Appendix. Table 1: Causes for abnormal axis deviation Left axis deviation

Size: px
Start display at page:

Download "Appendix. Table 1: Causes for abnormal axis deviation Left axis deviation"

Transcription

1 Appendix Table 1: Causes for abnormal axis deviation Left axis deviation Normal variant (2 5%) Left anterior fascicular block Left ventricular hypertrophy Inferior wall myocardial infarction Primum atrial septal defect Hyperkalemia Left bundle branch block Right axis deviation Normal variant Lead misplacement Left posterior fascicular block Right ventricular hypertrophy Lateral wall myocardial infarction Dextrocardia Pulmonary embolus Chronic obstructive lung disease Secundum atrial septal defect 277

2 278 Appendix Table 2: Differential diagnosis for Q waves Anterior Anterior wall myocardial infarction Left ventricular aneurysm Left ventricular hypertrophy Left bundle branch block Infiltrative diseases (amyloid, sarcoid) Right-sided accessory pathway Chronic obstructive lung disease Pneumothorax Dilated cardiomyopathy Intracranial hemorrhage Hyperkalemia Pacing Inferior Inferior wall myocardial infarction Left posterior fascicular block Inferior accessory pathway Hypertrophic cardiomyopathy Pacing Lateral Lateral wall myocardial infarction Left anterior fascicular block Left lateral accessory pathway

3 Table 3: Prominent R wave in V1 Cause Reason for ECG characteristics Right bundle branch block Delay in right ventricle activation allows unopposed right ventricular activation to be observed QRS is wide Usually with an rsr morphology Left-sided accessory pathway Abnormal activation of the left ventricle leads to a new early force pointed anteriorly QRS wide PR interval is short Right ventricular hypertrophy Thickened right ventricle Right axis deviation Inverted T wave in V1 Posterior myocardial infarction The R wave actually represents a Q wave from the posterior region of the heart Usually an accompanying inferior wall myocardial infarction with inferior Q waves Upright T wave in V1 Dextrocardia Heart is in the right chest Right axis deviation No precordial R wave progression Atrial activation usually left to right Duchenne s muscular dystrophy Scarring in the posterior wall leads to more prominent and unopposed anterior forces in V1 Terminal notches in V1

4 280 Appendix Table 4: T wave changes and possible causes Nonspecific T wave changes Heart disease Drugs Electrolyte abnormalities Hyperventilation Pericarditis Normal variant Left ventricular hypertrophy Bundle branch block Pancreatitis, cholecystitis, esophageal spasm Hypothyroid T wave inversion Normal variant Myocardial infarction/ischemia Digoxin, antiarrhythmic medications After ventricular pacing or radiofrequency catheter ablation (cardiac memory) Left ventricular hypertrophy Bundle branch block Central nervous system problems Peaked T waves Hyperkalemia Myocardial infarction/injury Normal variant (early repolarization) Intracranial hemorrhage Left bundle branch block Left ventricular hypertrophy

5 Appendix 281 Table 5: Low voltage Stuff between the surface and the heart Obesity Chronic obstructive lung disease Pleural effusion Pericardial effusion Less heart Infiltrative cardiomyopathies (amyloidosis, hemachromatosis) Dilated cardiomyopathy Ischemic cardiomyopathy Miscellaneous Myxedema Artifact (incorrect voltage standardization) Table 6: Slow heart rates Cause Sinus node dysfunction Atrioventricular block ECG findings Very few or no P waves. When a P wave is present, conduction to the ventricle is usually observed. More P waves than QRS complexes Table 7: Narrow complex tachycardia Cause ECG characteristics Irregular Multifocal atrial tachycardia Discrete P waves with several different shapes Atrial fibrillation No discrete atrial activity observed Regular Sinus tachycardia Atrial tachycardia Atrial flutter AV node reentrant tachycardia Accessory pathway mediated tachycardia Discrete P waves that are similar in shape to the P waves t baseline Discrete P waves that are shaped differently from the baseline P wave Sawtooth activation P waves are often not seen since they are buried within the QRS complex P waves are usually seen in the ST segment

6 282 Appendix Table 8: Funny waves at the end of the QRS complex Delayed depolarization Right bundle branch block R in V 1 Larger and wider the R the greater the delay/block No ST elevation Arrhythmogenic RV cardiomyopathy R in V 1 with atypical RBBB anterior T wave inversion. Epsilon waves Duchenne s muscular dystrophy High frequency notches in V 1 Prominent R in V 1 Repolarization abnormalities Early repolarization Hook at the end of the QRS ST elevation Osborn waves Hypothermia Hypercalcemia Jwaveinthesame direction as the QRS. Seen in all leads. Brugada Syndrome R in V 1 Anterior ST segment elevation Anterior T wave inversion

7 Extra practice So you re a glutton for punishment Unknowns Problem 1: 283

8 284 Extra practice So you re a glutton for punishment Problem 2: Problem 3: Problem 4:

9 Unknowns 285 Problem 5: Problem 6:

10 286 Extra practice So you re a glutton for punishment Problem 7:

11 Unknowns 287 Problem 8: Problem 9:

12 288 Extra practice So you re a glutton for punishment Problem 10: Problem 11:

13 Unknowns 289 Problem 12: Problem 13:

14 290 Extra practice So you re a glutton for punishment Problem 14: Answers 1. The ECG shows an irregular but reasonably normal heart rate. Since all of the QRS complexes are the same (ruling out an irregular rhythm due to premature ventricular complexes), the most important thing to evaluate is whether the P waves are regular. In this case nonconducted premature atrial complexes can be seen to distort the T waves just before the pauses. The premature atrial complexes are best seen in V The ECG shows atrial fibrillation that spontaneously terminates and leads first to an ectopic atrial beat (probably near the AV node, based on P wave morphology and the short PR interval) and then to a long sinus pause. Pauses after atrial fibrillation terminates are relatively common, particularly in the elderly, where it is often called brady-tachy syndrome because rapid rates (due to atrial fibrillation) are interspersed with slow rates due to sinus bradycardia or sinus node arrest. It appears that after constant bombardment from atrial fibrillation the sinus node can sometimes take a while to wake up. 3. The patient has first degree AV block, right bundle branch block, and left anterior fascicular block. The presence of block of two of the three fascicles (right bundle branch block and left anterior fascicular block, right bundle branch block and left posterior fascicular block, or left bundle branch block) and PR interval prolongation has traditionally been called trifascicular block because delay in the third fascicle could potentially produce this ECG pattern. It is very hard to differentiate between this possibility and bifascicular block with accompanying AV nodal block from the surface ECG. Sometimes direct

