Diabetic retinopathy is a clinically well-defined,

Size: px
Start display at page:

Download "Diabetic retinopathy is a clinically well-defined,"

Transcription

1 PERSPECTIVES IN DIABETES Diabetic Retinopathy: Targeting Vasoregression Hans-Peter Hammes, 1 Yuxi Feng, 1 Frederick Pfister, 1 and Michael Brownlee 2 Diabetic retinopathy is a clinically well-defined, sight-threatening, chronic microvascular complication that eventually affects virtually all patients with diabetes. Diabetic retinopathy is characterized by gradually progressive alterations in the retinal microvasculature, leading to areas of retinal nonperfusion, increased vasopermeability, and in response to retinal nonperfusion, pathologic intraocular proliferation of retinal vessels (1 3). Most diabetes researchers and clinicians are aware of the major advances made in understanding the pathobiology of proliferative diabetic retinopathy. However mechanisms underlying the progressive alterations in retinal microvessels, which precede and stimulate neovascularization, are less well-known. In this review, current information about the pathogenesis of the primary lesion of diabetic retinopathy, retinal capillary vasoregression (see Fig. 1), is presented. Diabetic retinopathy is often considered as a complication that contrasts with other vascular sequelae of this disease because it is associated with new vessel formation, while diabetic heart disease and diabetic nephropathy are characterized by impaired angiogenesis (4). Diabetic retinopathy is generally grouped with tumor angiogenesis and is presented as a paradigm of a neovascular disease (5). As outlined in this review, the natural history of diabetic retinopathy starts with vasoregression. Recent investigations have brought new insight regarding the primary vasoregressive process that stimulates angiogenesis, provoking new directions of thinking about possible prevention and intervention (1). Diabetic retinopathy starts with the loss of the two cellular components of retinal capillaries: the pericyte, a vessel support cell, and the endothelial cell. The exact sequence of loss in humans is not established because early human retinal samples are not available, but animal studies have provided evidence that pericytes disappear before endothelial cells start to vanish, leaving acellular capillaries with no blood flow (6). In response to progressive retinal capillary dropout, the ischemic retina mounts an angiogenic response from the surrounding capillaries leading to proliferative diabetic retinopathy. Correlative studies of fluorescein angiography and postmortem retinal From the 1 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; and the 2 Albert Einstein College of Medicine, New York, New York. Corresponding author: Hans-Peter Hammes, hans-peter.hammes@med5. ma.uni-heidelberg.de. Received 31 March 2010 and accepted 9 October DOI: /db by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See -nc-nd/3.0/ for details. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. digests in humans show that microaneurysms appear to cluster around areas of acellular capillaries linking structural damage in situ to clinical markers of disease progression and suggesting that microaneurysms represent abortive attempts at neovascularization (7,8). The mechanism of physiological (sprouting) angiogenesis. Novel concepts have recently been proposed for physiological angiogenesis also reflecting mechanisms that might be involved in pathological angiogenesis (9,10). There are some important molecular players of interest that dominate both developmental and pathologic retinal angiogenesis. Under physiological conditions, subsets of endothelial cells in sprouting vessels qualify for different functions (Fig. 2). The tip cells guide the vessel along a gradient of heparin-bound VEGF (vascular endothelial growth factor)-a (164) sensed by VEGF receptor-2 expressed on cell extrusions (filopodia) (11). Tip cells are incapable of proliferation. In contrast, stalk cells do proliferate. These specialized endothelial cells are prevented from becoming tip cells by lateral inhibition through the Notch-Dll system, while their proliferative activity is determined by the availability of VEGF and other growth factors such as angiopoietin (Ang)-2 (12). The transition from a proliferating to a mature quiescent endothelial cell, i.e., the transition from a stalk cell to a so-called phalanx cell, is determined by the expression of Ang-1 and the firm coverage by pericytes, which render these cells resistant to growth factor depletion by mechanisms that are poorly understood. On retinal endothelial cells, Tie-2 receptor activation through Ang-1 binding combines several recruiting signals for smooth muscle cells (and probably pericytes), including hepatocyte- and heparin-binding epidermal-like growth factor, but the firm intramural positioning of pericytes has yet to be explained. As a novel finding, Notch3 is specifically involved in pericyte recruitment and survival (13). VEGF and the retina. Previous work using transgenic mice with isoform-specific expression of VEGF has indicated that the VEGF-A isoform 164 is the major one required for proper three-dimensional network formation in the retina (14). One important contributing factor is the balance between VEGF s diffusibility and its heparinbinding properties. The sole presence of the diffusible VEGF120 isoform causes severe changes in vessel outgrowth and patterning, pericyte recruitment, and vessel permeability during early vessel development in the retina. In contrast, the isolated presence of strongly matrixassociated VEGF188 impairs arterio-venous differentiation, capillary patterning, and peripheral vascular outgrowth (15). Another important issue is the relative abundance of growth factors involved in the development and maturation of the retinal vasculature. In the nondiabetic rodent retina, VEGF-A (164) is by far the most abundant factor expressed, e.g., exceeding that of tumor necrosis factor- by 30,000-fold. The importance of VEGF-A for proper retinal vascular development is further supported by data from mice with conditional inactivation diabetes.diabetesjournals.org DIABETES, VOL. 60, JANUARY

2 TARGETING VASOREGRESSION A B C D FIG. 1. Phenotype of vasoregression in the diabetic retina. In both experimental diabetic rats and diabetic humans, capillary occlusions occur. Nondiabetic (A) and 6-month diabetic rat retina with acellular capillaries (arrows) (B). Nondiabetic (C) and diabetic (D) human retinal digest preparation. Periodic acid-schiff staining (original magnification 250). of VEGF-A in neuronal tissue. Mouse retinae with a depletion of VEGF in nestin-expressing cells are characterized by a sparse capillary network, a smaller capillary width, 25% fewer endothelial cells, and a sixfold increase in capillaries devoid of both endothelial cells and pericytes, indicating that VEGF is not only an important developmental growth factor, but also an important survival factor (16). When these mice are subjected to the Phalanx cell Ang-1 4 TGFb-R2 TGFb 3 Stalk cell PDGFR-b Notch3 PDGF-B Tip cell VEGF-R2 VEGFA-164 gradient Jagged1 Jgg 2 Notch1 1 Dll4 VEGF-R1 CXCR4 Astrocyte-derived SDF-1 FIG. 2. Concept of physiological angiogenesis. 1) In tip cells, VEGF stimulates DLL4/NOTCH signaling via VEGF-R2, thereby inhibiting tip cell formation and inducing VEGF-R1 expression in the endothelial cells downstream. Astrocyte-derived SDF-1 acts as an additional chemoattractant, activating CXCR4 in tip cells. 2) In stalk cells, predominance of VEGF-R1 and activation of Tie-2 by secreted from the tip cell lead to proliferation and survival. 3) Platelet-derived growth factor receptor (PDGFR)- pericytes are attracted to the growing sprout by PDGF-B, released from tip cells. Interaction of recruited pericytes with endothelial cell derived Jagged-1 induces the expression of Notch3 and activation of an autoregulatory loop that further enhances Notch3 activation, thereby promoting pericyte survival, investment, vascular branching, and induction of smooth muscle cell (SMC) genes. 4) Transforming growth factor (TGF)- produced in endothelial cells further induces SMC differentiation and pericytes-derived Ang-1 binds to and activates the Tie-2 receptor on endothelial cells, thereby stimulating vessel maturation and stabilization. 10 DIABETES, VOL. 60, JANUARY 2011 diabetes.diabetesjournals.org

