estimates were made of the normal rate of increase in plasma urea over periods in skin and in plasma, hypertonic sodium chloride solution was

Size: px
Start display at page:

Download "estimates were made of the normal rate of increase in plasma urea over periods in skin and in plasma, hypertonic sodium chloride solution was"

Transcription

1 482 J. Physiol. (I95I) II5, THE STTE OF BODY WTER IN THE CT BY M. GRCE EGGLETON From the Department of Physiology, University College, London (Received 5 July 1951) In the course of an investigation into the relationship between chloride concentration in skin and in plasma, hypertonic sodium chloride solution was injected. The resulting increase in chloride concentration in the plasma water enabled calculation to be made of the volume of water in the body in which the added chloride appeared to become distributed. It proved to be significantly less than the generally accepted figure for total body water. This, consequently, was measured in addition by determining the volume of water into which urea would diffuse. METHODS The experiments were made on cats, anaesthetized with nembutal (sodium ethyl (1-methylbutyl) barbiturate) by intraperitoneal injection of 40 mg./kg. body weight. In order to avoid loss of the injected solutions in the urine, or their concentration in the kidneys, the renal pedicles were tied. The solutions were injected into one external jugular vein and blood samples removed from the opposite carotid artery. fter collection of the first blood sample, a 20% solution of urea in 0-9% NaCl was injected intravenously in a dosage of 1 g./kg. body weight. In a few experiments the saline was replaced by isotonic NaCNS (0.25 g./kg.). fter min. a second blood sample was collected, preceded by removal of a sample of muscle (gracilis). 20% solution of NaCl was next infused in a dosage of 2 g./kg., and after j-5 hr. a further sample of muscle and blood. In one experiment, the order of injection of the two solutions was reversed. The water content of the tissues was determined by drying for hr. at C. Chloride was determined by electrometric titration with N/50-gNO3 in a deproteinized trichloroacetic acid filtrate, and thiocyanate colorimetrically, after reaction with ferric nitrate reagent. The colour was not completely stable, but satisfactory results were obtained by reading a set of standards both before and after the unknown solutions. Plasma urea was determined by the method of Conway & O'Malley (1942). RESULTS The resting plasma urea concentration was found to be considerably higher than in man. The lowest value encountered was 57 mg./100 ml. plasma water, and the average of ten animals was 82 mg./100 ml.; the eleventh had a value of 230 mg./100 ml., and this plasma itself was yellow-brown in colour. Eight estimates were made of the normal rate of increase in plasma urea over periods

2 BODY WTER IN THE CT 48-Q3 of 3-4 hr., and these varied from 1 to 5 mg./100 ml. plasma water/hr. Since this value is small in relation to the increase caused by the urea injection, no allowance has been made for it in calculating the volume of water into which the injected urea has penetrated. Had such allowance been made, the calculated body water would be higher than the values shown below. In Table 1 are given details of a typical experiment. Fifty-five minutes elapsed between the collection of plasma 1 and plasma 2, the latter being taken 20 min. after the end of the urea injection. Four hours and 20 min. elapsed between the collection of plasma 2 and plasma 3, the hypertonic NaCl solution being injected during the 20 min. immediately after collection of sample 2. The increase in plasma urea concentration indicates that the amount injected had been distributed in an amount of water which was 63% of the body weight. The increase in NaCl concentration, however, indicates that the water in which it had apparently been distributed amounted to only 49% of the body weight. TBLE 1. Measurement of body water by injection of urea and of hypertonic NaCl solution Cat 2-26 kg g. urea injected between plasmas 1 and 2; 4-15 g. NaCl (20% solution) between plasmas 2 and 3. NaCl Urea r -r, mg./100 ml. mg./l00 ml.h0 m./100 ml. mg./100 ml. Plasma * Plasma Plasma Urea: Increase of mg./100 ml..., g. in = 63% body weight. NaCl: Increase of 375 mg./100 ml g. in =49% body weight. It may be well to emphasize at this point that it is generally supposed that the chloride concentration of muscle cells is small and not far from zero. It may also be relatively small in the cells of other organs and tissues. The added NaCl, therefore, must not be supposed to penetrate, quantitatively, into the cells; but the increased concentration in the extracellular fluid will have the effect of drawing water out of the cells. If the cell contents behaved, osmotically, as an 'ideal' solution, the amount of water withdrawn would be such that the final concentration of chloride in the extracellular fluid would be the same as that which would have obtained if the chloride had penetrated freely into the cell contents. That there is undoubtedly considerable movement of water from intra- to extracellular fluid is shown by the fact that the concentration of total solids in skeletal muscle increases and that the ratio of chloride concentration in muscle water/chloride concentration in plasma water also increases, indicating a shrinkage of cells with increase in extracellular volume. This was consistently observed in all experiments, confirming the results of Eichelberger & Hastings (1937). The observation was amplified in four experiments by determination PH. CXV. 32

