Cervical dystonia: a neural integrator disorder

Size: px
Start display at page:

Download "Cervical dystonia: a neural integrator disorder"

Transcription

1 doi: /brain/aww141 BRAIN 2016: 139; UPDATE Cervical dystonia: a neural integrator disorder Aasef G. Shaikh, 1,2 David S. Zee, 3 J. Douglas Crawford 4 and Hyder A. Jinnah 5 Ocular motor neural integrators ensure that eyes are held steady in straight-ahead and eccentric positions of gaze. Abnormal function of the ocular motor neural integrator leads to centripetal drifts of the eyes with consequent gaze-evoked nystagmus. In 2002 a neural integrator, analogous to that in the ocular motor system, was proposed for the control of head movements. Recently, a counterpart of gaze-evoked eye nystagmus was identified for head movements; in which the head could not be held steady in eccentric positions on the trunk. These findings lead to a novel pathophysiological explanation in cervical dystonia, which proposed that the abnormalities of head movements stem from a malfunctioning head neural integrator, either intrinsically or as a result of impaired cerebellar, basal ganglia, or peripheral feedback. Here we briefly recapitulate the history of the neural integrator for eye movements, then further develop the idea of a neural integrator for head movements, and finally discuss its putative role in cervical dystonia. We hypothesize that changing the activity in an impaired head neural integrator, by modulating feedback, could treat dystonia. 1 Department of Neurology, Case Western Reserve University, Cleveland, OH, USA 2 Daroff-DelOsso Ocular Motility Laboratory, Neurology Service, Louis Stoke VA Medical Center, Cleveland, OH, USA 3 Department of Neurology, The Johns Hopkins University, Baltimore, MD, USA 4 Centre for Vision Research and Departments of Psychology, Biology, and Kinesiology and Health Sciences, York University, Toronto, ON, Canada 5 Department of Neurology, Emory University, Atlanta, GA, USA Correspondence to: Aasef G. Shaikh, M.D., Ph.D., Department of Neurology, Euclid Avenue, Cleveland, OH 44110, USA aasefshaikh@gmail.com Keywords: integrator; cerebellum; midbrain; tremor; nystagmus Abbreviation: INC = interstitial nucleus of Cajal Neural integrators: evolution of the concept The human brain requires a series of complex neural processes to accomplish routine tasks. For example, looking at an object and reaching for it first uses the visual system to locate and compute the spatial coordinates of the object of interest (Sparks, 1989; Andersen et al., 1993; Crawford et al., 2011). The eyes and head then turn towards the object and gaze is stabilized in its new position to capture more detailed visual information (Guitton et al., 2003). The arm then reaches for the object and, once stabilized in its new orientation, forms a platform from which the fingers can grasp the object (Gosselin-Kessiby et al., 2008; Monaco et al., 2015). Each of these steps is accompanied by a brief transmission of information encoded in a short-lasting pulse of neural discharge. To use such ongoing bits of information to maintain each step, the brain must convert the transient pulses of neural discharge into sustained neural activity, both at the higher levels of cognition, e.g. working memory (Goldman-Rakic, 1996; Curtis and Lee, 2010), and at lower levels for the control and maintenance of posture. Received March 11, Revised April 24, Accepted May 1, Advance Access publication June 20, 2016 ß The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please journals.permissions@oup.com

2 Neural integrator in cervical dystonia BRAIN 2016: 139; David Hearley, in the early 18th century, proposed the process of converting the pulse of neural discharge into persistent neuronal activity and formation of a short-term memory. Alexander Bain, later in the 1800s, further elaborated the process of short-term memory. Subsequent investigators posited that the conversion of the pulse of neural discharge to steady-state firing requires sustained synaptic activity generated by reverberation in a neuronal network (Lorente De No, 1938; Hebb, 1949). In the 1970s David Robinson further developed the concept of mathematical integration for the ocular motor system, based on the fundamental observation that vestibular inputs encode velocity whereas the ocular motor effector, plant, is a position actuator (Robinson, 1974). This idea was supported by studies showing that pharmacological inactivation of circuits in the medulla, responsible for neural integration in subhuman primates, led to horizontal drift of the eyes from a target location (Cannon and Robinson, 1987; Godaux et al., 1993; Arnold et al., 1999). Other experiments showed analogous integrators for the vertical and torsional components of eye orientation in the midbrain interstitial nucleus of Cajal (INC), where torsion is defined as rotation around the line of gaze at its primary position (King et al., 1981; Fukushima, 1987; Crawford et al., 1991). Together, these integrators appear to control eye orientation about axes or planes similar to those defined by the semicircular canals and the eye muscles themselves (Crawford et al., 2003). alternating drifts and corrective movements define gazeevoked nystagmus (Robinson, 1974; Zee et al., 1976, 1980, 1981). Gaze-evoked nystagmus: the quintessential example of a dysfunctional ocular motor neural integrator Figure 1A C depicts an example of typical gaze-evoked nystagmus. The eyes are relatively stable in the straightahead position (Fig. 1B). The eyes drift to the left after they are turned 30 to the right (Fig. 1A), and are followed by corrective saccades, or quick phases, in the opposite direction (Fig. 1A). Rightward drifts and leftward quick phases follow after the eyes are turned 30 to the left (Fig. 1C). The drift velocity, or slow-phase velocity, changes systematically with the eye-in-orbit position, lessening as the eye-in-orbit position approaches straight-ahead (Fig. 1D). The direction of the drift reverses when the eyein-orbit position passes beyond the straight-ahead to the contralateral side (Fig. 1D). All these features of drifts of the eyes can be attributed to suboptimal neural integration, and are distinct from the constant-velocity drift associated with pure vestibular dysfunction (Robinson, 1974; Zee et al., 1980, 1981; Leigh and Zee, 2015). Feedback dependence of the neural integrator Theoretical constructs for neural integration were supported by studies suggesting that continual feedback between the neurons was fundamental to ensure the efficacy of the neural integrator (Cannon and Robinson, 1985; Arnold and Robinson, 1991; Aksay et al., 2001, 2007; Miri et al., 2011). To ensure perfect neural integration, the synaptic strengths of all network neurons had to be optimally tuned. Most biological systems, however, cannot maintain optimal tuning indefinitely, making neural integrators inherently imperfect. They can become leaky, leading to velocity-decreasing drifts toward a null position, or unstable, leading to velocity-increasing drifts away from the null position. Imperfect integrators can be restored to more faithful activity by appropriate feedback. The cerebellum is one of the key sources of feedback to the neural integrator (Carpenter, 1972; Robinson, 1974; Zee et al., 1976, 1980, 1981; Baier and Dieterich, 2011). A deficit in cerebellar feedback can lead to imperfect neural integration associated with characteristic centripetal drifts in the eyes from eccentric targets. The drifts are followed by corrective saccades in the opposite direction that rapidly realign the eyes towards the target of interest. These Discovery of head neural integrator: an important milestone in motor physiology Until recently the neural integrator concept was largely confined to the ocular motor system. In 2002 Klier and colleagues injected muscimol in the midbrain of subhuman primates to inactivate the INC and surrounding structures such as the rostral interstitial medial longitudinal fasciculus and nucleus of Darkschewitsch (Klier et al., 2002). Based on previous experiments showing that the INC houses part of the ocular motor integrator, and its projections to the spinal cord via the interstitiospinal tract (Fukushima et al., 1981), they expected additional deficits in head movements. As predicted, monkeys developed position-dependent deficits in holding the head still, especially in the vertical and torsional dimensions (Klier et al., 2002; Farshadmanesh et al., 2007). Attempts to voluntarily straighten the head caused repeated drifting of the head towards a resting position (Fig. 2A). This motor behaviour was analogous to gaze-evoked nystagmus of the eyes (Fig. 1). Indeed, when eye and head movements were recorded simultaneously, their drifts were highly correlated