3 H.-P. HAMMES AND ASSOCIATES mouse model of retinopathy of prematurity, there is a 94% reduction in new vessel formation. In patients with active proliferative diabetic retinopathy, VEGF levels are increased, while in those eyes in which proliferative retinopathy is quiescent, VEGF levels are either normal or only modestly increased (17). Together these data suggest that VEGF is the most prominent member of a group of factors that control and facilitate physiological and pathological angiogenesis. From a clinical standpoint, the question arises whether there are certain genetic changes that are associated with the promotion or the inhibition of retinopathy. In contrast to many other vascular diseases, diabetic retinopathy in general has not been found to be strongly and unequivocally linked to genetic defects or polymorphisms. Among the few significantly associated genes are aldose reductase, the receptor for advanced glycation end products (RAGE), the integrin 2 1, and VEGF. From the Diabetes Control and Complications Trial (DCCT), it is known that 25% of the risk for retinopathy development can be explained by genetic factors, which are determined by familial clustering (18). Al-Kateb et al. (19) analyzed the 16 single nucleotide polymorphisms of VEGF in type 1 diabetic patients of the DCCT/Epidemiology of Diabetes Interventions and Complications (EDIC) cohort and tested the association of these polymorphisms with retinal outcomes after 10 years during the EDIC study. There was a strong association of VEGF polymorphisms with the development of severe retinopathy but not with retinopathy progression or diabetic macular edema. Although the familial clustering suggests a genetic contribution to the risk of developing advanced lesions, the identity and function of such contributors are completely unknown. Apart from genetic factors, epigenetic modifications induced by hyperglycemia-induced biochemical changes in the transcriptional machinery of target cells may play a role that needs to be assessed. Context-dependent function of the Ang-Tie system. The Ang-Tie system has received particular attention as a key regulator of adult vascular homeostasis (20 23). The receptor tyrosine kinase Tie-2 is expressed on endothelial cells, regulating vascular remodeling and maturation. The balance between the two ligands Ang-1 and -2 determines the phosphorylation status of Tie-2, thereby regulating endothelial barrier function, vessel branching, inflammatory responses, and angiogenesis (24 26). Ang-1 is considered to be an activator of Tie-2, while is a homologous ligand that antagonizes Ang-1 activity on Tie-2, acting as an endogenous dominant negative ligand for Ang-1. During developmental angiogenesis, Ang-1 expression appears to be the initial step of vessel maturation, causing endothelial cell differentiation and recruitment of pericyte precursors, which stabilize the new vessels (22,27). Transforming growth factor- 1 further contributes to the final maturation steps by downregulation of cell migration and promotion of cell differentiation. Adult vessel remodeling involves the interplay between VEGF and the ratio of Ang-1 and -2. When the ratio of to Ang-1 is high and VEGF is high in hypoxic tissues, the consequence is sprouting angiogenesis. In contrast, in the absence of VEGF, upregulation leads to vasoregression. Isolated downregulation or the absence of Ang-1 causes vessel destabilization through effects on pericytes (27). Hyperglycemia and the molecular changes in the early diabetic retina. The most relevant morphological lesion in the diabetic retina is the acellular, nonperfused capillary segment (1). It reflects the net result of multiple damaging mechanisms involving endothelial, matrix, pericyte, and microenvironmental components. Thus retinopathy does not deviate from all the other vascular phenotypes in diabetes as is often thought. Diabetic retinopathy is part of a systemic vascular disease in which vasoregression is the primary evolutionary process. Vasoregression in the diabetic retina starts with pericyte loss. This is a long-known feature, and it has been consistently reported in diabetic animals and humans (2,6). As noted above and elaborated upon in a recent review by Betsholtz and colleagues (28), ligand-receptor systems involved in endothelial-pericyte (mural) cell signaling determine the fate of pericytes not only during vascular development, but also during incipient diabetic retinopathy (18). The concept, proposed by Hanahan, is that overexpression in cooperation with VEGF overexpression leads to pericyte loss and angiogenesis, while overexpression in the absence of VEGF leads to vasoregression (25). Figure 3 summarizes the context-dependent expression and regulation of the Ang-Tie system with the focus on diabetic vasoregression and angiogenesis. When determined in an experimental diabetic rat model in which pericyte dropout was precisely ascertained, upregulation (37-fold) preceded the onset of pericyte dropout (6). In young nondiabetic rats, pericyte dropout was inducible by intravitreal injection of recombinant. Moreover in heterozygous diabetic knockout mice, pericyte dropout was prevented, and in mice with constitutive retinal overexpression of, pericyte dropout was exaggerated. Together these data suggest that is involved in the pathogenesis of diabetic pericyte loss. upregulation by hypoxia is an established fact. However the early diabetic (rodent) retina is not hypoxic. Therefore hyperglycemia-induced regulation of was investigated. Hyperglycemia-induced mitochondrial overproduction of reactive oxygen species has been shown to induce altered gene transcription by covalent modification of coregulatory proteins. In renal endothelial cells, it was found that a complex consisting of the transcriptional co-repressor msin3a and the transcription factor Sp3 suppresses transcriptional activity by binding to a glucosesensitive GC box in the promoter. Hyperglycemiainduced formation of methylglyoxal modifies msin3a resulting in increased recruitment of O-GlcNAc transferase to an msin3a-sp3 complex and a subsequent increased modification of Sp3 by O-linked N-acetylglucosamine. Gluc-NAc modification of Sp3 causes decreased binding of the repressor complex to the glucose-responsive GC box in the promoter resulting in increased expression (27) (Fig. 4). Pericyte migration: a novel mechanism of diabetic pericyte loss. Data from human and animal studies have suggested that diabetic pericyte loss is the result of apoptosis induced by activation of nuclear factor- B (NF- B) or, as has been recently pointed out, by activation of the protein tyrosine phosphatase SHP-1 in an NF- B independent pathway. Apoptosis is determined by a transient indicator (e.g., nuclear fragmentation). Still, the number of lost pericytes from apoptotic pericytes observed in retinal digest specimens is lower than the projected number of pericytes lost in total after several months of diabetes, suggesting that additional mecha- diabetes.diabetesjournals.org DIABETES, VOL. 60, JANUARY

4 TARGETING VASOREGRESSION A B Diabetic C Mature Vessel Vasoregression Diabetic Vessel Proliferation Ang-1 VEGF P VEGFR1/2 Controlled proliferation Intercellular contacts Endothelial barrier function Vessel maturation Vessel stabilization Pericyte loss Endothelial cell degeneration Capillary occlusion Glial cell activation Blood-retinal barrier breakdown Endothelial cell proliferation Matrix degradation Pericyte activation Progenitor cell recruitment FIG. 3. In the mature vasculature, pericyte-derived Ang-1 dominates, leading to Tie-2 phosphorylation in endothelial cells. Activation of Tie-2 controls endothelial cell proliferation and induces intercellular contacts and junctions, thereby stabilizing retinal vasculature and promoting the formation of the blood-retinal barrier (A). Diabetes-induced vasoregression is a result of upregulation in the absence of hypoxia. Retinal endothelial cells and glial cells (Müller cells) express as a dominant negative ligand blocking Tie-2 phosphorylation. Upregulation of induces vascular cell depletion and progressive capillary occlusion (B). Growing areas of nonperfusion lead to upregulation of hypoxia-induced factors such as VEGF and. In pericytes, Notch3 activation under hypoxic conditions induces expression. Abundance of VEGF without a succinct gradient and elevated levels destabilize vessels, cause endothelial cell proliferation and pericyte activation. Bone marrow derived progenitor cells contribute to pathological angiogenesis (C). P, phosphate. (A high-quality color representation of this figure is available in the online issue.) nisms may be involved (29,30). Moreover, the developmental origin and the morphological diversity of pericytes in retinal capillaries suggest that not all pericytes are alike. Pfister et al. (31) used quantitative retinal morphology and normal and diabetic mice with different levels of expression to study which pericytes were lost in the diabetic retina and whether it was due to changes in. The investigators categorized pericytes into three classes: 1) located at vessel branches (saddle pericytes), 2) located on straight parts of capillaries, and 3) showing different degrees of detachment from adjacent endothelial cells (migrating pericytes) (Fig. 5). The investigators found that saddle pericytes remained unaffected by diabetes while only pericytes on straight parts of capillaries were reduced in diabetic retinae in parallel with an increased number of migrating pericytes. In nondiabetic overexpressing animals, this number was increased by 78%, while in deficient mice, the numbers of migrating pericytes was reduced by 36% (31). Together, these data favor pericyte migration as an important mechanism for diabetic pericyte loss. The fate of migrating pericytes in the diabetic retina remains uncertain, but inferential evidence from work on brain pericytes suggests that they migrate away from an injured capillary for survival (32). As noted in the traumatic brain injury model, stress-induced migration of pericytes resulted in their survival. Pericytes that stayed at their vessel location and did not migrate were prone to apoptosis, suggesting that migration of pericytes away from the capillary enables the pericyte to respond to trophic signaling molecules in the perivascular compartment. The subsequent functional adaptations may include differentiation along multiple lineages reflecting the pluripotency of this enigmatic cell population (33). After regional hypoxia occurs in the diabetic retina as a result of vasoregression and capillary dropout, retinal neovascularization occurs in an attempt to restore oxygen delivery. Both VEGF and are normally induced by 12 DIABETES, VOL. 60, JANUARY 2011 diabetes.diabetesjournals.org

5 H.-P. HAMMES AND ASSOCIATES A Normal Blood Glucose GLUT-1 B High Blood Glucose GLUT-1 Glucose-6-P Glucose-6-P Fructose-6-P Fructose-6-P Hexosamine pathway UDP-GlcNAc Glyceraldehyd-3-P Glyceraldehyd-3-P AGE pathway Methylglyoxal-AGE ygy GAPDH activity GAPDH activity 1,3-Diphosphoglycerate basal depressed 1,3-Diphosphoglycerate Up regulation GC Box Cytosol Nucleus Cytosol Nucleus FIG. 4. Mechanism of hyperglycemia-induced regulation. A: Under physiological (normoglycemic) conditions, a transcriptional complex (involving the transcriptional corepressor msin3a) represses transcription by binding to a glucose-sensitive GC box. B: Transcriptional activation of through methylglyoxal (AGE)-induced and hexosamine-propagated modification of SP-3 binding in favor of SP-1 binding. GAPDH, glyceraldehyde-3-phosphate dehydrogenase; UDP, uridine-5-diphosphate. (A high-quality color representation of this figure is available in the online issue.) hypoxia and cooperate to induce angiogenesis (34,35). Feng et al. (36), using homozygous deficient mice, reported spontaneous proliferative retinopathy occurring in room air that mimicked human retinopathy of prematurity (ROP) in mice. Arteriolar patterning and the formation of the primary (superficial) and secondary (deep) capillary network were impaired due to the lack of. Over time, the relative increase of VEGF in this model declined, rendering persistent preretinal proliferations less leaky. Reduced matrix metalloproteinase (MMP) activity, which is evident in heterozygous deficient mice causing a reduction in proliferative retinopathy, may be overcome by VEGF-induced MMP regulation in the complete absence of. Thus, appears negligible for retinal neovascularization, but it is essential for proper vessel development, in particular of the arteriolar site, and the capillaries in the depth of the retina where diabetic retinopathy starts. Erythropoietin in the diabetic retina. Erythropoietin (Epo) is another ischemia-induced growth factor that was recently identified as being important in the pathogenesis of proliferative diabetic retinopathy. Work by Takagi and colleagues (37) demonstrated that Epo is increased in eyes with proliferative diabetic retinopathy, and the experimental inhibition of Epo is as effective as that of VEGF in the ROP model. More recently, a large consortium (38) reported that promoter polymorphisms of the Epo gene are associated with proliferative diabetic retinopathy in patients, with increased promoter activity giving rise to increased Epo transcription. Critically, the effect of exogenous Epo depends on the temporal relation to the induction of vasoregression (39). In the ROP model, Epo administered prior to the induction of vasoregression (i.e., before mice went into the hyperoxic chamber) reduced vasoregression and, consequently, responsive neovascularization, while Epo, administered after vasoregression had occurred, induced increased neovascularization. The effect of Epo is mediated by a complex consisting of the Epo receptor, which is expressed throughout the entire retina, and the common chain receptor, which is expressed only in the vicinity of the superficial vascular layer, i.e., in the layer in which most neovascularizations develop. Low-dose Epo, which does not induce erythropoiesis over a period of up to 6 months, inhibited oxidative stress in the retinae of STZ-diabetic rats and reduced VEGF and levels (40). The formation of acellular capillaries and the loss of pericytes were also reduced in these Epo-treated diabetic animals. The formation of acellular capillaries and the loss of pericytes were reduced in treated diabetic animals. Of particular note, the increased level of leukostasis (i.e., local capillary obstruction by leukocytes [see below]) remained unaffected by Epo treatment (Q. Wang et al., unpublished data), suggesting that leukostasis does not play a major role in causing vasoregression in the diabetic retina. Factors modulating vasoregression Inflammation. Inflammation is an important pathogenetic aspect of diabetic retinopathy based on the findings that inflammatory cytokines and mediators are upregulated in the diabetic retina, and that leukostasis occurs because of adhesion molecule upregulation (41 45). As a novel aspect, microglial cells transdifferentiating from bone marow derived cells may contribute to the propagation of inflammatory vessel damage. This area has been the subject of two recent exciting reviews (46,47) addressing the multifaceted and important link between inflammation and diabetic retinal vasoregression. Leukostasis. Since the early reports by Schmidt-Schönbein, leukostasis has evolved as a mechanism by which activated bone marrow derived cells may damage retinal capillary endothelial cells (44,48). It was noted that leukocytes adhered to the diabetic endothelium in all vascular beds of the retina, and some leukocytes obstruct capillaries. Several studies implied that correction of leukostasis necessarily preserved retinal capillaries from occlusion (49 51). However, as outlined above, new experimental evidence suggests that the prevention of acellular capillaries succeeds without correction of leukostasis (42,52) (Q. Wang et al., unpublished data). Endothelial progenitor cells. Another bone marrow derived cell population that is able to interact with the endothelium in damaged tissues is the endothelial progen- diabetes.diabetesjournals.org DIABETES, VOL. 60, JANUARY