15 Answers 291 measurement of activation within the heart (electrophysiologic testing) is required to distinguish between these two possible explanations for the ECG finding. 4. The patient has intermittent preexcitation due to conduction over a left-sided accessory pathway. Notice that the wide QRS complex beats are positive in lead V 1 and are associated with a short PR interval. 5. The patient has pericarditis. There is diffuse ST segment elevation with reciprocal ST segment depression in avr. Conversely, the PR segment is depressed in the inferolateral leads and elevated in avr. 6. The patient has an irregular nonsustained ventricular tachycardia. Notice that there is an intervening sinus beat. There is no obvious evidence for AV dissociation, but the presence of an RS complex in V 1 makes ventricular tachycardia the most likely diagnosis. 7. The patient has a short RP tachycardia with the P wave in the ST segment. This pattern is most consistent with an accessory pathway mediated tachycardia. However, the P wave has a high-low morphology with positive P waves noted in the inferior leads. This morphology would be unusual for an accessory pathway mediated orthodromic atrioventricular tachycardia, where the atria are activated in retrograde fashion via an accessory pathway. The patient spontaneously develops AV Wenckebach due to refractoriness of the AV node. Since the tachycardia continues in the presence of AV block (AV node independent), the diagnosis must be atrial tachycardia. The atrial tachycardia focus is near the sinus node this is why the P wave has a high-low pattern and is negative in avr. 8. The patient has an anterior wall myocardial infarction due to a proximal occlusion in the left anterior descending artery, leading to ST segment elevationinavl,v 1 V 4. The prominent R wave in V 1 is due to accompanying right bundle branch block. 9. Diffuse T wave inversion is present in the inferior, lateral, and anterior leads. The QT interval is normal. The QRS is abnormal with abnormal Q waves present in V 1 and V 2. This ECG pattern is not specific and would be worrisome for ischemia if the patient is complaining of chest pain. However, this ECG is from a patient with hypertrophic cardiomyopathy (genetic disease of sarcomere proteins) that primarily affects the apex. It is interesting to note that even with this diagnosis and significant left ventricular hypertrophy documented by echocardiography, the patient does not have any ECG voltage criteria for left ventricular hypertrophy. 10. The patient has sinus node arrest followed by junctional rhythm. The single wide QRS beat I is probably due to conduction of a P wave with a prolonged PR interval (AV node was partially refractory from the prior junctional beat) and left bundle branch block aberrancy due to the long-short coupling. A premature ventricular contraction cannot be ruled out, although the septal R wave in V 1 is quite narrow (one can apply QRS morphology clues for differentiating ventricular tachycardia from supraventricular tachycardia with aberrant conduction to single wide QRS beats). In this case the patient does have

16 292 Extra practice So you re a glutton for punishment voltage criteria for left ventricular hypertrophy: S V 1 + RV 5 > 35 mm. Nonspecific ST changes are also present. 11. The patient has a ventricular pacemaker that inhibits appropriately when sensed intrinsic QRS complexes are present. The patient has ST changes during the intrinsic beats that suggest the use of digoxin. When evaluating a patient with a pacemaker it is important to attempt to evaluate the underlying atrial rhythm. In this case the patient is probably in atrial flutter with 2:1 conduction to the ventricles, with every other flutter wave concealed by the ST segment. Notice the inverted flutter waves in the inferior leads. An ectopic atrial rhythm with associated first degree AV block cannot be ruled out from this ECG. A longer rhythm strip with the development of spontaneous higher grade AV block (3:1, 4:1, etc.), or AV block induced by vagal maneuver or adenosine might help, but the pacemaker would have to be reprogrammed to a slower rate. 12. This is an ECG from a young man with no medical complaints. Notice the notched QRS and ST segment changes associated with early repolarization. Unusual notched T waves are observed in V 2 and V 3. While these could represent nonconducted premature atrial complexes, there is no evidence of atrial activity in the other leads. In this case the notched T waves remained even with changes in sinus rates, suggesting that the notches were coupled to ventricular activity rather than atrial activity. 13. In this ECG the patient is exercising (this is why baseline artifact is present). The patient has sinus tachycardia with left anterior fascicular block. As the sinus rate increases, the patient develops right bundle branch block due to refractoriness within the right bundle. 14. The patient has a right arm-right leg switch leading to the flatline signal in II. Fortunately, the precordial leads are not affected that show an anterior wall myocardial infarction with ST segment elevation and T wave inversion in V 1 V 4 and Q waves in V 1 and V 2. Lead III is unaffected by this switch (left arm-left leg), but the Q wave in lead avf resolves once the leads are placed correctly.

17 Index A Accessory pathway (AP), , 171, 174 See also Tachycardia Action potentials (AP) fast response, 5 ion permeabilities at rest and during, 6 slow response, 7 ion channel opening and closing in, 7 8 See also Heart Acute myocardial infarction anterior infarction, bundle branch block, cellular changes associated with, ECG changes in Q waves, ST segment changes, T wave peaking, 84 85, inferior myocardial infarction, and ischemia, lateral myocardial infarction, left main coronary artery, right ventricular infarction, Amyloidosis, Anterior infarction, Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/ARVD), Ashman s phenomenon, Atria, 8 9 activation, 38 depolarization, 21 enlargement, 37 fibrillation, 171 atria activation of, 162 ECG, , 198 mechanisms of, 163 flutter atypical atrial flutter, 165 AV nodal block, ventricular rate, 164 mitral valve and, 164 Atrial tachycardia (AT), 161, 174 and AV nodal block, 171 narrow QRS complex, sinus node rate, 158 Atrioventricular (AV), 174 AV junctional tachycardia automatic junctional tachycardia, node reentry, block artifact mimicking, 144 atria, 140 case study, 152 degree of, ECG clues for, 152 pathologic study of people, PR interval and, , QRS complex, heart block, site of, 151 types of, and Valsalva maneuver, 177 ventricular depolarization, 153 Wenckebach block for Karl, conduction, node, 134 Axis deviation, causes for abnormal, 277 B Bazett s correction, 31 See also Electrocardiography (ECG) Bradycardia atrioventricular block, 142 case study, ECG for, 147 with first and third degree, 146, 149, 151 high grade, 146, 150 identification of site of, 152 P waves within QRS complex and, 143 QRS pattern,

18 294 Index Bradycardia (Cont.) second degree, , 148, 151 Type I and II 2 0, 145, vagally induced, , 150 case study, 139 and ECG manifestations, 141 sinus node abnormal automaticity and, dysfunction of, Brugada syndrome, and early repolarization, 112 ECG from patient with, 120 possible electrophysiologic mechanisms for, 121 C Ca 2+ ATPase and the Na + -Ca 2+ exchanger, 4 Cornell product, 43 See also Ventricular enlargement Coronary artery spasm, 117 D Defetilide, antiarrhythmic drugs, Dextrocardia, 227 See also Heart Digoxin toxicity, and ST segments downsloping, 68 Duchenne s muscular dystrophy, see Muscular dystrophy E Early afterdepolarization (EAD), triggered activity, 156 Early repolarization and Brugada syndrome, 112 ST segment elevation, 111 Einthoven s triangle, See also Electrode recording system Electrocardiography (ECG) with abnormal repolarization with inverted T waves, 31 accessory pathway, tachycardia, 173 after cardioversion, 241 anterior myocardial infarction, arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/ARVD), artifact, asynchronous ventricular pacing, 207 atrial depolarization, 21 P wave representation, 22 atrial enlargement, atrial flutter, 239 atrioventricular conduction, AV node reentry with, 172 blockage in left main coronary artery, 103 with cardiac amyloidosis, 261 case of abdominal surgery and irregular heart rate, chest pain with, episodes of intermittent lightheadedness, lightheadedness and rapid heart beat, shortness of breath and chest pain, shortness of breath with exertion, sudden onset of lightheadedness, chest/precordial leads, chronic obstructive lung disease, day old boy, 227 depolarization, 11, 13 derived 12-lead ECG EASI system, 17 with dextrocardia, 228 with Duchenne s muscular dystrophy, 266 electrode misplacement and, electrolyte disorders and calcium, magnesium, potassium, format in columns, 18 in frontal plane, gold standard and, 44 heart rate and PR interval, 30 with hyperkalemia, 252 in hypocalcemia, hypomagnesemia, 255 hypothermia, inferior wall myocardial infarction, 97, 99