3 2592 BRAIN 2016: 139; A. G. Shaikh et al. Figure 1 Gaze-evoked nystagmus of the eyes. (A C) Example of gaze-evoked nystagmus measured during a 5-s epoch as the subject with a cerebellar lesion attempted to fixate gaze to the right (A), straight-ahead (B), or to the left (C). The nystagmus is characterized by slow phases and rapid corrective quick phases. In a slow phase the eyes drift toward the null (B). Slow-phase velocity systematically changes with eye-in-orbit orientation (D). Each circle in D depicts one cycle of gaze-evoked nystagmus with the slowphase velocity on the y-axis while the corresponding eye-in-orbit position is on the x-axis. Positive signs depict the rightward direction, while negative is leftward. (Farshadmanesh et al., 2007). Eventually, the corrective movements abated and the head settled into a laterally tilted position (Fig. 1A). Finally, unilateral stimulation of the INC produced head rotations that often held their final position (until corrected), as expected by the neural integrator theory (Fig. 2B). In other words, unilateral stimulation and inactivation simply produced head tilts in opposite directions, although the underlying patterns of muscular activation were much more complicated (Farshadmanesh et al., 2008, 2012). Based on these findings it was proposed that the INC could function as a neural integrator for both eye and head movements (Klier et al., 2002; Farshadmanesh et al., 2007). They further proposed that the postural symptoms of cervical dystonia in humans, for example, the fixed neck posturing in torsion dystonia, could be explained by severely imbalanced activity within such an integrator, either from intrinsic dysfunction (as in Fig. 2A) or from an imbalance of inputs (as simulated by stimulation in Fig. 2B), or a combination of these two. For example, the head only drifted in the early stages of INC inactivation because the system was still trying to correct head torsion (Fig. 2A). The eventual settling of head position toward the torsional null position could thus be explained either as an additional deficit in surrounding phasic inputs like the rostral interstitial medial longitudinal fasciculus (obliterating the corrective movements) or as the system accepting a new set-point for torsion at the null position. Other experiments further suggested that the INC controls head orientation about the planes sensed by the four vertical semicircular canals, again analogous to its role in eye position control (Klier et al., 2002, 2007). The head neural integrator in the INC receives inputs from the ventral-caudal and rostral mesencephalic reticular formation. Injections of muscimol into the nucleus subcuneiformis located ventro-caudally in the mesencephalic reticular formation, lateral to the oculomotor nucleus, and caudal to the posterior commissure, as well as into the peri-inc mesencephalic reticular formation, produces head tilts but with less accompanying ocular drift (Waitzman et al., 2000a, b). There must then also be a horizontal head integrator. Head rotations produced by stimulation in the area near the horizontal eye movement generator suggest that the head movement integrator might be located in the pons or medulla (like the eye integrator), but this head integrator has not yet been directly identified (Gandhi and Sparks, 2007). Feedback dependence of the head neural integrator The neural integrator for head movements is also inherently leaky and feedback-dependent. Recent studies hypothesized that the head neural integrator relies on feedback using visual information, neck proprioception, and input from the cerebellum (Chan-Palay, 1977; Noda et al., 1990; Fukushima and Fukushima, 1992). Suboptimal calibration of any of these feedback pathways results in impaired function of the head neural integrator. Healthy subjects with optimal visual and proprioceptive feedback can hold their head steady in eccentric positions (Supplementary Fig. 1A and B). If visual feedback is removed the head drifts from eccentric head positions towards a central null, where drifts are minimal (Supplementary Fig. 1C and D). This observation implies the neural integrator depends at least in part on visual feedback. The velocity of centripetal drift increases when the position of the head shifts farther away from the null (Supplementary Fig. 1D), as predicted by the neural integrator hypothesis. Head movements are more complex than eye movements in the sense that they are controlled by numerous neck muscles; any given neck muscle can be activated during movements in more than one plane, and movements can be around more than one joint. Hence it is advantageous to use multiple independent sources of proprioceptive feedback to advise the brain about the state of the position of the head (Shaikh et al., 2013). When the proprioceptive signal is distorted by vibrating paraspinal neck muscles, centripetal drift of the head increases during eccentric head holding (Supplementary Fig. 1E). The relationship between drift velocity and head on trunk position had a steeper slope suggesting a synergistic relationship between visual and proprioceptive influences to improve the fidelity of the head neural integrator (Supplementary Fig. 1F). In another experiment, in which normal visual feedback was allowed but

4 Neural integrator in cervical dystonia BRAIN 2016: 139; Figure 2 Inactivation and stimulation of INC in macaques cause head postures and oscillations resembling cervical dystonia. (A) Unilateral inactivation of INC results in head postures resembling cervical dystonia. Left INC inactivation results in right laterocollis and left torticollis, while left INC inactivation causes left laterocollis and right torticollis. The effects are schematized with caricatures. The effects of inactivation are progressive, and resolve spontaneously within 24 h. Traces depict the time course of changes in torsional head position after left INC inactivation with muscimol. Black trace is head position while grey is corresponding gaze (eye-in-space). Head (and eye) positions are plotted on the y-axis while the x-axis depicts corresponding time. After 40 min of injections the head remains steadily distorted in 40 torsional position (laterocollis). (B) Electrical stimulation of INC in the form of 50 ma, and 200 Hz cathodal pulse trains of using tungsten microelectrodes results in head position changes, but directions are opposite of what are found with inactivation. Left INC stimulation causes right torticollis and left laterocollis, and retrocollis. Right INC stimulation causes left torticollis, right laterocollis, and retrocollis. proprioception was distorted by vibration, drifts in head position still emerged and were followed by rapid corrective head movements (Supplementary Fig. 1G and H) (Shaikh et al., 2013). These slow drifts and rapid corrections that appear when feedback is altered resemble the jerky oscillations of dystonic tremor in subjects with cervical dystonia, a neurological disorder characterized by involuntary twisting and turning of the head in any of the three dimensions of head rotation. Indeed, in the original description of the head neural integrator Klier and colleagues (2002) proposed that the abnormal head movements shown by monkeys after inactivation of the INC resemble the abnormal torsional head movements in subjects with cervical dystonia (laterocollis). Based on this idea, one would expect to also see chronic horizontal tilts if one could continuously activate one side, and thus one direction, of the (as yet to be localized) horizontal head integrator. Dysfunction of neural integrators: a new twist in the physiology of dystonia The proposal by Klier and colleagues (2002) was at odds with prevailing views of cervical dystonia, which focused on defects in the basal ganglia (Dauer et al., 1998) or sometimes the cerebellum (Neychev et al., 2011) or proprioceptive defects (Tempel and Perlmutter, 1990; Bove et al., 2004). As a result, their idea was neglected until more recent studies resurrected the concept by characterizing the abnormalities of head movement in subjects with cervical dystonia, in relation to the neural integrator model (Shaikh et al., 2013). Figure 3A L depicts head positions for a subject with cervical dystonia, where the favoured head position (null) was 20 to the left of the centre position on the trunk (Fig. 3G I). Drifts of head position were minimal when the subject s head was voluntarily held at the null. Coarse and jerky head movements were seen as the head turned 20 to the right (40 from the null) (Fig. 3A C), or straightahead (20 from the null, Fig. 3D F). Typical of cervical dystonia, the jerky movements were present in all three rotational planes including the horizontal plane (torticollis), vertical plane (antero/retrocollis), and torsional plane (laterocollis). In such instances, the slow drift in head position was directed towards the null. The rapid movements towards the desired head position corrected for the drifts toward the null. Furthermore, in all three planes the drift velocity systematically changed with head position. Figure 3 M and N summarizes the drift trajectories in all three dimensions, shown in the horizontal vertical, and

5 2594 BRAIN 2016: 139; A. G. Shaikh et al. horizontal torsional planes. Qualitatively the drifts are directed towards the null, minimal drifts are present at the null, and there is a further increase in drifts in the opposite direction as the head passes to the opposite side of the null. These features of the drifts are quantitatively shown in Fig. 3O Q. Such jerky, irregular, multidimensional head movements, composed of drifts and corrections in cervical dystonia, are often called dystonic tremor, a term that has generated considerable debate (Quinn et al., 2011; Elble, 2013). It is interesting to note that the movements of dystonic tremor are analogous to the gaze-evoked nystagmus of the eyes. Such a resemblance suggested an alternative label for the dystonic tremor, and that is head nystagmus. Though nystagmus is a term more commonly used in reference to various types of eye oscillations, it can also be applied more generally to any movement that has repetitive cycles of a slow drift followed by a rapid corrective movement in the opposite direction (i.e. a jerk nystagmus). Interestingly, the term head nystagmus was used more than three quarters of a century ago by Hyndman (1939) in his in descriptions of the jerky oscillations in cervical dystonia. Regardless of the best terminology for these head movements, the results show that they can be interpreted as deficits in a head neural integrator (Shaikh et al., 2013). Two types of head oscillations in cervical dystonia: more support for dysfunctional neural integration In addition to the coarse, jerky, oscillatory movements, which we have likened to gaze-evoked nystagmus of the eyes, some subjects with cervical dystonia also had smaller amplitude, sinusoidal, and more regular oscillations. These oscillations, resembling essential tremor, were superimposed on the coarse jerky movements (Fig. 3A and D). It was subsequently shown that these sinusoidal head oscillations had characteristics similar to the pendular eye oscillations that are thought to originate from instability in the ocular motor neural integrator (Das et al., 2000; Shaikh et al., 2015b). Three characteristic features of these sinusoidal head oscillations supported their origin in an abnormal neural integrator. First, the amplitude of oscillation depended upon the head-on-trunk orientation; second there was no influence of head position on the frequency of oscillations; and finally there was a reset in phase of the oscillation after rapid head movements. Thus, these quantitative studies of head movements in cervical dystonia provided strong support for a mixed disorder, combining at least two subtypes of oscillatory head movements, and both could be related to abnormal function of a head neural integrator (Shaikh et al., 2013, 2015b). Concept of a neural integrator to address well-known controversies in dystonia Proposals suggesting a relationship of the head neural integrators in the INC or its surrounding area to cervical dystonia do not imply that pathology in cervical dystonia must be intrinsic to these regions. Major inputs to this area are from the cerebellum (Fig. 4), a region already implicated in cervical dystonia (Pelisson et al., 1998, 2003; Pizoli et al., 2002; Neychev et al., 2008, 2011; Prudente et al., 2013, 2014; Raike et al., 2013). There is an old literature suggesting that cerebellar lesions and more recent experiments using transcranial magnetic stimulation of the cerebellum, show improvements in dystonia and muscle tone (Heimburger, 1967, 1968; Zervas et al., 1967; Hitchcock, 1973, 1977; Siegfried and Verdie, 1977; Zervas, 1977; Sukoff and Ragatz, 1980; Koch et al., 2014; Sokal et al., 2015; Teixeira et al., 2015). Furthermore, close by, the nucleus of Darkschewitsch, an area that is considered a part of peri-rubral complex and also involved with head neural integration, receives projections from the basal ganglia (Onodera and Hicks, 1998, 2009). Tractography has revealed right left asymmetry in white matter projections between the pallidum and the region of the red nucleus in subjects with cervical dystonia (Blood et al., 2012). Subjects with cervical dystonia also have asymmetric local field potentials in the pallidum, suggesting an asymmetry in pallidal outflow (Lee and Kiss, 2014; Moll et al., 2014). The same midbrain regions that we associate with a head neural integrator also indirectly receive afferent information from neck proprioceptors (Fig. 4) (Fukushima et al., 1981; Bakker et al., 1984; Ishii, 1989). Malfunction in proprioceptive, pallidal or cerebellar projections to the head position integrator could affect its function, leading to clinical abnormalities resembling cervical dystonia. This notion emphasizes that dystonia is a clinical syndrome but with heterogeneity in the underlying biological causes. The conceptual framework emphasizing a central role of the neural integrator in cervical dystonia is consistent with contemporary hypotheses for cervical dystonia that underscore the role of altered cerebellar output and inadequate proprioceptive feedback (Pizoli et al., 2002; Neychev et al., 2008, 2011; Shaikh et al., 2008; 2013, 2015b; Prudente et al., 2013, 2014; Raike et al., 2013). The concept also is compatible with more traditional opinions that stress the role of the basal ganglia in dystonia (Fukushima et al., 1981; Berardelli et al., 1998; Vitek et al., 1999; Vitek, 2002; Calderon et al., 2011). Furthermore, this novel view of the pathophysiology of cervical dystonia suggests

