benefits

More information

The Structure and Function of Macromolecules

The Structure and Function of Macromolecules The Structure and Function of Macromolecules Macromolecules are polymers Polymer long molecule consisting of many similar building blocks. Monomer the small building block molecules. Carbohydrates, proteins

More information

Macro molecule = is all the reactions that take place in cells, the sum of all chemical reactions that occur within a living organism Anabolism:

Macro molecule = is all the reactions that take place in cells, the sum of all chemical reactions that occur within a living organism Anabolism: Macromolecule Macro molecule = molecule that is built up from smaller units The smaller single subunits that make up macromolecules are known as Joining two or more single units together form a M is all

More information

The building blocks of life.

The building blocks of life. The building blocks of life. The 4 Major Organic Biomolecules The large molecules (biomolecules OR polymers) are formed when smaller building blocks (monomers) bond covalently. via anabolism Small molecules

More information

9.A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids

9.A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids 9.A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids o o o Food is a good source of one or more of the following: protein,

More information

the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids

the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids and their sub-units; the role of lipids in the plasma

More information

Cells. Variation and Function of Cells

Cells. Variation and Function of Cells Cells Variation and Function of Cells Plasma Membrane= the skin of a cell, it protects and nourishes the cell while communicating with other cells at the same time. Lipid means fat and they are hydrophobic

More information

Review Quizzes Chapters 1-5

Review Quizzes Chapters 1-5 Review Quizzes Chapters 1-5 1.Which of the following constitutes the quarternary level of protein structure? a. bonding between side chains of amino acids b. sequence of amino acids joined by peptide bonds

More information

Biological Molecules

Biological Molecules Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Biomolecules. Biomolecules. Carbohydrates. Biol 219 Lec 3 Fall Polysaccharides. Function: Glucose storage Fig. 2.2

Biomolecules. Biomolecules. Carbohydrates. Biol 219 Lec 3 Fall Polysaccharides. Function: Glucose storage Fig. 2.2 Biomolecules Biomolecules Monomers Polymers Carbohydrates monosaccharides polysaccharides fatty acids triglycerides Proteins amino acids polypeptides Nucleic Acids nucleotides DNA, RNA Carbohydrates Carbohydrates

More information

Biology. Lectures winter term st year of Pharmacy study

Biology. Lectures winter term st year of Pharmacy study Biology Lectures winter term 2008 1 st year of Pharmacy study 3 rd Lecture Chemical composition of living matter chemical basis of life. Atoms, molecules, organic compounds carbohydrates, lipids, proteins,

More information

An Introduction to Genetics. 9.1 An Introduction to Genetics. An Introduction to Genetics. An Introduction to Genetics. DNA Deoxyribonucleic acid

An Introduction to Genetics. 9.1 An Introduction to Genetics. An Introduction to Genetics. An Introduction to Genetics. DNA Deoxyribonucleic acid An Introduction to Genetics 9.1 An Introduction to Genetics DNA Deoxyribonucleic acid Information blueprint for life Reproduction, development, and everyday functioning of living things Only 2% coding

More information

Ser Ser Ser. Tyr. Tyr. Stop Stop. Pro His Gln Arg. His. Pro. Pro. Gln. Asn. Ser Ser Arg Arg Val. Thr. Thr Thr Thr. Asn. Lys Lys. Asp Asp Glu Glu.

Ser Ser Ser. Tyr. Tyr. Stop Stop. Pro His Gln Arg. His. Pro. Pro. Gln. Asn. Ser Ser Arg Arg Val. Thr. Thr Thr Thr. Asn. Lys Lys. Asp Asp Glu Glu. he ly la Val Ile Trp Tyr Thr ys ro His ln rg he Tyr Stop Stop Stop ys ro ro ro His ln rg rg rg Ile Ile Met Thr Thr Thr sn sn Lys Lys rg rg Val Val Val la la la sp sp lu lu ly ly ly First osition (5 end)

More information

BIOLOGY Chapter 3-lecture 6 Dr. C. Doumen. Lipids

BIOLOGY Chapter 3-lecture 6 Dr. C. Doumen. Lipids BIOLOGY 1408 hapter 3-lecture 6 Dr.. Doumen Lipids v Lipids are diverse compounds that are grouped together because they do not mix well with water. hey are thus hydrophobic. Why? v ll lipids consist mainly

