CLINICAL SCIENCES. Intra-arterial Chemotherapy for Retinoblastoma

Size: px
Start display at page:

Download "CLINICAL SCIENCES. Intra-arterial Chemotherapy for Retinoblastoma"

Transcription

1 ONLINE FIRST CLINICAL SCIENCES Intra-arterial Chemotherapy for Retinoblastoma Report No. 2, Treatment Complications Carol L. Shields, MD; Carlos G. ianciotto, MD; Pascal Jabbour, MD; Gregory C. Griffin, MD; Aparna Ramasubramanian, MD; Robert Rosenwasser, MD; Jerry A. Shields, MD Objective: To describe treatment complications following intra-arterial chemotherapy (IAC) for retinoblastoma. Methods: A retrospective interventional series of ophthalmic artery cannulation for IAC injection (3 planned sessions at 1-month intervals) was undertaken. Thirty-eight catheterizations of 17 eyes of 17 patients were performed from September 2008 to September Fluoroscopy of the ophthalmic artery was performed before and immediately after treatment. Heparin was given during the procedure and aspirin (40 mg) was given orally for 1 week. The treatment complications were determined. Results: Only 17 of 190 children were selected for treatment with IAC during this period. Following successful ophthalmic artery cannulation in 16 cases, there was no evidence of metastasis, stroke, brain injury, or persistent systemic toxic effects. Fluoroscopy demonstrated patent ophthalmic artery immediately before and after IAC injection in each case. Following therapy, orbital and adnexal findings at 1 month included eyelid edema (n=13), blepharoptosis (n=10), cilia loss (n=1), and orbital congestion with temporary dysmotility (n=12). These findings resolved within 6 months in all cases. Following therapy, vascular findings included ophthalmic artery stenosis (permanent in 3 cases, temporary in 1 case), confirmed on fluoroscopy in 3 cases. Concomitant central or branch retinal artery occlusion was noted (permanent in 2 cases, temporary in 1 case). Subtle retinal pigment epithelial mottling in 9 cases that slowly evolved to later-onset underlying choroidal atrophy in 5 cases was noted. Conclusions: Treatment with IAC for retinoblastoma can lead to mild and severe short-term ocular complications, including eyelid edema as well as potentially blinding vascular obstruction. This procedure should be used with caution. Arch Ophthalmol. 2011;129(11): Published online June 13, doi: /archophthalmol Author Affiliations: Ocular Oncology Service, Wills Eye Institute (Drs C. L. Shields, ianciotto, Ramasubramanian, and J. A. Shields), Division of Neurovascular and Endovascular Surgery, Department of Neurological Surgery (Drs Jabbour and Rosenwasser), and Division of Pediatric Hematology/Oncology, Department of Pediatrics, Nemours/Alfred I. dupont Hospital for Children (Dr Griffin), Thomas Jefferson University, Philadelphia, Pennsylvania. WITH MOST NEW therapies, there is an initial enthusiasm for the developing alternative treatment; later, the limitations, indications, and complications are more precisely defined. 1 With regard to retinoblastoma therapies, the enthusiasm for external beam radiotherapy was dampened when intermediate-term dry eye, cataract, sunken socket, and facial deformity were noted and See also pages 1399, 1458, 1487, 1490, and 1492 nearly abandoned when long-term second cancers were realized. 2,3 With chemoreduction, the initial dramatic response of advanced retinoblastoma to the 3-drug regimen was extraordinarily impressive, until it was realized later that subretinal and vitreous seed recurrence was a problem. 4 Similarly with plaque radiotherapy, the preliminary remarkable tumor control was occasionally followed by ischemic retinopathy, hemorrhage, and vision loss. 5 Intra-arterial chemotherapy (IAC) for retinoblastoma has been heralded as a novel method for precise delivery of a small dose of chemotherapy into the ophthalmic artery, minimizing systemic chemotherapy toxic effects. 1,6 Infusion of IAC for retinoblastoma was previously explored in the 1950s by Reese et al 7 and in the 1960s by Kiribuchi. 8 Reese and coworkers evaluated 31 children with retinoblastoma treated with internal carotid artery chemotherapy and radiotherapy and found this combination more effective than radiotherapy alone. More recently, Japanese collaborators improved the technique by entering the carotid region from a remote femoral artery access. 9 They delivered chemotherapy into the internal carotid artery at the branch point of the ophthalmic artery (without entering the artery) by occluding further distal flow in the internal carotid artery using balloon 1407

2 obstruction. They described the safety of this technique with hundreds of cannulations and no sign of stroke, but detailed data regarding tumor control and treatment complications were lacking in their articles. 9,10 Gobin and Abramson 11 and Gobin et al 12 in the United States devised a refined approach with direct catheter entry into the proximal portion of the ophthalmic artery for deliver of chemotherapy to the eye. With this approach, Abramson et al provided initial observations of impressive tumor response, even in eyes with advanced retinoblastoma. Regardingtreatmentcomplications, theyobserved that the only adverse ophthalmic findings were occasional transient lid edema, forehead hyperemia, and loss of nasal lashes. 15 However, other information (from the same group of investigators) remarked on more serious complications including femoral artery occlusion for 1 week and leukopenia in fewer than 10%, and they identified that there were 4/46 severe ocular complications which consisted of avascular retinopathies resulting in blindness. 12 Further investigation of published reports has revealed illustrations documenting outstanding tumor regression but with visible complications of diffuse retinal pigment epithelial (RPE) alterations and choroidal ischemia. 15 We have described our experience with somewhat impressive short-term control of retinoblastoma using IAC in selected cases. 16 Herein, we delineate the ocular and systemic complications using this technique. METHODS Institutional review board permission was obtained for this ongoing prospective study on September 15, Inclusion criteria were the presence of viable unilateral or bilateral retinoblastoma in patients aged 4 months or older in whom the only other options would be enucleation, external beam radiotherapy, or systemic chemoreduction. Patients were excluded if the retinoblastoma could be controlled with more conservative methods of cryotherapy, thermotherapy, or plaque radiotherapy. Patients and parents were informed of the risks of ophthalmic artery cannulation, including brain or orbital hemorrhage, infection, and inflammation, visual loss, loss of the eye, anaphylaxis, stroke, and death. Patients and parents were informed of the unknown risks of systemic metastasis from retinoblastoma using this technique and long-term ocular and systemic toxic effects. Exclusion criteria included opaque or hazy media that precluded visualization of the fundus, fresh or recurrent retinoblastoma that could be amenable to other conservative therapies, and clinical evidence suggestive of retinoblastoma invasion into the optic nerve, choroid, sclera, or orbit or distant metastasis. The details of the technique of examination and follow-up are described in a separate article. 16 Each patient was examined initially in the office and then under anesthesia by one of us (C.L.S.) with clinical evaluation and large fundus drawings, fundus photography, and fluorescein angiography of all tumors in each eye. The IAC was performed under anticoagulation with intravenous heparin (75 IU/kg) and has been described previously. 16,17 Chemotherapy diluted in 30 ml of saline was delivered using a pulsatile, nonlaminated technique manually over 30 minutes. The selected chemotherapy drug was melphalan (5 mg) in all cases and additional carboplatin (30 mg) was used in cases 1 through 6 based on previously documented efficacy. 18 Carboplatin was later discontinued after observations of ophthalmic or retinal vascular attenuation as platinum-based drugs have been recognized to have a sclerosing effect. 19 A postinfusion arteriogram was taken to confirm patency of the ophthalmic artery. Following catheter withdrawal, oral aspirin (40 mg) was delivered for 2 weeks. Follow-up ophthalmic examination was provided at 1 month, and a second treatment with IAC was performed as necessary and then repeated 1 month later if necessary. Thereafter, ophthalmic examination was provided every 2 to 3 months. Documentation was made in each case with large fundus drawing, fundus photography with a Retcam camera (Massie Industries, Dublin, California), fluorescein angiography, and electroretinography. All data were collected in a retrospective fashion. Each patient was evaluated for age at diagnosis (months), race (African American, Asian, Hispanic, white), sex (male, female), and hereditary pattern (sporadic, familial). efore and following IAC, each patient was assessed for metastatic disease, second cancer, pinealoblastoma, and damage to the central nervous system manifesting as neurological deficit or stroke. The orbit and adnexa were evaluated for permanent or temporary eyelid edema, blepharoptosis, forehead erythema, eyelash loss, and dysfunction of the extraocular muscles. The globe was assessed for patency of the vascular flow to the eye including the internal carotid artery, ophthalmic artery, central retinal artery, branch retinal artery, retinal venous drainage, and choroidal vascular bed. The fundus was evaluated for the status of the retina, RPE, and optic nerve. New or preexisting neovascularization of the iris with or without neovascular glaucoma was recorded. RESULTS Seventeen patients were included in this study on IAC for retinoblastoma. The mean patient age at IAC was 20 months (range, 4-74 months). Cannulation into the proximal region of the ophthalmic artery was possible in 16 patients. In 1 patient, cannulation was not possible owing to internal carotid artery anomalous pattern with a 360 loop and severe spasm during the procedure. This patient was subsequently treated with intravenous chemoreduction. A total of 37 of 38 catheterizations of the ophthalmic artery were successful for delivery of chemotherapy. All catheterizations were unilateral. The mean number of catheterizations per eye for control of retinoblastoma was 2.25 (median, 2; range, 1-4). Following IAC, complete response of the main tumor was achieved in 14 cases (88%), partial response was found in 2 cases (12%), and no response was observed in 0 cases. 16 Globe classification, tumor features, treatment parameters, and tumor control for this cohort of 17 patients are detailed in a separate article. 16 The systemic and ocular complications of IAC for retinoblastoma are listed in Table 1 and Table 2 (Figures 1, 2, 3, 4, and 5). No patients developed metastasis, second cancer, or pinealoblastoma during a mean of 13 months of follow-up. No patients developed neurological defect, internal carotid artery occlusion, femoral artery occlusion, or stroke. One patient with anomalous internal carotid artery had a spasm during cannulation and the procedure was discontinued. Transient cytopenia was present in 6 cases with spontaneous recovery in all cases without the need for transfusion. Ophthalmic adverse effects included eyelid edema (n=13), blepharoptosis (n=10), and cilia loss (n=1) (Figure 1). There were no cases of forehead erythema. Congested orbit with temporary extraocular muscle dysfunction was found in 12 eyes. These external findings 1408