3 484 M. GRCE EGGLETON also of thiocyanate spaces. The resting value obtained in nine cats was O8 (S.E. of mean) percentage of body weight. It increased to a slight extent with time; increases of 0 5, 4-5 and 1F5 in 3-4 hr. were observed in three experiments. fter injection of hypertonic NaCl solution, however, the resting values had increased by 9, 9 5, 13-5 and 13-5 respectively in a similar time. The magnitude of this water shift from intra- to extracellular compartment can be calculated for muscle if it be assumed that the interstitial fluid contains 1-5 % protein (Maurer, 1938) and that the muscle cells contain no chloride. typical example of such a calculation is given in Table 2. TBLE 2. The effect of intravenous hypertonic NaCl solution on the intra- and extracellular volumes of skeletal muscle. Cat 1-96 kg. 3-5 g. NaCl (20% solution) given 3-7 hr. before second sampling. Muscle Plasma r Cl concentration Cl concentration (g./loo g.) Solids (g./loo g.) mg./loog. mg./100 g. (g./10 g.) mg./100g. mg./100 g. Before fter Before: Extracellular water of muscle = 159/778 x 98-5 =20-1 g./100 g. muscle. Intracellular water of muscle = =54-2 g./100 g. muscle =54.2/25-7 =2-11 g./g. muscle solid. fter: Extracellular water of muscle =354/1123 x 98-5 =31-0 g./100 g. muscle. Intracellular water of muscle = =40-6 g./100 g. muscle =40-6/28-4 = 1-42 g./g. muscle solid. Thus, 0 69 g. muscle. intracellular water is released per g. muscle solid or 0 69 x 25*7 = 17-8 g./100 g. Nevertheless, it would seem that not all the body water behaves as if all the solutions were 'ideal' osmotically. The difference between 63% of the body weight (into which urea can diffuse), and 49% (into which chloride can apparently diffuse) is too large to be accounted for by experimental error; moreover, a difference in the same direction, though of varying magnitude, was observed in all experiments, as may be seen in Table 3. One possible cause of the large individual variation may be age. The smallest difference of 5 was obtained in a cat which was noted at the time of experiment as very old, and the two succeeding ones of 13-6 and 18 in cats which were noted as young. The animals were obtained in the usual way and their past history not known, so this factor of age can be accepted only as an impression rather than as a fact. In three further experiments urea was injected but not NaCl, and the average of the total eleven urea experiments gives a value of % body weight for the total body water; in a further nine experiments the reverse was done, and the average value of body water (derived from changes in chloride concentration) in seventeen experiments was %.