More information

2.1 Matter and Organic Compounds

2.1 Matter and Organic Compounds 2.1 Matter and Organic Compounds Lesson Objectives Define elements and compounds. Explain why carbon is essential to life on Earth. Describe the structure and function of the four major types of organic

More information

The Cell and Its Chemical Compounds

The Cell and Its Chemical Compounds Cell Theory Cell - The basic unit of structure and function in living things. All of an organism s process or functions are carried out in the cell. Robert Hooke - One of the first people to observe cells

More information

The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5

The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5 Key Concepts: The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5 Proteins include a diversity of structures, resulting in a wide range of functions Proteins Enzymatic s

More information

Activity: Biologically Important Molecules

Activity: Biologically Important Molecules Activity: Biologically Important Molecules AP Biology Introduction We have already seen in our study of biochemistry that the molecules that comprise living things are carbon-based, and that they are thought

More information

3. Hydrogen bonds form between which atoms? Between an electropositive hydrogen and an electronegative N, O or F.

3. Hydrogen bonds form between which atoms? Between an electropositive hydrogen and an electronegative N, O or F. Chemistry of Life Answers 1. Differentiate between an ionic and covalent bond. Provide an example for each. Ionic: occurs between metals and non-metals, e.g., NaCl Covalent: occurs between two non-metals;

More information

Chapter 5-7, 10. Read P , , and

Chapter 5-7, 10. Read P , , and Chapter 5-7, 10 Read P. 75-82, 91-100, 107-117 and 173-185 Introduction to Metabolism and Enzymes Catabolic reactions (also called catabolism ) break down larger, more complex molecules into smaller molecules

More information

3.1 Carbon is Central to the Living World

3.1 Carbon is Central to the Living World BIOL 100 Ch. 3 1 3.1 Carbon is Central to the Living World Carbon Central element to life Most biological molecules are built on a carbon framework. Organic molecules Humans 18.5% Carbon Why is Carbon

More information

Slide 1. Slide 2. Slide 3. So far... All living things are primarily made up of four classes of Macromolecules

Slide 1. Slide 2. Slide 3. So far... All living things are primarily made up of four classes of Macromolecules Slide 1 So far... 1. Biology is the study of life - All life is based on the cell - The Earth, organisms, cells are all aqueous 2. Water s uniqueness stems from its internal polarity - Solvent, Co/Adhesion,

More information

Cells N5 Homework book

Cells N5 Homework book 1 Cells N5 Homework book 2 Homework 1 3 4 5 Homework2 Cell Ultrastructure and Membrane 1. Name and give the function of the numbered organelles in the cell below: A E B D C 2. Name 3 structures you might

More information

Chapter 5: Structure and Function of Macromolecules AP Biology 2011

Chapter 5: Structure and Function of Macromolecules AP Biology 2011 Chapter 5: Structure and Function of Macromolecules AP Biology 2011 1 Macromolecules Fig. 5.1 Carbohydrates Lipids Proteins Nucleic Acids Polymer - large molecule consisting of many similar building blocks

More information

CH 2 CO 2. The structures of the naturally occurring amino acids are given on page 3 of this chapter.

CH 2 CO 2. The structures of the naturally occurring amino acids are given on page 3 of this chapter. 6.11 Amino Acids, roteins and DA There are about 20 naturally occurring amino acids. The human body can synthesise some of these amino acids. The ones the body cannot synthesise are called essential amino

More information

Chapter 2: Biochemistry

Chapter 2: Biochemistry Chapter 2: Biochemistry Biochemistry Biochemistry is the study of chemical makeup and reactions of living matter All chemicals in the body are either organic & inorganic Organic compounds contain carbon

More information

Chapter 1-2 Review Assignment

Chapter 1-2 Review Assignment Class: Date: Chapter 1-2 Review Assignment Multiple Choice dentify the choice that best completes the statement or answers the question. Corn seedlings A student wanted to design an investigation to see

More information

Types of macromolecules. Proteins. Amino acids 9/15/2010. Carbohydrates. Lipids. Proteins. Nucleic acids

Types of macromolecules. Proteins. Amino acids 9/15/2010. Carbohydrates. Lipids. Proteins. Nucleic acids Types of macromolecules Carbohydrates Lipids Proteins Nucleic acids Proteins Chief building blocks of life 1000s of proteins Lots of different functions, but all built the same way & from the same raw

More information

Synthesis of Macromolecules

Synthesis of Macromolecules A child s building blocks are relatively simple structures. When they come together, however, they can form magnificent structures. The elaborate city scene on the right is made of small, simple building

More information

Organic Molecules Worksheet: Read through each section and answer the following questions.