19 Index 295 intervals, 29 irregular tachycardias, examples of, 170 junctional tachycardia of, 167 large inferior and lateral wall myocardial infarction, 93 in left bundle branch block, 53, 105 with right bundle branch block, 52 limb lead systems, 13 location of standard positions for electrodes, low voltage, 281 muscular dystrophy, Na + channel blocker flecainide with, 240 nomenclature for ventricular activation, with pacing from right ventricular apex, 212 posterior wall myocardial infarction, 98 in precordial plane ventricular repolarization, precordial QRS morphology, pulmonary embolism with S1Q3T3 pattern, 260 QRS interval, 30 QT interval, readings, , recording systems, 15 repolarization, 13 right bundle branch block, 106 severe hypothermia, 265 slow heart rates and narrow complex tachycardia, 281 during ST elevation myocardial infarction, 92, 102 struck by lightning, 264 systematic analysis, assess quality, rate and rhythm, 218 ventricular depolarization and repolarization, three-cell model for measuring signals, 12 unipolar/augmented leads, ventricular depolarization, ventricular enlargement left ventricle, right ventricle, ventricular parasystole, 273 wide complex tachycardia, LBBB pattern, 267 in Wolff-Parkinson-White syndrome, 243 Electrode recording system chest/precordial leads, derived 12-lead ECG, 17 limb lead bipolar leads, 13, 15 unipolar/augmented leads, Electrolyte disorders hypercalcemia, hyperkalemia, , hypocalcemia, 253 hypokalemia, hypomagnesemia, hypothermia, F Focal atrial tachycardia, 158 P wave morphology in, H Heart cardiac anatomy septal region of atria, 9 sinus node, 8 cellular membrane, 3 action potentials, 5 protein pumps and exchangers, 4 ICD function and, 268 and interpretation of ECGs, 4 9 irregular heart rhythm and premature atrial complexes, 130 normal activation of, 8 Hemachromatosis, infiltrative diseases, 260 His-Purkinje system, 9, 132, 134 His bundle anatomy of, 49 ECG for, 50 left anterior fascicular block, left bundle branch block, left hand as model for bundles, 51 left posterior fascicular block, right bundle branch block, case study, His-Purkinje tissue, 169

20 296 Index I Ibutilide, antiarrhythmic drugs, 74 Inferior myocardial infarction, Ion channel ion permeabilities at rest and during cardiac action potential (AP), 6 opening and closing in slow response cells, 7 J J point elevation, See also ST segment Junctional tachycardia ECG of, 167 L Lateral myocardial infarction, Left anterior fascicular block (LAFB), 55 ECG in, 57 hand model for, 56 Left bundle branch block, Left posterior fascicular block (LPFB), 57 case study, 58 ECG in, 58 Left ventricular aneurysms ECG from patient with, 118 Left ventricular hypertrophy, Lightning strike and sudden cardiac death, Long QT syndrome, M Mason-Likar limb leads, 15 M-Cells and ion channels, 67 Multifocal atrial tachycardia, , lead ECG from, 162 Muscular dystrophy, P Pacemakers, implantable devices biventricular pacing, 212 case study, dual chamber case study, 210 rapid wide complex rhythm, 211 in right ventricular apex, 212 timing cycles for, 209 inferolateral wall of left ventricle, 208 single chamber, ventricular pacing from right ventricular outflow tract, 208 Parasytole, 272 Pericarditis diffuse ST segment elevation, 116 myocardial infarction, 117 ECG in patient with, 115 vs. myocardial infarction, 116 positive electrode of VR in, 115 PR segment elevation, 116 Permanent junctional reciprocating tachycardia (PJRT), Premature atrial contractions, 132 AV node and ventricular activation, response, 129 early P wave, 129 irregular heart rhythm, 130 nonconducted premature atrial complexes, 131 Premature beats sinus node and intrinsic rate of automaticity case study, 129 Premature junctional complex early normal-appearing QRS, Premature ventricular contractions (PVCs) His bundle tissue and AV node, and QRS complex, significance in heart disease and, Pulmonary embolism ECG findings in, 120 Osborn waves observed in, 121 Pulmonary embolus, Pwave ectopic atrial focus, 129 See also Premature atrial contractions Q QRS complexes, atria, retrograde activation of, 135 cause of, 134 deep S waves, 111 funny waves, 282 with left bundle branch block, 133 morphology of, 132 P wave, 134 location of, 171 short R-P tachycardia,

21 Index 297 Q waves, causes for, 226 differential diagnosis for, 278 genesis of, 89 R Right coronary artery occlusion, 101 Right ventricular infarction, Romhilt-Estes scoring system for left ventricular hypertrophy, R waves, 40, 279 poor progression, 263 S Sarcoidosis, infiltrative diseases, Sawtooth flutter waves, 164 Sinus node bradycardia, 139 diastolic depolarization, dysfunction, ECG manifestation of, ectopic atrial rhythm, premature beats, 129 rate and atrial tachycardia, 158 structure, 8 9 timing cycles for, 206 Sinus rhythm, case study, 134 Sinus tachycardia, 158 ventricular rhythms, accelerated, Sokolow criteria for left ventricular hypertrophy, 40 Sotalol, antiarrhythmic drugs, ST segment, 81 elevation Brugada Syndrome, cause of, ECG clues, 113 coronary artery spasm, 117 and early repolarization, 112, 114 hyperkalemia, J point and T wave, 111 left bundle branch block, left ventricular aneurysms, 118 left ventricular hypertrophy, notch, cellular mechanism of, 112 pericarditis seldom, pulmonary embolism, 120 transient outward current, 112 transthoracic cardioversion, 117 Supraventricular tachycardia, 155 anatomic classification atrial tachycardia, AV junctional tachycardia, AV node, accessory pathway mediated, case study, ECG with adenosine, 179 causes of, 178 diagnostic algorithms for evaluation, 178 electrocardiographic diagnosis, AV node dependent vs. independent, P wave location and morphology, regular vs. irregular, mechanistic causes for fast heart rate increased automaticity, reentry, triggered activity, 156 termination of, 177 T Tachycardia accessory pathway mediated, , 171 adenosine, effect of, 177 atrial tachycardia, cellular/tissue mechanisms for, 157 ECG examples of, 170 flow diagram for, increased automaticity, 155 long R-P tachycardias differential diagnosis, 175 termination of, 178 P wave, reentry, 156, 158 short R-P tachycardias, differential diagnosis, 174 sodium/calcium channels, reactivation of, 156 Takotsubo syndrome, 118 ECG from patient with, 119 Three-cell model for measuring ECG signals, 12 Transient outward current (Ito), 112 Transthoracic cardioversion, 117

22 298 Index Twave changes and causes, 280 peaking, 84 85, 92 V Ventricles, 9 10 depolarization, repolarization, T waves, U waves, Ventricular arrhythmias and ICD, 268 Ventricular enlargement left ventricle, hypertrophy and, 39 Cornell product, 43 ECG depolarization forces in, repolarization changes, Romhilt-Estes scoring system for, sensitivity and specificity of ECG criteria for, 44 right ventricle, 44 ECG in hypertrophy of, 45 Ventricular tachycardias, , 192, 196 pathophysiologic causes for, 185 W Wenckebach block for Karl, Wide complex tachycardia case study, 183 differential diagnosis of, 184 ECG analysis atrial-ventricular relationship, clinical clues, initiation and termination, precordial QRS morphology, rate and axis, irregular wide complex, pathophysiology, Wolff-Parkinson-White syndrome, 228 accessory pathway in, 244 with right-sided accessory pathway, 245

Please check your answers with correct statements in answer pages after the ECG cases.