3 Table 1. Systemic and rain Complications From Intra-arterial Chemotherapy for Retinoblastoma Systemic rain Patient No. Metastasis Second Cancer Pinealoblastoma Transient Cytopenia Neurological Defect Internal Carotid Artery 1 No No No No No Nl No Nl 2 No No No Mild No Nl No Nl 3 No No No No No Nl No Nl 4 No No No No No Nl No Nl 5 No No No Mild No Nl No Nl 6 No No No No No Nl No Nl 7 No No No Mild No Nl No Nl 8 No No No Mild No Nl No Nl 9 No No No Mild No Nl No Nl 10 No No No No No Nl No Nl 11 No No No No No Nl No Nl 12 No No No No No Nl No Nl 13 No No No No No Nl No Nl 14 No No No No No Spasm a No Nl 15 No No No Mild No No No Nl 16 No No No No No No No Nl 17 No No No No No No No Nl Total, No Abbreviations: MRI, magnetic resonance imaging; Nl, normal. a Transient carotid spasm occurred, so the procedure was discontinued. The patient was treated successfully with intravenous chemoreduction. Stroke MRI Result Table 2. Ocular Complications From Intra-arterial Chemotherapy for Retinoblastoma Orbit and Adnexa Globe Transient Extraocular Choroidal Optic Muscle Ophthalmic Retinal Retinal Retina RPE Vascular Nerve Patient No. Eyelid Forehead Eyelashes Restriction Artery Artery Vein Detachment Mottling Atrophy Atrophy NVI NVG 1 E, P Nl Nl Mild Nl Nl Nl SRD No No No No No 2 a E, P Nl Nl Mild VH, no VH, no VH, no No VH, no view VH, no view VH, no view Yes, new Yes, new view b view view 3 E, P Nl Nl Mod Nl Nl Nl No Yes, diffuse No No No No 4 E Nl Nl Mild Nl Nl Nl No Yes, focal No No No No 5 E, P Nl Nl Mild Nl Nl Nl No Yes, diffuse Yes, diffuse No No No 6 Nl Nl Nl Nl Stenosis CRAO NA No Yes, diffuse Yes, diffuse Yes No No 7 E Nl Loss Mild Stenosis RAO Nl SRD Yes but No No No No extensive subretinal seeding 8 E Nl Nl Mod Nl Nl Nl No Yes, focal No No No No 9 c E, P Nl Nl Nl Nl Nl Nl TRD No view No view No view Yes, old Yes, old 10 Nl Nl Nl Mild Nl Nl Nl No Yes, diffuse Yes, diffuse No No No 11 E, P Nl Nl Nl Nl RAO Nl No Yes, diffuse Yes, diffuse No No No 12 E, P Nl Nl Mild Nl Nl Nl No No No No Yes but No total SRD 13 E, P Nl Nl Nl Nl Nl Nl No Yes, focal but No No No No previous SRD 14 Nl Nl Nl Nl NA NA NA NA NA NA NA NA NA 15 E, P Nl Nl Mild Stenosis d RAO d Nl No Yes, focal Yes, focal No No No 16 E, P Nl Nl Mod Nl Nl Nl No No No No No No 17 Nl Nl Nl Mild Nl Nl Nl No No No No No No Total, No Abbreviations: RAO, branch retinal artery obstruction; CRAO, central retinal artery obstruction; E, edema; Mod, moderate; NA, not applicable; Nl, normal; NVG, neovascular glaucoma; NVI; neovascularization of the iris; P, ptosis; RPE, retinal pigment epithelium; SRD, serous retinal detachment; TRD, traction retinal detachment; VH, vitreous hemorrhage. a Vitreous hemorrhage was present at the initial visit and worsened following chemotherapy. b An ophthalmic arteriogram showed stenosis of the artery, despite no view. c The patient had NVI at the initial visit with progression to NVG following chemotherapy, leading to enucleation despite tumor control. d Stenosis was found at month 1 and resolved by month 2. resolved in every case by 2 months, but blepharoptosis resolved more slowly over 4 to 6 months. In 1 case, the dysmotility respected the distribution of the third cranial nerve and persisted for 4 months. Occlusive vasculopathy was noted in the ophthalmic artery in 4 cases and diagnosed by funduscopy in 3 of those cases. In 1 case, 1409

4 A Figure 1. Eyelid findings following intra-arterial chemotherapy for retinoblastoma. A, Case 2, with eyelid edema 1 week after intra-arterial chemotherapy., Case 8, with no eyelid abnormality 1 year after intra-arterial chemotherapy. A C D Figure 2. Retinal pigment epithelial (RPE) alterations after intra-arterial chemotherapy (IAC) for retinoblastoma. A and, Case 4. Peripheral retinoblastoma with vitreous seeding was treated with IAC. Note the normal RPE at the nasal juxtapapillary region at the initial visit (A) and mild RPE alterations following 1 cycle of IAC (). C and D, Case 10. C, Recurrent retinoblastoma on the temporal margin of the regressed tumor (at the photograph s edge) following chemoreduction was treated with IAC. Note the unaffected RPE superior to the calcified mass at the time of the first IAC treatment (C) and then moderate RPE alterations with choroidal atrophy 6 months later (D). preexisting mild vitreous hemorrhage worsened following IAC and there was no view of the fundus. However, on arteriography, the ophthalmic artery showed stenosis and further therapy was discontinued. Of those with clinically visible ophthalmic artery occlusion, the main fundus features included central retinal artery obstruction (n=1), multifocal branch retinal artery obstruction (n=3), and evidence of choroidal atrophy (n=2). In 1 case, the ophthalmic artery obstruction and related branch retinal artery obstruction resolved completely within 1 month. In 1 case, the choroid was camouflaged by extensive confluent subretinal seeding. 1410

5 A C D Figure 3. Evolution of retinal pigment epithelial alterations after intra-arterial chemotherapy for retinoblastoma in case 8. Macular retinoblastoma (A) was treated with 1 cycle of IAC, with complete response at 1 month (). Nasal retinal pigment epithelial alterations were barely visible at 1 month (C) but evolved to a broad, subtle, linear retinal pigment epithelial atrophy at 11 months follow-up (D), despite no further chemotherapy. There were no visible emboli in any artery on ophthalmoscopy or fluorescein angiography. On fluorescein angiography, the 3 cases of posttreatment central retinal artery obstruction and branch retinal artery obstruction showed slow perfusion of the attenuated retinal arteries. Despite the poor flow, no iris neovascularization, neovascular glaucoma, or pain developed. One patient who initially had mild vitreous hemorrhage (presumably from pretreatment retinal neovascularization) eventually developed dense vitreous hemorrhage and neovascular glaucoma and required enucleation. Of the 5 eyes with iris neovascularization before treatment, only 1 had persistent neovascularization after treatment (requiring enucleation) and the remainder showed resolution of neovascularization with tumor regression and resolution of the retinal detachment. Following IAC, attenuation of the choroidal vascular bed was found in 5 cases. Of 13 patients followed up for 6 months or longer, choroidal atrophy was noted in 4 of the 9 patients (44%) in whom a clear view of the choroid was obtained. This finding was noted in 1 of 3 patients followed up for less than 6 months. This finding initially manifested as focal or diffuse RPE mottling with gradual loss of the choriocapillaris and, in some cases, the larger choroidal vessels. Following IAC, RPE mottling was detected in 9 eyes and with gradual progression over time (Figure 3 and Figure 5). In 3 eyes, there was poor to no view of the RPE due to overlying vitreous hemorrhage or confluent subretinal seeds. COMMENT We have used IAC for longer than 2 years in the management of selected cases of retinoblastoma. 16 We have observed both complete response and less impressive partial response of retinoblastoma. We have used this therapy for primary as well as recurrent retinoblastoma. In a separate article describing our 2-year experience with this approach, we found 100% tumor control for primary retinoblastoma in group C and D eyes and 33% control for group E eyes. 16 However, we use this new therapy with caution because of the potential for local ocular toxic effects. 1411