6 Neural integrator in cervical dystonia BRAIN 2016: 139; Figure 3 Kinematic properties of head movements in cervical dystonia. (A L) Examples of head movements in subject with cervical dystonia in a 4-s epoch. Horizontal, vertical, and torsional head movements were recorded as the subject attempted to keep the head to the right (A C, respectively), straight-ahead (D F, respectively), or to the left (G L). Head movements to 30 head positions and during the straightahead position depict slow drifts (large open arrows) and rapid corrections (small closed arrows). There are sinusoidal head oscillations superimposed upon the slow drifts (most prominent during the rightward and straight positions). The slow-phase velocity in all three planes of rotation systematically changes with head-on-trunk orientation (M Q). Direction and size of torsional and horizontal (M) and vertical and horizontal drifts (N) are compared. The line depicts the drift trajectory, while the circular symbol depicts the end of the drift. Torsional (M) and vertical (N) are plotted on the y-axis while the x-axis is horizontal position. Oblique lines suggest presence of drifts in horizontal, vertical, and torsional plane. (O Q) Depicts quantitative comparison of the drift velocity and horizontal head on trunk orientation. Horizontal (O), vertical (P), and torsional (Q) drift velocity are plotted on the y-axis, while corresponding head on trunk orientation is plotted on the x-axis. Each circle depicts one drift. Positive signs depict rightward direction, while negative is the leftward.

7 2596 BRAIN 2016: 139; A. G. Shaikh et al. Figure 4 Neural integrator and its feedback system involving the cerebellum, basal ganglia, vision, and neck proprioception. Proposed feedback system projecting to the head neural integrator. Each system is shown in different colours. The basal ganglia (globus pallidus interna) projects to the neural integrator, but it received neck proprioceptive feedback via the subthalamic nucleus. The neck proprioceptors project to the neural integrator via the cerebellum providing an estimation of the headon-trunk orientation (Shaikh et al., 2004). Visual inputs project to the neural integrator, allowing estimation of the head on trunk orientation. Solid arrows depict definitive excitatory input, unfilled arrows a definitive inhibitory signal, while the arrows with striped patterns depict additional but as yet not confirmed inputs. SC/ FEF = superior colliculus/frontal eye field. an answer to an important question: How do defects affecting different anatomical structures cause similar clinical presentations? The neural integrator concept for cervical dystonia: what does it mean to the clinician? These new concepts for the pathogenesis of cervical dystonia, based on the idea of an impaired neural integrator that receives multiple sources of feedback, are not mere academic exercises in anatomical localization or physiology. They have direct implications for treatment. Specifically, the new concept points to potentially novel stimulation targets for deep brain stimulation. Traditionally, deep brain stimulation for cervical dystonia targets the internal segment of the globus pallidus or the subthalamic nucleus, but outcomes are not predictable (Vidailhet et al., 2005; Kiss et al., 2007). The neural integrator concept suggests that stimulation of the INC or its cerebellar inputs may be a future strategy to treat cervical dystonia. The concept of involvement of the midbrain in the control of 3D head orientation is not new. In the early 1950s Hassler and Hess applied monopolar electrical stimulation near the INC to evoke head movements in normal humans (Hassler and Hess, 1954). Two decades later, during electrical stimulation of the INC, medio-superior red nucleus, and parts of medical longitudinal fasciculus posterior and inferior to the intercommisural line and lateral to the midplane, Sano noted vertical head movements accompanied by marked contraction and electromyographic discharges of posterior neck muscles bilaterally, such as the splenius capitis and trapezius in subjects with cervical dystonia (Sano et al., 1970). Ablation of these regions reduced retrocollis (Sano et al., 1970). Stimulation of an area superior, anterior and lateral to INC resulted in contraction of both sternocleidomastoids accompanied by anteroflexion of the neck (Sano et al., 1970). Periaquaductal stimulation using a weaker electrical charge extinguished electromyographic discharges in bilateral posterior neck muscles followed by improvement in neck muscle tone (Sano et al., 1970). Hassler later targeted the efferent projections of the INC, the ventro-oralis internus thalami, for the surgical treatment of torticollis (Hassler and Dieckmann, 1970) and the prestitial nucleus for retrocollis (Hassler et al., 1981). These procedures were largely abandoned as a treatment for cervical dystonia because results were sometimes unpredictable. This unpredictability is not surprising, because of the lack of a guiding conceptual model regarding how manipulations of these regions might alter head positions. However, in light of the neural integrator hypothesis, we can begin to understand the subtleties of these effects, such as the initial drift of head position after the inactivation of INC (Fig. 2A), and the holding of final head orientation after unilateral stimulation of this nucleus (Fig. 2B). Moreover, these new hypotheses incorporating a neural integrator in the pathogenesis of cervical dystonia, encourage us to revisit these target areas with more refined techniques that might offer therapeutic benefit to subjects with cervical dystonia. Contemporary concepts emphasize the role of feedback in the pathogenesis of dystonias and also link to the most popular treatment of cervical dystonia, botulinum toxin injections. Such therapy not only affects the neuromuscular junction, but it also modulates the afferent output of the cholinergic extra and intrafusal fibres (Filippi et al., 1993; Rosales et al., 1996, 2006). In support of this idea about pathogenesis are the effects of botulinum toxin on the spinal and supra-spinal reflex pathways (Rosales et al., 1996). Additional evidence comes from reduced central excitability with trans-cranial magnetic stimulation in humans after injection of botulinum toxin type A injection into the extensor digitorum brevis muscle (Kim et al., 2006). It is also possible that the effects of botulinum toxin are combined with the secondary effects of muscle weakening on spindle activity and proprioception. Clinical observations also support the idea that botulinum toxin affects the muscle spindle as there is a lack of a simple relationship between the required dose of the toxin and the observed clinical benefit. It is often noted that the abnormal neck