Please check your answers with correct statements in answer pages after the ECG cases. ECG Cases ECG Case 1 Springer International Publishing AG, part of Springer Nature 2018 S. Okutucu, A. Oto, Interpreting ECGs in Clinical Practice, In Clinical Practice, https://doi.org/10.1007/978-3-319-90557-0

More information

402 Index. B β-blockers, 4, 5 Bradyarrhythmias, 76 77

402 Index. B β-blockers, 4, 5 Bradyarrhythmias, 76 77 Index A Acquired immunodeficiency syndrome (AIDS), 126, 163 Action potentials, 1, 5, 27 Acute coronary syndromes, 123t, 129 Adenosine, intravenous, 277 Alcohol abuse, as T wave inversion cause, 199 Aneurysm,

More information

Appendix D Output Code and Interpretation of Analysis

Appendix D Output Code and Interpretation of Analysis Appendix D Output Code and Interpretation of Analysis 8 Arrhythmia Code No. Description 8002 Marked rhythm irregularity 8110 Sinus rhythm 8102 Sinus arrhythmia 8108 Marked sinus arrhythmia 8120 Sinus tachycardia

More information

Diploma in Electrocardiography

Diploma in Electrocardiography The Society for Cardiological Science and Technology Diploma in Electrocardiography The Society makes this award to candidates who can demonstrate the ability to accurately record a resting 12-lead electrocardiogram

More information

12-Lead ECG Interpretation. Kathy Kuznar, RN, ANP

12-Lead ECG Interpretation. Kathy Kuznar, RN, ANP 12-Lead ECG Interpretation Kathy Kuznar, RN, ANP The 12-Lead ECG Objectives Identify the normal morphology and features of the 12- lead ECG. Perform systematic analysis of the 12-lead ECG. Recognize abnormalities

More information

General Introduction to ECG. Reading Assignment (p2-16 in PDF Outline )

General Introduction to ECG. Reading Assignment (p2-16 in PDF Outline ) General Introduction to ECG Reading Assignment (p2-16 in PDF Outline ) Objectives 1. Practice the 5-step Method 2. Differential Diagnosis: R & L axis deviation 3. Differential Diagnosis: Poor R-wave progression

More information

ECG ABNORMALITIES D R. T AM A R A AL Q U D AH

ECG ABNORMALITIES D R. T AM A R A AL Q U D AH ECG ABNORMALITIES D R. T AM A R A AL Q U D AH When we interpret an ECG we compare it instantaneously with the normal ECG and normal variants stored in our memory; these memories are stored visually in

More information

ECG Cases and Questions. Ashish Sadhu, MD, FHRS, FACC Electrophysiology/Cardiology

ECG Cases and Questions. Ashish Sadhu, MD, FHRS, FACC Electrophysiology/Cardiology ECG Cases and Questions Ashish Sadhu, MD, FHRS, FACC Electrophysiology/Cardiology 32 yo female Life Insurance Physical 56 yo male with chest pain Terminology Injury ST elevation Ischemia T wave inversion

More information

Electrocardiography Abnormalities (Arrhythmias) 7. Faisal I. Mohammed, MD, PhD

Electrocardiography Abnormalities (Arrhythmias) 7. Faisal I. Mohammed, MD, PhD Electrocardiography Abnormalities (Arrhythmias) 7 Faisal I. Mohammed, MD, PhD 1 Causes of Cardiac Arrythmias Abnormal rhythmicity of the pacemaker Shift of pacemaker from sinus node Blocks at different

More information

Basic electrocardiography reading. R3 lee wei-chieh

Basic electrocardiography reading. R3 lee wei-chieh Basic electrocardiography reading R3 lee wei-chieh The Normal Conduction System Lead Placement avf Limb Leads Precordial Leads Interpretation Rate Rhythm Interval Axis Chamber abnormality QRST change What

More information

Myocardial Infarction. Reading Assignment (p66-78 in Outline )

Myocardial Infarction. Reading Assignment (p66-78 in Outline ) Myocardial Infarction Reading Assignment (p66-78 in Outline ) Objectives 1. Why do ST segments go up or down in ischemia? 2. STEMI locations and culprit vessels 3. Why 15-lead ECGs? 4. What s up with avr?

More information

Pennsylvania Academy of Family Physicians Foundation & UPMC 43rd Refresher Course in Family Medicine CME Conference March 10-13, 2016

Pennsylvania Academy of Family Physicians Foundation & UPMC 43rd Refresher Course in Family Medicine CME Conference March 10-13, 2016 Pennsylvania Academy of Family Physicians Foundation & UPMC 43rd Refresher Course in Family Medicine CME Conference March 10-13, 2016 Disclosures: EKG Workshop Louis Mancano, MD Speaker has no disclosures

More information

ECG Basics Sonia Samtani 7/2017 UCI Resident Lecture Series

ECG Basics Sonia Samtani 7/2017 UCI Resident Lecture Series ECG Basics Sonia Samtani 7/2017 UCI Resident Lecture Series Agenda I. Introduction II.The Conduction System III.ECG Basics IV.Cardiac Emergencies V.Summary The Conduction System Lead Placement avf Precordial

More information

Chapter 2 Practical Approach

Chapter 2 Practical Approach Chapter 2 Practical Approach There are beginners in electrocardiogram (ECG) analysis who are fascinated by a special pattern (e.g., a bundle-branch block or a striking Q wave) and thereby overlook other

More information

ECGs and Arrhythmias: Family Medicine Board Review 2009

ECGs and Arrhythmias: Family Medicine Board Review 2009 Rate Rhythm Intervals Hypertrophy ECGs and Arrhythmias: Family Medicine Board Review 2009 Axis Jess (Fogler) Waldura, MD University of California, San Francisco walduraj@nccc.ucsf.edu Ischemia Overview

More information

Ekg pra pr c a tice D.HAMMOUDI.MD

Ekg pra pr c a tice D.HAMMOUDI.MD Ekg practice D.HAMMOUDI.MD Anatomy Revisited RCA (Right Coronary Artery) Right ventricle Inferior wall of LV Posterior wall of LV (75%) SA Node (60%) AV Node (>80%) LCA (Left Coronary Artery) Septal wall

More information

Blocks & Dissociations. Reading Assignment (p47-52 in Outline )

Blocks & Dissociations. Reading Assignment (p47-52 in Outline ) Blocks & Dissociations Reading Assignment (p47-52 in Outline ) Objectives Who are Wenckebach and Mobitz? Review SA and AV Blocks AV Dissociations: learning who s the boss and why 2 nd degree SA Block:

More information

Cardiovascular Nursing Practice: A Comprehensive Resource Manual and Study Guide for Clinical Nurses 2 nd Edition

Cardiovascular Nursing Practice: A Comprehensive Resource Manual and Study Guide for Clinical Nurses 2 nd Edition Cardiovascular Nursing Practice: A Comprehensive Resource Manual and Study Guide for Clinical Nurses 2 nd Edition Table of Contents Volume 1 Chapter 1: Cardiovascular Anatomy and Physiology Basic Cardiac

More information

Introduction to Electrocardiography

Introduction to Electrocardiography Introduction to Electrocardiography Class Objectives: Introduction to ECG monitoring Discuss principles of interpretation Identify the components and measurements of the ECG ECG analysis ECG Monitoring

More information

ECG CONVENTIONS AND INTERVALS

ECG CONVENTIONS AND INTERVALS 1 ECG Waveforms and Intervals ECG waveforms labeled alphabetically P wave== represents atrial depolarization QRS complex=ventricular depolarization ST-T-U complex (ST segment, T wave, and U wave)== V repolarization.

