Carbohydrates. Examples of Monosaccharides: Formula Structure. Common Source. Fructose C6H12O6. In honey. Glucose. In fruits, vegetables, corn syrup

Size: px
Start display at page:

Download "Carbohydrates. Examples of Monosaccharides: Formula Structure. Common Source. Fructose C6H12O6. In honey. Glucose. In fruits, vegetables, corn syrup"

Transcription

1 arbohydrates arbohydrates are the major components of plants, comprising 60 to 90% of their dry weight. They are produced by the process of photosynthesis in green leaves. Simple arbohydrates: The common small, or simple carbohydrates, are made of one (mono) or two (di) units. Glucose, galactose, and fructose are simple monosaccharides that combine to form disaccharides such as maltose, lactose, and sucrose. Examples of Monosaccharides: Formula Structure ommon Source Fructose 6126 In honey Glucose 6126 In fruits, vegetables, corn syrup

2 2 Examples of Disaccharides: Formula Sucrose Structure ommon Source In sugar cane and sugar beets Lactose In Milk omplex arbohydrates: The complex carbohydrates amylose, and cellulose are long chain polymers of the simple carbohydrate glucose. Examples of omplex arbohydrates: (Polysaccharides) Amylose: Polymer of -D-glucose ommon Source Starches: Rice, wheat, potatoes, beans ellulose: Polymer of β-d-glucose n n Plant Fibers: otton, wood, stems, leaves

3 3 Amylose, and its branched relative, amylopectin, are major components of starches, the energy storage carbohydrates found in tubers and edible roots. Amylose and amylopectin are polymers of D-glucose in which the anomeric carbon of each glucose unit is in the alpha ( ) form. ellulose is plant structure material like that of wood, stems, and leaves. The major function of cellulose for us is not as a source of glucose for energy, but rather as fiber to keep our digestive tract clean. ellulose is a polymer of D-glucose in which the anomeric carbon of each glucose unit is in the beta (β) form. Sweetness: Simple carbohydrates are called saccharides from the Latin term saccharum (sweet) because of their sweet taste. Many of the small carbohydrates, mono and disaccharides, are used as sweeteners. They fit into the taste receptor sites on our tongues and send the signal to our brains that we call sweet. Artificial sweeteners mimic the shape of the simple sugars and will fit into the same taste receptor sites that natural sugars do and so send to our brains a similar sweet signal. Artificial sweeteners are not metabolized in the same way as natural sugars. Sucralose Examples of Artificial Sweeteners: Formula l3 Structure l l l ommon Source Splenda Aspartame utrasweet Equal Saccharin 75S3 Sweet Low S

4 4 Solubility: Mono and Disaccharides are soluble in water since they have many exposed s along their surfaces which can easily hydrogen bond with water. Larger carbohydrates can still be soluble depending on the positioning of their s. If the s are abundant on the exterior of a carbohydrate (even a large one) then hydrogen bonding with water can occur and the carbohydrate can be made to dissolve in water. If, however, there is internal hydrogen bonding within a carbohydrate, or coiling that may prevent water from hydrogen bonding to the s, then the carbohydrate will not dissolve in water. Starch granules, tightly coiled strands of amylose and amylopectin, are not soluble in water at ordinary temperatures and so are convenient forms in which to store the plant s excess energy supplies. Roots and seeds are the organs in which starch is usually concentrated. Forms of amylose starch can be made to be soluble by heating in water so as to disrupt the solid packing of the strands. The coils unravel into long strands of amylose which have s more exposed to hydrogen bond with water. ot only are the uncoiled strands more water soluble but they can also tangle with each other to form gels. We often use these unraveled starch strands as thickeners in cooking or for stiffening fabrics. Although there are some forms of soluble fiber (like in oatmeal), most plant cellulose is not water soluble even with heating. ellulose strands have a lot of internal hydrogen bonding with themselves and each other. They form tight, twisted cables that make very strong structure material that does not unravel even in hot water. hemical Reactivity: olorization: Amylose, the unbranched chain polymer of -D-glucose in starch, coils into tight spirals. Elemental iodine, I2, which is normally yellow-brown in color, will fit inside the amylose coil and complex with the s inside the spiral. The resulting amylose-iodine complex is a deep blue-black color. Iodine, I2, is commonly used as a test for the presence of amylose starch. Legal U.S. dollar bills made from a linen fabric will not react with iodine; however, the mark of the iodine pen on bills made from starched paper will show the characteristic dark blue sign of a counterfeit.

5 5 ydrolysis: Each bond connecting monosaccharide units (the glycoside bond) can be broken by hydrolysis; the reaction with water in the presence of a catalyst. Disaccharides can thus be hydrolyzed into two monosaccharides. Polysaccharides can be hydrolyzed into shorter chains or further into simple sugars. In the laboratory we can catalyze sugar hydrolysis reactions with acid, or we can use catalytic enzymes that are specific for each carbohydrate. Sucrose is hydrolyzed into glucose and fructose by catalysis with the enzyme, sucrase. Maltose hydrolyses into glucose with maltase. Lactose hydrolyses into galactose and glucose with lactase. Amylose and amylopectin are easily hydrolyzed into shorter chains of glucose called dextrins which are then further hydrolyzed into the disaccharide maltose and then to glucose (blood sugar) itself. In our bodies the hydrolysis of starches in digestion is catalyzed by the enzymes amylase and maltase. People vary in the amount of amylase in their saliva or urine. The hydrolysis of cellulose can be catalyzed in the laboratory with acid or by the enzyme cellulase found in certain bacteria. The human body does not contain the enzyme cellulase and so cannot convert cellulose into glucose for use as an energy source. Therefore, the long chain of cellulose stays intact for use as fiber. xidation: Because of the abundance of hydroxyl groups, s, and aldehyde groups, =, simple carbohydrates are easily oxidized. The aldehyde groups of simple sugars can be oxidized to carboxylic acids using the oxidizing agent opper(ii) Sulfate, us4. Benedict s reagent, a basic solution of us4, is blue in color which is characteristic of many u 2+ compounds. When blue u 2+ causes the sugar aldehyde to oxidize it becomes reduced itself to u + which is brick red. A sugar that reduces blue u 2+ to brick-red u + is called a reducing sugar. Tests for reducing sugars are commonly performed in medicine to identify the simple sugars present in blood or urine that may be indicators of metabolic problems or disease. Dehydration: When carbohydrates are either heated or reacted with acid, s and s combine and leave as water,. As water molecules begin to escape the carbohydrate begins to turn yellow, then brown, and then eventually black.