8 Neural integrator in cervical dystonia BRAIN 2016: 139; posture remains despite muscle relaxation by the toxin. Such observations support the idea that inappropriate peripheral input to the head neural integrator leads to the shifts of the null position that characterize cervical dystonia (Klier et al., 2002; Farshadmanesh et al., 2007; Shaikh et al., 2013, 2015a). In summary, we present a novel conceptual framework for the pathogenesis of cervical dystonia that emphasizes the role of abnormal feedback to the midbrain head neural integrator. The idea that proprioception, the cerebellum, and basal ganglia are key sources of feedback to the head neural integrator is compatible with contemporary perspectives on cerebellar or proprioceptive abnormalities as contributors to dystonia, as well as conventionally suggested impairments in the function of basal ganglia. This proposed framework for the pathophysiology of cervical dystonia departs from longstanding traditional concepts of dystonia that focused exclusively on the basal ganglia. More importantly, this framework suggests novel therapies for cervical dystonia such as chronic electrical stimulation of the cerebellum or modulation of proprioception using vibration or electrocutaneous stimulation devices. Funding A.S. is supported by the career development award from the Dystonia Coalition (NIH U54 TR ) and Dystonia Medical Research Foundation. Supplementary material Supplementary material is available at Brain online. References Aksay E, Gamkrelidze G, Seung HS, Baker R, Tank DW. In vivo intracellular recording and perturbation of persistent activity in a neural integrator. Nat Neurosci 2001; 4: Aksay E, Olasagasti I, Mensh BD, Baker R, Goldman MS, Tank DW. Functional dissection of circuitry in a neural integrator. Nat Neurosci 2007; 10: Andersen RA, Snyder LH, Li CS, Stricanne B. Coordinate transformations in the representation of spatial information. Curr Opin Neurobiol 1993; 3: Arnold DB, Robinson DA. A learning network model of the neural integrator of the oculomotor system. Biol Cybern 1991; 64: Arnold DB, Robinson DA, Leigh RJ. Nystagmus induced by pharmacological inactivation of the brainstem ocular motor integrator in monkey. Vision Res 1999; 39: Baier B, Dieterich M. Incidence and anatomy of gaze-evoked nystagmus in patients with cerebellar lesions. Neurology 2011; 76: Bakker DA, Richmond FJ, Abrahams VC. Central projections from cat suboccipital muscles: a study using transganglionic transport of horseradish peroxidase. J Comp Neurol 1984; 228: Berardelli A, Rothwell JC, Hallett M, Thompson PD, Manfredi M, Marsden CD. The pathophysiology of primary dystonia. Brain 1998; 121 (Pt 7): Blood AJ, Kuster JK, Woodman SC, Kirlic N, Makhlouf ML, Multhaupt-Buell TJ, et al. Evidence for altered basal ganglia-brainstem connections in cervical dystonia. PLoS One 2012; 7: e Bove M, Brichetto G, Abbruzzese G, Marchese R, Schieppati M. Neck proprioception and spatial orientation in cervical dystonia. Brain 2004; 127(Pt 12): Calderon DP, Fremont R, Kraenzlin F, Khodakhah K. The neural substrates of rapid-onset Dystonia-Parkinsonism. Nat Neurosci 2011; 14: Cannon SC, Robinson DA. An improved neural-network model for the neural integrator of the oculomotor system: more realistic neuron behavior. Biol Cybern 1985; 53: Cannon SC, Robinson DA. Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J Neurophysiol 1987; 57: Carpenter RHS. Cerebellectomy and the transferfunction of the vestibulo-ocular reflex in the decerebrate cat. Proc Royal Soc B 1972; 181: Chan-Palay V Cerebellar dentate nucleus: organization, cytology, and transmitters. Berlin: Springer-Verlag; Crawford JD, Cadera W, Vilis T. Generation of torsional and vertical eye position signals by the interstitial nucleus of Cajal. Science 1991; 252: Crawford JD, Henriques DY, Medendorp WP. Three-dimensional transformations for goal-directed action. Annu Rev Neurosci 2011; 34: Crawford JD, Martinez-Trujillo JC, Klier EM. Neural control of threedimensional eye and head movements. Curr Opin Neurobiol 2003; 13: Curtis CE, Lee D. Beyond working memory: the role of persistent activity in decision making. Trends Cogn Sci 2010; 14: Das VE, Oruganti P, Kramer PD, Leigh RJ. Experimental tests of a neural-network model for ocular oscillations caused by disease of central myelin. Exp Brain Res 2000; 133: Dauer WT, Burke RE, Greene P, Fahn S. Current concepts on the clinical features, aetiology and management of idiopathic cervical dystonia. Brain 1998; 121 (Pt 4): Elble RJ. Defining dystonic tremor. Curr Neuropharmacol 2013; 11: Farshadmanesh F, Byrne P, Wang H, Corneil BD, Crawford JD. Relationships between neck muscle electromyography and three-dimensional head kinematics during centrally induced torsional head perturbations. J Neurophysiol 2012; 108: Farshadmanesh F, Chang P, Wang H, Yan X, Corneil BD, Crawford JD. Neck muscle synergies during stimulation and inactivation of the interstitial nucleus of Cajal (INC). J Neurophysiol 2008; 100: Farshadmanesh F, Klier EM, Chang P, Wang H, Crawford JD. Threedimensional eye-head coordination after injection of muscimol into the interstitial nucleus of Cajal (INC). J Neurophysiol 2007; 97: Filippi GM, Errico P, Santarelli R, Bagolini B, Manni E. Botulinum A toxin effects on rat jaw muscle spindles. Acta Otolaryngol 1993; 113: Fukushima K. The interstitial nucleus of Cajal and its role in the control of movements of head and eyes. Prog Neurobiol 1987; 29: Fukushima K, Fukushima J Involvement of Interstitial nucleus of Cajal in the midbrain reticular formation in the positin-related, tonic component of vertical eye movement and head posture. In: Berthoz A, Graf W, Vidal PP, editors. The head-neck seonsory motor sysem. Oxford: Oxford University Press Fukushima K, Ohno M, Kato M. Responses of cat mesencephalic reticulospinal neurons to stimulation of superior colliculus, pericruciate cortex, and neck muscle afferents. Exp Brain Res 1981; 44: Gandhi NJ, Sparks DL. Dissociation of eye and head components of gaze shifts by stimulation of the omnipause neuron region. J Neurophysiol 2007; 98:

9 2598 BRAIN 2016: 139; A. G. Shaikh et al. Godaux E, Mettens P, Cheron G. Differential effect of injections of kainic acid into the prepositus and the vestibular nuclei of the cat. J Physiol 1993; 472: Goldman-Rakic PS. Memory: recording experience in cells and circuits: diversity in memory research. Proc Natl Acad Sci USA 1996; 93: Gosselin-Kessiby N, Messier J, Kalaska JF. Evidence for automatic online adjustments of hand orientation during natural reaching movements to stationary targets. J Neurophysiol 2008; 99: Guitton D, Bergeron A, Choi WY, Matsuo S. On the feedback control of orienting gaze shifts made with eye and head movements. Prog Brain Res 2003; 142: Hassler R, Dieckmann G. Stereotactic treatment of different kinds of spasmodic torticollis. Confin Neurol 1970; 32: Hassler R, Hess WR. Experimental and anatomical findings in rotatory movements and their nervous apparatus [in German]. Arch Psychiatr Nervenkr Z Gesamte Neurol Psychiatr 1954; 192: Hassler R, Vasilescu C, Dieckmann G. Electromyographic activity of neck muscles in patients affected by retrocollis under the influence of stimulation and coagulation of the prestitial nucleus of the midbrain. Appl Neurophysiol 1981; 44: Hebb DO. The organization of behavior. New York: Wiley; Heimburger RF. Dentatectomy in the treatment of dyskinetic disorders. Confin Neurol 1967; 29: Heimburger RF. The role of the cerebellar nuclei in dyskinetic disorders. Confin Neurol 1968; 31: Hitchcock E. Dentate lesions for involuntary movement. Proc Royal Soc Med 1973; 66: Hitchcock E. Cerebellar exploration. J R Coll Surg Edinb 1977; 22: Hyndman OR. Torticollis spastica. Arch Otolaryngol 1939; 29: Ishii Y. Central afferent projections from the rat sternocleidomastoid and trapezius muscles. A study using transganglionic transport of horseradish peroxidise [in Japanese]. Osaka Daigaku Shigaku Zasshi 1989; 34: Kim DY, Oh BM, Paik NJ. Central effect of botulinum toxin type A in humans. Int J Neurosci 2006; 116: King WM, Fuchs AF, Magnin M. Vertical eye movement-related responses of neurons in midbrain near intestinal nucleus of Cajal. J Neurophysiol 1981; 46: Kiss ZH, Doig-Beyaert K, Eliasziw M, Tsui J, Haffenden A, Suchowersky O, et al. The Canadian multicentre study of deep brain stimulation for cervical dystonia. Brain 2007; 130(Pt 11): Klier EM, Wang H, Constantin AG, Crawford JD. Midbrain control of three-dimensional head orientation. Science 2002; 295: Klier EM, Wang H, Crawford JD. Interstitial nucleus of cajal encodes three-dimensional head orientations in Fick-like coordinates. J Neurophysiol 2007; 97: Koch G, Porcacchia P, Ponzo V, Carrillo F, Caceres-Redondo MT, Brusa L, et al. Effects of two weeks of cerebellar theta burst stimulation in cervical dystonia patients. Brain Stimul 2014; 7: Lee JR, Kiss ZH. Interhemispheric difference of pallidal local field potential activity in cervical dystonia. J Neurol Neurosurg Psychiatry 2014; 85: Leigh RJ, Zee DS. Neurology of eye movements. Oxford: Oxford University Press Lorente De No R. Analysis of the activity of the chains of internuncial neurons. J Neurophysiol 1938; 1: Miri A, Daie K, Arrenberg AB, Baier H, Aksay E, Tank DW. Spatial gradients and multidimensional dynamics in a neural integrator circuit. Nat Neurosci 2011; 14: Moll CK, Galindo-Leon E, Sharott A, Gulberti A, Buhmann C, Koeppen JA, et al. Asymmetric pallidal neuronal activity in patients with cervical dystonia. Front Syst Neurosci 2014; 8: 15. Monaco S, Sedda A, Cavina-Pratesi C, Culham JC. Neural correlates of object size and object location during grasping actions. Eur J Neurosci 2015; 41: Neychev VK, Fan X, Mitev VI, Hess EJ, Jinnah HA. The basal ganglia and cerebellum interact in the expression of dystonic movement. Brain 2008; 131(Pt 9): Neychev VK, Gross RE, Lehericy S, Hess EJ, Jinnah HA. The functional neuroanatomy of dystonia. Neurobiol Dis 2011; 42: Noda H, Sugita S, Ikeda Y. Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol 1990; 302: Onodera S, Hicks TP. Projections from substantia nigra and zona incerta to the cat s nucleus of Darkschewitsch. J Comp Neurol 1998; 396: Onodera S, Hicks TP. A comparative neuroanatomical study of the red nucleus of the cat, macaque and human. PLoS One 2009; 4: e6623. Pelisson D, Goffart L, Guillaume A. Contribution of the rostral fastigial nucleus to the control of orienting gaze shifts in the head-unrestrained cat. J Neurophysiol 1998; 80: Pelisson D, Goffart L, Guillaume A, Quinet J. Visuo-motor deficits induced by fastigial nucleus inactivation. Cerebellum 2003; 2: Pizoli CE, Jinnah HA, Billingsley ML, Hess EJ. Abnormal cerebellar signaling induces dystonia in mice. J Neurosci 2002; 22: Prudente CN, Hess EJ, Jinnah HA. Dystonia as a network disorder: what is the role of the cerebellum? Neuroscience 2014; 260: Prudente CN, Pardo CA, Xiao J, Hanfelt J, Hess EJ, Ledoux MS, et al. Neuropathology of cervical dystonia. Exp Neurol 2013; 241: Quinn NP, Schneider SA, Schwingenschuh P, Bhatia KP. Tremor some controversial aspects. Mov Disord 2011; 26: Raike RS, Pizoli CE, Weisz C, van den Maagdenberg AM, Jinnah HA, Hess EJ. Limited regional cerebellar dysfunction induces focal dystonia in mice. Neurobiol Dis 2013; 49: Robinson DA. The effect of cerebellectomy on the cat s bestibuloocular integrator. Brain Res 1974; 71: Rosales RL, Arimura K, Takenaga S, Osame M. Extrafusal and intrafusal muscle effects in experimental botulinum toxin-a injection. Muscle Nerve 1996; 19: Rosales RL, Bigalke H, Dressler D. Pharmacology of botulinum toxin: differences between type A preparations. Eur J Neurol 2006; 13 (Suppl 1): Sano K, Yoshioka M, Mayanagi Y, Sekino H, Yoshimasu N. Stimulation and destruction of and around the interstitial nucleus of Cajal in man. Confin Neurol 1970; 32: Shaikh AG, Jinnah HA, Tripp RM, Optican LM, Ramat S, Lenz FA, et al. Irregularity distinguishes limb tremor in cervical dystonia from essential tremor. J Neurol Neurosurg Psychiatry 2008; 79: Shaikh AG, Meng H, Angelaki DE. Multiple reference frames for motion in the primate cerebellum. J Neurosci 2004; 24: Shaikh AG, Wong A, Zee DS, Jinnah HA. Why are voluntary head movements in cervical dystonia slow? Parkinsonism Relat Disord 2015a; 21: Shaikh AG, Wong AL, Zee DS, Jinnah HA. Keeping your head on target. J Neurosci 2013; 33: Shaikh AG, Zee DS, Jinnah HA. Oscillatory head movements in cervical dystonia: Dystonia, tremor, or both? Movement Disorders. 2015; 30: Siegfried J, Verdie JC. Long-term assessment of stereotactic dentatotomy for spasticity and other disorders. Acta Neurochir (Wien) 1977(Suppl 24): Sokal P, Rudas M, Harat M, Szylberg L, Zielinski P. Deep anterior cerebellar stimulation reduces symptoms of secondary dystonia in patients with cerebral palsy treated due to spasticity. Clin Neurol Neurosurg 2015; 135: Sparks DL. The neural encoding of the location of targets for saccadic eye movements. J Exp Biol 1989; 146:

10 Neural integrator in cervical dystonia BRAIN 2016: 139; Sukoff MH, Ragatz RE. Cerebellar stimulation for chronic extensorflexor rigidity and opisthotonus secondary to hypoxia. Report of two cases. J Neurosurg 1980; 53: Teixeira MJ, Schroeder HK, Lepski G Evaluating cerebellar dentatotomy for the treatment of spasticity with or without dystonia. Br J Neurosurg 2015: 1 6. Tempel LW, Perlmutter JS. Abnormal vibration-induced cerebral blood flow responses in idiopathic dystonia. Brain 1990; 113 (Pt 3): Vidailhet M, Vercueil L, Houeto JL, Krystkowiak P, Benabid AL, Cornu P, et al. Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med 2005; 352: Vitek JL. Pathophysiology of dystonia: a neuronal model. Mov Disord 2002; 17 (Suppl 3): S Vitek JL, Chockkan V, Zhang JY, Kaneoke Y, Evatt M, DeLong MR, et al. Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus. Ann Neurol 1999; 46: Waitzman DM, Silakov VL, DePalma-Bowles S, Ayers AS. Effects of reversible inactivation of the primate mesencephalic reticular formation. I. Hypermetric goal-directed saccades. J Neurophysiol 2000a; 83: Waitzman DM, Silakov VL, DePalma-Bowles S, Ayers AS. Effects of reversible inactivation of the primate mesencephalic reticular formation. II. Hypometric vertical saccades. J Neurophysiol 2000b; 83: Zee DS, Leigh RJ, Mathieu-Millaire F. Cerebellar control of ocular gaze stability. Ann Neurol 1980; 7: Zee DS, Yamazaki A, Butler PH, Gucer G. Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol 1981; 46: Zee DS, Yee RD, Cogan DG, Robinson DA, Engel WK. Ocular motor abnormalities in hereditary cerebellar ataxia. Brain 1976; 99: Zervas NT. Long-term review of dentatectomy in dystonia musculorum deformans and cerebral palsy. Acta Neurochir 1977; 24: Zervas NT, Horner FA, Pickren KS. The treatment of dyskinesia by stereotaxic dentatectomy. Confin Neurol 1967; 29:

Oscillatory head movements in cervical dystonia: Dystonia, tremor, or both?

Oscillatory head movements in cervical dystonia: Dystonia, tremor, or both? Oscillatory head movements in cervical dystonia: Dystonia, tremor, or both? Aasef Shaikh, Emory University David S. Zee, Johns Hopkins University Hyder Jinnah, Emory University Journal Title: Movement

More information

Basal nuclei, cerebellum and movement

Basal nuclei, cerebellum and movement Basal nuclei, cerebellum and movement MSTN121 - Neurophysiology Session 9 Department of Myotherapy Basal Nuclei (Ganglia) Basal Nuclei (Ganglia) Role: Predict the effects of various actions, then make

More information

Extraocular Muscles and Ocular Motor Control of Eye Movements

Extraocular Muscles and Ocular Motor Control of Eye Movements Extraocular Muscles and Ocular Motor Control of Eye Movements Linda K. McLoon PhD mcloo001@umn.edu Department of Ophthalmology and Visual Neurosciences Your Eyes Are Constantly Moving. Yarbus, 1967 Eye

More information

I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts.

I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts. Descending Tracts I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts. III: To define the upper and the lower motor neurons. 1. The corticonuclear

More information

The Origin of Downbeat Nystagmus

The Origin of Downbeat Nystagmus The Origin of Downbeat Nystagmus An Asymmetry in the Distribution of On-Directions of Vertical Gaze-Velocity Purkinje Cells SARAH MARTI, a DOMINIK STRAUMANN, a AND STEFAN GLASAUER b a Neurology Department,

More information

Parkinson's Disease Center and Movement Disorders Clinic

Parkinson's Disease Center and Movement Disorders Clinic Parkinson's Disease Center and Movement Disorders Clinic 7200 Cambridge Street, 9th Floor, Suite 9A Houston, Texas 77030 713-798-2273 phone www.jankovic.org Dystonia Diagnosis Dystonia is a neurologic

More information

How Neurons Do Integrals. Mark Goldman

How Neurons Do Integrals. Mark Goldman How Neurons Do Integrals Mark Goldman Outline 1. What is the neural basis of short-term memory? 2. A model system: the Oculomotor Neural Integrator 3. Neural mechanisms of integration: Linear network theory

More information

Cervical reflex Giovanni Ralli. Dipartimento di Organi di Senso, Università di Roma La Sapienza

Cervical reflex Giovanni Ralli. Dipartimento di Organi di Senso, Università di Roma La Sapienza Cervical reflex Giovanni Ralli Dipartimento di Organi di Senso, Università di Roma La Sapienza The development of the neck in vertebrates allows the individual to rotate the head independently of the trunk

More information

Cerebellum. Steven McLoon Department of Neuroscience University of Minnesota

Cerebellum. Steven McLoon Department of Neuroscience University of Minnesota Cerebellum Steven McLoon Department of Neuroscience University of Minnesota 1 Anatomy of the Cerebellum The cerebellum has approximately half of all the neurons in the central nervous system. The cerebellum

More information

Lecture XIII. Brain Diseases I - Parkinsonism! Brain Diseases I!

Lecture XIII. Brain Diseases I - Parkinsonism! Brain Diseases I! Lecture XIII. Brain Diseases I - Parkinsonism! Bio 3411! Wednesday!! Lecture XIII. Brain Diseases - I.! 1! Brain Diseases I! NEUROSCIENCE 5 th ed! Page!!Figure!!Feature! 408 18.9 A!!Substantia Nigra in

More information

The Nervous System: Sensory and Motor Tracts of the Spinal Cord

The Nervous System: Sensory and Motor Tracts of the Spinal Cord 15 The Nervous System: Sensory and Motor Tracts of the Spinal Cord PowerPoint Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska Introduction Millions of sensory

More information

1. The cerebellum coordinates fine movement through interactions with the following motor-associated areas:

1. The cerebellum coordinates fine movement through interactions with the following motor-associated areas: DENT/OBHS 131 2009 Take-home test 4 Week 6: Take-home test (2/11/09 close 2/18/09) 1. The cerebellum coordinates fine movement through interactions with the following motor-associated areas: Hypothalamus

More information

Vision Science III Handout 15

Vision Science III Handout 15 Vision Science III Handout 15 NYSTAGMUS Nystagmus describes a pattern of eye movements in which the eyes move to and fro, usually with alternating Slow and Fast phases. Nystagmus occurs normally in some

More information

VL VA BASAL GANGLIA. FUNCTIONAl COMPONENTS. Function Component Deficits Start/initiation Basal Ganglia Spontan movements

VL VA BASAL GANGLIA. FUNCTIONAl COMPONENTS. Function Component Deficits Start/initiation Basal Ganglia Spontan movements BASAL GANGLIA Chris Cohan, Ph.D. Dept. of Pathology/Anat Sci University at Buffalo I) Overview How do Basal Ganglia affect movement Basal ganglia enhance cortical motor activity and facilitate movement.

More information

The motor regulator. 1) Basal ganglia/nucleus

The motor regulator. 1) Basal ganglia/nucleus The motor regulator 1) Basal ganglia/nucleus Neural structures involved in the control of movement Basal Ganglia - Components of the basal ganglia - Function of the basal ganglia - Connection and circuits

More information

Voluntary Movement. Ch. 14: Supplemental Images

Voluntary Movement. Ch. 14: Supplemental Images Voluntary Movement Ch. 14: Supplemental Images Skeletal Motor Unit: The basics Upper motor neuron: Neurons that supply input to lower motor neurons. Lower motor neuron: neuron that innervates muscles,

More information

COGNITIVE SCIENCE 107A. Motor Systems: Basal Ganglia. Jaime A. Pineda, Ph.D.