4 BODY WTER IN THE CT 485 It is clear also from Table 3 that the individual variation is not due to lack of equilibrium. This appears to be complete within half an hour of the end of the injection, for a value of 54% was obtained on the one occasion when so short a period was allowed. On another, in which again only hypertonic NaCl had been injected, 5 hr. was allowed before sampling, and this yielded one of the lowest values, 43'5 %. TBLE 3. comparison of the total body water as measured (a) by the amount into which urea will diffuse and (b) by the amount in which hypertonic NaCl solution appears to be distributed. Body water as % body weight Time for Body weight equilibrium of (kg.) Urea method NaCl method Difference NaCl (hr.) * * * verage 61-5± ± ± 1-6 DISCUSSION The value of body water given by the urea method, 63% body weight, is almost identical with that given by Skelton (1927) obtained by direct analysis. The value obtained by the hypertonic NaCl method, 49.5% body weight, is appreciably less, and a difference between the two was observed consistently in each experiment in which both methods were used. It would appear, therefore, that the quantity of water expelled from the cells into which NaCl cannot penetrate freely is less than the quantity which would be expected if the cells behaved as simple osmometers containing 'ideal' solutions. This behaviour could be accounted for in one of several ways: (1) The cell contents are in osmotic equilibrium with the interstitial fluid, in which case either (a) some water in the tissues might be free to dissolve urea but sufficiently 'bound' to be unable to partake in osmotic exchanges; or (b) some water might be 'bound' or 'non-solvent' in the strict sense of the word and, in addition, some urea adsorbed; or (c) when the osmotic pressure outside is raised, additional solutes either penetrate into or are formed within the cells. (2) The cell contents are not in osmotic equilibrium with the interstitial fluid, but a steady state is maintained at the expense of metabolic activity. For the first of these possibilities (la) there is little to be said except that, though possible, it is extremely improbable. gainst the second (1 b) there is already negative evidence, for Hill (1930) found no 'bound' water in frog muscle and strongly criticized the technique of earlier workers who had appeared to obtain a positive result. In addition, it is rather improbable that urea should be adsorbed at all, still more so that it should be adsorbed in just

5 486 M. GRCE EGGLETON the right amount to yield the same value for body water as that found by direct determination. gainst the third possibility (1 c), there is the evidence of Conway (1946) who found that isolated frog's muscle behaved as might be expected whenthe concentration of sodium ions in the external solution was changed, the total cation concentration remaining constant. It may be argued that the present experiments are not comparable with those of Conway, since the total cation concentration was not constant. Indeed, it is possible that the hypothetical solute which penetrates the cells may be sodium. It is known that in both muscle cells and in red blood cells the sodium concentration is maintained at a low value by the performance of osmotic work; no prediction, from physicochemical considerations, can be made as to what will happen when the sodiumion concentration in the external fluid is changed. But if sodium ions do enter the cells they must be accompanied by some anion other than chloride. If chloride ions penetrated into the cells, in the amount required theoretically, there should be no discrepancy to be accounted for in the present series of observations. On the other hand, the results obtained by Hetherington (1931) on cats may possibly be accepted as evidence in favour of this possibility (1 c), though her technique was not altogether satisfactory. She determined the increase in vapour pressure of the blood following intravenous injection of hypertonic NaCl solution and calculated from it the body water; but considerable quantities of urine were secreted and its total osmotic pressure regarded as due entirely to NaCl. This may account for the fairly wide variations found even in the same animal at different times after the injection. Her recorded value for six cats was 59% of the body weight, but if that from the seventh is included, the average drops to 55 %. Thus the value yielded by this method is higher than that now obtained by measurement of chloride changes. Comparison of Smirk's (1933) values for dilution of blood chloride following ingestion of water by human subjects, however, with those later obtained by Baldes & Smirk (1934) by the vapour-pressure method, indicates a similar degree of change in the two: a 4% dilution of blood chloride after 1500 ml. water and a 2-7% reduction in total osmotic pressure after 1000 ml. respectively. It would seem, therefore, that the possibility of movement of solutes into or out of cells when the osmotic composition of the surrounding fluid is altered, must remain an open question. For the last possibility (2), however, there is a certain amount of positive evidence. Robinson (1951) has recently concluded from the results of various experiments on isolated kidney slices that the osmotic pressure within the cells is % greater than that in the surrounding fluid. Moreover, when such slices are exposed to hypotonic solutions, the change in weight of the tissue is less than that to be expected on osmotic considerations. One further piece of