6 6 As paper (a cellulose product processed with acid) ages it slowly dehydrates and turns yellow. Scrap-bookers prefer acid-free paper that will stay white longer. aramel candy is sugar that has been heated so as to partially dehydrate. Loss of some of the s from sugars results in a caramel brown color and also gives the characteristic taste of browned carbohydrates. A common method for making sauces and gravies uses the formation of a roux. Flour or starch is heated in oil until it browns. Water or milk is then added and the mixture heated to a thick sauce. The word roux is French for red and at some point in history came to mean flour that had been cooked long enough to change color. The fat and flour undergo browning reactions when cooked giving flavorful dehydrated molecules in much the same way as the caramelization process. The more the flour is browned the less power it has to thicken since some of the starch molecules shorten as well as dehydrate in the heating process. Therefore, more of a dark brown roux is needed to thicken a given amount of liquid than if using a pale roux. If all of the s on a carbohydrate are removed as water then all that remains of the compound is black carbon charcoal. This phenomenon is observed when food or wood is burned to blackness. sazone Formation: When a monosaccharide is in its open chain form, its aldehyde or ketone group is free to undergo the usual reaction of such groups with various substituted hydrazines. If glucose is treated with phenylhydrazine, a phenylhydrazone is formed. If excess phenylhydrazine is present, the alcohol group on the carbon adjacent to the carbonyl group is oxidized, and the resulting ketone reacts to form a second phenylhydrazone, which results in the formation of an osazone. Under a standard set of conditions, the time of formation of an osazone from a sugar is characteristic of that sugar. + 2 glucose phenylhydrazine 2 "osazone"

7 7 Procedures: I. Sweetness: 1. Taste a small sample of each sugar or sweetener available and rank them in order of sweetness. ( # 1 being the sweetest.) 2. n the report sheet, record the predicted order of sweetness from your textbook. ompare your taste results with the predicted order (see table on page 10) and report your observations. II. Solubility: 1. btain 3 stoppered test tubes. Into tube # 1 put a corn kernel sized scoop of glucose (a monosaccharide). Into tube # 2 put a corn kernel sized scoop of sucrose (a disaccharide). Into tube # 3 put a corn kernel scoop of corn starch (a polysaccharide). 2. To each tube add about 5 mls water. Stopper and shake each tube to mix. Record the solubility of each (S = soluble, I = insoluble, and PS = only partially soluble) on the report sheet. 3. If any of the samples are not completely soluble in cold water, warm their test tubes in a beaker of boiling water. Record the solubility of each. 4. Save these samples for the olorization of Iodine test (Part III). III. hemical Reactivity: A. olorization of Iodine, I 2 : Test for Starch: 1. Take the 3 samples you used to test for solubility and number them ( # 1 glucose, # 2 sucrose, & # 3 starch) 2. btain 2 more test tubes. Into 1 of these put about 5 mls water to use as the control sample. Label this tube # 0 and put it first in your line up of sugar samples. 3. Into the other clean test tube spit enough saliva to measure about 1 inch. Label this tube # Add 1 drop of Iodine, Potassium Iodide (I2, KI) solution to each of the test tubes. bserve and record the color of all samples. 5. Take 5 drops of the contents of tube # 3 (the corn starch) and drop it into the saliva, tube # 4. Shake to mix.

8 8 6. Set tubes # 3 and # 4 aside. heck them every 20 minutes or so. bserve and record any color changes. (ot all people have the same amount of amylase in their saliva. heck the samples of other class members to see how their amylase reacted) B. xidation: 1. Set up a boiling water bath by filling your largest beaker ¼ full of water and heating it on a hot plate. 2. btain 6 clean test tubes with stoppers labeled # 1- # 6. Put about 2 mls water into each. 3. Leave tube # 1 as the control sample. Into tube # 2 put a pea sized scoop of fructose. Into tube # 3 put a pea sized scoop of glucose. Into tube # 4 put a pea sized scoop of sucrose. Into tube # 5 put a pea sized scoop of lactose. Into tube # 6 put a pea sized scoop of corn starch. Shake each tube to thoroughly mix the solutions. 4. Into each tube add 3 ml of Benedict s reagent. Stopper and shake each to mix. 5. Place all 6 tubes into the boiling water bath at the same time with the stoppers on very loosely so they do not pop off during heating. Remove the tubes after 5 minutes and record any color changes. 6. n the report sheet, label each sample as reducing or nonreducing. 7. Report any discrepancies in your results. Did each sample give you the results expected? Explain any anomalies.. Dehydration with eat; aramelization: 1. Into your largest beaker pour about 10 mls sucrose. 2. bserve the color, odor, chemical changes, etc. as you heat the sucrose over a hot plate while stirring constantly (or the sugar will burn). Stop heating when the sugar starts to turn caramel brown. Record all observations on your report sheet. 3. Return the beaker of caramel to the hot plate to continue the dehydration just until you have observed that the sugar is turning black. Remove from heat.

9 9 4. lean the beaker by boiling hot tap water in it until the burnt sugar is dissolved enough to be washed out. D. Dehydration with Acid: 1. Into a 50 ml beaker pour about 25 mls sucrose (half full). 2. Move the beaker of sucrose to the fume hood. Pour 10 mls concentrated Sulfuric Acid (this acid is very dangerous!) onto the sucrose and observe the color, odor, and chemical changes. Record all observations. 3. Place a drop of concentrated Sulfuric Acid on a piece of paper towel. Record your observations. IV. PRATIAL APPLIATIS I KIG: A. Preparation of Gravy: ornstarch method 1. Mix completely 2 level Tablespoons of cornstarch with 1.5 teaspoons (7.5 mls) of water in a small beaker. Play with the results of this Gak and describe its texture on the report sheet. 2. In a separate beaker, heat ½ cup (120 mls) of water (or broth). 3. With constant stirring, pour the corn starch gak into the hot water and bring to a boil for 1 minute or until smooth and bubbly. 4. Describe your results on the report sheet. B. At ome Preparation of a heese Sauce: Roux method 1. Melt 2 level Tablespoons of shortening or margarine in a beaker over low heat stirring constantly. 2. Blend in 2 level Tablespoons of flour (and seasonings like salt, pepper, or dry mustard if making a real cheese sauce) and cook over low heat, stirring until mixture is smooth and bubbly. The flour will brown as the amylose dehydrates. 3. Remove from heat. Stir in ½ cup (120 mls) water (milk for a real cheese sauce) then stirring constantly, bring to a boil for 1 minute or until smooth and bubbly. (If really making a cheese sauce; blend in ½ cup cheese, cut up or grated. Stir until cheese is melted.) 4. Describe your results on the report sheet. ompare this sauce made with four to that made with cornstarch.