More information

ECG Interpretation Made Easy

ECG Interpretation Made Easy ECG Interpretation Made Easy Dr. A Tageldien Abdellah, MSc MD EBSC Lecturer of Cardiology- Hull University Hull York Medical School 2007-2008 ECG Interpretation Made Easy Synopsis Benefits Objectives Process

More information

REtrive. REpeat. RElearn Design by. Test-Enhanced Learning based ECG practice E-book

REtrive. REpeat. RElearn Design by. Test-Enhanced Learning based ECG practice E-book Test-Enhanced Learning Test-Enhanced Learning Test-Enhanced Learning Test-Enhanced Learning based ECG practice E-book REtrive REpeat RElearn Design by S I T T I N U N T H A N G J U I P E E R I Y A W A

More information

Cardiology Flash Cards

Cardiology Flash Cards Cardiology Flash Cards EKG in a nut shell www.brain101.info Conduction System www.brain101.info 2 Analyzing EKG Step by step Steps in Analyzing ECG'S 1. Rhythm: - Regular _ Sinus, Junctional or Ventricular.

More information

Chapter 16: Arrhythmias and Conduction Disturbances

Chapter 16: Arrhythmias and Conduction Disturbances Complete the following. Chapter 16: Arrhythmias and Conduction Disturbances 1. Cardiac arrhythmias result from abnormal impulse, abnormal impulse, or both mechanisms together. 2. is the ability of certain

More information

UNDERSTANDING YOUR ECG: A REVIEW

UNDERSTANDING YOUR ECG: A REVIEW UNDERSTANDING YOUR ECG: A REVIEW Health professionals use the electrocardiograph (ECG) rhythm strip to systematically analyse the cardiac rhythm. Before the systematic process of ECG analysis is described

More information

Introduction to ECG Gary Martin, M.D.

Introduction to ECG Gary Martin, M.D. Brief review of basic concepts Introduction to ECG Gary Martin, M.D. The electrical activity of the heart is caused by a sequence of rapid ionic movements across cell membranes resulting first in depolarization

More information

Arrhythmic Complications of MI. Teferi Mitiku, MD Assistant Clinical Professor of Medicine University of California Irvine

Arrhythmic Complications of MI. Teferi Mitiku, MD Assistant Clinical Professor of Medicine University of California Irvine Arrhythmic Complications of MI Teferi Mitiku, MD Assistant Clinical Professor of Medicine University of California Irvine Objectives Brief overview -Pathophysiology of Arrhythmia ECG review of typical

More information

ECG Practice Strips Discussion part 1:

ECG Practice Strips Discussion part 1: ECG Practice Strips Discussion part 1: The first 20 strips are for teaching various abnormalities of the morphology of the waves of the ECG. Strips 21 and following are for teaching some abnormalities

More information

2017 EKG Workshop Advanced. Family Medicine Review Course Lou Mancano, MD, FAAFP Reading Health System Family and Community Medicine Reading, PA

2017 EKG Workshop Advanced. Family Medicine Review Course Lou Mancano, MD, FAAFP Reading Health System Family and Community Medicine Reading, PA 2017 EKG Workshop Advanced Family Medicine Review Course Lou Mancano, MD, FAAFP Reading Health System Family and Community Medicine Reading, PA Part II - Objective Describe a useful approach to interpreting

More information

10 ECGs No Practitioner Can Afford to Miss. Objectives

10 ECGs No Practitioner Can Afford to Miss. Objectives 10 ECGs No Practitioner Can Afford to Miss Mary L. Dohrmann, MD Professor of Clinical Medicine Division of Cardiovascular Medicine University of Missouri School of Medicine No disclosures Objectives 1.

More information

Bundle Branch & Fascicular Blocks. Reading Assignment (p53-58 in Outline )

Bundle Branch & Fascicular Blocks. Reading Assignment (p53-58 in Outline ) Bundle Branch & Fascicular Blocks Reading Assignment (p53-58 in Outline ) Objectives 1. QRS analysis of Right and Left BBB 2. Uncomplicated vs complicated BBB 3. Diagnosis of RBBB with LAFB and LPFB 4.

More information

HR: 50 bpm (Sinus) PR: 280 ms QRS: 120 ms QT: 490 ms Axis: -70. Sinus bradycardia with one ventricular escape (*)

HR: 50 bpm (Sinus) PR: 280 ms QRS: 120 ms QT: 490 ms Axis: -70. Sinus bradycardia with one ventricular escape (*) 1? HR: 50 bpm (Sinus) PR: 280 ms QRS: 120 ms QT: 490 ms Axis: -70 1 Sinus P waves? 2 sinus cycles The pause (2 sinus cycles) suggests that the sinus fired (?) but did not conduct to the atria (i.e., missing

More information

FLB s What Are Those Funny-Looking Beats?

FLB s What Are Those Funny-Looking Beats? FLB s What Are Those Funny-Looking Beats? Reading Assignment (pages 27-45 in Outline ) The 5-Step Method ECG #: Mearurements: Rhythm (s): Conduction: Waveform: Interpretation: A= V= PR= QRS= QT= Axis=

More information

ECG Interpretation Cat Williams, DVM DACVIM (Cardiology)

ECG Interpretation Cat Williams, DVM DACVIM (Cardiology) ECG Interpretation Cat Williams, DVM DACVIM (Cardiology) Providing the best quality care and service for the patient, the client, and the referring veterinarian. GOAL: Reduce Anxiety about ECGs Back to

More information

Case 1. Case 2. Case 3

Case 1. Case 2. Case 3 Case 1 The correct answer is D. Occasionally, the Brugada syndrome can present similar morphologies to A and also change depending on the lead position but in the Brugada pattern the r is wider and ST

More information

By the end of this lecture, you will be able to: Understand the 12 lead ECG in relation to the coronary circulation and myocardium Perform an ECG

By the end of this lecture, you will be able to: Understand the 12 lead ECG in relation to the coronary circulation and myocardium Perform an ECG By the end of this lecture, you will be able to: Understand the 12 lead ECG in relation to the coronary circulation and myocardium Perform an ECG recording Identify the ECG changes that occur in the presence

More information

Step by step approach to EKG rhythm interpretation:

Step by step approach to EKG rhythm interpretation: Sinus Rhythms Normal sinus arrhythmia Small, slow variation of the R-R interval i.e. variation of the normal sinus heart rate with respiration, etc. Sinus Tachycardia Defined as sinus rhythm with a rate

More information

SIMPLY ECGs. Dr William Dooley

SIMPLY ECGs. Dr William Dooley SIMPLY ECGs Dr William Dooley Content Basic ECG interpretation pattern Some common (examined) abnormalities Presenting ECGs in context Setting up an ECG Setting up an ECG 1 V1-4 th Right intercostal space

More information

PATIENT S NAME, DATE/TIME,

PATIENT S NAME, DATE/TIME, ECG and Arrhythmias Dec, 1 st 2014 Doctor Mohammad Jarrah References: - Lecture and Slides - ECG Made Easy - Davidson Principles of Medicine - First Aid Cases for the USMLE Step 1 - Mini-OSCE Archive ECG

More information

Miscellaneous Stuff Keep reading the Outline

Miscellaneous Stuff Keep reading the Outline Miscellaneous Stuff Keep reading the Outline Welcome to the 5-Step Method ECG #: Mearurements: Rhythm (s): Conduction: Waveform: Interpretation: A= V= PR= QRS= QT= Axis= 1. Compute the 5 basic measurements:

More information

CASE 10. What would the ST segment of this ECG look like? On which leads would you see this ST segment change? What does the T wave represent?