Organic Molecules Worksheet: Read through each section and answer the following questions. Name: Date: Period: Organic Molecules Worksheet: Read through each section and answer the following questions. Organic molecules are the molecules that exist in all living things. They are life s building

More information

Assignment #1: Biological Molecules & the Chemistry of Life

Assignment #1: Biological Molecules & the Chemistry of Life Assignment #1: Biological Molecules & the Chemistry of Life A. Important Inorganic Molecules Water 1. Explain why water is considered a polar molecule. The partial negative charge of the oxygen and the

More information

Explain that each trna molecule is recognised by a trna-activating enzyme that binds a specific amino acid to the trna, using ATP for energy

Explain that each trna molecule is recognised by a trna-activating enzyme that binds a specific amino acid to the trna, using ATP for energy 7.4 - Translation 7.4.1 - Explain that each trna molecule is recognised by a trna-activating enzyme that binds a specific amino acid to the trna, using ATP for energy Each amino acid has a specific trna-activating

More information

Protein Synthesis

Protein Synthesis Protein Synthesis 10.6-10.16 Objectives - To explain the central dogma - To understand the steps of transcription and translation in order to explain how our genes create proteins necessary for survival.

More information

Biology 5A Fall 2010 Macromolecules Chapter 5

Biology 5A Fall 2010 Macromolecules Chapter 5 Learning Outcomes: Macromolecules List and describe the four major classes of molecules Describe the formation of a glycosidic linkage and distinguish between monosaccharides, disaccharides, and polysaccharides

More information

6/15/2015. Biological Molecules. Outline. Organic Compounds. Organic Compounds - definition Functional Groups Biological Molecules. What is organic?

6/15/2015. Biological Molecules. Outline. Organic Compounds. Organic Compounds - definition Functional Groups Biological Molecules. What is organic? Biological Molecules Biology 105 Lecture 3 Reading: Chapter 2 (pages 29 39) Outline Organic Compounds - definition Functional Groups Biological Molecules Carbohydrates Lipids Amino Acids and Proteins Nucleotides

More information

Chapter 3 The Molecules of Life

Chapter 3 The Molecules of Life Chapter 3 The Molecules of Life State Standards Standard 1.h. Standard 5.a. Standard 4.e. Organic Molecules A cell is mostly water. The rest of the cell consists mostly of carbon based molecules organic

More information

Macromolecules. Honors Biology

Macromolecules. Honors Biology Macromolecules onors Biology 1 The building materials of the body are known as macromolecules because they can be very large There are four types of macromolecules: 1. Proteins 2. Nucleic acids 3. arbohydrates

More information

Carbon. Isomers. The Chemical Building Blocks of Life

Carbon. Isomers. The Chemical Building Blocks of Life The Chemical Building Blocks of Life Carbon Chapter 3 Framework of biological molecules consists primarily of carbon bonded to Carbon O, N, S, P or H Can form up to 4 covalent bonds Hydrocarbons molecule

More information

Organic Molecules. 8/27/2004 Mr. Davenport 1

Organic Molecules. 8/27/2004 Mr. Davenport 1 Organic Molecules 8/27/2004 Mr. Davenport 1 Carbohydrates Commonly called sugars and starches Consist of C, H, O with H:O ration 2:1 Usually classified as to sugar units Monosaccharide are single sugar

More information

Chapter 2. What is life? Reproduction. All living things are made of cells

Chapter 2. What is life? Reproduction. All living things are made of cells What is life? Chapter 2 The Nature of Life All living things are made of cells Composed of one or more cells ossess inherited information (DNA) Reproduce Develop respond to the environment Assimilate and

More information

BIOMOLECULES. (AKA MACROMOLECULES) Name: Block:

BIOMOLECULES. (AKA MACROMOLECULES) Name: Block: BIOMOLECULES (AKA MACROMOLECULES) Name: Block: BIOMOLECULES POGIL All living things share the same chemical building blocks and depend on chemical processes for survival. Life without carbon (C) would

More information

Biological Molecules Ch 2: Chemistry Comes to Life

Biological Molecules Ch 2: Chemistry Comes to Life Outline Biological Molecules Ch 2: Chemistry Comes to Life Biol 105 Lecture 3 Reading Chapter 2 (pages 31 39) Biological Molecules Carbohydrates Lipids Amino acids and Proteins Nucleotides and Nucleic