10 10 Relative Sweetness of Sugars and Sugar Substitutes based on fructose = 100 Sugars Relative sweetness Sugar substitutes Relative sweetness Fructose 100 Invert Sugar 75 Sucrose 58 Glucose 43 Maltose 19 Sucralose (Splenda) Saccharin (Sweet Low) Acesulfame potassium (Sweet ne) Asparatame (Equal) Rebiana (Truvia, PureVia) Galactose 19 eotame Lactose 9.2 Stevia Xylitol 58

11 11 ame Date arbohydrate Report: I. Sweetness. Rank in order of sweetness 1-8 ( # 1 being the most sweet) Fructose Glucose Sucrose Aspartame Splenda Saccharin Stevia Xylitol rder of Sweetness (Your Taste) rder of Sweetness (page 10) ompare your taste with table: II. Solubility: 1. Glucose 2. Sucrose 3. Starch (Amylose) Solubility (cold) Solubility (hot) III. hemical Reactivity: A. olorization of Iodine, I2: 0. ontrol 1. Glucose 2. Sucrose 3. Starch (Amylose) 4. Starch + Saliva (Amylose + Amylase) bservation (color) Immediate After 20 minutes onclusion (Is Amylose present? Yes or o) Immediate After 20 minutes

12 12 B. xidation 1. ontrol 2. Fructose 3. Glucose 4. Sucrose 5. Lactose 6. Starch olor after eating w/ Benedicts Sugar Type (circle one) Reducing or nonreducing Reducing or nonreducing Reducing or nonreducing Reducing or nonreducing Reducing or nonreducing Reducing or nonreducing. & D. Dehydration with eat and Acid: bservations for Each General Explanation for All eat on Sucrose What is happening in all of these cases and why? Acid on Sucrose Acid on ellulose (paper towel) IV. Practical Applications in ooking: bservations, Results, omments A1. Gak A2. Thickening B. At ome: heese Sauce bserve the results if you make this at home.

LAB 22: CARBOHYDRATES:

LAB 22: CARBOHYDRATES: LAB 22: ARBYDRATES: STRUTURE AND PRPERTIES PURPSE: To use physical and chemical tests to distinguish between simple and complex carbohydrates. To apply the chemistry of carbohydrates to cooking. SAFETY

More information

Tests for Carbohydrates

Tests for Carbohydrates Goals bserve physical and chemical properties of some common carbohydrates. Use physical and chemical tests to distinguish between monosaccharides, disaccharides, and polysaccharides. Identify an unknown

More information

Chemistry B11 Chapters 13 Esters, amides and carbohydrates

Chemistry B11 Chapters 13 Esters, amides and carbohydrates Chapters 13 Esters, amides and carbohydrates Esters: esters are derived from carboxylic acids (the hydrogen atom in the carboxyl group of carboxylic acid is replaced by an alkyl group). The functional

More information

Name: Period: Date: Testing for Biological Macromolecules Lab

Name: Period: Date: Testing for Biological Macromolecules Lab Testing for Biological Macromolecules Lab Introduction: All living organisms are composed of various types of organic molecules, such as carbohydrates, starches, proteins, lipids and nucleic acids. These

More information

Ch13. Sugars. What biology does with monosaccharides disaccharides and polysaccharides. version 1.0

Ch13. Sugars. What biology does with monosaccharides disaccharides and polysaccharides. version 1.0 Ch13 Sugars What biology does with monosaccharides disaccharides and polysaccharides. version 1.0 Nick DeMello, PhD. 2007-2015 Ch13 Sugars Haworth Structures Saccharides can form rings. That creates a

More information

SPECIFICATION CONTINUED Glucose has two isomers, α-glucose and β-glucose, with structures:

SPECIFICATION CONTINUED Glucose has two isomers, α-glucose and β-glucose, with structures: alevelbiology.co.uk SPECIFICATION Monosaccharides are the monomers from which larger carbohydrates are made. Glucose, galactose and fructose are common monosaccharides. A condensation reaction between

More information

Definition of a Carbohydrate

Definition of a Carbohydrate * Atoms held together by covalent bonds Definition of a Carbohydrate * Organic macromolecules * Consist of C, H, & O atoms * Usually in a 1:2:1 ratio of C:H : O Functions Performed by Carbohydrates Used

More information

Food Science Cooking 2016 Food & Nutrition Conference Karin Allen, PhD

Food Science Cooking 2016 Food & Nutrition Conference Karin Allen, PhD Food Science Cooking 2016 Food & Nutrition Conference Karin Allen, PhD What s Cooking? Cooking is the transfer of energy from a heat source to a food that alters its: Molecular structure Texture Flavor

More information

Carbohydrates. Monosaccharides

Carbohydrates. Monosaccharides Carbohydrates Carbohydrates (also called saccharides) are molecular compounds made from just three elements: carbon, hydrogen and oxygen. Monosaccharides (e.g. glucose) and disaccharides (e.g. sucrose)

More information

EXPERIMENT 6 Properties of Carbohydrates: Solubility, Reactivity, and Specific Rotation

EXPERIMENT 6 Properties of Carbohydrates: Solubility, Reactivity, and Specific Rotation EXPERIMENT 6 Properties of Carbohydrates: Solubility, Reactivity, and Specific Rotation Materials Needed About 3-5 g each of Glucose, Fructose, Maltose, Sucrose, Starch sodium bicarbonate, NaC 3 (s) 15

More information

6 The chemistry of living organisms

6 The chemistry of living organisms Living organisms are composed of about 22 different chemical elements. These are combined to form a great variety of compounds. Six major elements make up almost 99% of the mass of the human body, as shown

More information

Chemical Tests For Biologically Important Molecules Do not write on this document

Chemical Tests For Biologically Important Molecules Do not write on this document Chemical Tests For Biologically Important Molecules Do not write on this document Introduction The most common and important organic molecules found in living things fall into four classes: carbohydrates,