CASE 10. What would the ST segment of this ECG look like? On which leads would you see this ST segment change? What does the T wave represent? CASE 10 A 57-year-old man presents to the emergency center with complaints of chest pain with radiation to the left arm and jaw. He reports feeling anxious, diaphoretic, and short of breath. His past history

More information

TEST BANK FOR ECGS MADE EASY 5TH EDITION BY AEHLERT

TEST BANK FOR ECGS MADE EASY 5TH EDITION BY AEHLERT Link download full: http://testbankair.com/download/test-bank-for-ecgs-made-easy-5thedition-by-aehlert/ TEST BANK FOR ECGS MADE EASY 5TH EDITION BY AEHLERT Chapter 5 TRUE/FALSE 1. The AV junction consists

More information

MICS OF MYOCARDIAL ISCHEMIA AND INFARCTION REVISED FOR LAS VEGAS

MICS OF MYOCARDIAL ISCHEMIA AND INFARCTION REVISED FOR LAS VEGAS ECG MIMICS OF MYOCARDIAL ISCHEMIA AND INFARCTION 102.06.05 Tzong-Luen Wang MD, PhD, JM, FESC, FACC Professor. Medical School, Fu-Jen Catholic University Chief, Emergency Department, Shin-Kong Wu Ho-Su

More information

Intermediate ECG Course - Part 4. Joe M. Moody, Jr, MD UTHSCSA and STVAHCS

Intermediate ECG Course - Part 4. Joe M. Moody, Jr, MD UTHSCSA and STVAHCS Intermediate ECG Course - Part 4 Joe M. Moody, Jr, MD UTHSCSA and STVAHCS Topics in Intermediate ECG Consolidation of prior information with additional details Not advanced, but feel free to ask advanced

More information

2) Heart Arrhythmias 2 - Dr. Abdullah Sharif

2) Heart Arrhythmias 2 - Dr. Abdullah Sharif 2) Heart Arrhythmias 2 - Dr. Abdullah Sharif Rhythms from the Sinus Node Sinus Tachycardia: HR > 100 b/m Causes: o Withdrawal of vagal tone & Sympathetic stimulation (exercise, fight or flight) o Fever

More information

Case-Based Practical ECG Interpretation for the Generalist

Case-Based Practical ECG Interpretation for the Generalist Case-Based Practical ECG Interpretation for the Generalist Paul D. Varosy, MD, FACC, FAHA, FHRS Director of Cardiac Electrophysiology VA Eastern Colorado Health Care System Associate Professor of Medicine

More information

CRC 431 ECG Basics. Bill Pruitt, MBA, RRT, CPFT, AE-C

CRC 431 ECG Basics. Bill Pruitt, MBA, RRT, CPFT, AE-C CRC 431 ECG Basics Bill Pruitt, MBA, RRT, CPFT, AE-C Resources White s 5 th ed. Ch 6 Electrocardiography Einthoven s Triangle Chest leads and limb leads Egan s 10 th ed. Ch 17 Interpreting the Electrocardiogram

More information

Supraventricular Arrhythmias. Reading Assignment. Chapter 5 (p17-30)

Supraventricular Arrhythmias. Reading Assignment. Chapter 5 (p17-30) Supraventricular Arrhythmias Reading Assignment Chapter 5 (p17-30) The Supraventricular Rhythms In Our Lives Site of Origin Single Events Slow Rates Intermediate Rates Fast Rates (>100 bpm) Sinus Sinus

More information

Electrical System Overview Electrocardiograms Action Potentials 12-Lead Positioning Values To Memorize Calculating Rates

Electrical System Overview Electrocardiograms Action Potentials 12-Lead Positioning Values To Memorize Calculating Rates Electrocardiograms Electrical System Overview James Lamberg 2/ 74 Action Potentials 12-Lead Positioning 3/ 74 4/ 74 Values To Memorize Inherent Rates SA: 60 to 100 AV: 40 to 60 Ventricles: 20 to 40 Normal

More information

EHRA Accreditation Exam - Sample MCQs Invasive cardiac electrophysiology

EHRA Accreditation Exam - Sample MCQs Invasive cardiac electrophysiology EHRA Accreditation Exam - Sample MCQs Invasive cardiac electrophysiology Dear EHRA Member, Dear Colleague, As you know, the EHRA Accreditation Process is becoming increasingly recognised as an important

More information

Cardiac arrhythmias. Janusz Witowski. Department of Pathophysiology Poznan University of Medical Sciences. J. Witowski

Cardiac arrhythmias. Janusz Witowski. Department of Pathophysiology Poznan University of Medical Sciences. J. Witowski Cardiac arrhythmias Janusz Witowski Department of Pathophysiology Poznan University of Medical Sciences A 68-year old man presents to the emergency department late one evening complaining of increasing

More information

Ronald J. Kanter, MD Director, Electrophysiology Miami Children s Hospital Professor Emeritus, Duke University Miami, Florida

Ronald J. Kanter, MD Director, Electrophysiology Miami Children s Hospital Professor Emeritus, Duke University Miami, Florida S306- Pediatric Electrocardiography: A Potpourri Ronald J. Kanter, MD Director, Electrophysiology Miami Children s Hospital Professor Emeritus, Duke University Miami, Florida Disclosure of Relevant Relationship

More information

Dr. Schroeder has no financial relationships to disclose

Dr. Schroeder has no financial relationships to disclose Valerie A Schroeder MD MS Assistant Professor University of Kansas Medical Center READING THE WAVES- THE HEART S ELECTRICAL MESSAGE FINANCIAL DISCLOSURE Dr. Schroeder has no financial relationships to

More information

2017 EKG Workshop Basic. Family Medicine Review Course Lou Mancano, MD, FAAFP Reading Health System Family and Community Medicine Reading, PA

2017 EKG Workshop Basic. Family Medicine Review Course Lou Mancano, MD, FAAFP Reading Health System Family and Community Medicine Reading, PA 2017 EKG Workshop Basic Family Medicine Review Course Lou Mancano, MD, FAAFP Reading Health System Family and Community Medicine Reading, PA Part I - Objectives Discuss a systematic approach to EKG interpretation

More information

CORONARY ARTERIES. LAD Anterior wall of the left vent Lateral wall of left vent Anterior 2/3 of interventricluar septum R & L bundle branches

CORONARY ARTERIES. LAD Anterior wall of the left vent Lateral wall of left vent Anterior 2/3 of interventricluar septum R & L bundle branches CORONARY ARTERIES RCA Right atrium Right ventricle SA node 55% AV node 90% Posterior wall of left ventricle in 90% Posterior third of interventricular septum 90% LAD Anterior wall of the left vent Lateral

More information

DR QAZI IMTIAZ RASOOL OBJECTIVES

DR QAZI IMTIAZ RASOOL OBJECTIVES PRACTICAL ELECTROCARDIOGRAPHY DR QAZI IMTIAZ RASOOL OBJECTIVES Recording of electrical events in heart Established electrode pattern results in specific tracing pattern Health of heart i. e. Anatomical

More information

THE ELECTROCARDIOGRAM A UBIQUITOUS AND COST-EFFECTIVE DIAGNOSTIC TOOL FOR THE FAMILY MEDICINE REFRESHER COURSE MARCH 8, 2019

THE ELECTROCARDIOGRAM A UBIQUITOUS AND COST-EFFECTIVE DIAGNOSTIC TOOL FOR THE FAMILY MEDICINE REFRESHER COURSE MARCH 8, 2019 THE ELECTROCARDIOGRAM A UBIQUITOUS AND COST-EFFECTIVE DIAGNOSTIC TOOL FOR THE FAMILY MEDICINE REFRESHER COURSE MARCH 8, 2019 Major Clinical Disorders Pulmonary Embolism 69 y/o woman with dyspnea and an

More information

Huseng Vefali MD St. Luke s University Health Network Department of Cardiology

Huseng Vefali MD St. Luke s University Health Network Department of Cardiology Huseng Vefali MD St. Luke s University Health Network Department of Cardiology Learning Objectives Establish Consistent Approach to Interpreting ECGs Review Essential Cases for Paramedics and first responders

More information

Understanding the 12-lead ECG, part II

Understanding the 12-lead ECG, part II Bundle-branch blocks Understanding the 12-lead ECG, part II Most common electrocardiogram (ECG) abnormality Appears as a wider than normal S complex Occurs when one of the two bundle branches can t conduct

More information

Reading Assignment (p1-91 in Outline ) Objectives What s in an ECG?