6 TARGETING VASOREGRESSION Ang-1 MC High Glucose ROS EC damage AGEs/HXP EC loss Pericyte loss/ migration Vasoregression MC Hypoxia + High glucose VEGF Angiogenesis MC FIG. 5. Schematic illustration linking hyperglycemia-induced reactive oxygen species (ROS) overproduction with dependent vasoregression and combined ischemia/hypoxia-induced angiogenesis. In healthy retinal capillaries, proper pericyte coverage ensures endothelial cell survival and integrity of blood-retinal barrier by Ang-1/Tie-2 signaling. Chronic hyperglycemia induces cell damage and upregulation of in retinal endothelial cells and Mu ller cells (MC), leading to retinal pericyte detachment, migration, apoptosis, and progressive 14 DIABETES, VOL. 60, JANUARY 2011 itor cell (EPC). However, in contrast to leukocytes, EPCs have attracted much interest because of their potential role in vascular repair. From studies using models of proliferative retinopathy, the contribution of hematopoietic stem cells to retinal neovascularization has been proposed (53). In this context, the chemokine SDF-1 was established as an important promoter of adult retinal angiogenesis in a model of laser-induced retinal vein occlusion (54). Blocking SDF-1 activity abolished the recruitment of hematopoietic stem cell derived endothelial precursors and local endothelial cell driven ischemic repair, preventing preretinal neovascularization. The question of whether EPCs can support the repair of damaged endothelial cells was also addressed in experimental studies. Using rodent models in which capillary endothelial cells were damaged by different mechanisms, Caballero et al. (55) used labeled CD34 cells from both nondiabetic and diabetic origin and found that only nondiabetic cells were able to integrate into the damaged vasculature. EPCs, which have impaired function, may be restored by improvements in mobilization, e.g., by statins, or by drugs that improve function, adding to the self-repair of damaged capillaries in the diabetic retina. Apart from being expressed on endothelial cells, Tie-2 is expressed on bone marrow derived monocytes/macrophages (TEM), and the interaction with local tissue (such as in hypoxic tumor areas) promotes angiogenesis (56). High in the diabetic retina may cause a recruiting signal for TEM and direct them to the retina. The relevance of this pathway and the possible role in vasoregression await clarification. Lipids and fatty acids. Vasoregression in the diabetic retina may also result from hyperglycemia-induced modifications of the levels or the chemical make-up of lipids and fatty acid based lipid mediators, as suggested by clinical and experimental studies such as the DCCT and others (57 59). Two distinct entities of modifications have been proposed: 1) posttranslational modification of lipoproteins and 2) diabetes-induced alterations in the biosynthesis of eicosanoids. Examples for modified lipoproteins as possible mediators of retinal vessel toxicity have been given by Lyons and colleagues (60). They showed that oxidized LDL is toxic for pericyte and can contribute to pericyte death. Diabetes-induced changes in proinflammatory eicosanoids are derived from arachidonic acid, and anti-inflammatory resolvins and protectins are derived from -3 polyunsaturated fatty acids. In the diabetic retina, elongase and desaturase profiles are substantially altered leading to a decrease in these -3 unsaturated fatty acids (61). As they can affect retinal gene expression with subsequent changes in cell differentiation and survival, diabetes-induced reductions in -3 PUFAs and increases in arachidonic acid can contribute to both vasoregression and neovascularization because of the lack in antiproliferative and proinflammatory effects. In addition to their proinflammatory effects, eicosanoids can increase expression either directly or via the modification of VEGF expression (62). vasoregression. Occluded remnants of capillaries are no longer perfused, leading to the upregulation of survival/growth factors such as VEGF. During the later stages, which is not represented in rodent models, increased expression of hypoxia-induced VEGF and increased levels lead to preretinal neovascularization. HXP, hexosamine pathway; EC, endothelial cell. (A high-quality color representation of this figure is available in the online issue.) diabetes.diabetesjournals.org

7 H.-P. HAMMES AND ASSOCIATES Chronic hyperglycemia mtros and subsequent biochemical changes Inflammation EC/PC- Apoptosis PC migration Glial cell activation EPC failure Vasoregression FIG. 6. Summary illustration of mechanisms by which chronic hyperglycemia causes intraretinal vasoregression. EC, endothelial cell; EPC, endothelial progenitor cells; mtros, mitochondrial reactive oxygen species; PC, pericytes. Conclusion. The sight-threatening proliferative diabetic retinopathy familiar to clinical diabetologists is not the primary pathogenic response of the retina to chronic hyperglycemia. Rather, it is an attempted compensation for retinal hypoxia caused by loss of capillary pericytes and followed by formation of acellular, nonperfused capillaries. This vasoregression is the primary pathogenic response of the retina to chronic hyperglycemia. Central mediators of pericyte loss and acellular capillary formation include hyperglycemia-induced alterations in levels of VEGF isoforms, Ang-1 and -2; recruitment of activated macrophages, microglia, and/or leukocytes from the bone marrow; increased proinflammatory eicosanoid production; and decreased anti-inflammatory resolvins and protectins derived from -3 polyunsaturated fatty acids. Many of these changes are mediated by consequences of hyperglycemia-induced reactive oxygen species. Further elucidation of the mechanisms by which chronic hyperglycemia causes intraretinal vasoregression (Fig. 6) will provide new targets for pharmaceutical intervention before irreversible retinal ischemia and secondary proliferative retinopathy necessitate damaging treatments such as panretinal laser photocoagulation. ACKNOWLEDGMENTS This work was supported by the Deutsche Forschungsgemeinschaft, the Bundesministerium für Bildung und Forschung, the European Foundation for the Study of Diabetes, and the Juvenile Diabetes Research Foundation. No potential conflicts of interest relevant to this article were reported. REFERENCES 1. Calcutt NA, Cooper ME, Kern TS, Schmidt AM. Therapies for hyperglycaemia-induced diabetic complications: from animal models to clinical trials. Nat Rev Drug Discov 2009;8: Frank RN. Diabetic retinopathy. N Engl J Med 2004;350: Gariano RF, Gardner TW. Retinal angiogenesis in development and disease. Nature 2005;438: Duh E, Aiello LP. Vascular endothelial growth factor and diabetes: the agonist versus antagonist paradox. Diabetes 1999;48: Carmeliet P. Angiogenesis in health and disease. Nat Med 2003;9: Hammes HP, Lin J, Wagner P, Feng Y, Vom Hagen F, Krzizok T, Renner O, Breier G, Brownlee M, Deutsch U. Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes 2004;53: Bresnick GH, Davis MD, Myers FL, de Venecia G. Clinicopathologic correlations in diabetic retinopathy. II. Clinical and histologic appearances of retinal capillary microaneurysms. Arch Ophthalmol 1977;95: Kohner EM, Henkind P. Correlation of fluorescein angiogram and retinal digest in diabetic retinopathy. Am J Ophthalmol 1970;69: Hellström M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalén M, Gerhardt H, Betsholtz C. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 2007;445: Tammela T, Zarkada G, Wallgard E, Murtomäki A, Suchting S, Wirzenius M, Waltari M, Hellström M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Ylä-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 2008;454: Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 2003;161: Augustin HG, Koh GY, Thurston G, Alitalo K. Control of vascular morphogenesis and homeostasis through the Angiopoietin-Tie system. Nat Rev Mol Cell Biol 2009;10: Liu H, Zhang W, Kennard S, Caldwell RB, Lilly B3. Liu H, Zhang W, Kennard S, Caldwell RB, Lilly B. Notch3 is critical for proper angiogenesis and mural cell investment. Circ Res 2010;107: Stalmans I, Ng YS, Rohan R, Fruttiger M, Bouché A, Yuce A, Fujisawa H, Hermans B, Shani M, Jansen S, Hicklin D, Anderson DJ, Gardiner T, Hammes HP, Moons L, Dewerchin M, Collen D, Carmeliet P, D Amore PA. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest 2002;109: Ruiz de Almodovar C, Lambrechts D, Mazzone M, Carmeliet P. Role and therapeutic potential of VEGF in the nervous system. Physiol Rev 2009; 89: Raab S, Beck H, Gaumann A, Yüce A, Gerber HP, Plate K, Hammes HP, Ferrara N, Breier G. Impaired brain angiogenesis and neuronal apoptosis induced by conditional homozygous inactivation of vascular endothelial growth factor. Thromb Haemost 2004;91: Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park JE. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994;331: Gaengel K, Genové G, Armulik A, Betsholtz C. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 2009;29: Al-Kateb H, Mirea L, Xie X, Sun L, Liu M, Chen H, Bull SB, Boright AP, Paterson AD, DCCT/EDIC Research Group. Multiple variants in vascular endothelial growth factor (VEGFA) are risk factors for time to severe retinopathy in type 1 diabetes: the DCCT/EDIC genetics study. Diabetes 2007;56: Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis diabetes.diabetesjournals.org DIABETES, VOL. 60, JANUARY