More information

FOOD TECHNOLOGY CARBOHYDRATES

FOOD TECHNOLOGY CARBOHYDRATES FOOD TECHNOLOGY CARBOHYDRATES FORMULA FOR CARBOHYDRATES CxH2Oy Carbohydrates can be split up into: Sugars Non Sugars Monosaccharides Disaccharides Simple Polysaccharides Complex Polysaccharides Glucose

More information

!"#$%&'()*+(!,-./012-,345(

!#$%&'()*+(!,-./012-,345( (!"#$%&'()*+(!,-./012-,345( (!"#"$%&'()$*%#+,'(-(.+/&/*+,%&(01"2+34$5( 6%#+,"(!/$75#38+(92+41( CAPTER 20: Learning Objectives:! >

More information

Lab 6: Cellular Respiration

Lab 6: Cellular Respiration Lab 6: Cellular Respiration Metabolism is the sum of all chemical reactions in a living organism. These reactions can be catabolic or anabolic. Anabolic reactions use up energy to actually build complex

More information

GENERAL TESTS FOR CARBOHYDRATE. By Sandip Kanazariya

GENERAL TESTS FOR CARBOHYDRATE. By Sandip Kanazariya GENERAL TESTS FOR CARBOHYDRATE By Sandip Kanazariya Introduction Carbohydrates are of great importance to human beings. They are major part of our diet, providing 60-70% of total energy required by the

More information

OCR (A) Biology A-level

OCR (A) Biology A-level OCR (A) Biology A-level Topic 2.2: Biological molecules Notes Water Water is a very important molecule which is a major component of cells, for instance: Water is a polar molecule due to uneven distribution

More information

Testing for Biologically Important Molecules

Testing for Biologically Important Molecules Testing for Biologically Important Molecules General Principles There are four major classes of organic compounds found in living organisms - arbohydrates, Lipids, Proteins and ucleic Acids. The chemical

More information

Biological Molecules

Biological Molecules SIM Tuition Biological Molecules I won t lie. This is probably the most boring topic you have ever done in any science. It s pretty much as simple as this: learn the material deal with it. Enjoy don t

More information

Carbohydrates Chemical Composition and Identification

Carbohydrates Chemical Composition and Identification Carbohydrates Chemical Composition and Identification Introduction: Today, scientists use a combination of biology and chemistry for their understanding of life and life processes. Thus, an understanding

More information

Qualitative analysis of carbohydrates II

Qualitative analysis of carbohydrates II Qualitative analysis of carbohydrates II C 2 C 2 1 glycogen C 2 C 2 6 C 2 C 2 C 2 5 1 4 4 3 2 Complex carbohydrate Complex sugars consist of more than one unit of monosachride, it could be: -Disaccharides

More information

Structural Polysaccharides

Structural Polysaccharides Carbohydrates & ATP Carbohydrates include both sugars and polymers of sugars. The simplest carbohydrates are the monosaccharides, or simple sugars; these are the monomers from which more complex carbohydrates

More information

Topic 4 - #2 Carbohydrates Topic 2

Topic 4 - #2 Carbohydrates Topic 2 Topic 4 - #2 Carbohydrates Topic 2 Biologically Important Monosaccharide Derivatives There are a large number of monosaccharide derivatives. A variety of chemical and enzymatic reactions produce these

More information

Disaccharides. Three Important Disaccharides Maltose, Lactose, and Sucrose. The formation of these three common disaccharides are:

Disaccharides. Three Important Disaccharides Maltose, Lactose, and Sucrose. The formation of these three common disaccharides are: DISACCHARIDES Disaccharides Three Important Disaccharides Maltose, Lactose, and Sucrose The formation of these three common disaccharides are: 2 Disaccharides Maltose (Malt Sugar) Maltose is known as malt

More information

of Life Chemical Aspects OBJ ECTIVESshould be able to: ENCOUNTERS WITH LIFE H" ~ ~O N-C-C H R OH After completing this exercise, the student

of Life Chemical Aspects OBJ ECTIVESshould be able to: ENCOUNTERS WITH LIFE H ~ ~O N-C-C H R OH After completing this exercise, the student ENCOUNTERS WT LFE Chemical Aspects of Life C 20 C--O. /1 '\. O \/ '\./ C C / \. O / -, O \.1 C--C 1 O GLYCEROL After completing this exercise, the student OBJ ECTVESshould be able to: Define organic and

More information

Carbohydrates: The Energy Nutrient Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license.

Carbohydrates: The Energy Nutrient Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. Carbohydrates: The Energy Nutrient 2001 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. CARBOHYDRATES Functions of Carbohydrates 1. Energy 2.

More information

Lab 3 MACROMOLECULES INTRODUCTION I. IDENTIFICATION OF MACROMOLECULES. A. Carbohydrates

Lab 3 MACROMOLECULES INTRODUCTION I. IDENTIFICATION OF MACROMOLECULES. A. Carbohydrates Lab 3 MACROMOLECULES OBJECTIVES Define macromolecule, vitamin, mineral, carbohydrate, monosaccharide, disaccharide, polysaccharide, lipid, protein, amino acid, calorie; Describe the basic structures of

More information

Experiment 20 Identification of Some Carbohydrates

Experiment 20 Identification of Some Carbohydrates Experiment 20 Identification of Some arbohydrates arbohydrates are the direct product of the photosynthetic combination of carbon dioxide and water. By weight, they are the most common organic compounds

More information

Carbohydrate Chemistry 2016 Family & Consumer Sciences Conference Karin Allen, PhD

Carbohydrate Chemistry 2016 Family & Consumer Sciences Conference Karin Allen, PhD Carbohydrate Chemistry 2016 Family & Consumer Sciences Conference Karin Allen, PhD Overview Carbohydrate chemistry General characteristics Sugar chemistry Starch chemistry 10 minute break Iodine test for

More information

A BEGINNER S GUIDE TO BIOCHEMISTRY

A BEGINNER S GUIDE TO BIOCHEMISTRY A BEGINNER S GUIDE TO BIOCHEMISTRY Life is basically a chemical process Organic substances: contain carbon atoms bonded to other carbon atom 4 classes: carbohydrates, lipids, proteins, nucleic acids Chemical

More information

Carbohydrates are a large group of organic compounds occurring in and including,, and. They contain hydrogen and oxygen in the same ratio as (2:1).