Reading Assignment (p1-91 in Outline ) Objectives What s in an ECG? Reading Assignment (p1-91 in Outline ) Objectives What s in an ECG? The 5-Step Method ECG #: Mearurements: Rhythm (s): Conduction: Waveform: Interpretation: A= V= PR= QRS= QT= Axis= 1. Compute the 5 basic

More information

Pathologic ECG. Adelina Vlad, MD PhD

Pathologic ECG. Adelina Vlad, MD PhD Pathologic ECG Adelina Vlad, MD PhD Basic Interpretation of the ECG 1) Evaluate calibration 2) Calculate rate 3) Determine rhythm 4) Determine QRS axis 5) Measure intervals 6) Analyze the morphology and

More information

Section V. Objectives

Section V. Objectives Section V Landscape of an MI Objectives At the conclusion of this presentation the participant will be able to Outline a systematic approach to 12 lead ECG interpretation Demonstrate the process for determining

More information

Office ECG Interpretation

Office ECG Interpretation Office ECG Interpretation Jason Evanchan, DO Assistant Professor of Medicine Division of Cardiovascular Medicine The Ohio State University Wexner Medical Center Outline of topics High risk ischemia T wave

More information

12 Lead ECG. Presented by Rebecca Sevigny BSN, RN Professional Practice & Development Dept.

12 Lead ECG. Presented by Rebecca Sevigny BSN, RN Professional Practice & Development Dept. 12 Lead ECG Presented by Rebecca Sevigny BSN, RN Professional Practice & Development Dept. Two Main Coronary Arteries RCA LCA which branches into Left Anterior Descending Circumflex Artery Two Main Coronary

More information

Acute Coronary Syndromes Unstable Angina Non ST segment Elevation MI (NSTEMI) ST segment Elevation MI (STEMI)

Acute Coronary Syndromes Unstable Angina Non ST segment Elevation MI (NSTEMI) ST segment Elevation MI (STEMI) Leanna R. Miller, RN, MN, CCRN-CSC, PCCN-CMC, CEN, CNRN, CMSRN, NP Education Specialist LRM Consulting Nashville, TN Objectives Evaluate common abnormalities that mimic myocardial infarction. Identify

More information

Return to Basics. ECG Rate and Rhythm. Management of the Hospitalized Patient September 25, 2009

Return to Basics. ECG Rate and Rhythm. Management of the Hospitalized Patient September 25, 2009 Management of the Hospitalized Patient September 25, 2009 ECG Refresher and Update 2009 Return to Basics Determine rate and rhythm Determine intervals and axes Define morphology of P-QRS-T-U Compare with

More information

December 2018 Tracings

December 2018 Tracings Tracings Tracing 1 Tracing 4 Tracing 1 Answer Tracing 4 Answer Tracing 2 Tracing 5 Tracing 2 Answer Tracing 5 Answer Tracing 3 Tracing 6 Tracing 3 Answer Tracing 6 Answer Questions? Contact Dr. Nelson

More information

ECGs and Arrhythmias: Family Medicine Board Review 2012

ECGs and Arrhythmias: Family Medicine Board Review 2012 Overview ECGs and Arrhythmias: Family Medicine Board Review 2012 Jess Waldura, MD University of California, San Francisco walduraj@nccc.ucsf.edu Bundle branch blocks Quick review of ischemia Arrhythmias

More information

Paroxysmal Supraventricular Tachycardia PSVT.

Paroxysmal Supraventricular Tachycardia PSVT. Atrial Tachycardia; is the name for an arrhythmia caused by a disorder of the impulse generation in the atrium or the AV node. An area in the atrium sends out rapid signals, which are faster than those

More information

ECGs: Everything a finalist needs to know. Dr Amy Coulden As part of the Simply Finals series

ECGs: Everything a finalist needs to know. Dr Amy Coulden As part of the Simply Finals series ECGs: Everything a finalist needs to know Dr Amy Coulden As part of the Simply Finals series Aims and objectives To be able to interpret basic ECG abnormalities To be able to recognise commonly tested

More information

Ablative Therapy for Ventricular Tachycardia

Ablative Therapy for Ventricular Tachycardia Ablative Therapy for Ventricular Tachycardia Nitish Badhwar, MD, FACC, FHRS 2 nd Annual UC Davis Heart and Vascular Center Cardiovascular Nurse / Technologist Symposium May 5, 2012 Disclosures Research

More information

Cardiac Arrhythmias. Cathy Percival, RN, FALU, FLMI VP, Medical Director AIG Life and Retirement Company

Cardiac Arrhythmias. Cathy Percival, RN, FALU, FLMI VP, Medical Director AIG Life and Retirement Company Cardiac Arrhythmias Cathy Percival, RN, FALU, FLMI VP, Medical Director AIG Life and Retirement Company The Cardiovascular System Three primary functions Transport of oxygen, nutrients, and hormones to

More information

BEDSIDE ECG INTERPRETATION

BEDSIDE ECG INTERPRETATION BEDSIDE ECG INTERPRETATION Presented by: Ryan Dean, RN, MSN, CCRN, CCNS, CFRN Flight Nurse 2017 Based on presentations originally by Gennifer DePaoli, RN Objectives Hospital policies Electrical conduction

More information

ARRHYTHMIAS IN THE ICU

ARRHYTHMIAS IN THE ICU ARRHYTHMIAS IN THE ICU Nora Goldschlager, MD MACP, FACC, FAHA, FHRS SFGH Division of Cardiology UCSF IDENTIFIED VARIABLES IN ARRHYTHMOGENESIS Ischemia/infarction (scar) Electrolyte imbalance Proarrhythmia

More information

EKG. Danil Hammoudi.MD

EKG. Danil Hammoudi.MD EKG Danil Hammoudi.MD What is an EKG? The electrocardiogram (EKG) is a representation of the electrical events of the cardiac cycle. Each event has a distinctive waveform, the study of which can lead to

More information

Pediatrics. Arrhythmias in Children: Bradycardia and Tachycardia Diagnosis and Treatment. Overview

Pediatrics. Arrhythmias in Children: Bradycardia and Tachycardia Diagnosis and Treatment. Overview Pediatrics Arrhythmias in Children: Bradycardia and Tachycardia Diagnosis and Treatment See online here The most common form of cardiac arrhythmia in children is sinus tachycardia which can be caused by

More information

Family Medicine for English language students of Medical University of Lodz ECG. Jakub Dorożyński

Family Medicine for English language students of Medical University of Lodz ECG. Jakub Dorożyński Family Medicine for English language students of Medical University of Lodz ECG Jakub Dorożyński Parts of an ECG The standard ECG has 12 leads: six of them are considered limb leads because they are placed

More information

, David Stultz, MD.