6 A C D Figure 4. Transient ophthalmic artery obstruction following intra-arterial chemotherapy for retinoblastoma in case 15. Macular retinoblastoma (A) with retinal detachment showed enhancement on fluorescein angiography () and good peripheral retinal perfusion. Following 1 cycle of intra-arterial chemotherapy, there was ophthalmic artery stenosis with poor retinal and choroidal perfusion clinically (C) and angiographically (D). Retinal perfusion improved to normal by 2 months follow-up and no further chemotherapy was delivered. Several benefits of IAC should be highlighted, including the localized chemotherapy injection, few necessary sessions (approximately 2 doses), 1-day delivery, and systemic tolerance. On the other hand, several concerns about IAC should be realized, including the potential for vascular injury or toxic effects, end-organ ischemia, and fluoroscopic-related radiation exposure. Following IAC, some mild and some severe shortterm effects should be anticipated. The mild short-term effects included eyelid edema, blepharoptosis, and orbital congestion, sometimes with temporary dysmotility. These findings were common and typically resolved within a few months, leaving minimal or no residua and without need for surgical repair. In 1 case of dysmotility, the features were consistent with transient oculomotor (third nerve) palsy. This finding has been previously observed in 3 of 7 patients (43%). 20 The more serious short-term effects involved acute and chronic vascular insult, particularly to the ophthalmic, retinal, and choroidal vessels. Ophthalmic artery stenosis or obstruction manifested with pale optic nerve, reduced retinal blood flow, and patchy reduction in choroidal blood flow. In our series, occlusion or stenosis of the ophthalmic artery was observed in 4 cases, with resolution in 1 case by 1 month of follow-up. In 3 cases, the stenosis was confirmed under fluoroscopy at attempted catheterization for a repeated dose. No affected eyes developed neovascularization of the disc or retina, neovascular glaucoma, or pain or required enucleation for this finding. The specific pathogenesis of the vascular insult remains unknown, but it could be secondary to catheterrelated injury to the endothelium, chemotherapy toxic effects on the vessel or specifically the endothelium, or embolization from foreign body contamination or chemotherapy precipitation. There were no clinically visible emboli in any case. The prefluoroscopy and postfluoroscopy findings showed that the ophthalmic artery was patent at the time of IAC in all cases, suggesting a lack of catheter-related dissection, trauma, or embolism. The onset of ophthalmic and retinal arterial obstruction was often evident by the 1-month follow-up, whereas the choroidal vascular atrophy generally took several months to become apparent, showing slow progression. These findings might suggest chemotherapy toxic effects. This finding of ischemia has been previously recognized as a serious short-term risk of this therapy. Gobin et al noted that 4 of 46 eyes (9%) had severe ocular com- 1412

7 A C D Figure 5. Nontransient ophthalmic artery obstruction following intra-arterial chemotherapy for retinoblastoma in case 6. Macular retinoblastoma (A) showed complete response following 1 cycle of intra-arterial chemotherapy (). However, the intact nasal retina before treatment (C) showed broad choroidal atrophy at 1 year following treatment (D). plications which consisted of avascular retinopathies resulting in blindness. 12 We speculate that this finding could be overlooked in some cases, particularly if fluorescein angiography is not used. We perform fluorescein angiography at each session to confirm ocular blood flow. Occasionally, the retinal vessels appear intact clinically and the attenuation is detected only by fluorescein angiography. We encourage all centers using IAC to carefully study the ocular blood flow using fluorescein angiography. In comparison, our experience with intravenous chemoreduction in more than 500 children has revealed no similar incident of postchemotherapy ophthalmic, retinal, or choroidal ischemia. In contrast to the abrupt finding of ophthalmic or retinal vascular obstruction, the choroidal ischemic process manifested more slowly, with patchy focal areas of subtle RPE alterations that gradually evolved over several months into RPE atrophy, then choriocapillaris and occasionally large choroidal vessel atrophy. The features of choroidal atrophy were mild in most cases. It is recognized that the presence of serous retinal detachment or even a large tumor base could lead to chronic underlying RPE alterations, but in these cases, the RPE atrophy has been diffuse in previously uninvolved areas. The evolving sequence of diffuse, homogeneous choroidal atrophy might be suggestive of slow-onset involutional atrophy (Figure 3), perhaps from chemotherapy toxic effects more so than an acute embolic or traumatic event, which would more likely produce sector damage. Scrutiny of previously published articles reveals printed illustrations showing choroidal atrophy that was not recognized by the authors. 15,21 We speculate that subtle cases could be overlooked and this finding could be much more common than anticipated. Furthermore, we have examined in consultation children who were treated with IAC at other centers in whom choroidal atrophy was unequivocally evident over time. This finding can be subtle and delayed over several months. 22 Munier et al 22 identified sector choroidal atrophy as a particular concern in 15% of cases. The implications of choroidal atrophy on ultimate visual acuity in children could be profound. However, it should be realized that most of these eyes would have otherwise been enucleated and had complete loss of vision. Intra-arterial chemotherapy has been used for other systemic malignant neoplasms, and the technique has been complicated by vascular toxic effects, similar to our experience with retinoblastoma. For example, Madaje- 1413

8 wicz et al 23 found IAC to be more beneficial for survival if delivered before rather than along with radiotherapy for glioblastoma multiforme. However, other trials showed contrasting findings. 24,25 Grimson et al 24 emphasized that IAC for brain malignant neoplasms could lead to dosedependent eye pain, vision loss, and encephalopathy, particularly if the injection into the internal carotid artery was below the take-off of the ophthalmic artery. Shapiro et al 25 compared IAC vs intravenous chemotherapy in 448 patients with malignant glioma and showed reduced survival for the IAC group plus related toxic effects of encephalopathy (9.5%) and ipsilateral vision loss (15.5%). Fortunately, we have not witnessed any evidence of toxic effects in the brain in our patients during this 2-year period. For pediatric malignant neoplasms, IAC has been used for osteosarcoma. When used as a monotherapy, intraarterial infusion of cisplatin appeared to be more effective against osteosarcoma than intravenous infusion. 26 However, other reports showed that intra-arterial superiority was diminished when multiagent therapy was needed. 27,28 One report entitled Intraarterial Chemotherapy for Osteosarcoma: Does the Result Really Justify the Effort? by ielack et al 28 highlighted the risks of this procedure. They indicated that the risks and discomforts of IAC for osteosarcoma were considerable, intractable pain occurred in more than 50% of the infusions, and local complications of vasculopathic ischemic necrosis, thrombosis, infection, and neuropathy were found. With regard to retinoblastoma, a major concern is the potential for metastatic disease, especially if the eye shows features of high-risk retinoblastoma with tumor invasion into the choroid or postlaminar optic nerve. Often this is not clinically apparent and is found only on histopathologic examination following enucleation In a comprehensive histopathologic analysis of nearly 300 eyes, high-risk features were found in 18.5% of cases, with retrolaminar optic nerve invasion in 10.4% and massive choroidal invasion in 8.1%. 32 Eyes with high-risk features develop metastasis (leading to death) in 24%, unless intervention with systemic intravenous chemotherapy is delivered, reducing the metastatic rate to 4%. 33 Intra-arterial chemotherapy is designed to selectively treat the eye and would likely be insufficient for remote subclinical metastatic disease. Over time, this could be a threat to the patient s life prognosis. Fortunately, in our series, there was no evidence of metastatic retinoblastoma. However, we are aware of 3 cases of metastatic retinoblastoma from other centers using this technique. The technique of IAC requires fluoroscopy for accurate guidance of the catheter. The cumulative radiation exposure with potential risk for toxic effects has been explored by Vijayakrishnan et al. 34 They found doses of mrad to the affected eye, 3533 mrad to the contralateral eye, and 5560 mrad to the brain. Other sensitive organs like thyroid, bone marrow, and gonads received a small dose far below the minimal toxic level, but the dose to the lens was possibly cataractogenic. They cautioned that fluoroscopic use should be minimized to avoid radiation-related toxic effects in these patients. In summary, despite dramatic response of retinoblastoma to IAC, 1,6,13-16 there is concern for toxic effects from both chemotherapy and radiotherapy exposure. With this in mind, we cautiously use IAC for retinoblastoma in selected cases. Submitted for Publication: January 6, 2011; final revision received April 5, 2011; accepted April 6, Published Online: June 13, doi: /archophthalmol Correspondence: Carol L. Shields, MD, Ocular Oncology Service, Ste 1440, Wills Eye Institute, 840 Walnut St, Philadelphia, PA (carol.shields@shieldsoncology.com). Author Contributions: Dr C. L. Shields had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Financial Disclosure: None reported. Funding/Support: This study was supported by the Eye Tumor Research Foundation, Philadelphia, Pennsylvania (Drs C. L. Shields and J. A. Shields). Role of the Sponsor: The funder had no role in the design and conduct of the study; in the collection, analysis, and interpretation of the data; or in the preparation, review, or approval of the manuscript. REFERENCES 1. Shields CL, Shields JA. Intra-arterial chemotherapy for retinoblastoma: the beginning of a long journey. Clin Experiment Ophthalmol. 2010;38(6): Shields JA, Shields CL. Management of retinoblastoma. In: Shields JA, Shields CL, eds. Intraocular Tumors: An Atlas and Textbook. 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2008: Roarty JD, McLean IW, Zimmerman LE. Incidence of second neoplasms in patients with bilateral retinoblastoma. Ophthalmology. 1988;95(11): Shields CL, Mashayekhi A, Cater J, Shelil A, Meadows AT, Shields JA. Chemoreduction for retinoblastoma: analysis of tumor control and risks for recurrence in 457 tumors. Am J Ophthalmol. 2004;138(3): Shields CL, Shields JA, De Potter P, et al. Plaque radiotherapy in the management of retinoblastoma: use as a primary and secondary treatment. Ophthalmology. 1993;100(2): Shields CL, Shields JA. Retinoblastoma management: advances in enucleation, intravenous chemoreduction, and intra-arterial chemotherapy. Curr Opin Ophthalmol. 2010;21(3): Reese A, Hyman GA, Tapley ND, Forrest AW. The treatment of retinoblastoma by x-ray and triethylene melamine. AMA Arch Ophthalmol. 1958;60(5): Kiribuchi M. Retrograde infusion of anti-cancer drugs to ophthalmic artery for intraocular malignant tumors [in Japanese]. Nippon Ganka Gakkai Zasshi. 1966; 70(11): Yamane T, Kaneko A, Mohri M. The technique of ophthalmic arterial infusion therapy for patients with intraocular retinoblastoma. Int J Clin Oncol. 2004;9(2): Suzuki S, Kaneko A. Management of intraocular retinoblastoma and ocular prognosis. Int J Clin Oncol. 2004;9(1): Gobin P, Abramson DA. A phase I/II study of intra-arterial (ophthalmic artery) chemotherapy for intraocular retinoblastoma [abstract 60]. J Vasc Interv Radiol. 2008;19(2)(suppl):s24-s25. doi: /j.jvir Gobin P, Marr, Dunkel I, rodie S, Abramson D. Intra-arterial chemotherapy (chemosurgery) in the ophthalmic artery for the treatment of retinoblastoma in children: 3 year experience. J Neurointerv Surg. 2009;1(1): doi: /jnis n. 13. Abramson DH, Dunkel IJ, rodie SE, Kim JW, Gobin YP. A phase I/II study of direct intraarterial (ophthalmic artery) chemotherapy with melphalan for intraocular retinoblastoma initial results. Ophthalmology. 2008;115(8): Abramson DH. Super selective ophthalmic artery delivery of chemotherapy for intraocular retinoblastoma: chemosurgery the first Stallard lecture. r J Ophthalmol. 2010;94(4): Abramson DH, Dunkel IJ, rodie SE, Marr, Gobin YP. Superselective ophthal- 1414