Carbohydrates are a large group of organic compounds occurring in and including,, and. They contain hydrogen and oxygen in the same ratio as (2:1). Carbohydrates are a large group of organic compounds occurring in and and including,, and. They contain hydrogen and oxygen in the same ratio as (2:1). Why we study carbohydrates 1) carbohydrates are the

More information

Biomolecules are organic molecules produced by living organisms which consists mainly of the following elements:

Biomolecules are organic molecules produced by living organisms which consists mainly of the following elements: Biomolecules are organic molecules produced by living organisms which consists mainly of the following elements: These elements are non-metals which combine in various ways to form biomolecules through

More information

Chapter 2 Carbohydrates

Chapter 2 Carbohydrates 216 Answer, K/A, page(s) Chapter 2 Carbohydrates K = knowledge question; A = application question True/False T K 34 1. Whenever carbohydrate is available to the body, the human brain depends exclusively

More information

Lab #4: Nutrition & Assays for Detecting Biological Molecules - Introduction

Lab #4: Nutrition & Assays for Detecting Biological Molecules - Introduction Lab #4: Nutrition & Assays for Detecting Biological Molecules - Introduction Most biological molecules fall into one of four varieties: proteins, carbohydrates, lipids and nucleic acids. These are sometimes

More information

For example, monosaccharides such as glucose are polar and soluble in water, whereas lipids are nonpolar and insoluble in water.

For example, monosaccharides such as glucose are polar and soluble in water, whereas lipids are nonpolar and insoluble in water. Biology 4A Laboratory Biologically Important Molecules Objectives Perform tests to detect the presence of carbohydrates, lipids, proteins, and nucleic acids Recognize the importance of a control in a biochemical

More information

I. Polymers & Macromolecules Figure 1: Polymers. Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis

I. Polymers & Macromolecules Figure 1: Polymers. Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis I. Polymers & Macromolecules Figure 1: Polymers Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis 1 Dehydration Synthesis: Figure 3: Depolymerization via Hydrolysis Hydrolysis:

More information

Biology 20 Laboratory Life s Macromolecules OBJECTIVE INTRODUCTION

Biology 20 Laboratory Life s Macromolecules OBJECTIVE INTRODUCTION Biology 20 Laboratory Life s Macromolecules OBJECTIVE To observe and record reactions between three classes of macromolecules in the presence of simple chemical indictors. To be able to distinguish positive

More information

Lec 3a- BPK 110 Human Nutr.:Current Iss.

Lec 3a- BPK 110 Human Nutr.:Current Iss. Lec 3a- BPK 110 Human Nutr.:Current Iss. 1. Overview Carbohydrates (CHO) 2. Types of Carbohydrates 3. Why to Include Carbohydrates in Your Diet? 4. Digestion, Absorption and Transport of Carbohydrates

More information

Carbs: The Staff of Life, or The Stuff of Death? Ed Cox, M.D.

Carbs: The Staff of Life, or The Stuff of Death? Ed Cox, M.D. Carbs: The Staff of Life, or The Stuff of Death? Ed Cox, M.D. Pyramid, or Paleo? Carbs defined Carbohydrates (abbrev. CHO) = saccharides Saccharide from Greek for sugar Compounds of carbon, oxygen and

More information

McMush Lab Testing for the Presence of Biomolecules

McMush Lab Testing for the Presence of Biomolecules Biology McMush Lab Testing for the Presence of Biomolecules Carbohydrates, lipids, proteins, and nucleic acids are organic molecules found in every living organism. These biomolecules are large carbon-based

More information

3.9 Carbohydrates. Provide building materials and energy storage. Are molecules that contain carbon, hydrogen and oxygen in a 1:2:1 ratio

3.9 Carbohydrates. Provide building materials and energy storage. Are molecules that contain carbon, hydrogen and oxygen in a 1:2:1 ratio 3.9 Carbohydrates Provide building materials and energy storage Are molecules that contain carbon, hydrogen and oxygen in a 1:2:1 ratio Are of two main types Simple carbohydrates Complex carbohydrates

More information

Figure 2. Figure 1. Name: Bio AP Lab Organic Molecules

Figure 2. Figure 1. Name: Bio AP Lab Organic Molecules Name: Bio AP Lab Organic Molecules BACKGROUND: A cell is a living chemistry laboratory in which most functions take the form of interactions between organic molecules. Most organic molecules found in living

More information

What Are Carbohydrates? Chapter 4 Carbohydrates: Simple Sugars and Complex Chains. Monosaccharides. Simple Sugars 6/17/16. BIOL 103, Spring 2016

What Are Carbohydrates? Chapter 4 Carbohydrates: Simple Sugars and Complex Chains. Monosaccharides. Simple Sugars 6/17/16. BIOL 103, Spring 2016 What Are Carbohydrates? Chapter 4 Carbohydrates: Simple Sugars and Complex Chains BIOL 103, Spring 2016 Sugars, starches, and fibers Major food sources: Plants Produced during photosynthesis Two main carbohydrate

More information

Carbohydrates. Objectives. Background. Experiment 6

Carbohydrates. Objectives. Background. Experiment 6 1 of 6 3/15/2011 7:27 PM Experiment 6 Carbohydrates Objectives During this experiment you will look at some of the physical and chemical properties of carbohydrates. Many of the carbohydrates, especially

More information

CHAPTER 27 CARBOHYDRATES SOLUTIONS TO REVIEW QUESTIONS

CHAPTER 27 CARBOHYDRATES SOLUTIONS TO REVIEW QUESTIONS 27 09/17/2013 11:12:35 Page 397 APTER 27 ARBYDRATES SLUTINS T REVIEW QUESTINS 1. In general, the carbohydrate carbon oxidation state determines the carbon s metabolic energy content. The more oxidized

More information

Lecture 2 Carbohydrates

Lecture 2 Carbohydrates Lecture 2 Carbohydrates Sources of CHOs Wholegrains major dietary intake Vegetables, legumes ad fruit contain dietary fibre Milk products provide lactose essential for infants Glycogen is a storage carbohydrate,

More information

Carbohydrates. Chapter 12

Carbohydrates. Chapter 12 Carbohydrates Chapter 12 Educational Goals 1. Given a Fischer projection of a monosaccharide, classify it as either aldoses or ketoses. 2. Given a Fischer projection of a monosaccharide, classify it by

More information

Carbohydrates- Disaccharides. By Dr. Bhushan R. Kavimandan

Carbohydrates- Disaccharides. By Dr. Bhushan R. Kavimandan Carbohydrates- Disaccharides By Dr. Bhushan R. Kavimandan Disaccharides ofbiological importance: Disaccharides consist of two monosaccharides joined by glycosidic linkages. They are crystalline, water-soluble