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Chapter 5 1 The Structure and Function of Large Biological Molecules PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Methionine (Met or M)

Methionine (Met or M) Fig. 5-17 Nonpolar Fig. 5-17a Nonpolar Glycine (Gly or G) Alanine (Ala or A) Valine (Val or V) Leucine (Leu or L) Isoleucine (Ile or I) Methionine (Met or M) Phenylalanine (Phe or F) Polar Trypotphan (Trp

More information

Math for Life BIOLOGICAL MACROMOLECULES. LIPIDS: Fatty acids Triglycerides Phospholipids Steroids

Math for Life BIOLOGICAL MACROMOLECULES. LIPIDS: Fatty acids Triglycerides Phospholipids Steroids REFERENE TABLES BILIAL MARMLEULES LIIDS: Fatty acids Triglycerides hospholipids Steroids ARBYDRATES: Mono and Disaccharides olysaccharides Derivative carbohydrates RTEINS: Amino acids roteins NULEI AIDS:

More information

Macromolecules. Molecules of Life

Macromolecules. Molecules of Life Macromolecules Molecules of Life Learning Objectives know the difference between a dehydration synthesis reaction and a hydrolysis reaction know the different types of biological macromolecules be able

More information

Many of the compounds we are concerned with in biology are carbon-based compounds The study of carbon-based compounds is called organic chemistry

Many of the compounds we are concerned with in biology are carbon-based compounds The study of carbon-based compounds is called organic chemistry 1 2 3 4 Bio 1101 Lecture 3 Chapter 3: Molecules of Life Organic Molecules Many of the compounds we are concerned with in biology are carbon-based compounds The study of carbon-based compounds is called

More information

Glycerol + 3 fatty acids. B) Chemical reactions -forms macromolecules and takes them apart: Dehydration synthesis

Glycerol + 3 fatty acids. B) Chemical reactions -forms macromolecules and takes them apart: Dehydration synthesis Section 5: Molecules of Life - Macromolecules Organic molecules contain carbon and hydrogen atoms A) Type of macromolecules 4 types: Name Carbohydrates Lipids Proteins Nucleic acids subunit monosaccharides

More information

Endocrine System 2. Pheromones. Hormonal Signaling Pathway. Production of sex steroids. Hormonal signaling and receptors

Endocrine System 2. Pheromones. Hormonal Signaling Pathway. Production of sex steroids. Hormonal signaling and receptors Endocrine System Today s topics: Review ormone signaling networks (a) Water-soluble hormone; receptor in plasma membrane ormonal signaling and receptors (b) Lipid-soluble hormone; receptor in nucleus or

More information

What are the molecules of life?

What are the molecules of life? Molecules of Life What are the molecules of life? Organic Compounds Complex Carbohydrates Lipids Proteins Nucleic Acids Organic Compounds Carbon- hydrogen based molecules From Structure to Function Ø Carbon

More information

Essential Components of Food

Essential Components of Food Essential Components of Food The elements of life living things are mostly (98%) made of 6 elements: C carbon H hydrogen O oxygen P phosphorus N nitrogen S sulphur -each element makes a specific number

More information

Macromolecules Structure and Function

Macromolecules Structure and Function Macromolecules Structure and Function Within cells, small organic molecules (monomers) are joined together to form larger molecules (polymers). Macromolecules are large molecules composed of thousands

More information

A. Lipids: Water-Insoluble Molecules

A. Lipids: Water-Insoluble Molecules Biological Substances found in Living Tissues Lecture Series 3 Macromolecules: Their Structure and Function A. Lipids: Water-Insoluble Lipids can form large biological molecules, but these aggregations

More information

The Basics: A general review of molecular biology:

The Basics: A general review of molecular biology: The Basics: A general review of molecular biology: DNA Transcription RNA Translation Proteins DNA (deoxy-ribonucleic acid) is the genetic material It is an informational super polymer -think of it as the

More information

paper and beads don t fall off. Then, place the beads in the following order on the pipe cleaner:

paper and beads don t fall off. Then, place the beads in the following order on the pipe cleaner: Beady Pipe Cleaner Proteins Background: Proteins are the molecules that carry out most of the cell s dayto-day functions. While the DNA in the nucleus is "the boss" and controls the activities of the cell,

More information

Chapter Organic Chemistry. Functional Groups. Chapter The study of the compounds of carbon, not classified as inorganic.