8 TARGETING VASOREGRESSION S, Sato TN, Yancopoulos GD. Angiopoietin-2, a natural antagonist for that disrupts in vivo angiogenesis. Science 1997;277: Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000;407: Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Koidl S, Thurston G, Gale NW, Witzenrath M, Rosseau S, Suttorp N, Sobke A, Herrmann M, Preissner KT, Vajkoczy P, Augustin HG. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 2006;12: Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996;87: Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, Yancopoulos GD. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 2000;6: Hanahan D. Signaling vascular morphogenesis and maintenance. Science 1997;277: Cogan DG, Toussaint D, Kuwabara T. Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol 1961;66: Yao D, Taguchi T, Matsumura T, Pestell R, Edelstein D, Giardino I, Suske G, Rabbani N, Thornalley PJ, Sarthy VP, Hammes HP, Brownlee M. High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of msin3a. J Biol Chem 2007;282: Gaengel K, Genové G, Armulik A, Betsholtz C. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 2009;29: Romeo G, Liu WH, Asnaghi V, Kern TS, Lorenzi M. Activation of nuclear factor- B induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes 2002;51: Zheng L, Szabó C, Kern TS. Poly(ADP-ribose) polymerase is involved in the development of diabetic retinopathy via regulation of nuclear factor- B. Diabetes 2004;53: Pfister F, Feng Y, vom Hagen F, Hoffmann S, Molema G, Hillebrands JL, Shani M, Deutsch U, Hammes HP. Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes 2008;57: Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA. Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 2000;60: Dore-Duffy P. Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des 2008;14: Mandriota SJ, Pepper MS. Regulation of angiopoietin-2 mrna levels in bovine microvascular endothelial cells by cytokines and hypoxia. Circ Res 1998;83: Oh H, Takagi H, Suzuma K, Otani A, Matsumura M, Honda Y. Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 1999;274: Feng Y, Vom Hagen F, Wang Y, Beck S, Schreiter K, Pfister F, Hoffmann S, Wagner P, Seeliger M, Molema G, Deutsch U, Hammes HP. The absence of angiopoietin-2 leads to abnormal vascular maturation and persistent proliferative retinopathy. Thromb Haemost 2009;102: Watanabe D, Suzuma K, Matsui S, Kurimoto M, Kiryu J, Kita M, Suzuma I, Ohashi H, Ojima T, Murakami T, Kobayashi T, Masuda S, Nagao M, Yoshimura N, Takagi H. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N Engl J Med 2005;353: Tong Z, Yang Z, Patel S, Chen H, Gibbs D, Yang X, Hau VS, Kaminoh Y, Harmon J, Pearson E, Buehler J, Chen Y, Yu B, Tinkham NH, Zabriskie NA, Zeng J, Luo L, Sun JK, Prakash M, Hamam RN, Tonna S, Constantine R, Ronquillo CC, Sadda S, Avery RL, Brand JM, London N, Anduze AL, King GL, Bernstein PS, Watkins S, Genetics of Diabetes and Diabetic Complication Study Group, Jorde LB, Li DY, Aiello LP, Pollak MR, Zhang K. Promoter polymorphism of the erythropoietin gene in severe diabetic eye and kidney complications. Proc Natl Acad Sci U S A 2008;105: Chen J, Connor KM, Aderman CM, Smith LE. Erythropoietin deficiency decreases vascular stability in mice. J Clin Invest 2008;118: Wang Q, Pfister F, Dorn-Beineke A, vom Hagen F, Lin J, Feng Y, Hammes HP. Low-dose erythropoietin inhibits oxidative stress and early vascular changes in the experimental diabetic retina. Diabetologia 2010;53: Brucklacher RM, Patel KM, VanGuilder HD, Bixler GV, Barber AJ, Antonetti DA, Lin CM, LaNoue KF, Gardner TW, Bronson SK, Freeman WM. Whole genome assessment of the retinal response to diabetes reveals a progressive neurovascular inflammatory response. BMC Med Genomics 2008;1: Gubitosi-Klug RA, Talahalli R, Du Y, Nadler JL, Kern TS. 5-Lipoxygenase, but not 12/15-lipoxygenase, contributes to degeneration of retinal capillaries in a mouse model of diabetic retinopathy. Diabetes 2008;57: Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, Levison SW. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 2005;54: Miyamoto K, Khosrof S, Bursell SE, Rohan R, Murata T, Clermont AC, Aiello LP, Ogura Y, Adamis AP. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc Natl Acad Sci U S A 1999;96: Yoshimura T, Sonoda KH, Sugahara M, Mochizuki Y, Enaida H, Oshima Y, Ueno A, Hata Y, Yoshida H, Ishibashi T. Comprehensive analysis of inflammatory immune mediators in vitreoretinal diseases. PLoS One 2009;4:e Adamis AP, Berman AJ. Immunological mechanisms in the pathogenesis of diabetic retinopathy. Semin Immunopathol 2008;30: Kern TS. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res 2007;2007: Schröder S, Palinski W, Schmid-Schönbein GW. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol 1991;139: Abiko T, Abiko A, Clermont AC, Shoelson B, Horio N, Takahashi J, Adamis AP, King GL, Bursell SE. Characterization of retinal leukostasis and hemodynamics in insulin resistance and diabetes: role of oxidants and protein kinase-c activation. Diabetes 2003;52: Kaji Y, Usui T, Ishida S, Yamashiro K, Moore TC, Moore J, Yamamoto Y, Yamamoto H, Adamis AP. Inhibition of diabetic leukostasis and bloodretinal barrier breakdown with a soluble form of a receptor for advanced glycation end products. Invest Ophthalmol Vis Sci 2007;48: Moore TC, Moore JE, Kaji Y, Frizzell N, Usui T, Poulaki V, Campbell IL, Stitt AW, Gardiner TA, Archer DB, Adamis AP. The role of advanced glycation end products in retinal microvascular leukostasis. Invest Ophthalmol Vis Sci 2003;44: Kern TS, Li G, Tang J, Yunpeng D, Du Y, Lee CA. Beneficial effects of RAGE-Ig fusion protein on early diabetic retinopathy and tactile allodynia. Diabetes 2010;59(Suppl. 1):1004A 53. Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN, Byrne BJ, Vaught T, Spoerri PE, Peck AB, Scott EW. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 2002;8: Butler JM, Guthrie SM, Koc M, Afzal A, Caballero S, Brooks HL, Mames RN, Segal MS, Grant MB, Scott EW. SDF-1 is both necessary and sufficient to promote proliferative retinopathy. J Clin Invest 2005;115: Caballero S, Sengupta N, Afzal A, Chang KH, Li Calzi S, Guberski DL, Kern TS, Grant MB. Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells. Diabetes 2007;56: Lewis CE, De Palma M, Naldini L. -expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2. Cancer Res 2007; 67: Chew EY, Klein ML, Ferris FL, 3rd, Remaley NA, Murphy RP, Chantry K, Hoogwerf BJ, Miller D. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy: Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. Arch Ophthalmol 1996;114: Keech AC, Mitchell P, Summanen PA, O Day J, Davis TM, Moffitt MS, Taskinen MR, Simes RJ, Tse D, Williamson E, Merrifield A, Laatikainen LT, d Emden MC, Crimet DC, O Connell RL, Colman PG, FIELD study investigators. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet 2007;370: Lyons TJ, Jenkins AJ, Zheng D, Lackland DT, McGee D, Garvey WT, Klein RL. Diabetic retinopathy and serum lipoprotein subclasses in the DCCT/ EDIC cohort. Invest Ophthalmol Vis Sci 2004;45: Barth JL, Yu Y, Song W, Lu K, Dashti A, Huang Y, Argraves WS, Lyons TJ. Oxidised, glycated LDL selectively influences tissue inhibitor of metalloproteinase-3 gene expression and protein production in human retinal capillary pericytes. Diabetologia 2007;50: Tikhonenko M, Lydic TA, Wang Y, Chen W, Opreanu M, Sochacki A, McSorley KM, Renis RL, Kern T, Jump DB, Reid GE, Busik JV. Remodeling of retinal fatty acids in an animal model of diabetes: a decrease in long-chain polyunsaturated fatty acids is associated with a decrease in fatty acid elongases Elovl2 and Elovl4. Diabetes 2010;59: Guo AM, Scicli G, Sheng J, Falck JC, Edwards PA, Scicli AG. 20-HETE can act as a nonhypoxic regulator of HIF-1alpha in human microvascular endothelial cells. Am J Physiol Heart Circ Physiol 2009;297:H602 H DIABETES, VOL. 60, JANUARY 2011 diabetes.diabetesjournals.org

Angiogenesis in Human Development. Vascular Development

Angiogenesis in Human Development. Vascular Development Angiogenesis in Human Development Jan Kitajewski ICRC 217B, ph 851-4688, email: jkk9 BACKGROUND READING: Vascular Development Signaling Vascular Morphogenesis and Maintenance Douglas Hanahan. Science 277:

More information

University of Groningen. Vasoregression in incipient diabetic retinopathy Pfister, Frederick

University of Groningen. Vasoregression in incipient diabetic retinopathy Pfister, Frederick University of Groningen Vasoregression in incipient diabetic retinopathy Pfister, Frederick IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

More information

Inflammatory basis of diabetic retinopathy. Tim Kern, PhD Case Western Reserve University and Stokes VA Hospital, Cleveland, OH

Inflammatory basis of diabetic retinopathy. Tim Kern, PhD Case Western Reserve University and Stokes VA Hospital, Cleveland, OH Inflammatory basis of diabetic retinopathy Tim Kern, PhD Case Western Reserve University and Stokes VA Hospital, Cleveland, OH Diabetic retinopathy currently is diagnosed based on vascular abnormalities

More information

Epidemiology and Pathophysiology of Diabetic Retinopathy

Epidemiology and Pathophysiology of Diabetic Retinopathy Epidemiology and Pathophysiology of Diabetic Retinopathy Vincent Reppucci, MD Director, Retina Service Mt. Sinai St. Luke s-roosevelt Hospital Attending Physician, Retina Service New York Eye and Ear Infirmary

More information

The Angiopoietin Axis in Cancer

The Angiopoietin Axis in Cancer Ang2 Ang1 The Angiopoietin Axis in Cancer Tie2 An Overview: The Angiopoietin Axis Plays an Essential Role in the Regulation of Tumor Angiogenesis Growth of a tumor beyond a limiting size is dependent upon

More information

Diabetic Management beyond traditional risk factors and LDL-C control: Can we improve macro and microvascular risks?