More information

Ch 2 Molecules of life

Ch 2 Molecules of life Ch 2 Molecules of life Think about (Ch 2, p.2) 1. Water is essential to life. If there is water on a planet, it is possible that life may exist on the planet. 2. Water makes up the largest percentage by

More information

2/25/2015. Chapter 6. Carbohydrates. Outline. 6.1 Classes of Carbohydrates. 6.1 Classes of Carbohydrates. 6.1 Classes of Carbohydrates

2/25/2015. Chapter 6. Carbohydrates. Outline. 6.1 Classes of Carbohydrates. 6.1 Classes of Carbohydrates. 6.1 Classes of Carbohydrates Lecture Presentation Chapter 6 Carbohydrates Julie Klare Fortis College Smyrna, GA Outline 6.7 Carbohydrates and Blood The simplest carbohydrates are monosaccharides (mono is Greek for one, sakkhari is

More information

Fundamentals of Organic Chemistry. CHAPTER 6: Carbohydrates

Fundamentals of Organic Chemistry. CHAPTER 6: Carbohydrates Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1) King Saud University College of Science, Chemistry Department CHEM 109 CHAPTER 6: Carbohydrates Carbohydrates

More information

EXERCISE 3 Carbon Compounds

EXERCISE 3 Carbon Compounds LEARNING OBJECTIVES EXERCISE 3 Carbon Compounds Perform diagnostic tests to detect the presence of reducing sugars (Benedict s), starch (Lugol s), protein (Biuret), lipid (SudanIV) and sodium chloride

More information

5.2 Lipids 5.21 Triglycerides 5.22 Phospholipids 5.23 Wax 5.24 Steroids. 5.3 Proteins 5.4 Nucleic Acids

5.2 Lipids 5.21 Triglycerides 5.22 Phospholipids 5.23 Wax 5.24 Steroids. 5.3 Proteins 5.4 Nucleic Acids BIOCHEMISTRY Class Notes Summary Table of Contents 1.0 Inorganic and Organic Compounds 2.0 Monomers and Polymers 3.0 Dehydration (Condensation) Synthesis 4.0 Hydrolysis Reaction 5.0 Organic Compounds 5.1

More information

Learning Target: Describe characteristics and functions of carbohydrates, lipids, and proteins. Compare and contrast the classes of organic

Learning Target: Describe characteristics and functions of carbohydrates, lipids, and proteins. Compare and contrast the classes of organic Learning Target: Describe characteristics and functions of carbohydrates, lipids, and proteins. Compare and contrast the classes of organic compounds. What are inorganic molecules? Molecules that CANNOT

More information

Topic 3: Molecular Biology

Topic 3: Molecular Biology Topic 3: Molecular Biology 3.2 Carbohydrates and Lipids Essen=al Understanding: Carbon, hydrogen and oxygen are used to supply and store energy. Carbohydrates CARBOHYDRATES CHO sugars Primarily consist

More information

Biochemistry: Macromolecules

Biochemistry: Macromolecules 1 Biology: Macromolecules 2 Carbohydrates Carbohydrate organic compound containing carbon, hydrogen, & oxygen in a 1:2:1 ratio Meaning: hydrated carbon ratio of h:0 is 2:1 (same as in water) Source: plants

More information

Dr. Mahendra P. Bhatt (BMLT, MS-Ph.D., Post-doctorate) Associate Professor Clinical Biochemistry

Dr. Mahendra P. Bhatt (BMLT, MS-Ph.D., Post-doctorate) Associate Professor Clinical Biochemistry Dr. Mahendra P. Bhatt (BMLT, MS-Ph.D., Post-doctorate) Associate Professor Clinical Biochemistry mahendramlt@gmail.com Students will be able to describe: Biochemical organization of the cell Transport

More information

I. Carbohydrates Overview A. Carbohydrates are a class of biomolecules which have a variety of functions. 1. energy

I. Carbohydrates Overview A. Carbohydrates are a class of biomolecules which have a variety of functions. 1. energy Chapter 22 Carbohydrates Chem 306 Roper I. Carbohydrates Overview A. Carbohydrates are a class of biomolecules which have a variety of functions. 1. energy 2. energy storage 3. structure 4. other functions!

More information

Biomolecule: Carbohydrate

Biomolecule: Carbohydrate Biomolecule: Carbohydrate This biomolecule is composed of three basic elements (carbon, hydrogen, and oxygen) in a 1:2:1 ratio. The most basic carbohydrates are simple sugars, or monosaccharides. Simple

More information

Carbohydrates. What are they? What do cells do with carbs? Where do carbs come from? O) n. Formula = (CH 2

Carbohydrates. What are they? What do cells do with carbs? Where do carbs come from? O) n. Formula = (CH 2 Carbohydrates What are they? Formula = (C 2 O) n where n > 3 Also called sugar Major biomolecule in body What do cells do with carbs? Oxidize them for energy Store them to oxidize later for energy Use

More information

Name a property of. water why is it necessary for life?

Name a property of. water why is it necessary for life? 02.09.18 Name a property of + water why is it necessary for life? n Cohesion n Adhesion n Transparency n Density n Solvent n Heat capacity + Macromolecules (2.3 & some of 2.4) + Organic Molecules All molecules

More information

Name: Class: Honors Biology Period: Question: What is the molecular formula of this molecule?

Name: Class: Honors Biology Period: Question: What is the molecular formula of this molecule? Chapter 3: The Chemistry of Organic Molecules Exercise 1 Diversity of Carbon-Based Molecules (3.1) The great variety of organic compounds results from the ability of carbon atoms to bond with four other

More information

Introduction: Lab Safety: Student Name: Spring 2012 SC135. Laboratory Exercise #4: Biologically Important Molecules

Introduction: Lab Safety: Student Name: Spring 2012 SC135. Laboratory Exercise #4: Biologically Important Molecules FMCC Student Name: Spring 2012 SC135 Introduction: Laboratory Exercise #4: Biologically Important Molecules The major groups of biologically important molecules are: Carbohydrates, Lipids, Proteins and

More information

Biochemistry. Definition-

Biochemistry. Definition- Biochemistry Notes Biochemistry Definition- the scientific study of the chemical composition of living matter AND of the chemical processes that go on in living organisms. Biochemistry Facts 1. The human