6 BODY WTER IN THE CT 487 evidence suggests that, if these results are applicable also to other tissues, the discrepancy between expected and observed change in volume is greater when the tissues are exposed to hypertonic than when they are exposed to hypotonic surroundings. From an earlier series of experiments (Eggleton, 1937), in which water was given to cats, either injected into the intestine or intravenously, calculation has now been made of the body water from the observed dilution of plasma chloride. value of % is obtained, from sixteen cats. This is just significantly less than the value of 63% yielded by urea and significantly greater than the 49-5 % yielded by hypertonic NaCl solution. If the osmotic pressure within the cells is indeed greater than that of the surrounding fluid, these results might be interpreted as indicating that the hypothetical 'pump' which maintains the steady state becomes less effective as the concentration within the cells becomes greater. In these earlier experiments, the potassium-ion concentration in the extracellular fluid was lowered as well as the sodium-ion concentration; there would thus be a loss of potassium ions from the muscle cells and perhaps also from other cells, as Boyle & Conway (1940) have shown for the isolated muscles of the frog. This might be sufficient to account for the fact that the discrepancy is less when the body fluids are diluted than it is when NaCl is added. SUMMRY 1. When urea is injected intravenously into cats, its concentration in the plasma indicates that it has diffused into % of the body weight. 2. When hypertonic NaCl solution is so injected, its concentration in the plasma indicates that the NaCl appears to become distributed in only P08% of the body weight. 3. The origin of the difference between the two values is discussed. No satisfactory explanation has been found, and it would appear that some, at least, of the cells are not in simple osmotic equilibrium with the extracellular fluid. REFERENCES Baldes, E. J. & Smirk, F. H. (1934). J. Phy8iol. 82, 62. Boyle, P. J. & Conway, E. J. (1940). J. PhysioZ. 100, 1. Conway, E. J. (1946). Nature, Lond., 157, 715. Conway, E. J. & O'Malley, E. (1942). Bsochem. J. 36, 655. Eggleton, M. G. (1937). J. Phy8iol. 90, 465. Eichelberger, L. & Hastings,. B. (1937). J. biol. Chem. 1i8, 205. Hetherington, M. (1931). J. Phy8iol. 73, 184. Hill,. V. (1930). Proc. Roy. Soc. B, 106, 477. Maurer, F. W. (1938). mer. J. Phy8iol. 124, 546. Robinson, J. R. (1951). Proc. Roy. Soc. B, 137, 378. Skelton, H. (1927). rch. intern. Med. 40, 140. Smirk, F. H. (1933). J. Phy8iol. 78, 127.

(Received 22 July 1957) It is now generally accepted that the unequal distribution of ions between cells

(Received 22 July 1957) It is now generally accepted that the unequal distribution of ions between cells 190 J. Physiol. (I958) I40, I90-200 THE EFFECT OF ALTERATIONS OF PLASMA SODIUM ON THE SODIUM AND POTASSIUM CONTENT OF MUSCLE IN THE RAT By F. 0. DOSEKUN AND D. MENDEL From the Department of Physiology,

More information

(ethanol) suggests that it is similar to the diuresis following ingestion of water.

(ethanol) suggests that it is similar to the diuresis following ingestion of water. 435 J. Physiol. (I946) I04, 435-442 6I2.464.I THE EFFECT OF ETHYL ALCOHOL AND SOME OTHER DIURETICS ON CHLORIDE EXCRETION IN MAN BY M. GRACE EGGLETON AND ISABEL G. SMITH, From the Physiology Department,

More information

(From Washington Square College, New York University.)

(From Washington Square College, New York University.) 6I2.III.22 THE MEASUREMENT OF RED CELL VOLUME. II. Alterations in cell volume in solutions of various tonicities. BY ERIC PONDER AND GEORGE SASLOW. (From Washington Square College, New York University.)

More information

Overton,1 who has worked exhaustively at the subject, looked upon. considered by some to be due to the state of the fluid originally in the

Overton,1 who has worked exhaustively at the subject, looked upon. considered by some to be due to the state of the fluid originally in the THE EFFECTS OF TEMPERATURE ON THE OSMOTIC PROPER- TIES OF MUSCLE. By D. H. DE SOUZA. (From the Physiological Laboratory, University of Sheffield.) (With six diagrams in the text.) (Received for publication

More information

THE EFFECTS OF ION CHANGES ON THE CONTRACTION OF THE RAT UTERUS STIMULATED BY OXYTOCIN

THE EFFECTS OF ION CHANGES ON THE CONTRACTION OF THE RAT UTERUS STIMULATED BY OXYTOCIN Brit. J. Pharmacol. (1961), 16, 45-49. THE EFFECTS OF ION CHANGES ON THE CONTRACTION OF THE RAT UTERUS STIMULATED BY OXYTOCIN BY P. J. BENTLEY AND ELEANOR McEWEN From the Department of Physiology, The