Diabetic Management beyond traditional risk factors and LDL-C control: Can we improve macro and microvascular risks? Retinopathy Diabetes has a negative effect on eyes in many ways, increasing the risk of cataracts for example, but the most common and serious ocular complication of diabetes is retinopathy. Diabetic retinopathy

More information

The retinal renin-angiotensin system: implications for therapy in diabetic retinopathy

The retinal renin-angiotensin system: implications for therapy in diabetic retinopathy (2002) 16, S42 S46 2002 Nature Publishing Group All rights reserved 0950-9240/02 $25.00 www.nature.com/jhh : implications for therapy in diabetic retinopathy AK Sjølie 1 and N Chaturvedi 2 1 Department

More information

Signaling Vascular Morphogenesis and Maintenance

Signaling Vascular Morphogenesis and Maintenance Signaling Vascular Morphogenesis and Maintenance Douglas Hanahan Science 277: 48-50, in Perspectives (1997) Blood vessels are constructed by two processes: vasculogenesis, whereby a primitive vascular

More information

The Process of Angiogenesis & Inhibition of Angiogenesis and/or Lymphangiogenesis

The Process of Angiogenesis & Inhibition of Angiogenesis and/or Lymphangiogenesis The Process of Angiogenesis & Inhibition of Angiogenesis and/or Lymphangiogenesis Nam Deuk Kim, Ph.D. Pusan National University Contents Part 1. The process of angiogenesis Part 2. The role of angiopoietins

More information

PART 1: GENERAL RETINAL ANATOMY

PART 1: GENERAL RETINAL ANATOMY PART 1: GENERAL RETINAL ANATOMY General Anatomy At Ora Serrata At Optic Nerve Head Fundoscopic View Of Normal Retina What Is So Special About Diabetic Retinopathy? The WHO definition of blindness is

More information

Review Article Diabetic Retinopathy: Vascular and Inflammatory Disease

Review Article Diabetic Retinopathy: Vascular and Inflammatory Disease Journal of Diabetes Research Volume 2015, Article ID 582060, 16 pages http://dx.doi.org/10.1155/2015/582060 Review Article Diabetic Retinopathy: Vascular and Inflammatory Disease F. Semeraro, 1 A. Cancarini,

More information

University of Groningen. Vasoregression in incipient diabetic retinopathy Pfister, Frederick

University of Groningen. Vasoregression in incipient diabetic retinopathy Pfister, Frederick University of Groningen Vasoregression in incipient diabetic retinopathy Pfister, Frederick IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

More information

Tissue renewal and Repair. Nisamanee Charoenchon, PhD Department of Pathobiology, Faculty of Science

Tissue renewal and Repair. Nisamanee Charoenchon, PhD   Department of Pathobiology, Faculty of Science Tissue renewal and Repair Nisamanee Charoenchon, PhD Email: nisamanee.cha@mahidol.ac.th Department of Pathobiology, Faculty of Science Topic Objectives 1. Describe processes of tissue repair, regeneration

More information

Diagnosis and treatment of diabetic retinopathy. Blake Cooper MD Ophthalmologist Vitreoretinal Surgeon Retina Associates Kansas City

Diagnosis and treatment of diabetic retinopathy. Blake Cooper MD Ophthalmologist Vitreoretinal Surgeon Retina Associates Kansas City Diagnosis and treatment of diabetic retinopathy Blake Cooper MD Ophthalmologist Vitreoretinal Surgeon Retina Associates Kansas City Disclosures Consulted for Novo Nordisk 2017,2018. Will be discussing

More information

Combination Therapy with Intravitreal Nesvacumab+Aflibercept in Diabetic Macular Edema: The Phase 2 RUBY Trial

Combination Therapy with Intravitreal Nesvacumab+Aflibercept in Diabetic Macular Edema: The Phase 2 RUBY Trial Combination Therapy with Intravitreal Nesvacumab+Aflibercept in Diabetic Macular Edema: The Phase 2 RUBY Trial Jeffrey S. Heier, MD On behalf of the RUBY Investigators Ophthalmic Consultants of Boston

More information

Pericytes are heterogeneous with regard to their

Pericytes are heterogeneous with regard to their ORIGINAL ARTICLE Pericyte Migration A Novel Mechanism of Pericyte Loss in Experimental Diabetic Retinopathy Frederick Pfister, 1 Yuxi Feng, 1 Franziska vom Hagen, 1,3 Sigrid Hoffmann, 2 Grietje Molema,

More information

Tissue repair. (3&4 of 4)

Tissue repair. (3&4 of 4) Tissue repair (3&4 of 4) What will we discuss today: Regeneration in tissue repair Scar formation Cutaneous wound healing Pathologic aspects of repair Regeneration in tissue repair Labile tissues rapid

More information

Subject Index. Bcl-2, apoptosis regulation Bone marrow, polymorphonuclear neutrophil release 24, 26

Subject Index. Bcl-2, apoptosis regulation Bone marrow, polymorphonuclear neutrophil release 24, 26 Subject Index A1, apoptosis regulation 217, 218 Adaptive immunity, polymorphonuclear neutrophil role 31 33 Angiogenesis cancer 178 endometrium remodeling 172 HIV Tat induction mechanism 176 inflammatory

More information

Diabetic retinopathy (DR) represents a

Diabetic retinopathy (DR) represents a THE MOLECULAR BIOLOGY OF DIABETIC RETINOPATHY: OPPORTUNITIES FOR THERAPEUTIC INTERVENTION Lloyd P. Aiello, MD, PhD ABSTRACT Hyperglycemia is the principal underlying cause of diabetic microvascular complications,

More information

Heterotypy and Angiogenesis

Heterotypy and Angiogenesis Heterotypy and Angiogenesis Tumors are perpetual wounds 1. Normally stroma and epithelia converse at a distance. 2. Juxtaposition of stroma and epithelia is indicative of tissue damage. 4. Activate strategies

More information

University of Groningen. Vasoregression in incipient diabetic retinopathy Pfister, Frederick

University of Groningen. Vasoregression in incipient diabetic retinopathy Pfister, Frederick University of Groningen Vasoregression in incipient diabetic retinopathy Pfister, Frederick IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

More information

Bevacizumab and ROP: Review of an RCT. M Chakraborty UHW

Bevacizumab and ROP: Review of an RCT. M Chakraborty UHW Bevacizumab and ROP: Review of an RCT M Chakraborty UHW Sections ROP VEGF and its involvement in the pathogenesis of ROP Details of the study (BEAT-ROP) Methods Results Conclusions Limitations/controversies

More information

Chapter 6. Villous Growth

Chapter 6. Villous Growth Core Curriculum in Perinatal Pathology Chapter 6 Villous Growth Overview of vasculogenesis and angiogenesis Vasculogenesis Extraembryonic Vasculogenesis Angiogenesis Branching angiogenesis Sprouting angiogenesis

More information

Diabetic Retinopathy. Barry Emara MD FRCS(C) Giovanni Caboto Club October 3, 2012

Diabetic Retinopathy. Barry Emara MD FRCS(C) Giovanni Caboto Club October 3, 2012 Diabetic Retinopathy Barry Emara MD FRCS(C) Giovanni Caboto Club October 3, 2012 Outline Statistics Anatomy Categories Assessment Management Risk factors What do you need to do? Objectives Summarize the

More information

Lecture 19 Summary Gestational Diabetes and Complications of Diabetes. Gestational diabetes;

Lecture 19 Summary Gestational Diabetes and Complications of Diabetes. Gestational diabetes; Lecture 19 Summary Gestational Diabetes and Complications of Diabetes Gestational diabetes; - Type of diabetes that only develops during pregnancy Usually diagnosed in late pregnancy Causes high blood

More information

INTRODUCTION AND SYMPTOMS

INTRODUCTION AND SYMPTOMS CHAPTER 1 INTRODUCTION AND SYMPTOMS Introduction of Diabetic Retinopathy Diabetic retinopathy (DR) is a potentially blinding complication of diabetes. It is defined as presence of one or more definite

More information

PROCEEDINGS NEW TRENDS IN THE MANAGEMENT OF DIABETIC RETINOPATHY* Paul M. Dodson, MD, FRCP, FRCOphth ABSTRACT

PROCEEDINGS NEW TRENDS IN THE MANAGEMENT OF DIABETIC RETINOPATHY* Paul M. Dodson, MD, FRCP, FRCOphth ABSTRACT NEW TRENDS IN THE MANAGEMENT OF DIABETIC RETINOPATHY Paul M. Dodson, MD, FRCP, FRCOphth ABSTRACT Based on a presentation given by Dr Dodson at a symposium held in conjunction with the 12th International

More information

renoprotection therapy goals 208, 209

renoprotection therapy goals 208, 209 Subject Index Aldosterone, plasminogen activator inhibitor-1 induction 163, 164, 168 Aminopeptidases angiotensin II processing 64 66, 214 diabetic expression 214, 215 Angiotensin I intrarenal compartmentalization

More information

The Natural History of Diabetic Retinopathy and How Primary Care Makes A Difference

The Natural History of Diabetic Retinopathy and How Primary Care Makes A Difference The Natural History of Diabetic Retinopathy and How Primary Care Makes A Difference We will discuss - How exactly does blood sugar control affect retinopathy? - What are other factors that we measure in

More information

Diabetic ocular complications are a leading PROCEEDINGS MOLECULAR BIOLOGY AND NATURAL HISTORY OF DIABETIC RETINOPATHY * Lloyd P.