Chapter Organic Chemistry. Functional Groups. Chapter The study of the compounds of carbon, not classified as inorganic. Chapter 22 rganic Compounds, Polymers & Biochemicals 1 22.1 rganic Chemistry The study of the compounds of carbon, not classified as inorganic Plastics, fibers, dues, drugs, insecticides, perfumes, petroleum

More information

Biomolecules. Macromolecules Proteins Nucleic acids Polysaccharides Lipids

Biomolecules. Macromolecules Proteins Nucleic acids Polysaccharides Lipids Biomolecules Biomolecules are molecules produced by living organisms or are compounds that occur naturally in plants and animals. They could be large macromolecules or smaller molecules such as primary

More information

This exam consists of two parts. Part I is multiple choice. Each of these 25 questions is worth 2 points.

This exam consists of two parts. Part I is multiple choice. Each of these 25 questions is worth 2 points. MBB 407/511 Molecular Biology and Biochemistry First Examination - October 1, 2002 Name Social Security Number This exam consists of two parts. Part I is multiple choice. Each of these 25 questions is

More information

Organic Molecules: Proteins

Organic Molecules: Proteins Organic Molecules: Proteins Proteins Most structurally & functionally diverse group Function: involved in almost everything enzymes (pepsin, DNA polymerase) structure (keratin, collagen) carriers & transport

More information

PROTEIN SYNTHESIS. It is known today that GENES direct the production of the proteins that determine the phonotypical characteristics of organisms.

PROTEIN SYNTHESIS. It is known today that GENES direct the production of the proteins that determine the phonotypical characteristics of organisms. PROTEIN SYNTHESIS It is known today that GENES direct the production of the proteins that determine the phonotypical characteristics of organisms.» GENES = a sequence of nucleotides in DNA that performs

More information

RNA and Protein Synthesis Guided Notes

RNA and Protein Synthesis Guided Notes RNA and Protein Synthesis Guided Notes is responsible for controlling the production of in the cell, which is essential to life! o DNARNAProteins contain several thousand, each with directions to make

More information

Review for Test #1: Biochemistry

Review for Test #1: Biochemistry Review for Test #1: Biochemistry 1. Know and understand the definitions and meanings of the following terms. Be able to write complete definitions for the terms in BOLD: Biology triglyceride metabolism

More information

Composed of long chains of smaller molecules Macromolecules are formed through the process of polymerization

Composed of long chains of smaller molecules Macromolecules are formed through the process of polymerization Chapter 5, Campbell Composed of long chains of smaller molecules Macromolecules are formed through the process of polymerization. Polymerization = large compounds are built by joining smaller ones together

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Chapter 5 The Structure and Function of Large Biological Molecules PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Chapter 5 The Structure and Function of Large Biological Molecules PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

-pleated sheet. hydrogen. ribose. bases. These bases pair in the centre of the molecule by means of... bonds. [4] Table 1.1

-pleated sheet. hydrogen. ribose. bases. These bases pair in the centre of the molecule by means of... bonds. [4] Table 1.1 1 (a) Complete the following passage by using the most appropriate terms from the list to fill the gaps. Each term should not be used more than once. anti-parallel double helix polypeptide -pleated sheet

More information

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds:

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Biochemistry Organic Chemistry All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Do not contain carbon Organic

More information

Visualizing Biopolymers and Their Building Blocks

Visualizing Biopolymers and Their Building Blocks Visualizing Biopolymers and Their Building Blocks By Sharlene Denos (UIUC) & Kathryn Hafner (Danville High) Living things are primarily composed of carbon-based (organic) polymers. These are made up many

More information

Biology Chapter 5. Biological macromolecules

Biology Chapter 5. Biological macromolecules Biology Chapter 5 Biological macromolecules Small molecules (like water and NaCl) have certain properties that arise from the bonds which hold atoms together in a particular arrangement. Many of the molecules

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Name Period Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four main classes. Name them. 2. Circle the three classes that are called

More information

Chapter 3- Organic Molecules

Chapter 3- Organic Molecules Chapter 3- Organic Molecules CHNOPS Six of the most abundant elements of life (make up 95% of the weight of all living things)! What are they used for? Structures, enzymes, energy, hormones, DNA How do

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Compounds of Life Biological Molecules

Compounds of Life Biological Molecules Compounds of Life Biological Molecules By Joseph A. Castellano, Ph.D. RESEED Silicon Valley Reference: Focus on Physical Science, Glencoe/McGraw-Hill, Columbus, Ohio, 2007, Pages 438-442. This textbook

More information