9 mic artery chemotherapy as primary treatment for retinoblastoma (chemosurgery). Ophthalmology. 2010;117(8): Shields CL, ianciotto CG, Jabbour P, et al. Intra-arterial chemotherapy for retinoblastoma: report No. 1, control ofretinal tumors, subretinal seeds, and vitreous seeds[publishedonlinejune13,2011].archophthalmol.doi: /archophthalmol Shields CL, Ramasubramanian A, Rosenwasser R, Shields JA. Superselective catheterization of the ophthalmic artery for intraarterial chemotherapy for retinoblastoma. Retina. 2009;29(8): Inomata M, Kaneko A. Chemosensitivity profiles of primary and cultured human retinoblastoma cells in a human tumor clonogenic assay. Jpn J Cancer Res. 1987; 78(8): Mathews J, Goel R, Evans WK, Shamji F, Stewart DJ. Arterial occlusion in patients with peripheral vascular disease treated with platinum-based regimens for lung cancer. Cancer Chemother Pharmacol. 1997;40(1): Smith V, Kingston JE, Hungerford JL, et al. Complications of direct intraophthalmic artery melphalan treatment for refractory retinoblastoma. Paper presented at: American Academy of Ophthalmology 2010 Joint Meeting; October 17, 2010; Chicago, IL. 21. Abramson DH, Dunkel IJ, rodie SE, Marr, Gobin YP. ilateral superselective ophthalmic artery chemotherapy for bilateral retinoblastoma: tandem therapy. Arch Ophthalmol. 2010;128(3): Munier FL, eck-popovic M, almer A, Gaillard MC, ovey E, inaghi S. Occurrence of sectoral choroidal occlusive vasculopathy and retinal arteriolar embolization after superselective ophthalmic artery chemotherapy for advanced intraocular retinoblastoma. Retina. 2011;31(3): Madajewicz S, Chowhan N, Tfayli A, et al. Therapy for patients with high grade astrocytoma using intraarterial chemotherapy and radiation therapy. Cancer. 2000; 88(10): Grimson S, Mahaley MS Jr, Dubey HD, Dudka L. Ophthalmic and central nervous system complications following intracarotid CNU (carmustine). J Clin Neuroophthalmol. 1981;1(4): Shapiro WR, Green S, urger PC, et al. A randomized comparison of intraarterial vs intravenous CNU, with or without intravenous 5-fluorouracil, for newly diagnosed patients with malignant glioma. J Neurosurg. 1992;76(5): JaffeN,PrudichJ,KnappJ,etal.Treatmentofprimaryosteosarcomawithintra-arterial and intravenous high-dose methotrexate. J Clin Oncol. 1983;1(7): Winkler K, ielack S, Delling G, et al. Effect of intraarterial vs intravenous cisplatin in addition to systemic doxorubicin, high-dose methotrexate, and ifosfamide on histologic tumor response in osteosarcoma (study COSS-86). Cancer. 1990;66(8): ielack SS, ieling P, Erttmann R, Winkler K. Intraarterial chemotherapy for osteosarcoma: does the result really justify the effort? In: Humphrey C, ed. Osteosarcoma in Adolescent and Young Adults. oston, MA: Kluwer Academic Publishers; 1993: Magramm I, Abramson DH, Ellsworth RM. Optic nerve involvement in retinoblastoma. Ophthalmology. 1989;96(2): Shields CL, Shields JA, aez K, Cater JR, De Potter P. Optic nerve invasion of retinoblastoma: metastatic potential and clinical risk factors. Cancer. 1994; 73(3): Shields CL, Shields JA, aez KA, Cater J, De Potter PV. Choroidal invasion of retinoblastoma: metastatic potential and clinical risk factors. r J Ophthalmol. 1993;77(9): Eagle RCJr. High-risk features and tumor differentiation in retinoblastoma: a retrospective histopathologic study. Arch Pathol Lab Med. 2009;133(8): Honavar SG, Singh AD, Shields CL, et al. Postenucleation adjuvant therapy in high-risk retinoblastoma. Arch Ophthalmol. 2002;120(7): Vijayakrishnan R, ShieldsCL, RamasubramanianA, EmrichJ, RosenwasserR, Shields JA. Irradiation toxic effects during intra-arterial chemotherapy for retinoblastoma: should we be concerned? Arch Ophthalmol. 2010;128(11): Visit As an individual subscriber you can search the full text of Archives of Ophthalmology or all 10 JAMA & Archives Journals. Advanced Search enables you to search by citation, title, author, keywords, and date ranges. You can search by journal or by topic collection. Finally, you can choose to search only tables and figures. 1415

CLINICAL SCIENCES. Intra-arterial Chemotherapy for Retinoblastoma. Report No. 1, Control of Retinal Tumors, Subretinal Seeds, and Vitreous Seeds

CLINICAL SCIENCES. Intra-arterial Chemotherapy for Retinoblastoma. Report No. 1, Control of Retinal Tumors, Subretinal Seeds, and Vitreous Seeds ONLINE FIRST CLINICAL SCIENCES Intra-arterial Chemotherapy for Retinoblastoma Report No. 1, Control of Retinal Tumors, Subretinal Seeds, and Vitreous Seeds Carol L. Shields, MD; Carlos G. Bianciotto, MD;

More information

Successful Treatment of Macular Retinoblastoma With Superselective Ophthalmic Artery Infusion of Melphalan

Successful Treatment of Macular Retinoblastoma With Superselective Ophthalmic Artery Infusion of Melphalan Successful Treatment of Macular Retinoblastoma With Superselective Ophthalmic Artery Infusion of Melphalan Theodora Hadjistilianou, MD; Gianni Coriolani, MD; Sandra racco, MD; Paola Gennari, MD; Mauro

More information

Financial Disclosures

Financial Disclosures Retinoblastoma Management: Update Jesse L. Berry, MD Associate Director, Ocular Oncology Service Associate Program Director USC/CHLA, Keck School of Medicine Financial Disclosures Research Support: Bright

More information

Update on Intraocular Oncology

Update on Intraocular Oncology Update on Intraocular Oncology Suganeswari Ganesan Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya Correspondence to: Suganeswari Ganesan, Consultant, Vitreoretinal and Oncology services,

More information

Selective Intra-Ophthalmic Artery Chemotherapy for Advanced Intraocular Retinoblastoma: CCHMC Early Experience. A thesis submitted to the

Selective Intra-Ophthalmic Artery Chemotherapy for Advanced Intraocular Retinoblastoma: CCHMC Early Experience. A thesis submitted to the Selective Intra-Ophthalmic Artery Chemotherapy for Advanced Intraocular Retinoblastoma: CCHMC Early Experience A thesis submitted to the Graduate School of the University of Cincinnati in partial fulfillment

More information

Tiffany L. Kruger, D.O. Children s Hospital of Michigan Wayne State University/Kresge Eye Institute

Tiffany L. Kruger, D.O. Children s Hospital of Michigan Wayne State University/Kresge Eye Institute Pediatric Cases Nt Not To Be Missed Tiffany L. Kruger, D.O. Pediatric Ophthalmology Fellow Children s Hospital of Michigan Wayne State University/Kresge Eye Institute Case Presentation CC: Left eye turns

More information

The Egyptian Journal of Hospital Medicine (October 2018) Vol. 73 (9), Page

The Egyptian Journal of Hospital Medicine (October 2018) Vol. 73 (9), Page The Egyptian Journal of Hospital Medicine (October 2018) Vol. 73 (9), Page 7412-7417 Mohammad Ahmad Wahdan 1, Abd Allah El Hussainy Shaleel 1, Hossam El Dein Ahmed El Zomor 2, Hossam El Din Hassan El Sayed