Diabetic ocular complications are a leading PROCEEDINGS MOLECULAR BIOLOGY AND NATURAL HISTORY OF DIABETIC RETINOPATHY * Lloyd P. MOLECULAR BIOLOGY AND NATURAL HISTORY OF DIABETIC RETINOPATHY * Lloyd P. Aiello, MD, PhD ABSTRACT Diabetic retinopathy is the most common diabetic microvascular complication, affecting approximately 50%

More information

Financial Disclosures

Financial Disclosures Financial Disclosures DB is a scientific advisor for Regeneron/ Bayer and Genentech/ Roche & a DB member of the Regeneron Combination Products Steering Committee RCH receives grant support from Regeneron/

More information

Case Report: Indocyanine Green Dye Leakage from Retinal Artery in Branch Retinal Vein Occlusion

Case Report: Indocyanine Green Dye Leakage from Retinal Artery in Branch Retinal Vein Occlusion Case Report: Indocyanine Green Dye Leakage from Retinal Artery in Branch Retinal Vein Occlusion Hiroki Fujita, Kyoko Ohno-Matsui, Soh Futagami and Takashi Tokoro Department of Visual Science, Tokyo Medical

More information

Role of Inflammation in Pulmonary Hypertension

Role of Inflammation in Pulmonary Hypertension Role of Inflammation in Pulmonary Hypertension K. R. Stenmark University of Colorado Denver, USA Prominent Fibroproliferative Changes are Observed in the Lung Vasculature of Infants With Pulmonary Arterial

More information

NIAID and NIDDK Workshop May 10 th, 2016

NIAID and NIDDK Workshop May 10 th, 2016 Developing a Comprehensive Therapeutic Research Strategy for the Converging Epidemics of TB, T2DM, and HIV NIAID and NIDDK Workshop May 10 th, 2016 Metabolite-Induced ROS Overproduction Activates the Diverse

More information

Angiostasis and Angiogenesis Regulated by Angiopoietin1-Tie2 Receptor System

Angiostasis and Angiogenesis Regulated by Angiopoietin1-Tie2 Receptor System Japan-Mexico Workshop on Pharmacology and Nanobiology Feb. 25, 2009; Universidad Nacional Autönoma de Mëxico, Mexico City Angiostasis and Angiogenesis Regulated by Angiopoietin1-Tie2 Receptor System Shigetomo

More information

Oishi A, Miyamoto K, Yoshimura N. Etiology of carotid cavernous fistula in Japanese. Jpn J Ophthalmol. 2009;53:40-43.

Oishi A, Miyamoto K, Yoshimura N. Etiology of carotid cavernous fistula in Japanese. Jpn J Ophthalmol. 2009;53:40-43. Kimura T, Takagi H, Miyamoto K, Kita M, Watanabe D, Yoshimura N. Macular hole with epiretinal membrane after triamcinolone-assisted vitrectomy for proliferative diabetic retinopathy. Retinal Cases Brief

More information

Role of Inflammatory and Progenitor Cells in Pulmonary Vascular Remodeling: Potential Role for Targeted Therapies. Traditional Hypothesis Stress

Role of Inflammatory and Progenitor Cells in Pulmonary Vascular Remodeling: Potential Role for Targeted Therapies. Traditional Hypothesis Stress 3/1/212 Role of Inflammatory and Progenitor Cells in Pulmonary Vascular Remodeling: Potential Role for Targeted Therapies K.R. Stenmark University of Colorado Denver, CO 845 Prominent Fibroproliferative

More information

Use of the Free Electron Laser for the Noninvasive Determination of Retinal Oxyhemoglobin Saturation by Near Infrared Reflectance Spectrophotometry

Use of the Free Electron Laser for the Noninvasive Determination of Retinal Oxyhemoglobin Saturation by Near Infrared Reflectance Spectrophotometry Use of the Free Electron Laser for the Noninvasive Determination of Retinal Oxyhemoglobin Saturation by Near Infrared Reflectance Spectrophotometry Ref: Eye, M.C. Escher, 1946 Ref: Eye, M.C. Escher, 1946

More information

THE ROLE OF anti-vegf IN DIABETIC RETINOPATHY AND AGE RELATED MACULAR DEGENERATION

THE ROLE OF anti-vegf IN DIABETIC RETINOPATHY AND AGE RELATED MACULAR DEGENERATION THE ROLE OF anti-vegf IN DIABETIC RETINOPATHY AND AGE RELATED MACULAR DEGENERATION MOESTIDJAB DEPARTMENT OF OPHTHALMOLOGY SCHOOL OF MEDICINE AIRLANGGA UNIVERSITY DR SOETOMO HOSPITAL SURABAYA INTRODUCTION

More information

Guidelines for the Management of Diabetic Retinopathy for the Internist

Guidelines for the Management of Diabetic Retinopathy for the Internist Visual Disorder Guidelines for the Management of Diabetic Retinopathy for the Internist JMAJ 45(1): 1 7, 2002 Sadao HORI Professor, Department of Ophthalmology, Tokyo Women s Medical University Abstract:

More information

Ο ρόλος των τριγλυκεριδίων στην παθογένεια των μικροαγγειοπαθητικών επιπλοκών του σακχαρώδη διαβήτη

Ο ρόλος των τριγλυκεριδίων στην παθογένεια των μικροαγγειοπαθητικών επιπλοκών του σακχαρώδη διαβήτη Ο ρόλος των τριγλυκεριδίων στην παθογένεια των μικροαγγειοπαθητικών επιπλοκών του σακχαρώδη διαβήτη Κωνσταντίνος Τζιόμαλος Επίκουρος Καθηγητής Παθολογίας Α Προπαιδευτική Παθολογική Κλινική, Νοσοκομείο

More information

Growth Factor Circuitry in Vascular Morphogenesis. Lung Development

Growth Factor Circuitry in Vascular Morphogenesis. Lung Development Growth Factor Circuitry in Vascular Morphogenesis Margaret Schwarz, MD Associate Professor Lung Development PECAM-1 Vascular Mediators VEGF ECM Adhesion molecules Anti-angiogenic Factors Fate Specification

More information

ESC Congress August 2011 Paris France. VEGFs and the angiogenic paradox in diabetic patients

ESC Congress August 2011 Paris France. VEGFs and the angiogenic paradox in diabetic patients ESC Congress 2011 27. 31. August 2011 Paris France VEGFs and the angiogenic paradox in diabetic patients Session: New features and effects of angiogenic growth factors in vascular diseases. Johannes Waltenberger,

More information

DIABETIC RETINOPATHY AMONG TYPE 2 DIABETIC PATIENTS PRESENTING WITH MICROALBUMINURIA

DIABETIC RETINOPATHY AMONG TYPE 2 DIABETIC PATIENTS PRESENTING WITH MICROALBUMINURIA ORIGINAL ARTICLE DIABETIC RETINOPATHY AMONG TYPE 2 DIABETIC PATIENTS PRESENTING WITH MICROALBUMINURIA Arshad Hussain 1, Iqbal Wahid 2, Danish Ali Khan 3 ABSTRACT INTRODUCTION: Diabetes mellitus is becoming

More information

EyePACS Grading System (Part 2): Detecting Presence and Severity of Background (Non-Proliferative) Diabetic Retinopathy Lesion

EyePACS Grading System (Part 2): Detecting Presence and Severity of Background (Non-Proliferative) Diabetic Retinopathy Lesion EyePACS Grading System (Part 2): Detecting Presence and Severity of Background (Non-Proliferative) Diabetic Retinopathy Lesion George Bresnick MD MPA Jorge Cuadros OD PhD Anatomy of the eye: 3 Normal Retina

More information

Microvascular mural cells are referred to as

Microvascular mural cells are referred to as Pericytes and the Pathogenesis of Diabetic Retinopathy Hans-Peter Hammes, 1 Jihong Lin, 1 Oliver Renner, 2 Moshe Shani, 3 Andrea Lundqvist, 4 Christer Betsholtz, 4 Michael Brownlee, 5 and Urban Deutsch

More information

DECLARATION OF CONFLICT OF INTEREST. No conflicts of interest

DECLARATION OF CONFLICT OF INTEREST. No conflicts of interest DECLARATION OF CONFLICT OF INTEREST No conflicts of interest University Heart Centre Tübingen Angiogenic actions of platelets Meinrad Gawaz, MD, FESC Tübingen, Germany ESC 2011 Paris GPIb GPIb GPVI TxA2

More information

Abnormalities of the retinal veins are. loops and reduplications in diabetic retinopathy. Prevalence, distribution, and pattern of development

Abnormalities of the retinal veins are. loops and reduplications in diabetic retinopathy. Prevalence, distribution, and pattern of development Venous loops and reduplications in diabetic retinopathy Prevalence, distribution, and pattern of development Toke Bek Department of Ophthalmology, Århus University Hospital, DK-8000 Århus C, Denmark ABSTRACT.