COGNITIVE SCIENCE 107A. Motor Systems: Basal Ganglia. Jaime A. Pineda, Ph.D. COGNITIVE SCIENCE 107A Motor Systems: Basal Ganglia Jaime A. Pineda, Ph.D. Two major descending s Pyramidal vs. extrapyramidal Motor cortex Pyramidal system Pathway for voluntary movement Most fibers originate

More information

By Dr. Saeed Vohra & Dr. Sanaa Alshaarawy

By Dr. Saeed Vohra & Dr. Sanaa Alshaarawy By Dr. Saeed Vohra & Dr. Sanaa Alshaarawy 1 By the end of the lecture, students will be able to : Distinguish the internal structure of the components of the brain stem in different levels and the specific

More information

CN V! touch! pain! Touch! P/T!

CN V! touch! pain! Touch! P/T! CN V! touch! pain! Touch! P/T! Visual Pathways! L! R! B! A! C! D! LT! E! F! RT! G! hypothalamospinal! and! ALS! Vestibular Pathways! 1. Posture/Balance!!falling! 2. Head Position! 3. Eye-Head Movements

More information

Biological Bases of Behavior. 8: Control of Movement

Biological Bases of Behavior. 8: Control of Movement Biological Bases of Behavior 8: Control of Movement m d Skeletal Muscle Movements of our body are accomplished by contraction of the skeletal muscles Flexion: contraction of a flexor muscle draws in a

More information

Structure-Function: Central vestibular syndromes

Structure-Function: Central vestibular syndromes Structure-Function: Central vestibular syndromes Skews Nystagmus Tilts dzee@dizzy.med.jhu.edu Objectives An introduction to the basic principles of eye movement control An introduction to the types of

More information

Strick Lecture 4 March 29, 2006 Page 1

Strick Lecture 4 March 29, 2006 Page 1 Strick Lecture 4 March 29, 2006 Page 1 Basal Ganglia OUTLINE- I. Structures included in the basal ganglia II. III. IV. Skeleton diagram of Basal Ganglia Loops with cortex Similarity with Cerebellar Loops

More information

Cortical Control of Movement

Cortical Control of Movement Strick Lecture 2 March 24, 2006 Page 1 Cortical Control of Movement Four parts of this lecture: I) Anatomical Framework, II) Physiological Framework, III) Primary Motor Cortex Function and IV) Premotor

More information

Unit VIII Problem 5 Physiology: Cerebellum

Unit VIII Problem 5 Physiology: Cerebellum Unit VIII Problem 5 Physiology: Cerebellum - The word cerebellum means: the small brain. Note that the cerebellum is not completely separated into 2 hemispheres (they are not clearly demarcated) the vermis

More information

The Motor Systems. What s the motor system? Plan

The Motor Systems. What s the motor system? Plan The Motor Systems What s the motor system? Parts of CNS and PNS specialized for control of limb, trunk, and eye movements Also holds us together From simple reflexes (knee jerk) to voluntary movements

More information

Systems Neuroscience Dan Kiper. Today: Wolfger von der Behrens

Systems Neuroscience Dan Kiper. Today: Wolfger von der Behrens Systems Neuroscience Dan Kiper Today: Wolfger von der Behrens wolfger@ini.ethz.ch 18.9.2018 Neurons Pyramidal neuron by Santiago Ramón y Cajal (1852-1934, Nobel prize with Camillo Golgi in 1906) Neurons

More information

Spinal Cord Tracts DESCENDING SPINAL TRACTS: Are concerned with somatic motor function, modification of ms. tone, visceral innervation, segmental reflexes. Main tracts arise form cerebral cortex and others

More information

Spinal Interneurons. Control of Movement

Spinal Interneurons. Control of Movement Control of Movement Spinal Interneurons Proprioceptive afferents have a variety of termination patterns in the spinal cord. This can be seen by filling physiologically-identified fibers with HRP, so their

More information

CNS Control of Movement

CNS Control of Movement CNS Control of Movement Cognitive Neuroscience, Fall, 2011 Joel Kaplan, Ph.D. Dept of Clinical Neuroscience Karolinska Institute joel.kaplan@ki.se Charles Sherrington (1857-1952) Basic Concepts Localization

More information

EYE POSITION FEEDBACK IN A MODEL OF THE VESTIBULO-OCULAR REFLEX FOR SPINO-CEREBELLAR ATAXIA 6

EYE POSITION FEEDBACK IN A MODEL OF THE VESTIBULO-OCULAR REFLEX FOR SPINO-CEREBELLAR ATAXIA 6 EYE POSITION FEEDBACK IN A MODEL OF THE VESTIBULO-OCULAR REFLEX FOR SPINO-CEREBELLAR ATAXIA 6 J. H. Anderson 1, M. C. Yavuz 2, B. M. Kazar 3, P. Christova 1, C. M. Gomez 4 1 Department of Otolaryngology,

More information

Movement Disorders Will Garrett, M.D Assistant Professor of Neurology

Movement Disorders Will Garrett, M.D Assistant Professor of Neurology Movement Disorders Will Garrett, M.D Assistant Professor of Neurology I. The Basal Ganglia The basal ganglia are composed of several structures including the caudate and putamen (collectively called the

More information

Dr. Farah Nabil Abbas. MBChB, MSc, PhD

Dr. Farah Nabil Abbas. MBChB, MSc, PhD Dr. Farah Nabil Abbas MBChB, MSc, PhD The Basal Ganglia *Functions in association with motor cortex and corticospinal pathways. *Regarded as accessory motor system besides cerebellum. *Receive most of

More information

Chapter 13. The Nature of Muscle Spindles, Somatic Reflexes, and Posture

Chapter 13. The Nature of Muscle Spindles, Somatic Reflexes, and Posture Chapter 13 The Nature of Muscle Spindles, Somatic Reflexes, and Posture Nature of Reflexes A reflex is an involuntary responses initiated by a sensory input resulting in a change in the effecter tissue

More information

Neurophysiology of systems

Neurophysiology of systems Neurophysiology of systems Motor cortex (voluntary movements) Dana Cohen, Room 410, tel: 7138 danacoh@gmail.com Voluntary movements vs. reflexes Same stimulus yields a different movement depending on context

More information

Oculomotor System George R. Leichnetz, Ph.D.

Oculomotor System George R. Leichnetz, Ph.D. Oculomotor System George R. Leichnetz, Ph.D. OBJECTIVES After studying the material of this lecture, the student should be able to: 1. Define different types of eye movement and their underlying neural

More information

Chapter 8. Control of movement

Chapter 8. Control of movement Chapter 8 Control of movement 1st Type: Skeletal Muscle Skeletal Muscle: Ones that moves us Muscles contract, limb flex Flexion: a movement of a limb that tends to bend its joints, contraction of a flexor

More information

CNS MCQ 2 nd term. Select the best answer:

CNS MCQ 2 nd term. Select the best answer: Select the best answer: CNS MCQ 2 nd term 1) Vestibular apparatus: a) Represent the auditory part of the labyrinth. b) May help in initiating the voluntary movements. c) Contains receptors concerned with

More information

Three-Dimensional Eye-Movement Responses to Surface Galvanic Vestibular Stimulation in Normal Subjects and in Patients

Three-Dimensional Eye-Movement Responses to Surface Galvanic Vestibular Stimulation in Normal Subjects and in Patients Three-Dimensional Eye-Movement Responses to Surface Galvanic Vestibular Stimulation in Normal Subjects and in Patients A Comparison H.G. MACDOUGALL, a A.E. BRIZUELA, a I.S. CURTHOYS, a AND G.M. HALMAGYI

More information

Treatment for Nystagmus

Treatment for Nystagmus ISSN: 2234-0971 Treatment for Nystagmus Seong-Hae Jeong Department of Neurology, Chungnam National University Hospital, Daejeon, Korea Treatment for Nystagmus Seong-Hae Jeong Chungnam National University

More information

Functional Distinctions

Functional Distinctions Functional Distinctions FUNCTION COMPONENT DEFICITS Start Basal Ganglia Spontaneous Movements Move UMN/LMN Cerebral Cortex Brainstem, Spinal cord Roots/peripheral nerves Plan Cerebellum Ataxia Adjust Cerebellum

More information

This article describes the clinically relevant anatomic components

This article describes the clinically relevant anatomic components 3 CE Credits Vestibular Disease: Anatomy, Physiology, and Clinical Signs Mark Lowrie, MA VetMB, MVM, DECVN, MRCVS Davies Veterinary Specialists Higham Gobion, Hertfordshire United Kingdom Abstract: The

More information

Saccades. Assess volitional horizontal saccades with special attention to. Dysfunction indicative of central involvement (pons or cerebellum)

Saccades. Assess volitional horizontal saccades with special attention to. Dysfunction indicative of central involvement (pons or cerebellum) Saccades Assess volitional horizontal saccades with special attention to Amplitude? Duration? Synchrony? Dysfunction indicative of central involvement (pons or cerebellum) Dynamic Visual Acuity Compare

More information

Role of brainstem in somatomotor (postural) functions

Role of brainstem in somatomotor (postural) functions Role of brainstem in somatomotor (postural) functions (vestibular apparatus) The muscle tone and its regulation VESTIBULAR SYSTEM (Equilibrium) Receptors: Otolith organs Semicircular canals Sensation (information):

More information

Motor Functions of Cerebral Cortex

Motor Functions of Cerebral Cortex Motor Functions of Cerebral Cortex I: To list the functions of different cortical laminae II: To describe the four motor areas of the cerebral cortex. III: To discuss the functions and dysfunctions of

More information

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible:

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: NERVOUS SYSTEM The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: the neuron and the supporting cells ("glial cells"). Neuron Neurons

More information

Cerebellum: little brain. Cerebellum. gross divisions

Cerebellum: little brain. Cerebellum. gross divisions Cerebellum The anatomy of the cerebellum and its gross divisions Its principal input and output pathways The organization of the cerebellar cortex Role of climbing vs. mossy fibre input The parallel-fibre/

More information

Active sensing. Ehud Ahissar 1

Active sensing. Ehud Ahissar 1 Active sensing Ehud Ahissar 1 Active sensing Passive vs active touch Comparison across senses Basic coding principles -------- Perceptual loops Sensation-targeted motor control Proprioception Controlled

More information

Chapter 7. The Nervous System: Structure and Control of Movement

Chapter 7. The Nervous System: Structure and Control of Movement Chapter 7 The Nervous System: Structure and Control of Movement Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways

More information

Chapter 7. Objectives

Chapter 7. Objectives Chapter 7 The Nervous System: Structure and Control of Movement Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways

More information

Located below tentorium cerebelli within posterior cranial fossa. Formed of 2 hemispheres connected by the vermis in midline.