More information

Indocyanine Green-Enhanced Transpupillary Thermotherapy for Retinoblastoma: Analysis of 42 Tumors

Indocyanine Green-Enhanced Transpupillary Thermotherapy for Retinoblastoma: Analysis of 42 Tumors Indocyanine Green-Enhanced Transpupillary Thermotherapy for Retinoblastoma: Analysis of 42 Tumors Murat Hasanreisoglu, MD; Jarin Saktanasate, MD; Rachel Schwendeman, NR-CMA; Jerry A. Shields, MD; Carol

More information

CLINICAL SCIENCES. Histopathologic Observations After Intra-arterial

CLINICAL SCIENCES. Histopathologic Observations After Intra-arterial ONLINE FIRST CLINICAL SCIENCES Histopathologic Observations After Intra-arterial Chemotherapy for Retinoblastoma Ralph C. Eagle Jr, MD; Carol L. Shields, MD; Carlos Bianciotto, MD; Pascal Jabbour, MD;

More information

CLINICAL SCIENCES. with thermotherapy or cryotherapy is an important

CLINICAL SCIENCES. with thermotherapy or cryotherapy is an important CLINICAL SCIENCES Macular Retinoblastoma Managed With Chemoreduction Analysis of Tumor Control With or Without Adjuvant Thermotherapy in 68 Tumors Carol L. Shields, MD; Arman Mashayekhi, MD; Jacqueline

More information

A Case of Carotid-Cavernous Fistula

A Case of Carotid-Cavernous Fistula A Case of Carotid-Cavernous Fistula By : Mohamed Elkhawaga 2 nd Year Resident of Ophthalmology Alexandria University A 19 year old male patient came to our outpatient clinic, complaining of : -Severe conjunctival

More information

Retinoblastoma. all information provided by:

Retinoblastoma. all information provided by: basic information & treatment plans of Retinoblastoma all information provided by: Ocular Oncology Service Wills Eye Hospital Philadelphia, PA 840 WALNUT STREET SUITE 1440, PHILADELPHIA, PA 19107 WWW.FIGHTEYECANCER.COM

More information

Misdiagnosed Vogt-Koyanagi-Harada (VKH) disease and atypical central serous chorioretinopathy (CSC)

Misdiagnosed Vogt-Koyanagi-Harada (VKH) disease and atypical central serous chorioretinopathy (CSC) HPTER 12 Misdiagnosed Vogt-Koyanagi-Harada (VKH) disease and atypical central serous chorioretinopathy (S) linical Features VKH disease is a bilateral granulomatous panuveitis often associated with exudative

More information

CLINICAL SCIENCES. Irradiation Toxic Effects During Intra-arterial Chemotherapy for Retinoblastoma

CLINICAL SCIENCES. Irradiation Toxic Effects During Intra-arterial Chemotherapy for Retinoblastoma CLINICAL SCIENCES Irradiation Toxic Effects During Intra-arterial Chemotherapy for Retinoblastoma Should We Be Concerned? Rajakrishnan Vijayakrishnan, MD; Carol L. Shields, MD; Aparna Ramasubramanian,

More information

Retinoblastoma: A Review of Current Treatment Strategies

Retinoblastoma: A Review of Current Treatment Strategies Retinoblastoma: A Review of Current Treatment Strategies ABSTRACT: Since the last review of retinoblastoma therapies in the 15 years ago, there has been a significant shift in the approach to treating

More information

CHEMOREDUCTION FOR RETINOBLASTOMA: ANALYSIS OF TUMOR CONTROL AND RISKS FOR RECURRENCE IN 457 TUMORS

CHEMOREDUCTION FOR RETINOBLASTOMA: ANALYSIS OF TUMOR CONTROL AND RISKS FOR RECURRENCE IN 457 TUMORS CHEMOREDUCTION FOR RETINOBLASTOMA: ANALYSIS OF TUMOR CONTROL AND RISKS FOR RECURRENCE IN 457 TUMORS BY Carol L. Shields MD,* Arman Mashayekhi MD, Jacqueline Cater PhD, Abdallah Shelil MD, Anna T. Meadows

More information

Neovascular Glaucoma Associated with Cilioretinal Artery Occlusion Combined with Perfused Central Retinal Vein Occlusion

Neovascular Glaucoma Associated with Cilioretinal Artery Occlusion Combined with Perfused Central Retinal Vein Occlusion Neovascular Glaucoma Associated with Cilioretinal Artery Occlusion Combined with Perfused Central Retinal Vein Occlusion Man-Seong Seo,* Jae-Moon Woo* and Jeong-Jin Seo *Department of Ophthalmology, Chonnam

More information

EVIDENCE BASED MANAGEMENT FOR Retinoblastoma

EVIDENCE BASED MANAGEMENT FOR Retinoblastoma CLINICAL EVALUATION & STAGING EVIDENCE BASED MANAGEMENT FOR Retinoblastoma Symptoms & Signs : White eye reflex, squint, diminished vision, red eye, proptosis. History - Family history of retinoblastoma

More information

Postenucleation adjuvant chemotherapy with vincristine, etoposide, and carboplatin for the treatment of high-risk retinoblastoma.

Postenucleation adjuvant chemotherapy with vincristine, etoposide, and carboplatin for the treatment of high-risk retinoblastoma. Thomas Jefferson University Jefferson Digital Commons Wills Eye Institute Papers Wills Eye Institute 11-1-2011 Postenucleation adjuvant chemotherapy with vincristine, etoposide, and carboplatin for the

More information

J of Evolution of Med and Dent Sci/ eissn , pissn / Vol. 4/ Issue 55/ July 09, 2015 Page 9665

J of Evolution of Med and Dent Sci/ eissn , pissn / Vol. 4/ Issue 55/ July 09, 2015 Page 9665 RARE PRESENTATION OF BILATERAL CHOROIDAL METASTASIS FROM PRIMARY MUCO-EPIDERMOID CARCINOMA OF THE PAROTID GLAND: A G. Premalatha 1, Ramya Seetamraju 2 HOW TO CITE THIS ARTICLE: G. Premalatha, Ramya Seetamraju.

More information

Rare Presentation of Ocular Toxoplasmosis

Rare Presentation of Ocular Toxoplasmosis Case Report Rare Presentation of Ocular Toxoplasmosis Rakhshandeh Alipanahi MD From Department of Ophthalmology, Nikookari Eye Hospital, Tabriz University of Medical Sciences, Tabriz, Iran. Correspondence:

More information

Local Intra-arterial Fibrinolysis in Treatment of Incomplete Ophthalmic Artery Occlusion A Case Report

Local Intra-arterial Fibrinolysis in Treatment of Incomplete Ophthalmic Artery Occlusion A Case Report CASE REPORT Local Intra-arterial Fibrinolysis in Treatment of Incomplete Ophthalmic Artery Occlusion A Case Report Shih-Ting Fang, Pao-Sheng Yen 1, Chien-Chung Chen, Yuan-Chieh Lee Department of Ophthalmology,

More information

A Patient s Guide to Diabetic Retinopathy

A Patient s Guide to Diabetic Retinopathy Diabetic Retinopathy A Patient s Guide to Diabetic Retinopathy 840 Walnut Street, Philadelphia PA 19107 www.willseye.org Diabetic Retinopathy 1. Definition Diabetic retinopathy is a complication of diabetes

More information

Eye-Preserving Therapy in Retinoblastoma: Prolonged Primary Chemotherapy Alone or Combined with Local Therapy

Eye-Preserving Therapy in Retinoblastoma: Prolonged Primary Chemotherapy Alone or Combined with Local Therapy pissn: 1011-8942 eissn: 2092-9382 Korean J Ophthalmol 2010;24(4):219-224 DOI: 10.3341/kjo.2010.24.4.219 Original Article Eye-Preserving Therapy in Retinoblastoma: Prolonged Primary Chemotherapy Alone or

More information

Primary Intravenous Chemotherapy for Group D Retinoblastoma: A 13-Year Retrospective Analysis

Primary Intravenous Chemotherapy for Group D Retinoblastoma: A 13-Year Retrospective Analysis Primary Intravenous Chemotherapy for Group D Retinoblastoma: A 13-Year Retrospective Analysis 1,2 Ido D Fabian, 1,2 Andrew W Stacey, 2 Kenneth P Johnson, 2 Zerrin Onadim, 2,3 Tanzina Chowdhury 2,3 Catriona

More information

Choroidal infarction following ophthalmic artery chemotherapy

Choroidal infarction following ophthalmic artery chemotherapy https://doi.org/10.1186/s40942-018-0119-x International Journal of Retina and Vitreous CASE REPORT Open Access Choroidal infarction following ophthalmic artery chemotherapy Kelley J. Bohm 1, Y. Pierre

More information

Michael P. Blair, MD Retina Consultants, Ltd Libertyville/Des Plaines, Illinois Clinical Associate University of Chicago 17 October 2015

Michael P. Blair, MD Retina Consultants, Ltd Libertyville/Des Plaines, Illinois Clinical Associate University of Chicago 17 October 2015 Michael P. Blair, MD Retina Consultants, Ltd Libertyville/Des Plaines, Illinois Clinical Associate University of Chicago 17 October 2015 So What Parts of the Eye Retina are Affected by VHL Neural tissue

More information

measure of your overall performance. An isolated glucose test is helpful to let you know what your sugar level is at one moment, but it doesn t tell you whether or not your diabetes is under adequate control