More information

necessity for an investigation into possible different types of urine acidity. In

necessity for an investigation into possible different types of urine acidity. In 456 J. Physiol. (I947) io6, 456-465 6I2.46i SOME FACTORS AFFECTING THE ACIDITY OF URINE IN MAN BY M. GRACE EGGLETON From the Department of Physiology, University College, London (Received 22 February 1947)

More information

Interactions Between Cells and the Extracellular Environment

Interactions Between Cells and the Extracellular Environment Chapter 6 Interactions Between Cells and the Extracellular Environment Et Extracellular lll environment Includes all parts of the body outside of cells Cells receive nourishment Cells release waste Cells

More information

Lab 4: Osmosis and Diffusion

Lab 4: Osmosis and Diffusion Page 4.1 Lab 4: Osmosis and Diffusion Cells need to obtain water and other particles from the fluids that surround them. Water and other particles also move out of cells. Osmosis (for water) and diffusion

More information

Body Fluid Compartments

Body Fluid Compartments Yıldırım Beyazıt University Faculty of Medicine Department of Physiology Body Fluid Compartments Dr. Sinan Canan Body fluid balance 1 Body fluid compartments 2 Water distribution Tissue % Water Blood 83,0

More information

LAB 4: OSMOSIS AND DIFFUSION

LAB 4: OSMOSIS AND DIFFUSION Page 4.1 LAB 4: OSMOSIS AND DIFFUSION Cells need to obtain water and other particles from the fluids that surround them. Water and other particles also move out of cells. Osmosis (for water) and diffusion

More information

Terminology. Terminology. Terminology. Molarity number of moles of solute / Liter of solution. a) Terminology b) Body Fluid Compartments

Terminology. Terminology. Terminology. Molarity number of moles of solute / Liter of solution. a) Terminology b) Body Fluid Compartments Integrative Sciences: Biological Systems A Fall 2011 Body Fluids Compartments, Renal Clearance and Renal Excretion of Drugs Monday, November 21, 2011 Lisa M. Harrison-Bernard, Ph.D. Department of Physiology;

More information

GLUCOSE is the most important diffusible substance in the blood which

GLUCOSE is the most important diffusible substance in the blood which ON THE ACTION OF PHLORHIZIN ON THE KIDNEY. By E. B. MAYRS. (From the Department of Pharmacology, Edinburgh.) GLUCOSE is the most important diffusible substance in the blood which is completely held back

More information

Chapter 26 Fluid, Electrolyte, and Acid- Base Balance

Chapter 26 Fluid, Electrolyte, and Acid- Base Balance Chapter 26 Fluid, Electrolyte, and Acid- Base Balance 1 Body Water Content Infants: 73% or more water (low body fat, low bone mass) Adult males: ~60% water Adult females: ~50% water (higher fat content,

More information

Awesome Osmosis and Osmoregulation. 2. Describe some of the methods of osmoregulation by freshwater and marine organisms.

Awesome Osmosis and Osmoregulation. 2. Describe some of the methods of osmoregulation by freshwater and marine organisms. Awesome Osmosis and Osmoregulation Purpose: By the end of this lab students should be able to: 1. Understand osmosis and be able explain the differences between isotonic, hypertonic, and hypotonic solutions.

More information

Principles of Fluid Balance

Principles of Fluid Balance Principles of Fluid Balance I. The Cellular Environment: Fluids and Electrolytes A. Water 1. Total body water (TBW) = 60% of total body weight 2. Fluid Compartments in the Body a. Intracellular Compartment

More information

BIOL 2402 Fluid/Electrolyte Regulation

BIOL 2402 Fluid/Electrolyte Regulation Dr. Chris Doumen Collin County Community College BIOL 2402 Fluid/Electrolyte Regulation 1 Body Water Content On average, we are 50-60 % water For a 70 kg male = 40 liters water This water is divided into

More information

STEIN IN-TERM EXAM -- BIOLOGY FEBRUARY 16, PAGE

STEIN IN-TERM EXAM -- BIOLOGY FEBRUARY 16, PAGE STEIN IN-TERM EXAM -- BIOLOGY 3058 -- FEBRUARY 16, 2017 -- PAGE 1 of 9 There are 25 questions in this Biology 3058 exam. All questions are "A, B, C, D, E, F, G, H" questions worth one point each. There