Located below tentorium cerebelli within posterior cranial fossa. Formed of 2 hemispheres connected by the vermis in midline. The Cerebellum Cerebellum Located below tentorium cerebelli within posterior cranial fossa. Formed of 2 hemispheres connected by the vermis in midline. Gray matter is external. White matter is internal,

More information

The Cerebellum. The Little Brain. Neuroscience Lecture. PhD Candidate Dr. Laura Georgescu

The Cerebellum. The Little Brain. Neuroscience Lecture. PhD Candidate Dr. Laura Georgescu The Cerebellum The Little Brain Neuroscience Lecture PhD Candidate Dr. Laura Georgescu Learning Objectives 1. Describe functional anatomy of the cerebellum - its lobes, their input and output connections

More information

Organization of the nervous system 2

Organization of the nervous system 2 Organization of the nervous system 2 Raghav Rajan Bio 334 Neurobiology I August 22nd 2013 1 Orienting within the brain absolute axes and relative axes SUPERIOR (above) ANTERIOR (in front) Anterior/Posterior,

More information

Department of Neurology/Division of Anatomical Sciences

Department of Neurology/Division of Anatomical Sciences Spinal Cord I Lecture Outline and Objectives CNS/Head and Neck Sequence TOPIC: FACULTY: THE SPINAL CORD AND SPINAL NERVES, Part I Department of Neurology/Division of Anatomical Sciences LECTURE: Monday,

More information

Cerebellum: little brain. Cerebellum. gross divisions

Cerebellum: little brain. Cerebellum. gross divisions Cerebellum The anatomy of the cerebellum and its gross divisions Its principal input and output pathways The organization of the cerebellar cortex Role of climbing vs. mossy fibre input The parallel-fibre/

More information

Course Calendar - Neuroscience

Course Calendar - Neuroscience 2006-2007 Course Calendar - Neuroscience Meeting Hours for entire semester: Monday - Friday 1:00-2:20 p.m. Room 1200, COM August 28 August 29 August 30 August 31 September 1 Course introduction, Neurocytology:

More information

Electrical recording with micro- and macroelectrodes from the cerebellum of man

Electrical recording with micro- and macroelectrodes from the cerebellum of man Electrical recording with micro- and macroelectrodes from the cerebellum of man D. GRAHAM SLAUGHTER, M.D., BLAINE S. NASHOLD, Jn., M.D., AND GEORGE G. SOMJEN, M.D. The Division of Neurosurgery, and the

More information

SENSORY (ASCENDING) SPINAL TRACTS

SENSORY (ASCENDING) SPINAL TRACTS SENSORY (ASCENDING) SPINAL TRACTS Dr. Jamila El-Medany Dr. Essam Eldin Salama OBJECTIVES By the end of the lecture, the student will be able to: Define the meaning of a tract. Distinguish between the different

More information

Lecture X. Brain Pathways: Movement!

Lecture X. Brain Pathways: Movement! Bio 3411 Readings (background only) Bio 3411 Monday Neuroscience 4 th ed Page(s) Feature 423-451Upper motor control of Brain Stem and Spinal Cord The Brain Atlas 3 rd ed Page(s) Feature 198-199 Vestibular

More information

Lecture X. Brain Pathways: Movement!

Lecture X. Brain Pathways: Movement! Bio 3411 Monday 1 Readings (background only) Neuroscience 5 th ed Page(s) Feature 353-398Upper motor control of Brain Stem and Spinal Cord Neuroscience 4 th ed Page(s) Feature 423-451Upper motor control

More information

Strick Lecture 3 March 22, 2017 Page 1

Strick Lecture 3 March 22, 2017 Page 1 Strick Lecture 3 March 22, 2017 Page 1 Cerebellum OUTLINE I. External structure- Inputs and Outputs Cerebellum - (summary diagram) 2 components (cortex and deep nuclei)- (diagram) 3 Sagittal zones (vermal,

More information

1/2/2019. Basal Ganglia & Cerebellum a quick overview. Outcomes you want to accomplish. MHD-Neuroanatomy Neuroscience Block. Basal ganglia review

1/2/2019. Basal Ganglia & Cerebellum a quick overview. Outcomes you want to accomplish. MHD-Neuroanatomy Neuroscience Block. Basal ganglia review This power point is made available as an educational resource or study aid for your use only. This presentation may not be duplicated for others and should not be redistributed or posted anywhere on the

More information

MOVEMENT OUTLINE. The Control of Movement: Muscles! Motor Reflexes Brain Mechanisms of Movement Mirror Neurons Disorders of Movement

MOVEMENT OUTLINE. The Control of Movement: Muscles! Motor Reflexes Brain Mechanisms of Movement Mirror Neurons Disorders of Movement MOVEMENT 2 Dr. Steinmetz 3 OUTLINE The Control of Movement: Muscles! Motor Reflexes Brain Mechanisms of Movement Mirror Neurons Disorders of Movement Parkinson s Disease Huntington s Disease 1 4 TYPES

More information

Medical Neuroscience Tutorial

Medical Neuroscience Tutorial Pain Pathways Medical Neuroscience Tutorial Pain Pathways MAP TO NEUROSCIENCE CORE CONCEPTS 1 NCC1. The brain is the body's most complex organ. NCC3. Genetically determined circuits are the foundation

More information

Cerebellum John T. Povlishock, Ph.D.

Cerebellum John T. Povlishock, Ph.D. Cerebellum John T. Povlishock, Ph.D. OBJECTIVES 1. To identify the major sources of afferent inputs to the cerebellum 2. To define the pre-cerebellar nuclei from which the mossy and climbing fiber systems

More information

Neural Basis of Motor Control

Neural Basis of Motor Control Neural Basis of Motor Control Central Nervous System Skeletal muscles are controlled by the CNS which consists of the brain and spinal cord. Determines which muscles will contract When How fast To what

More information

Basal ganglia Sujata Sofat, class of 2009

Basal ganglia Sujata Sofat, class of 2009 Basal ganglia Sujata Sofat, class of 2009 Basal ganglia Objectives Describe the function of the Basal Ganglia in movement Define the BG components and their locations Describe the motor loop of the BG

More information

Proceedings of the World Small Animal Veterinary Association Sydney, Australia 2007

Proceedings of the World Small Animal Veterinary Association Sydney, Australia 2007 Proceedings of the World Small Animal Sydney, Australia 2007 Hosted by: Next WSAVA Congress ABNORMALITIES OF POSTURE AND APPEARANCE Rodney S. Bagley DVM, Diplomate, American College of Veterinary Internal

More information

Deep Brain Stimulation: Surgical Process

Deep Brain Stimulation: Surgical Process Deep Brain Stimulation: Surgical Process Kia Shahlaie, MD, PhD Assistant Professor Bronte Endowed Chair in Epilepsy Research Director of Functional Neurosurgery Minimally Invasive Neurosurgery Department

More information

Course: PG- Pathshala Paper number: 13 Physiological Biophysics Module number M23: Posture and Movement Regulation by Ear.

Course: PG- Pathshala Paper number: 13 Physiological Biophysics Module number M23: Posture and Movement Regulation by Ear. Course: PG- Pathshala Paper number: 13 Physiological Biophysics Module number M23: Posture and Movement Regulation by Ear Principal Investigator: Co-Principal Investigator: Paper Coordinator: Content Writer:

More information

Motor tracts Both pyramidal tracts and extrapyramidal both starts from cortex: Area 4 Area 6 Area 312 Pyramidal: mainly from area 4 Extrapyramidal:

Motor tracts Both pyramidal tracts and extrapyramidal both starts from cortex: Area 4 Area 6 Area 312 Pyramidal: mainly from area 4 Extrapyramidal: Motor tracts Both pyramidal tracts and extrapyramidal both starts from cortex: Area 4 Area 6 Area 312 Pyramidal: mainly from area 4 Extrapyramidal: mainly from area 6 area 6 Premotorarea: uses external

More information

Motor systems.... the only thing mankind can do is to move things... whether whispering or felling a forest. C. Sherrington

Motor systems.... the only thing mankind can do is to move things... whether whispering or felling a forest. C. Sherrington Motor systems... the only thing mankind can do is to move things... whether whispering or felling a forest. C. Sherrington 1 Descending pathways: CS corticospinal; TS tectospinal; RS reticulospinal; VS

More information

A Dynamic Neural Network Model of Sensorimotor Transformations in the Leech

A Dynamic Neural Network Model of Sensorimotor Transformations in the Leech Communicated by Richard Andersen 1 A Dynamic Neural Network Model of Sensorimotor Transformations in the Leech Shawn R. Lockery Yan Fang Terrence J. Sejnowski Computational Neurobiological Laboratory,

More information

Course Calendar

Course Calendar Clinical Neuroscience BMS 6706C Charles, Ph.D., Course Director charles.ouimet@med.fsu.edu (850) 644-2271 2004 2005 Course Calendar Click here to return to the syllabus Meeting Hours for entire semester:

More information

Motor System Hierarchy

Motor System Hierarchy Motor Pathways Lectures Objectives Define the terms upper and lower motor neurons with examples. Describe the corticospinal (pyramidal) tract and the direct motor pathways from the cortex to the trunk

More information

Clarke's Column Neurons as the Focus of a Corticospinal Corollary Circuit. Supplementary Information. Adam W. Hantman and Thomas M.