More information

Coagulative necrosis in a malignant melanoma of the choroid at the macula with extensive subretinal hemorrhage

Coagulative necrosis in a malignant melanoma of the choroid at the macula with extensive subretinal hemorrhage Coagulative necrosis in a malignant melanoma of the choroid at the macula with extensive subretinal hemorrhage Robert D. Yee, Robert Y. Foos, and Bradley R. Straatsma The authors present a case report

More information

A RESOURCE MANUAL MANAGEMENT RETINOBLASTOMA LOW & MIDDLE RESOURCE SETTINGS

A RESOURCE MANUAL MANAGEMENT RETINOBLASTOMA LOW & MIDDLE RESOURCE SETTINGS A RESOURCE MANUAL FOR THE MANAGEMENT OF RETINOBLASTOMA IN LOW & MIDDLE RESOURCE SETTINGS UPDATED SEPTEMBER 2017 1 CONTENTS PAGE INTRODUCTION 3 SERVICE LEVEL for Rb MANAGEMENT 4 SCREENING 5 EARLY DIAGNOSIS

More information

Carotid Cavernous Fistula

Carotid Cavernous Fistula Chief Complaint: Double vision. Carotid Cavernous Fistula Alex W. Cohen, MD, PhD; Richard Allen, MD, PhD May 14, 2010 History of Present Illness: A 46 year old female patient presented to the Oculoplastics

More information

Retina Center of Oklahoma Sam S. Dahr, M.D. Adult Intraocular Tumors

Retina Center of Oklahoma   Sam S. Dahr, M.D. Adult Intraocular Tumors Adult Intraocular Tumors Sam S. Dahr, M.D. Retina Center of Oklahoma www.retinacenteroklahoma.com www.rcoklahoma.com Table of Contents Posterior uveal malignant melanoma Uveal metastasis Uveal melanoma

More information

Clinical Study Choroidal Thickness in Eyes with Unilateral Ocular Ischemic Syndrome

Clinical Study Choroidal Thickness in Eyes with Unilateral Ocular Ischemic Syndrome Hindawi Publishing Corporation Journal of Ophthalmology Volume 215, Article ID 62372, 5 pages http://dx.doi.org/1.1155/215/62372 Clinical Study Choroidal Thickness in Eyes with Unilateral Ocular Ischemic

More information

Bilateral Retinoblastoma Joseph Junewick, MD FACR

Bilateral Retinoblastoma Joseph Junewick, MD FACR Bilateral Retinoblastoma Joseph Junewick, MD FACR 06/11/2010 History 17 month old adopted female with proptosis. Diagnosis Bilateral Retinoblastoma Discussion Retinoblastoma is the most common pediatric

More information

Preliminary report on effect of retinal panphotocoagulation on rubeosis iridis and

Preliminary report on effect of retinal panphotocoagulation on rubeosis iridis and British Journal of Ophthalmology, 1977, 61, 278-284 Preliminary report on effect of retinal panphotocoagulation on rubeosis iridis and neovascular glaucoma LEILA LAATIKAINEN From Moorfields Eye Hospital,

More information

Advances in Ocular Imaging

Advances in Ocular Imaging Wide angle fundus imaging and Fuorescein angiography in evaluation and management of intraocular tumors Ihab Saad Othman, MD, FRCS Professor of Ophthalmology Cairo University Cairo, Egypt Advances in Ocular

More information

Case Series and Brief Reports. Ocul Oncol Pathol 2017;3:34 40 DOI: /

Case Series and Brief Reports. Ocul Oncol Pathol 2017;3:34 40 DOI: / Case Series and Brief Reports Received: April 14, 2016 Accepted after revision: July 24, 2016 Published online: September 14, 2016 Acute Hemorrhagic Retinopathy following Intravitreal Melphalan Injection

More information

Sudden Vision Loss. Brendan Girschek, MD, FRCSC, FACS Vitreoretinal Surgery Cedar Valley Medical Specialists

Sudden Vision Loss. Brendan Girschek, MD, FRCSC, FACS Vitreoretinal Surgery Cedar Valley Medical Specialists Sudden Vision Loss Brendan Girschek, MD, FRCSC, FACS Vitreoretinal Surgery Cedar Valley Medical Specialists My Credentials -Residency in Ophthalmology at the LSU Eye Center in New Orleans, LA -Fellowship

More information

ZEISS AngioPlex OCT Angiography. Clinical Case Reports

ZEISS AngioPlex OCT Angiography. Clinical Case Reports Clinical Case Reports Proliferative Diabetic Retinopathy (PDR) Case Report 969 PROLIFERATIVE DIABETIC RETINOPATHY 1 1-year-old diabetic female presents for follow-up of proliferative diabetic retinopathy

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Park KH, Kim YK, Woo SJ, et al. Iatrogenic occlusion of the ophthalmic artery after cosmetic facial filler injections: a national survey by the Korean Retina Society. JAMA

More information

Moncef Khairallah, MD

Moncef Khairallah, MD Moncef Khairallah, MD Department of Ophthalmology, Fattouma Bourguiba University Hospital Faculty of Medicine, University of Monastir Monastir, Tunisia INTRODUCTION IU: anatomic form of uveitis involving

More information

Photocoagulation of disciform macular lesions

Photocoagulation of disciform macular lesions British Journal of Ophthalmology, 1979, 63, 669-673 Photocoagulation of disciform macular lesions with krypton laser A. C. BIRD AND R. H. B. GREY From the Institute of Ophthalmology, Moorfields Eye Hospital,

More information

2009 REIMBURSEMENT GUIDE, VISUCAM and VISUCAM NM/FA

2009 REIMBURSEMENT GUIDE, VISUCAM and VISUCAM NM/FA 2009 REIMBURSEMENT GUIDE FF 450 PLUS PRO NM, VISUCAM and VISUCAM NM/FA Zeiss Fundus Cameras INTRODUCTION The following guide provides an overview of billing and reimbursement for procedures performed with

More information

Ophthalmology Unit Referral Guidelines

Ophthalmology Unit Referral Guidelines Ophthalmology Unit Referral Guidelines Austin Health Ophthalmology Unit holds sub-specialty sessions to discuss and plan the treatment of patients with specific ocular conditions. General including cataract

More information

Index. Note: Page numbers of article titles are in boldface type.

Index. Note: Page numbers of article titles are in boldface type. Index Note: Page numbers of article titles are in boldface type. A Acetazolamide, in idiopathic intracranial hypertension, 49 52, 60 Angiography, computed tomography, in cranial nerve palsy, 103 107 digital

More information

Fluorescein and Indocyanine Green Videoangiography of Choroidal Melanomas

Fluorescein and Indocyanine Green Videoangiography of Choroidal Melanomas luorescein and Indocyanine Green Videoangiography of Choroidal Melanomas Leyla S. Atmaca, igen Batioğlu and Pelin Atmaca Eye Clinic, Ankara University Medical School, Ankara, Turkey Purpose: This study

More information

Intra-arterial chemotherapy for retinoblastoma: a practical review

Intra-arterial chemotherapy for retinoblastoma: a practical review 326 Balderrama et al Intra-arterial chemotherapy for retinoblastoma Intra-arterial chemotherapy for retinoblastoma: a practical review Jorge Balderrama 1, Carlos A. Leal-Leal 2, Hernando Alvis-Miranda

More information

Case Follow Up. Sepi Jooniani PGY-1

Case Follow Up. Sepi Jooniani PGY-1 Case Follow Up Sepi Jooniani PGY-1 Triage 54 year old M Pt presents to prelim states noticed today he had reddness to eyes, states worse in R eye. Pt denies any pain or itching. No further complaints.

More information

Bilateral retinoblastoma in early infancy

Bilateral retinoblastoma in early infancy Saiju R et al Case report Bilateral retinoblastoma in early infancy Saiju R, Duwal S Tilganga Institute of Ophthalmology, Kathmandu, Nepal Abstract Introduction: Retinoblastoma is the most common primary

More information

RETINOBLASTOMA. Executive Summary

RETINOBLASTOMA. Executive Summary RETINOBLASTOMA Executive Summary Retinoblastoma is the most frequent neoplasm of the eye in childhood, and represents 3% of all childhood malignancies. It is a cancer of the very young; two-thirds are

More information

Pearls, Pitfalls and Advances in Neuro-Ophthalmology

Pearls, Pitfalls and Advances in Neuro-Ophthalmology Pearls, Pitfalls and Advances in Neuro-Ophthalmology Nancy J. Newman, MD Emory University Atlanta, GA Consultant for Gensight Biologics, Santhera Data Safety Monitoring Board for Quark AION Study Medical-legal

More information

OCT Angiography in Primary Eye Care

OCT Angiography in Primary Eye Care OCT Angiography in Primary Eye Care An Image Interpretation Primer Julie Rodman, OD, MS, FAAO and Nadia Waheed, MD, MPH Table of Contents Diabetic Retinopathy 3-6 Choroidal Neovascularization 7-9 Central

More information

Speaker Disclosure Statement. " Dr. Tim Maillet and Dr. Vladimir Kozousek have no conflicts of interest to disclose.