More information

Retinab for Diabetic Retinopathy

Retinab for Diabetic Retinopathy Retinab for Diabetic Retinopathy Tarnhelm Therapeutics January 2014 2 2013 Tarnhelm Therapeutics Company Background Virtual company based in Bryn Mawr, PA Developing biologics for diabetic retinopathy

More information

Cardiovascular Division, Brigham and Women s Hospital, Harvard Medical School

Cardiovascular Division, Brigham and Women s Hospital, Harvard Medical School Low Endothelial Shear Stress Upregulates Atherogenic and Inflammatory Genes Extremely Early in the Natural History of Coronary Artery Disease in Diabetic Hyperlipidemic Juvenile Swine Michail I. Papafaklis,

More information

DIABETIC RETINOPATHY

DIABETIC RETINOPATHY DIABETIC RETINOPATHY CONTEMPORARY DIABETES ARISTIDIS VEVES, MD SERIES EDITOR The Diabetic Foot: Second Edition, edited by Aristidis Veves, MD, John M. Giurini, DPM, and Frank W. LoGerfo, MD, 2006 The Diabetic

More information

removed replaced inflammation scar tissue

removed replaced inflammation scar tissue HOMEOSTASIS Normal maintenance and renewal of differentiated cells in many tissues This does NOT involve leukocytes. Leukocytes and inflammation occurs in response to damage NEED FOR REPAIR When tissue

More information

Mechanisms of Gene Regulation and Signal! Transduction in Hypoxia!

Mechanisms of Gene Regulation and Signal! Transduction in Hypoxia! Mechanisms of Gene Regulation and Signal! Transduction in Hypoxia! Lorenz Poellinger! Dept. of Cell and Molecular Biology! Karolinska Institutet, Stockholm, Sweden! Normoxia - O 2 availability is in balance

More information

Review of relationship between vascular endothelial growth factor family & receptors and tumor angiogenesis

Review of relationship between vascular endothelial growth factor family & receptors and tumor angiogenesis 16 1 2004 2 hinese Bulletin of Life Sciences Vol. 16, No. 1 Feb., 2004 1004-0374 (2004) 01-0019-05 1 201203 2 200025 (vascular endothelial growth factor, ) (vascular permeability factor, VPF), -A -B -

More information

retinal microaneurysm development in diabetic patients

retinal microaneurysm development in diabetic patients 362 British tournal of Ophthalmology 1995; 79: 362-367 ORIGINAL ARTICLES - Laboratory science Department of Ophthalmology, The Queen's University of Belfast, The Royal Victoria Hospital, Institute of Clinical

More information

Endothelial PGC 1 - α 1 mediates vascular dysfunction in diabetes

Endothelial PGC 1 - α 1 mediates vascular dysfunction in diabetes Endothelial PGC-1α mediates vascular dysfunction in diabetes Reporter: Yaqi Zhou Date: 04/14/2014 Outline I. Introduction II. Research route & Results III. Summary Diabetes the Epidemic of the 21st Century

More information

PhD THESIS Epigenetic mechanisms involved in stem cell differentiation

PhD THESIS Epigenetic mechanisms involved in stem cell differentiation Romanian Academy Institute of Cellular Biology and Pathology "Nicolae Simionescu" PhD THESIS Epigenetic mechanisms involved in stem cell differentiation Coordinator: Acad. Maya Simionescu PhD Student:

More information

Diabetes Care 24: , 2001

Diabetes Care 24: , 2001 Pathophysiology/Complications O R I G I N A L A R T I C L E Prevalence and Significance of Retinopathy in Subjects With Type 1 Diabetes of Less Than 5 Years Duration Screened for the Diabetes Control and

More information

Angiogenesis as a therapeutic target

Angiogenesis as a therapeutic target Angiogenesis as a therapeutic target Lecture Experimentelle Krebsforschung SS 07 Prof. Gerhard Christofori Institute of Biochemistry and Genetics Department of Clinical-Biological Sciences University of

More information

Inflammatory Cells and Metastasis

Inflammatory Cells and Metastasis Inflammatory Cells and Metastasis Experimentelle Krebsforschung SS 07 Gerhard Christofori Institute of Biochemistry and Genetics Department of Clinical-Biological Sciences Center of Biomedicine University

More information

Cytokines modulate the functional activities of individual cells and tissues both under normal and pathologic conditions Interleukins,

Cytokines modulate the functional activities of individual cells and tissues both under normal and pathologic conditions Interleukins, Cytokines http://highered.mcgraw-hill.com/sites/0072507470/student_view0/chapter22/animation the_immune_response.html Cytokines modulate the functional activities of individual cells and tissues both under

More information

Mechanisms of Resistance to Antiangiogenic. Martin J. Edelman, MD University of Maryland Greenebaum Cancer Center Dresden, 2012

Mechanisms of Resistance to Antiangiogenic. Martin J. Edelman, MD University of Maryland Greenebaum Cancer Center Dresden, 2012 Mechanisms of Resistance to Antiangiogenic Agents Martin J. Edelman, MD University of Maryland Greenebaum Cancer Center Dresden, 2012 Angiogenesis: A fundamental attribute of cancer Premise of Anti-angiogenic

More information

Diabetic and the Eye: An Introduction

Diabetic and the Eye: An Introduction Diabetic and the Eye: An Introduction Lawrence Iu FRCSEd (Ophth), FCOphthHK, FHKAM (Ophthalmology) Department of Ophthalmology, Grantham Hospital & Queen Mary Hospital Background Diabetes mellitus (DM)

More information

Endothelial Injury and Repair as a Working Paradigm

Endothelial Injury and Repair as a Working Paradigm Endothelial Injury and Repair as a Working Paradigm A. Linke ESC Meeting 2010 UNIVERSITÄTLEIPZIG H ERZZEN TRUM Physiology of Endothelial Function: Regulation of Vascular Tone L-Arg. L-Arg. Agonists Shear

More information

PROCEEDINGS THE IMPORTANCE OF ENDOTHELIAL DAMAGE: DIABETIC RETINOPATHY* Massimo Porta, MD, PhD ABSTRACT

PROCEEDINGS THE IMPORTANCE OF ENDOTHELIAL DAMAGE: DIABETIC RETINOPATHY* Massimo Porta, MD, PhD ABSTRACT THE IMPORTANCE OF ENDOTHELIAL DAMAGE: DIABETIC RETINOPATHY* Massimo Porta, MD, PhD ABSTRACT Diabetic retinopathy is the leading cause of blindness in adults of working age in industrialized countries and

More information

Diabetes mellitus: A risk factor affecting visual outcome in branch retinal vein occlusion

Diabetes mellitus: A risk factor affecting visual outcome in branch retinal vein occlusion European Journal of Ophthalmology / Vol. 13 no. 7, 2003 / pp. 648-652 Diabetes mellitus: A risk factor affecting visual outcome in branch retinal vein occlusion J. SWART 1,2, J.W. REICHERT-THOEN 1, M.S.

More information

Cytokines, adhesion molecules and apoptosis markers. A comprehensive product line for human and veterinary ELISAs

Cytokines, adhesion molecules and apoptosis markers. A comprehensive product line for human and veterinary ELISAs Cytokines, adhesion molecules and apoptosis markers A comprehensive product line for human and veterinary ELISAs IBL International s cytokine product line... is extremely comprehensive. The assays are

More information

Processing of VEGF-C and -D by the Proprotein Convertases: Importance in Angiogenesis, Lymphangiogenesis, and Tumorigenesis

Processing of VEGF-C and -D by the Proprotein Convertases: Importance in Angiogenesis, Lymphangiogenesis, and Tumorigenesis Processing of VEGF-C and -D by the Proprotein Convertases: Importance in Angiogenesis, Lymphangiogenesis, and Tumorigenesis ii Colloquium Digital Library of Life Sciences This e-book is an original work

More information

Correlation between expression and significance of δ-catenin, CD31, and VEGF of non-small cell lung cancer

Correlation between expression and significance of δ-catenin, CD31, and VEGF of non-small cell lung cancer Correlation between expression and significance of δ-catenin, CD31, and VEGF of non-small cell lung cancer X.L. Liu 1, L.D. Liu 2, S.G. Zhang 1, S.D. Dai 3, W.Y. Li 1 and L. Zhang 1 1 Thoracic Surgery,

More information

The Need for a PARP in vivo Pharmacodynamic Assay

The Need for a PARP in vivo Pharmacodynamic Assay The Need for a PARP in vivo Pharmacodynamic Assay Jay George, Ph.D. Chief Scientific Officer Trevigen, Inc. Gaithersburg, MD Poly(ADP-ribose) polymerases are promising therapeutic targets. In response

More information

The metabolic memory. Antonio Ceriello

The metabolic memory. Antonio Ceriello The metabolic memory Antonio Ceriello : DCCT/EDIC - Long-term Microvascular Risk Reduction in Type 1 Diabetes A1C 12% 10% Intensive Retinopathy progression (incidence) Conventional 0.5 0.4 0.3 62% risk

More information

Opposing actions of angiopoietin-2 on Tie2 signaling and FOXO1 activation

Opposing actions of angiopoietin-2 on Tie2 signaling and FOXO1 activation Opposing actions of angiopoietin-2 on Tie2 signaling and FOXO1 activation Minah Kim,, Gavin Thurston, Donald M. McDonald J Clin Invest. 2016;126(9):3511-3525. https://doi.org/10.1172/jci84871. Research

More information

DECLARATION OF CONFLICT OF INTEREST. No disclosures

DECLARATION OF CONFLICT OF INTEREST. No disclosures DECLARATION OF CONFLICT OF INTEREST No disclosures micrornas: Role in progression of atherosclerosis Christian Weber Institute for Cardiovascular Prevention (IPEK) Ludwig-Maximilians-University Munich

More information

EFFICACY OF INTRAVITREAL TRIAMCINOLONE ACETONIDE FOR THE TREATMENT OF DIABETIC MACULAR EDEMA

EFFICACY OF INTRAVITREAL TRIAMCINOLONE ACETONIDE FOR THE TREATMENT OF DIABETIC MACULAR EDEMA Basrah Journal Of Surgery EFFICACY OF INTRAVITREAL TRIAMCINOLONE ACETONIDE FOR THE TREATMENT OF DIABETIC MACULAR EDEMA Salah Zuhair Abed Al-Asadi MB,ChB, FICMS, Lecturer, Department of Surgery, College

More information

Is OCT-A Needed As An Investigative Tool During The Management Of Diabetic Macular Edema