Clarke's Column Neurons as the Focus of a Corticospinal Corollary Circuit. Supplementary Information. Adam W. Hantman and Thomas M. Clarke's Column Neurons as the Focus of a Corticospinal Corollary Circuit Supplementary Information Adam W. Hantman and Thomas M. Jessell Supplementary Results Characterizing the origin of primary

More information

Timing and the cerebellum (and the VOR) Neurophysiology of systems 2010

Timing and the cerebellum (and the VOR) Neurophysiology of systems 2010 Timing and the cerebellum (and the VOR) Neurophysiology of systems 2010 Asymmetry in learning in the reverse direction Full recovery from UP using DOWN: initial return to naïve values within 10 minutes,

More information

Neurophysiological study of tremor: How to do it in clinical practice

Neurophysiological study of tremor: How to do it in clinical practice 3 rd Congress of the European Academy of Neurology Amsterdam, The Netherlands, June 24 27, 2017 Hands-on Course 8 MDS-ES/EAN: Neurophysiological study of tremor - Level 1 Neurophysiological study of tremor:

More information

KINE 4500 Neural Control of Movement. Lecture #1:Introduction to the Neural Control of Movement. Neural control of movement

KINE 4500 Neural Control of Movement. Lecture #1:Introduction to the Neural Control of Movement. Neural control of movement KINE 4500 Neural Control of Movement Lecture #1:Introduction to the Neural Control of Movement Neural control of movement Kinesiology: study of movement Here we re looking at the control system, and what

More information

skilled pathways: distal somatic muscles (fingers, hands) (brainstem, cortex) are giving excitatory signals to the descending pathway

skilled pathways: distal somatic muscles (fingers, hands) (brainstem, cortex) are giving excitatory signals to the descending pathway L15 - Motor Cortex General - descending pathways: how we control our body - motor = somatic muscles and movement (it is a descending motor output pathway) - two types of movement: goal-driven/voluntary

More information

Outline: Vergence Eye Movements: Classification I. Describe with 3 degrees of freedom- Horiz, Vert, torsion II. Quantifying units- deg, PD, MA III.

Outline: Vergence Eye Movements: Classification I. Describe with 3 degrees of freedom- Horiz, Vert, torsion II. Quantifying units- deg, PD, MA III. Outline: Vergence Eye Movements: Classification I. Describe with 3 degrees of freedom- Horiz, Vert, torsion II. Quantifying units- deg, PD, MA III. Measurement of Vergence:- Objective & Subjective phoria

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Peter Hitchcock, PH.D., 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Non-commercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

More information

Dizziness, Unsteadiness, Visual Disturbances, and Postural Control: Implications for the Transition to Chronic Symptoms After a Whiplash Trauma

Dizziness, Unsteadiness, Visual Disturbances, and Postural Control: Implications for the Transition to Chronic Symptoms After a Whiplash Trauma Dizziness, Unsteadiness, Visual Disturbances, and Postural Control: Implications for the Transition to Chronic Symptoms After a Whiplash Trauma 1 Spine December 1, 2011; Volume 36, Number 25S, pp. S211

More information

Copy Right- Hongqi ZHANG-Department of Anatomy-Fudan University. Systematic Anatomy. Nervous system Cerebellum. Dr.Hongqi Zhang ( 张红旗 )

Copy Right- Hongqi ZHANG-Department of Anatomy-Fudan University. Systematic Anatomy. Nervous system Cerebellum. Dr.Hongqi Zhang ( 张红旗 ) Systematic Anatomy Nervous system Cerebellum Dr.Hongqi Zhang ( 张红旗 ) Email: zhanghq58@126.com 1 The Cerebellum Cerebellum evolved and developed with the complication of animal movement. Key points about

More information

Motor systems III: Cerebellum April 16, 2007 Mu-ming Poo

Motor systems III: Cerebellum April 16, 2007 Mu-ming Poo Motor systems III: Cerebellum April 16, 2007 Mu-ming Poo Population coding in the motor cortex Overview and structure of cerebellum Microcircuitry of cerebellum Function of cerebellum -- vestibulo-ocular

More information

Neurodegenerative Disease. April 12, Cunningham. Department of Neurosciences

Neurodegenerative Disease. April 12, Cunningham. Department of Neurosciences Neurodegenerative Disease April 12, 2017 Cunningham Department of Neurosciences NEURODEGENERATIVE DISEASE Any of a group of hereditary and sporadic conditions characterized by progressive dysfunction,

More information

The Vestibular System

The Vestibular System The Vestibular System Vestibular and Auditory Sensory Organs Bill Yates, Ph.D. Depts. Otolaryngology & Neuroscience University of Pittsburgh Organization of Sensory Epithelium Displacement of Stereocilia

More information

Brainstem. By Dr. Bhushan R. Kavimandan

Brainstem. By Dr. Bhushan R. Kavimandan Brainstem By Dr. Bhushan R. Kavimandan Development Ventricles in brainstem Mesencephalon cerebral aqueduct Metencephalon 4 th ventricle Mylencephalon 4 th ventricle Corpus callosum Posterior commissure

More information

Making Things Happen 2: Motor Disorders

Making Things Happen 2: Motor Disorders Making Things Happen 2: Motor Disorders How Your Brain Works Prof. Jan Schnupp wschnupp@cityu.edu.hk HowYourBrainWorks.net On the Menu in This Lecture In the previous lecture we saw how motor cortex and

More information

Biological Bases of Behavior. 3: Structure of the Nervous System

Biological Bases of Behavior. 3: Structure of the Nervous System Biological Bases of Behavior 3: Structure of the Nervous System Neuroanatomy Terms The neuraxis is an imaginary line drawn through the spinal cord up to the front of the brain Anatomical directions are

More information

Connection of the cerebellum

Connection of the cerebellum CEREBELLUM Connection of the cerebellum The cerebellum has external layer of gray matter (cerebellar cortex ), & inner white matter In the white matter, there are 3 deep nuclei : (a) dentate nucleus laterally

More information

Professor Tim Anderson

Professor Tim Anderson Professor Tim Anderson Neurologist University of Otago Christchurch 11:00-11:55 WS #91: Shakes Jerks and Spasms - Recognition and Differential Diagnosis 12:05-13:00 WS #102: Shakes Jerks and Spasms - Recognition

More information

BASAL GANGLIA. Dr JAMILA EL MEDANY

BASAL GANGLIA. Dr JAMILA EL MEDANY BASAL GANGLIA Dr JAMILA EL MEDANY OBJECTIVES At the end of the lecture, the student should be able to: Define basal ganglia and enumerate its components. Enumerate parts of Corpus Striatum and their important

More information

Stretch reflex and Golgi Tendon Reflex. Prof. Faten zakareia Physiology Department, College of Medicine, King Saud University 2016

Stretch reflex and Golgi Tendon Reflex. Prof. Faten zakareia Physiology Department, College of Medicine, King Saud University 2016 Stretch reflex and Golgi Tendon Reflex Prof. Faten zakareia Physiology Department, College of Medicine, King Saud University 2016 Objectives: Upon completion of this lecture, students should be able to

More information

Nervous System C H A P T E R 2

Nervous System C H A P T E R 2 Nervous System C H A P T E R 2 Input Output Neuron 3 Nerve cell Allows information to travel throughout the body to various destinations Receptive Segment Cell Body Dendrites: receive message Myelin sheath

More information

Degree of freedom problem

Degree of freedom problem KINE 4500 Neural Control of Movement Lecture #1:Introduction to the Neural Control of Movement Neural control of movement Kinesiology: study of movement Here we re looking at the control system, and what

More information

BRAINSTEM SYNDROMES OF NEURO-OPHTHALMOLOGICAL INTEREST

BRAINSTEM SYNDROMES OF NEURO-OPHTHALMOLOGICAL INTEREST BRAINSTEM SYNDROMES OF NEURO-OPHTHALMOLOGICAL INTEREST Steven L. Galetta, MD NYU Langone Medical Center New York, NY I. Anatomical Considerations The brain stem is about the size of a fat forefinger and

More information

University of Connecticut Schools of Medicine and Dental Medicine Systems Neuroscience Meds Vestibular System

University of Connecticut Schools of Medicine and Dental Medicine Systems Neuroscience Meds Vestibular System University of Connecticut Schools of Medicine and Dental Medicine Systems Neuroscience Meds 371 2007-08 Vestibular System S. Kuwada Reading: Purves et al. (2008, 4 th edition), Neuroscience, Chapter 14.

More information

Arterial Blood Supply

Arterial Blood Supply Arterial Blood Supply Brain is supplied by pairs of internal carotid artery and vertebral artery. The four arteries lie within the subarachnoid space Their branches anastomose on the inferior surface of

More information

General Sensory Pathways of the Trunk and Limbs

General Sensory Pathways of the Trunk and Limbs General Sensory Pathways of the Trunk and Limbs Lecture Objectives Describe gracile and cuneate tracts and pathways for conscious proprioception, touch, pressure and vibration from the limbs and trunk.

More information