Speaker Disclosure Statement.  Dr. Tim Maillet and Dr. Vladimir Kozousek have no conflicts of interest to disclose. Speaker Disclosure Statement Dr. Tim Maillet and Dr. Vladimir Kozousek have no conflicts of interest to disclose. Diabetes Morbidity Diabetes doubles the risk of stroke. Diabetes quadruples the risk of

More information

Outline. Brief history and principles of ophthalmic ultrasound. Types of ocular ultrasound. Examination techniques. Types of Ultrasound

Outline. Brief history and principles of ophthalmic ultrasound. Types of ocular ultrasound. Examination techniques. Types of Ultrasound Ultrasound and Intraocular Tumors 2015 Ophthalmic Photographers' Society Mid-Year Program Cagri G. Besirli MD, PhD Kellogg Eye Center University of Michigan Outline Brief history and principles of ophthalmic

More information

Transvitreal Fine Needle Aspiration Biopsy of Choroidal Melanoma via Pars Plana Vitrectomy

Transvitreal Fine Needle Aspiration Biopsy of Choroidal Melanoma via Pars Plana Vitrectomy Surgical Technique Is pars plana vitrectomy a safe method for performing fine needle aspiration biopsy of choroidal melanoma? What are the rates of complications? Clinical Characteristics Do tumor thickness

More information

Diabetic Retinopathy

Diabetic Retinopathy Diabetic Retinopathy Diabetes can be classified into type 1 diabetes mellitus and type 2 diabetes mellitus, formerly known as insulin-dependent diabetes mellitus, and non-insulin diabetes mellitus, respectively.

More information

CATARACT IN RETINOBLASTOMA

CATARACT IN RETINOBLASTOMA CATARACT IN RETINOBLASTOMA P R O F. D R A D E L A L E I E L D I N, M D R E S E A E R C H I N S T I T U T E O F O P H T H A L M O L O G Y H E A D O F P E D I A T R I C O P H T H A L M O L O G Y A N D O

More information

Macular Hole Associated with Vogt-Koyanagi-Harada Disease at the Acute Uveitic Stage

Macular Hole Associated with Vogt-Koyanagi-Harada Disease at the Acute Uveitic Stage Published online: September 15, 2015 2015 The Author(s) Published by S. Karger AG, Basel 1663 2699/15/0063 0328$39.50/0 This article is licensed under the Creative Commons Attribution-NonCommercial 4.0

More information

Neuropathy (NAION) and Avastin. Clinical Assembly of the AOCOO-HNS Foundation May 9, 2013

Neuropathy (NAION) and Avastin. Clinical Assembly of the AOCOO-HNS Foundation May 9, 2013 Non Arteritic Ischemic Optic Neuropathy (NAION) and Avastin Shalom Kelman, MD Clinical Assembly of the AOCOO-HNS Foundation May 9, 2013 Anterior Ischemic Optic Neuropathy Acute, painless, visual loss,

More information

Dr/ Marwa Abdellah EOS /16/2018. Dr/ Marwa Abdellah EOS When do you ask Fluorescein angiography for optic disc diseases???

Dr/ Marwa Abdellah EOS /16/2018. Dr/ Marwa Abdellah EOS When do you ask Fluorescein angiography for optic disc diseases??? When do you ask Fluorescein angiography for optic disc diseases??? 1 NORMAL OPTIC DISC The normal optic disc on fluorescein angiography is fluorescent due to filling of vessels arising from the posterior

More information

The use of a high-intensity laser to create an anastomotic

The use of a high-intensity laser to create an anastomotic Case Report 866 Laser Chorioretinal Venous Anastomosis for Progressive Nonischemic Central Retinal Vein Occlusion Chih-Hsin Chen, MD; Chien-Hsiung Lai 1, MD; Hsi-Kung Kuo, MD The use of high or medium-intensity

More information

Neuro-Ocular Grand Rounds

Neuro-Ocular Grand Rounds Neuro-Ocular Grand Rounds Anthony B. Litwak,OD, FAAO VA Medical Center Baltimore, Maryland Dr. Litwak is on the speaker and advisory boards for Alcon and Zeiss Meditek COMMON OPTIC NEUROPATHIES THAT CAN

More information

Disease-Specific Fluorescein Angiography

Disease-Specific Fluorescein Angiography Ruth E. Picchiottino, CRA Disease-Specific Fluorescein Angiography 15 Disease-Specific Fluorescein Angiography Recommendations for tailoring retinal fluorescein angiography to diabetic retinopathy, macular

More information

Clinically Significant Macular Edema (CSME)

Clinically Significant Macular Edema (CSME) Clinically Significant Macular Edema (CSME) 1 Clinically Significant Macular Edema (CSME) Sadrina T. Shaw OMT I Student July 26, 2014 Advisor: Dr. Uwaydat Clinically Significant Macular Edema (CSME) 2

More information

Proton Radiation Therapy of Ocular Melanoma at PSI

Proton Radiation Therapy of Ocular Melanoma at PSI Proton Radiation Therapy of Ocular Melanoma at PSI G. Goitein*, A. Schalenbourg, J. Verwey*, A. Bolsi*, C. Ares*, L. Chamot, E. Hug*, L. Zografos *Paul Scherrer Institut, 5232 Villigen PSI; Hôpital Ophtalmique,

More information

Indocyanine Green Angiographic Findings of Chorioretinal Folds

Indocyanine Green Angiographic Findings of Chorioretinal Folds Indocyanine Green Angiographic Findings of Chorioretinal Folds Miho Haruyama, Mitsuko Yuzawa, Akiyuki Kawamura, Chikayo Yamazaki and Youko Matsumoto Department of Ophthalmology, Nihon University School

More information

Although photocoagulation and photodynamic PROCEEDINGS PEGAPTANIB SODIUM FOR THE TREATMENT OF AGE-RELATED MACULAR DEGENERATION *

Although photocoagulation and photodynamic PROCEEDINGS PEGAPTANIB SODIUM FOR THE TREATMENT OF AGE-RELATED MACULAR DEGENERATION * PEGAPTANIB SODIUM FOR THE TREATMENT OF AGE-RELATED MACULAR DEGENERATION Evangelos S. Gragoudas, MD ABSTRACT In December 24, the US Food and Drug Administration (FDA) approved pegaptanib sodium. Pegaptanib

More information

PEDIATRIC ORBITAL TUMORS RADIOTHERAPY PLANNING

PEDIATRIC ORBITAL TUMORS RADIOTHERAPY PLANNING PEDIATRIC ORBITAL TUMORS RADIOTHERAPY PLANNING ANATOMY ANATOMY CONT ANATOMY CONT. ANATOMY CONT. EYE OF A CHILD Normal tissue tolerance doses (in conventional #) TD 5/5 TD 50/5 Endpoint Gy Gy Optic nerve

More information

PART 1: GENERAL RETINAL ANATOMY

PART 1: GENERAL RETINAL ANATOMY PART 1: GENERAL RETINAL ANATOMY General Anatomy At Ora Serrata At Optic Nerve Head Fundoscopic View Of Normal Retina What Is So Special About Diabetic Retinopathy? The WHO definition of blindness is

More information

NEW YORK UNIVERSITY SCHOOL OF MEDICINE DEPARTMENT OF OPHTHALMOLOGY EDUCATIONAL OBJECTIVES AND GOALS

NEW YORK UNIVERSITY SCHOOL OF MEDICINE DEPARTMENT OF OPHTHALMOLOGY EDUCATIONAL OBJECTIVES AND GOALS NEW YORK UNIVERSITY SCHOOL OF MEDICINE DEPARTMENT OF OPHTHALMOLOGY EDUCATIONAL OBJECTIVES AND GOALS Revision Date: 6/30/06 Distribution Date: 7/6/06 The Department of Ophthalmology at the NYU Medical Center

More information

INFANTS WITH birth weights less

INFANTS WITH birth weights less CLINICAL SCIENCES of Retinopathy of Prematurity Michael X. Repka, MD; Earl A. Palmer, MD; Betty Tung, MS; for the Cryotherapy for Retinopathy of Prematurity Cooperative Group Objective: To report the timing

More information

Local Coverage Determination (LCD): Scanning Computerized Ophthalmic Diagnostic Imaging (SCODI) (L34431)

Local Coverage Determination (LCD): Scanning Computerized Ophthalmic Diagnostic Imaging (SCODI) (L34431) Local Coverage Determination (LCD): Scanning Computerized Ophthalmic Diagnostic Imaging (SCODI) (L34431) Links in PDF documents are not guaranteed to work. To follow a web link, please use the MCD Website.

More information

Early detection of Retinoblastoma in children. Max Mantik

Early detection of Retinoblastoma in children. Max Mantik Early detection of Retinoblastoma in children Max Mantik Introduction The most common primary intraocular malignancy of childhood 10 to 15 % of cancers that occur within the first year of life Typical

More information

MEDICAL POLICY SUBJECT: TRANSPUPILLARY THERMOTHERAPY. POLICY NUMBER: CATEGORY: Technology Assessment

MEDICAL POLICY SUBJECT: TRANSPUPILLARY THERMOTHERAPY. POLICY NUMBER: CATEGORY: Technology Assessment MEDICAL POLICY SUBJECT: TRANSPUPILLARY EDITED DATE: 08/20/15, 08/18/16, 08/17/17 PAGE: 1 OF: 6 If a product excludes coverage for a service, it is not covered, and medical policy criteria do not apply.