More information

Carbohydrates suga. AP Biology

Carbohydrates suga. AP Biology Carbohydrates suga Carbohydrates energyo molecules C 2 O O O O O *4 Cal/gram Carbohydrates Carbohydrates are composed of C,, O carbo - hydr - ate C 2 O (C 12 2 O) x C 6 12 O 6 Function: energy energy storage

More information

9.A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids

9.A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids 9.A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids o o o Food is a good source of one or more of the following: protein,

More information

Carbohydrates. Sugars, Starches, and Fibers. Chapter 4

Carbohydrates. Sugars, Starches, and Fibers. Chapter 4 Carbohydrates Sugars, Starches, and Fibers Chapter 4 Introduction Brain Glucose Muscles Glucose Glycogen Fat Sources of carbohydrates Whole grains, vegetables, legumes, fruits, milk Fattening mistaken

More information

Organic Chemistry Worksheet

Organic Chemistry Worksheet Organic Chemistry Worksheet Name Section A: Intro to Organic Compounds 1. Organic molecules exist in all living cells. In terms of biochemistry, what does the term organic mean? 2. Identify the monomer

More information

CHEM 110L, Binder. Experiment 1 Carbohydrates

CHEM 110L, Binder. Experiment 1 Carbohydrates Experiment 1 Carbohydrates Carbohydrates in our diet are a major source of energy and comfort! Foods high in carbohydrates include the most delicious kinds, such as potatoes, bread, and pasta. If we take

More information

Chapter 18. Carbohydrates with an Introduction to Biochemistry. Carbohydrates with an Introduction to Biochemistry page 1

Chapter 18. Carbohydrates with an Introduction to Biochemistry. Carbohydrates with an Introduction to Biochemistry page 1 Chapter 18 Carbohydrates with an Introduction to Biochemistry Carbohydrates with an Introduction to Biochemistry page 1 Introduction to Proteins, Carbohydrates, Lipids, and Bioenergetics Metabolism and

More information

Chem 263 Nov 22, Carbohydrates (also known as sugars or saccharides) See Handout

Chem 263 Nov 22, Carbohydrates (also known as sugars or saccharides) See Handout hem 263 Nov 22, 2016 arbohydrates (also known as sugars or saccharides) See andout Approximately 0.02% of the sun s energy is used on this planet for photosynthesis in which organisms convert carbon dioxide

More information

Chemistry of food and FOOD GRAINS Build a simple calorimeter. Regina Zibuck

Chemistry of food and FOOD GRAINS Build a simple calorimeter. Regina Zibuck Chemistry of food and FOOD GRAINS Build a simple calorimeter Regina Zibuck rzibuck@wayne.edu Build and use a calorimeter (15 %) include calibration data in the 5 sheets. Written test (85 %) (Students are

More information

Testing for the Presence of Macromolecules

Testing for the Presence of Macromolecules 5 McMush Lab Testing for the Presence of Macromolecules Carbohydrates, lipids, proteins, and nucleic acids are organic molecules found in every living organism. These macromolecules are large carbon-based

More information

IB Biology BIOCHEMISTRY. Biological Macromolecules SBI3U7. Topic 3. Thursday, October 4, 2012

IB Biology BIOCHEMISTRY. Biological Macromolecules SBI3U7. Topic 3. Thursday, October 4, 2012 + IB Biology SBI3U7 BIOCHEMISTRY Topic 3 Biological Macromolecules Essential Questions: 1.What are the 4 main types of biological macromolecules and what is their function within cells? 2.How does the

More information

Lecture Outline Chapter 4- Part 2: The Carbohydrates

Lecture Outline Chapter 4- Part 2: The Carbohydrates Lecture Outline Chapter 4- Part 2: The Carbohydrates I Types of Carbohydrates If someone told you "My carbohydrate intake is too high", what would you assume about what they're eating? A. SIMPLE CARBOHYDRATES:

More information

Topic 3.1 Nutrients. - Lipids are an essential part of the and are a part of cell in the body.

Topic 3.1 Nutrients. - Lipids are an essential part of the and are a part of cell in the body. Name: Topic 3.1 Nutrients Date: IB SEHS 3.1.1. List the macronutrients and micronutrients Macronutrients: - lipid (fat) - carbohydrate - protein - water (says the book) Micronutrients: - vitamins - minerals

More information

Chemical Reactions. Carbohydrate Qualitative Analysis: Foundation Lab. 2012, Sharmaine S. Cady East Stroudsburg University

Chemical Reactions. Carbohydrate Qualitative Analysis: Foundation Lab. 2012, Sharmaine S. Cady East Stroudsburg University hemical Reactions arbohydrate Qualitative Analysis: Foundation Lab 2012, Sharmaine S. ady East Stroudsburg University Skills to build: Doing microscale reactions bserving evidence of a chemical reaction

More information

fossum/files/2012/01/10 Enzymes.pdf

fossum/files/2012/01/10 Enzymes.pdf http://www.laney.edu/wp/cheli fossum/files/2012/01/10 Enzymes.pdf Enzyme Catalysis Enzymes are proteins that act as catalysts for biological reactions. Enzymes, like all catalysts, speed up reactions without

More information

Carbohydrates. Mark Scheme. Save My Exams! The Home of Revision. Exam Board 3.1 Biological Molecules Carbohydrates. Page 1.

Carbohydrates. Mark Scheme. Save My Exams! The Home of Revision. Exam Board 3.1 Biological Molecules Carbohydrates. Page 1. Carbohydrates Mark Scheme Level Subject Exam Board Module Topic Booklet A Level Biology AQA 3.1 Biological Molecules 3.1. Carbohydrates Mark Scheme Time Allowed: 59 minutes Score: /4 Percentage: /100 Grade

More information

Chapter 1. Chemistry of Life - Advanced TABLE 1.2: title

Chapter 1. Chemistry of Life - Advanced TABLE 1.2: title Condensation and Hydrolysis Condensation reactions are the chemical processes by which large organic compounds are synthesized from their monomeric units. Hydrolysis reactions are the reverse process.

More information

Review for Test #1: Biochemistry

Review for Test #1: Biochemistry Review for Test #1: Biochemistry 1. Know and understand the definitions and meanings of the following terms. Be able to write complete definitions for the terms in BOLD: Biology triglyceride metabolism

More information

BIOLOGICAL MOLECULES. Although many inorganic compounds are essential to life, the vast majority of substances in living things are organic compounds.