, David Stultz, MD. http://www.dilbert.com EKG Rounds Handouts available at http://www.drstultz.com January 5, 2004 David Stultz, MD Cardiology Fellow, PGY 4 Overview of Topics How to read an EKG Normal EKG Determination

More information

ABCs of ECGs. Shelby L. Durler

ABCs of ECGs. Shelby L. Durler ABCs of ECGs Shelby L. Durler Objectives Review the A&P of the cardiac conduction system Placement and obtaining 4-lead and 12-lead ECGs Overview of the basics of ECG rhythm interpretation Intrinsic

More information

SIMPLY ECGs. Dr William Dooley

SIMPLY ECGs. Dr William Dooley SIMPLY ECGs Dr William Dooley 1 No anatomy just interpretation 2 Setting up an ECG 3 Setting up an ECG 1 V1-4 th Right intercostal space at sternal border 2 V2-4 th Left intercostal space at sternal border

More information

Clinical Cardiac Electrophysiology

Clinical Cardiac Electrophysiology Clinical Cardiac Electrophysiology Certification Examination Blueprint Purpose of the exam The exam is designed to evaluate the knowledge, diagnostic reasoning, and clinical judgment skills expected of

More information

EKG Competency for Agency

EKG Competency for Agency EKG Competency for Agency Name: Date: Agency: 1. The upper chambers of the heart are known as the: a. Atria b. Ventricles c. Mitral Valve d. Aortic Valve 2. The lower chambers of the heart are known as

More information

Other 12-Lead ECG Findings

Other 12-Lead ECG Findings Other 12-Lead ECG Findings Left Atrial Enlargement Left atrial enlargement is illustrated by increased P wave duration in lead II, top ECG, and by the prominent negative P terminal force in lead V1, bottom

More information

Return to Basics. Normal Intervals & Axes. ECG Rate and Rhythm

Return to Basics. Normal Intervals & Axes. ECG Rate and Rhythm Return to Basics Management of the Hospitalized Patient October 15, 2010 ECG Refresher and Update 2010 Determine rate and rhythm Determine intervals and axes Define morphology of P-QRS-T-U Compare with

More information

Advances in Ablation Therapy for Ventricular Tachycardia

Advances in Ablation Therapy for Ventricular Tachycardia Advances in Ablation Therapy for Ventricular Tachycardia Nitish Badhwar, MD, FACC, FHRS Director, Cardiac Electrophysiology Training Program University of California, San Francisco For those of you who

More information

ARRHYTHMIAS IN THE ICU: DIAGNOSIS AND PRINCIPLES OF MANAGEMENT

ARRHYTHMIAS IN THE ICU: DIAGNOSIS AND PRINCIPLES OF MANAGEMENT ARRHYTHMIAS IN THE ICU: DIAGNOSIS AND PRINCIPLES OF MANAGEMENT Nora Goldschlager, M.D. MACP, FACC, FAHA, FHRS SFGH Division of Cardiogy UCSF CLINICAL VARIABLES IN ARRHYTHMOGENESIS Ischemia/infarction (scar)

More information

Hatim Al Lawati. MD, FRCPC, DABIM(CV), FACC

Hatim Al Lawati. MD, FRCPC, DABIM(CV), FACC Hatim Al Lawati. MD, FRCPC, DABIM(CV), FACC Consultant Interventional Cardiology & Structural Heart Disease Department of Medicine Sultan Qaboos University Hospital hatim.al.lawati@gmail.com April 2017

More information

Paediatric ECG Interpretation

Paediatric ECG Interpretation Paediatric ECG Interpretation Dr Sanj Fernando (thanks to http://lifeinthefastlane.com/ecg-library/paediatric-ecginterpretation/) 3 yo boy complaining of abdominal pain and chest pain Child ECG vs Adult

More information

Study methodology for screening candidates to athletes risk

Study methodology for screening candidates to athletes risk 1. Periodical Evaluations: each 2 years. Study methodology for screening candidates to athletes risk 2. Personal history: Personal history of murmur in childhood; dizziness, syncope, palpitations, intolerance

More information

ECG (MCQs) In the fundamental rules of the ECG all the following are right EXCEP:

ECG (MCQs) In the fundamental rules of the ECG all the following are right EXCEP: ECG (MCQs) 2010 1- In the fundamental rules of the ECG all the following are right EXCEP: a- It is a biphasic record of myocardial action potential fluctuations. b- Deflection record occurs only during

More information

The Electrocardiogram part II. Dr. Adelina Vlad, MD PhD

The Electrocardiogram part II. Dr. Adelina Vlad, MD PhD The Electrocardiogram part II Dr. Adelina Vlad, MD PhD Basic Interpretation of the ECG 1) Evaluate calibration 2) Calculate rate 3) Determine rhythm 4) Determine QRS axis 5) Measure intervals 6) Analyze

More information

Return to Basics. ECG Rate and Rhythm. Management of the Hospitalized Patient October 4, 2007

Return to Basics. ECG Rate and Rhythm. Management of the Hospitalized Patient October 4, 2007 Management of the Hospitalized Patient October 4, 2007 ECG Refresher for the Hospitalists Return to Basics Determine rate and rhythm Determine intervals and axes Define morphology of P-QRS-T-U Compare

More information

Electrocardiography for Healthcare Professionals. Chapter 14 Basic 12-Lead ECG Interpretation

Electrocardiography for Healthcare Professionals. Chapter 14 Basic 12-Lead ECG Interpretation Electrocardiography for Healthcare Professionals Chapter 14 Basic 12-Lead ECG Interpretation 2012 The Companies, Inc. All rights reserved. Learning Outcomes 14.1 Discuss the anatomic views seen on a 12-lead

More information

The ECG in healthy people

The ECG in healthy people The ECG in healthy people The normal cardiac rhythm 3 The heart rate 3 Extrasystoles 7 The P wave 7 The PR interval The QRS complex 3 The ST segment 29 The T wave 33 The QT interval 42 The ECG in athletes

More information

A Review of Cardiac Pathophysiology and EKG. Jamie Dyson PT, DPT Kathy Swanick PT, DPT, OCS

A Review of Cardiac Pathophysiology and EKG. Jamie Dyson PT, DPT Kathy Swanick PT, DPT, OCS A Review of Cardiac Pathophysiology and EKG Jamie Dyson PT, DPT Kathy Swanick PT, DPT, OCS Cardiac Pathophysiology Coronary Artery Disease Congestive Heart Failure Valvular Heart Disease Athletic Heart

More information

Relax and Learn At the Farm 2012

Relax and Learn At the Farm 2012 Relax and Learn At the Farm 2012 Session 2: 12 Lead ECG Fundamentals 101 Cynthia Webner DNP, RN, CCNS, CCRN-CMC, CHFN Though for Today Mastery is not something that strikes in an instant, like a thunderbolt,

More information

ECG Interpretation. Introduction to Cardiac Telemetry. Michael Peters, RN, CCRN, CFRN CALSTAR Air Medical Services

ECG Interpretation. Introduction to Cardiac Telemetry. Michael Peters, RN, CCRN, CFRN CALSTAR Air Medical Services ECG Interpretation Introduction to Cardiac Telemetry Michael Peters, RN, CCRN, CFRN CALSTAR Air Medical Services Disclosures Nothing to disclose Objectives Describe the electrical conduction pathway in

More information

ECG S: A CASE-BASED APPROACH December 6,

ECG S: A CASE-BASED APPROACH December 6, ECG S: A CASE-BASED APPROACH December 6, 2018 1 Faculty Disclosure Faculty: Lorne Gula MD, FRCPC Professor, Western University Cardiologist, Hearth Rhythm Specialist Director, Electrophysiology Laboratory,

More information

ECG Underwriting Puzzler Dr. Regina Rosace AVP & Medical Director

ECG Underwriting Puzzler Dr. Regina Rosace AVP & Medical Director December 2018 ECG Underwriting Puzzler Dr. Regina Rosace AVP & Medical Director To obtain best results Select Slide Show from the ribbon at the top of your PowerPoint screen Select From Beginning on the

More information

Normal ECG And ECHO Findings in Athletes

Normal ECG And ECHO Findings in Athletes Normal ECG And ECHO Findings in Athletes Dr.Yahya Kiwan Consultant Interventional Cardiologist Head Of Departement Of Cardiology Canadian Specialist Hospital Sinus Bradycardia The normal heartbeat is initiated

More information