More information

Posterior Segment Update

Posterior Segment Update Posterior Segment Update Featured Speaker: Dr. Kyle Cheatham, FAAO, DIP ABO DISCLOSURE STATEMENT We have no direct financial or proprietary interest in any companies, products or services mentioned in

More information

SITE OF ELECTIVE: OCULAR ONCOLOGY DEPARTMENT, WILLS EYE INSTITUTE, PHILADELPHIA, PENNSYLVANNIA, USA

SITE OF ELECTIVE: OCULAR ONCOLOGY DEPARTMENT, WILLS EYE INSTITUTE, PHILADELPHIA, PENNSYLVANNIA, USA TEJAL MAGAN FINAL YEAR MEDICAL ELECTIVE REPORT 2015 SITE OF ELECTIVE: OCULAR ONCOLOGY DEPARTMENT, WILLS EYE INSTITUTE, PHILADELPHIA, PENNSYLVANNIA, USA FUNDING: ROYAL COLLEGE OF OPHTHALMOLOGISTS PATRICK

More information

CONFLUENCE - EYE AND BEYOND

CONFLUENCE - EYE AND BEYOND Day 1, December 13, 2013 OCULOPLASTY Session 1, Instruction courses 1. Entropion and Ectropion - Refinements in Evaluation and Management 2. Enucleation, Evisceration and Exenteration - Practice Patterns

More information

Leo Semes, OD, FAAO UAB Optometry

Leo Semes, OD, FAAO UAB Optometry Leo Semes, OD, FAAO UAB Optometry Safe; inert Has long track record - over 45 years Mixes with plasma and highlights blood vessel compromise Using specific exciting (490 nm)and absorption (510 nm) filters

More information

Authors. Introduction. Introduction. Materials and Methods. Objective 10/27/2015

Authors. Introduction. Introduction. Materials and Methods. Objective 10/27/2015 Idiopathic Polypoidal Choroidal Vasculopathy (IPCV) in Thai Population Presenting with Choroidal Neovascularization (CNV) A multicenter study Authors Yonrawee Piyacomn 1, Chavakij Bhoomibunchoo 1, Yosanan

More information

Neuro-Ocular Grand Rounds Anthony B. Litwak,OD, FAAO VA Medical Center Baltimore, Maryland

Neuro-Ocular Grand Rounds Anthony B. Litwak,OD, FAAO VA Medical Center Baltimore, Maryland Neuro-Ocular Grand Rounds Anthony B. Litwak,OD, FAAO VA Medical Center Baltimore, Maryland Dr. Litwak is on the speaker and advisory boards for Alcon and Zeiss Meditek COMMON OPTIC NEUROPATHIES THAT CAN

More information

Optical coherence tomography findings in a child with posterior scleritis

Optical coherence tomography findings in a child with posterior scleritis European Journal of Ophthalmology / Vol. 18 no. 6, 2008 / pp. 1007-1010 SHORT OMMUNITIONS & SE REPORTS Optical coherence tomography findings in a child with posterior scleritis H. ERDÖL, M. KOL,. TÜRK

More information

Pediatric Ocular Sonography

Pediatric Ocular Sonography Pediatric Ocular Sonography Cicero J Torres A Silva, MD Associate Professor of Radiology 2016 SPR Pediatric Ultrasound Course Yale University School of Medicine None Disclosures Objectives of Presentation

More information

Retinoblastoma. Protocol applies to retinoblastoma only.

Retinoblastoma. Protocol applies to retinoblastoma only. Retinoblastoma Protocol applies to retinoblastoma only. Protocol revision date: January 2005 Based on AJCC/UICC TNM, 6 th edition Procedures Cytology (No Accompanying Checklist) Biopsy (No Accompanying

More information

Uveal Melanoma. Protocol applies to malignant melanoma of the uvea.

Uveal Melanoma. Protocol applies to malignant melanoma of the uvea. Uveal Melanoma Protocol applies to malignant melanoma of the uvea. Protocol revision date: January 2005 Based on AJCC/UICC TNM, 6 th edition Procedures Cytology (No Accompanying Checklist) Biopsy (No Accompanying

More information

VERTEPORFIN IN PHOTODYNAMIC THERAPY STUDY GROUP

VERTEPORFIN IN PHOTODYNAMIC THERAPY STUDY GROUP Verteporfin Therapy of Subfoveal Choroidal Neovascularization in Age-related Macular Degeneration: Two-year Results of a Randomized Clinical Trial Including Lesions With Occult With No Classic Choroidal

More information

CLINICAL SCIENCES. Visual Acuity in 3422 Consecutive Eyes With Choroidal Nevus

CLINICAL SCIENCES. Visual Acuity in 3422 Consecutive Eyes With Choroidal Nevus CLINICAL SCIENCES Visual Acuity in 3422 Consecutive Eyes With Choroidal Nevus Carol L. Shields, MD; Minoru Furuta, MD; Arman Mashayekhi, MD; Edwina L. Berman, MBBS; Jonathan D. Zahler, DO; Daniel M. Hoberman,

More information

OCCLUSIVE VASCULAR DISORDERS OF THE RETINA

OCCLUSIVE VASCULAR DISORDERS OF THE RETINA OCCLUSIVE VASCULAR DISORDERS OF THE RETINA Learning outcomes By the end of this lecture the students would be able to Classify occlusive vascular disorders (OVD) of the retina. Correlate the clinical features

More information

Recurrent intraocular hemorrhage secondary to cataract wound neovascularization (Swan Syndrome)

Recurrent intraocular hemorrhage secondary to cataract wound neovascularization (Swan Syndrome) Recurrent intraocular hemorrhage secondary to cataract wound neovascularization (Swan Syndrome) John J. Chen MD, PhD; Young H. Kwon MD, PhD August 6, 2012 Chief complaint: Recurrent vitreous hemorrhage,

More information

A Parent s Guide to Understanding. Retinoblastoma

A Parent s Guide to Understanding. Retinoblastoma A Parent s Guide to Understanding Retinoblastoma 1 Acknowledgements This book is dedicated to the thousands of children and families who have lived through retinoblastoma and to the physicians, nurses,

More information

Clinical Policy: Bevacizumab (Avastin) Reference Number: ERX.SPMN.127

Clinical Policy: Bevacizumab (Avastin) Reference Number: ERX.SPMN.127 Clinical Policy: (Avastin) Reference Number: ERX.SPMN.127 Effective Date: 03/14 Last Review Date: 09/16 Coding Implications Revision Log See Important Reminder at the end of this policy for important regulatory

More information

Choroidal Neovascularization in Sympathetic Ophthalmia

Choroidal Neovascularization in Sympathetic Ophthalmia Choroidal Neovascularization in Sympathetic Ophthalmia Lucia Sobrin, Miguel Cordero Coma, C. Stephen Foster Case Report A 49-year-old man presented after a ruptured globe repair of his left eye status

More information

Spontaneous Large Serous Retinal Pigment Epithelial Tear

Spontaneous Large Serous Retinal Pigment Epithelial Tear This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License (www.karger.com/oa-license), applicable to the online version of the article

More information

Metastasis of choroidal melanoma to the contralateral

Metastasis of choroidal melanoma to the contralateral British Journal of Ophthalmology, 1988, 72, 456-460 Metastasis of choroidal melanoma to the contralateral choroid, orbit, and eyelid* JERRY A SHIELDS,' CAROL L SHIELDS,' ERIC P SHAKIN,' AND LARRY E KOBETZ2

More information

ANGIOGRAPHY OF THE NORMAL OPHTHALMIC

ANGIOGRAPHY OF THE NORMAL OPHTHALMIC Brit. J. Ophthal., 35, 473. ANGIOGRAPHY OF THE NORMAL OPHTHALMIC ARTERY AND CHOROIDAL PLEXUS OF THE EYE* BY P. H. SCHURR From the Department of Neurosurgery, Radcliffe Infirmary, Oxford THE ophthalmic

More information

Department of Ophthalmology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea

Department of Ophthalmology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea Department of Ophthalmology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea Purpose: To investigate the factors that affect final vision following photodynamic therapy

More information

CLINICAL PEARLS IN OCULAR ONCOLOGY

CLINICAL PEARLS IN OCULAR ONCOLOGY CLINICAL PEARLS IN OCULAR ONCOLOGY IRIS NEVUS - Two kinds circumscribed and diffuse - Photodocumentation important to monitor growth - Risk Factors for iris nevus growth to melanoma (ABCDEF) A Age (young),

More information

Diabetes & Your Eyes

Diabetes & Your Eyes Diabetes & Your Eyes Diabetes is a disease that occurs when the pancreas does not secrete enough insulin or the body is unable to process it properly. Insulin is the hormone that regulates the level of

More information

and at the same patient encounter. Code has been deleted. For scanning computerized ophthalmic diagnostic imaging of optic nerve and retin

and at the same patient encounter. Code has been deleted. For scanning computerized ophthalmic diagnostic imaging of optic nerve and retin 92227: Remote imaging for detection of retinal disease (eg, retinopathy in a patient with diabetes) with analysis and report under physician supervision, unilateral or bilateral. For Medicare, bill only

More information

Contractor Information. LCD Information. Local Coverage Determination (LCD): Ophthalmic Angiography (Fluorescein and Indocyanine Green) (L34426)

Contractor Information. LCD Information. Local Coverage Determination (LCD): Ophthalmic Angiography (Fluorescein and Indocyanine Green) (L34426) Local Coverage Determination (LCD): Ophthalmic Angiography (Fluorescein and Indocyanine Green) (L34426) Links in PDF documents are not guaranteed to work. To follow a web link, please use the MCD Website.

More information

West Los Angeles VA Health Care Center

West Los Angeles VA Health Care Center West Los Angeles VA Health Care Center A review of the demographics of a group of general optometry patients seen recently (2015) at the main eye clinic in bldg. 304 yielded the following: Age range: 33-75

More information