Is OCT-A Needed As An Investigative Tool During The Management Of Diabetic Macular Edema Is OCT-A Needed As An Investigative Tool During The Management Of Diabetic Macular Edema Ayman M Khattab MD, FRCS Professor of Ophthalmology Cairo University Diabetic Macular Edema (DME) Diabetic macular

More information

Pericyte is vascular mural cell, embedded in membrane

Pericyte is vascular mural cell, embedded in membrane Int J Ophthalmol, Vol. 11, No. 3, Mar.18, 2018 www.ijo.cn Tel:8629-82245172 8629-82210956 Email:ijopress@163.com Basic Research Mechanism of retinal pericyte migration through Angiopoietin/Tie-2 signaling

More information

New Perspectives on Diabetic Vascular Complications: The Loss of Endogenous Protective Factors Induced by Hyperglycemia

New Perspectives on Diabetic Vascular Complications: The Loss of Endogenous Protective Factors Induced by Hyperglycemia New Perspectives on Diabetic Vascular Complications: The Loss of Endogenous Protective Factors Induced by Hyperglycemia The Harvard community has made this article openly available. Please share how this

More information

Crosstalk between Adiponectin and IGF-IR in breast cancer. Prof. Young Jin Suh Department of Surgery The Catholic University of Korea

Crosstalk between Adiponectin and IGF-IR in breast cancer. Prof. Young Jin Suh Department of Surgery The Catholic University of Korea Crosstalk between Adiponectin and IGF-IR in breast cancer Prof. Young Jin Suh Department of Surgery The Catholic University of Korea Obesity Chronic, multifactorial disorder Hypertrophy and hyperplasia

More information

Diabetic Retinopathy

Diabetic Retinopathy Diabetic Retinopathy Diabetes mellitus is one of the leading causes of irreversible blindness worldwide. In the United States, it is the most common cause of blindness in people younger than 65 years.

More information

Diabetic Retinopathy A Presentation for the Public

Diabetic Retinopathy A Presentation for the Public Diabetic Retinopathy A Presentation for the Public Ray M. Balyeat, MD The Eye Institute Tulsa, Oklahoma The Healthy Eye Light rays enter the eye through the cornea, pupil and lens. These light rays are

More information

Pathology of Coronary Artery Disease

Pathology of Coronary Artery Disease Pathology of Coronary Artery Disease Seth J. Kligerman, MD Pathology of Coronary Artery Disease Seth Kligerman, MD Assistant Professor Medical Director of MRI University of Maryland Department of Radiology

More information

Diabetic eye disease. Diabetic retinopathy. Sam S. Dahr, M.D. Retina Center of Oklahoma.

Diabetic eye disease. Diabetic retinopathy. Sam S. Dahr, M.D. Retina Center of Oklahoma. Diabetic eye disease Sam S. Dahr, M.D. Retina Center of Oklahoma www.rcoklahoma.com Downloaded from: The Retina (on 28 May 2007 12:48 AM) 2007 Elsevier Diabetic retinopathy Downloaded from: The Retina

More information

Diabetic Retinopathy., Jeong Hun Kim. S.W.P. and J.-H.Y. contributed equally to this work. Seoul National University Hospital, Seoul , Korea

Diabetic Retinopathy., Jeong Hun Kim. S.W.P. and J.-H.Y. contributed equally to this work. Seoul National University Hospital, Seoul , Korea Page 1 of 53 Angiopoietin 2 Induces Pericyte Apoptosis via α3β1 Integrin Signaling in Diabetic Retinopathy Sung Wook Park 1, 2, Jang-Hyuk Yun 3, 4, Jin Hyoung Kim 1, Kyu-Won Kim 5, Chung-Hyun Cho 3, 4#

More information

Haematopoietic stem cells

Haematopoietic stem cells Haematopoietic stem cells Neil P. Rodrigues, DPhil NIH Centre for Biomedical Research Excellence in Stem Cell Biology Boston University School of Medicine neil.rodrigues@imm.ox.ac.uk Haematopoiesis: An

More information

Metabolic syndrome, obesity, diabetes, and theier implications

Metabolic syndrome, obesity, diabetes, and theier implications Metabolic syndrome, obesity, diabetes, and theier implications jan.krtil@lf1.cuni.cz Institute of Medical Biochemistry and Laboratory Diagnostics &1 st Department of Medicine Diabetes mellitus type 2 (T2DM)

More information

ulcer healing role 118 Bicarbonate, prostaglandins in duodenal cytoprotection 235, 236

ulcer healing role 118 Bicarbonate, prostaglandins in duodenal cytoprotection 235, 236 Subject Index Actin cellular forms 48, 49 epidermal growth factor, cytoskeletal change induction in mucosal repair 22, 23 wound repair 64, 65 polyamine effects on cytoskeleton 49 51 S-Adenosylmethionine

More information

INFLAMMATION & REPAIR

INFLAMMATION & REPAIR INFLAMMATION & REPAIR Lecture 7 Chemical Mediators of Inflammation Winter 2013 Chelsea Martin Special thanks to Drs. Hanna and Forzan Course Outline i. Inflammation: Introduction and generalities (lecture

More information

Journal Club: The Use of Fish Oil Lipid Emulsion for Gastrointestinal Surgery Patients

Journal Club: The Use of Fish Oil Lipid Emulsion for Gastrointestinal Surgery Patients S a m m i M o n t a g F i s h O i l E m u l s i o n J o u r n a l C l u b - P a g e 1 Journal Club: The Use of Fish Oil Lipid Emulsion for Gastrointestinal Surgery Patients Introduction/Background I. Surgical

More information

A pilot Study of 25-Hydroxy Vitamin D in Egyptian Diabetic Patients with Diabetic Retinopathy

A pilot Study of 25-Hydroxy Vitamin D in Egyptian Diabetic Patients with Diabetic Retinopathy A pilot Study of 25-Hydroxy Vitamin D in Egyptian Diabetic Patients with Diabetic Retinopathy El-Orabi HA 1, Halawa MR 1, Abd El-Salam MM 1, Eliewa TF 2 and Sherif NSE 1 Internal Medicine and Endocrinology

More information

SUPPLEMENTARY DATA. Supplementary Table 1. Characteristics of Subjects.

SUPPLEMENTARY DATA. Supplementary Table 1. Characteristics of Subjects. Supplementary Table 1. Characteristics of Subjects. a includes one patient who had an aqueous sample taken from the same eye twice b includes one patients who had an aqueous sample taken from the same

More information

Elaborating ELAD Mechanism of Action and Linking Cell-Based Models to the Clinic

Elaborating ELAD Mechanism of Action and Linking Cell-Based Models to the Clinic Elaborating ELAD Mechanism of Action and Linking Cell-Based Models to the Clinic September 9, 2017 Patricia W Bedard, Jason Lapetoda, Jagadeesha Dammanahalli, Jessica Van Allen, Susan Lin, Lee Landeen

More information

The Era of anti- - - VEGF Kirk L. Halvorson, OD

The Era of anti- - - VEGF Kirk L. Halvorson, OD The Era of anti- - - VEGF Kirk L. Halvorson, OD Introduction: Anti- - - Vascular Endothelial Growth Factor (Anti- - - VEGF) medication is a relatively a new line of medications used in treating a variety

More information

Serum Retinol-binding Protein 4 Levels in Patients with Diabetic Retinopathy

Serum Retinol-binding Protein 4 Levels in Patients with Diabetic Retinopathy The Journal of International Medical Research 2010; 38: 95 99 Serum Retinol-binding Protein 4 Levels in Patients with Diabetic Retinopathy Z-Z LI 1, X-Z LU 2, J-B LIU 1 AND L CHEN 1 1 Department of Endocrinology,

More information

Potential Role of Sphingosine 1-Phosphate in the. Pathogenesis of Rheumatoid Arthritis

Potential Role of Sphingosine 1-Phosphate in the. Pathogenesis of Rheumatoid Arthritis Potential Role of Sphingosine 1-Phosphate in the Pathogenesis of Rheumatoid Arthritis COMMENTARY for Zhao, C., Fernandes, M.J., Turgeon, M., Tancrede, S., Di Battista, J., Poubelle, P.E. and Bourgoin,

More information

Analysis on the mechanism of reduced nephron number and the pathological progression of chronic renal failure in Astrin deficient rats

Analysis on the mechanism of reduced nephron number and the pathological progression of chronic renal failure in Astrin deficient rats Analysis on the mechanism of reduced nephron number and the pathological progression of chronic renal failure in Astrin deficient rats Summary of Doctoral Thesis Hidenori Yasuda Graduate School of Veterinary

More information

Paracrine Mechanisms in Adult Stem Cell Signaling and Therapy

Paracrine Mechanisms in Adult Stem Cell Signaling and Therapy Paracrine Mechanisms in Adult Stem Cell Signaling and Therapy Massimiliano Gnecchi, Zhiping Zhang, Aiguo Ni, Victor J. Dzau Circulation Research 2008 Nov 21;103(11):1204-19 Introduction(1) After AMI all

More information

Longitudinal Validation Study: Streptozotocin-Induced Diabetes as a Model of Diabetic Retinopathy in Brown Norway Rats

Longitudinal Validation Study: Streptozotocin-Induced Diabetes as a Model of Diabetic Retinopathy in Brown Norway Rats Longitudinal Validation Study: Streptozotocin-Induced Diabetes as a Model of Diabetic Retinopathy in Brown Norway Rats Robin Dean, Robert Sukhu, Leslie Nemeth, Qin Zhang, Isaac Hakim, Ali Ebramhimnejad,

More information

New Developments in the treatment of Diabetic Retinopathy

New Developments in the treatment of Diabetic Retinopathy New Developments in the treatment of Diabetic Retinopathy B. Jeroen Klevering University Medical Centre Nijmegen - The Netherlands Topics Management of diabetic retinopathy Interventions a. primary (prevention)

More information

Histone modifications in kidney disease

Histone modifications in kidney disease Histone modifications in kidney disease Masaomi Nangaku Division of Nephrology and Endocrinology The University of Tokyo Graduate School of Medicine Japan Mimura, Tanaka, & Nangaku. Semin Nephrol 2013

More information