BIOLOGICAL MOLECULES. Although many inorganic compounds are essential to life, the vast majority of substances in living things are organic compounds. BIOLOGY 12 BIOLOGICAL MOLECULES NAME: Although many inorganic compounds are essential to life, the vast majority of substances in living things are organic compounds. ORGANIC MOLECULES: Organic molecules

More information

BCH 445 Biochemistry of nutrition Dr. Mohamed Saad Daoud

BCH 445 Biochemistry of nutrition Dr. Mohamed Saad Daoud BCH 445 Biochemistry of nutrition Dr. Mohamed Saad Daoud 1 Carbohydrates Carbohydrates: Compounds composed of carbon, oxygen, and hydrogen arranged as monosaccharides or multiples of monosaccharides. Most,

More information

Dehydration Synthesis and Hydrolysis Reactions. ne_content/animations/reaction_types.ht ml

Dehydration Synthesis and Hydrolysis Reactions.   ne_content/animations/reaction_types.ht ml Glucose Molecule Macromolecules Carbohydrates, proteins, and nucleic acids are polymers Polymers long molecules made from building blocks linked by covalent bonds Monomers the building blocks to polymers

More information

6/15/2015. Biological Molecules. Outline. Organic Compounds. Organic Compounds - definition Functional Groups Biological Molecules. What is organic?

6/15/2015. Biological Molecules. Outline. Organic Compounds. Organic Compounds - definition Functional Groups Biological Molecules. What is organic? Biological Molecules Biology 105 Lecture 3 Reading: Chapter 2 (pages 29 39) Outline Organic Compounds - definition Functional Groups Biological Molecules Carbohydrates Lipids Amino Acids and Proteins Nucleotides

More information

BCH302 [Practical] 1

BCH302 [Practical] 1 BCH302 [Practical] 1 Carbohydrates are defined as the polyhydroxy aldehydes or polyhydroxy ketones. Most, but not all carbohydrate have a formula (CH 2 O)n (hence the name hydrate of carbon). Sugars ends

More information

2.2: Sugars and Polysaccharides François Baneyx Department of Chemical Engineering, University of Washington

2.2: Sugars and Polysaccharides François Baneyx Department of Chemical Engineering, University of Washington 2.2: Sugars and Polysaccharides François Baneyx Department of hemical Engineering, University of Washington baneyx@u.washington.edu arbohydrates or saccharides are abundant compounds that play regulatory

More information

Carbohydrates. Organic compounds which comprise of only C, H and O. C x (H 2 O) y

Carbohydrates. Organic compounds which comprise of only C, H and O. C x (H 2 O) y Carbohydrates Organic compounds which comprise of only C, H and O C x (H 2 O) y Carbohydrates Monosaccharides Simple sugar Soluble in water Precursors in synthesis triose sugars of other (C3) molecules

More information

Carbohydrates. Lecture2

Carbohydrates. Lecture2 Carbohydrates Lecture2 Disaccharides Consist of two monosaccharides covalently bound to each other. All of which are isomers with the molecular formula C 12 22 O 11. The differences in these disaccharides

More information

Macromolecules Materials

Macromolecules Materials Macromolecules Materials Item per bench per class Test tubes 19 a bunch Benedict s reagent 1 bottle 6 Iodine bottle 1 bottle 6 Sudan IV bottle 1 bottle 6 Biuret s Bottle 1 bottle 6 250 ml beaker 1 6 heat

More information

Chem 263 Apr 11, 2017

Chem 263 Apr 11, 2017 hem 263 Apr 11, 2017 arbohydrates- emiacetal Formation You know from previous lectures that carbonyl compounds react with all kinds of nucleophiles. ydration and hemiacetal formation are typical examples.

More information

HW #1 Molecules of Life Packet

HW #1 Molecules of Life Packet Name Hour Due: HW #1 Molecules of Life Packet Lab Molecule ID Chemistry Fats, carbs WS HW Page 1 Page 2 Your Points Total Points Possible 5 pts Macromolecules in Foods Lab Introduction: The food we eat

More information

Bridging task for 2016 entry. AS/A Level Biology. Why do I need to complete a bridging task?

Bridging task for 2016 entry. AS/A Level Biology. Why do I need to complete a bridging task? Bridging task for 2016 entry AS/A Level Biology Why do I need to complete a bridging task? The task serves two purposes. Firstly, it allows you to carry out a little bit of preparation before starting

More information

Lab 2. The Chemistry of Life

Lab 2. The Chemistry of Life Lab 2 Learning Objectives Compare and contrast organic and inorganic molecules Relate hydrogen bonding to macromolecules found in living things Compare and contrast the four major organic macromolecules:

More information

This place covers: Reducing the size of material from which sugars are to be extracted; Presses and knives therefor,

This place covers: Reducing the size of material from which sugars are to be extracted; Presses and knives therefor, CPC - C13B - 2017.08 C13B PRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR (chemically synthesised sugars or sugar derivatives C07H; fermentation or enzyme-using processes for preparing compounds

More information

24.1 Introduction to Carbohydrates

24.1 Introduction to Carbohydrates 24.1 Introduction to Carbohydrates Carbohydrates (sugars) are abundant in nature: They are high energy biomolecules. They provide structural rigidity for organisms (plants, crustaceans, etc.). The polymer

More information

What is Life? Project PART 6: The molecules of life

What is Life? Project PART 6: The molecules of life Name: Due Monday 9/17 (15 points) What is Life? Project PART 6: The molecules of life Read the following text and answer the questions: The Molecules of Life All living things are composed of chemical

More information

Section 2.1: Enzymes and Digestion

Section 2.1: Enzymes and Digestion Section 2.1: Enzymes and Digestion Glands produce enzymes that are used to break down large molecules into smaller ones that are ready for abortion. The digestive system provides an interface between the

More information

Molecules of Life. Carbohydrates Lipids Proteins Nucleic Acids

Molecules of Life. Carbohydrates Lipids Proteins Nucleic Acids Molecules of Life Carbohydrates Lipids Proteins Nucleic Acids Molecules of Life All living things are composed of the following basic elements: Carbon Hydrogen Oxygen Nitrogen Phosphorous Sulfur Remember

More information

QUALITATIVE TESTS OF CARBOHYDRATE

QUALITATIVE TESTS OF CARBOHYDRATE QUALITATIVE TESTS OF CARBOHYDRATE MACROMOLECULE CARBOHYDRATES Are the key source of energy used by living things. Also serve as extracellular structural elements as in cell wall of bacteria and plant.

More information