More information

Physiology of the body fluids, Homeostasis

Physiology of the body fluids, Homeostasis Physiology of the body fluids, Homeostasis Tamas Banyasz The Body as an open system 1. Open system: The body exchanges material and energy with its environment 2. Homeostasis: The process through which

More information

found it difficult to express all the fluid from the loop. 32-2

found it difficult to express all the fluid from the loop. 32-2 487 J. Physiol. (I940) 98, 487-49I 6i2.364:615.782.57 THE ABSORPTION OF WATER FROM THE COLON OF THE RAT UNDER URETHANE ANAESTHESIA By B. L. ANDREW, J. N. DAVIDSON AND R. C. GARRY From the Physiology Department,

More information

Efflux of Red Cell Water into Buffered Hypertonic Solutions

Efflux of Red Cell Water into Buffered Hypertonic Solutions Efflux of Red Cell Water into Buffered Hypertonic Solutions EDWIN G. OLMSTEAD From the School of Medicine, University of North Dakota, Grand Forks ABSTRACT Buffered NaCI solutions hypertonic to rabbit

More information

Emergency Medical Training Services Emergency Medical Technician Paramedic Program Outlines Outline Topic: Patho Instructor Notes Revised: 11/2013

Emergency Medical Training Services Emergency Medical Technician Paramedic Program Outlines Outline Topic: Patho Instructor Notes Revised: 11/2013 Emergency Medical Training Services Emergency Medical Technician Paramedic Program Outlines Outline Topic: Patho Instructor Notes Revised: 11/2013 Cells form 4 basic tissue groups: 1. Epithelial 2. Connective

More information

Unit 1 Matter & Energy for Life

Unit 1 Matter & Energy for Life Unit 1 Matter & Energy for Life Chapter 2 Interaction of Cell Structure Biology 2201 Sept. 2011 Primary Membrane Function: Homeostasis Section 2.2 Conditions in the cell must remain more or less constant

More information

Osmotic Regulation and the Urinary System. Chapter 50

Osmotic Regulation and the Urinary System. Chapter 50 Osmotic Regulation and the Urinary System Chapter 50 Challenge Questions Indicate the areas of the nephron that the following hormones target, and describe when and how the hormones elicit their actions.

More information

Unit 1 Matter & Energy for Life

Unit 1 Matter & Energy for Life Unit 1 Matter & Energy for Life Chapter 2 Interaction of Cell Structure Biology 2201 Primary Membrane Function: Homeostasis Conditions in the cell must remain more or less constant under many different

More information

Electrolytes Solution

Electrolytes Solution Electrolytes Solution Substances that are not dissociated in solution are called nonelectrolytes, and those with varying degrees of dissociation are called electrolytes. Urea and dextrose are examples

More information

Body Fluids and Fluid Compartments

Body Fluids and Fluid Compartments Body Fluids and Fluid Compartments Bởi: OpenStaxCollege The chemical reactions of life take place in aqueous solutions. The dissolved substances in a solution are called solutes. In the human body, solutes

More information

Unit 1 Matter & Energy for Life

Unit 1 Matter & Energy for Life Unit 1 Matter & Energy for Life Chapter 2 Interaction of Cell Structures Biology 2201 Primary Membrane Function: Homeostasis Section 2.2 Conditions in the cell must remain more or less constant under many

More information

Dr. Mohamed S. Daoud Biochemistry Department College of Science, KSU. Dr. Mohamed Saad Daoud

Dr. Mohamed S. Daoud Biochemistry Department College of Science, KSU. Dr. Mohamed Saad Daoud Dr. Mohamed S. Daoud Biochemistry Department College of Science, KSU 1 Course symbol: BCH 472 Course Title: Biochemistry of biological fluids Credit hours: 3(2+1) 2 Clinical Biochemistry is one of the

More information

Biology 2201 Unit 1 Matter & Energy for Life

Biology 2201 Unit 1 Matter & Energy for Life Biology 2201 Unit 1 Matter & Energy for Life 2.2 Cell Membrane Structure Primary Membrane Function: Homeostasis Conditions in the cell must remain more or less constant under many different conditions

More information

BASIC MEDICAL SCIENCE OF THE RENAL AND URINARY SYSTEMS

BASIC MEDICAL SCIENCE OF THE RENAL AND URINARY SYSTEMS Ch01M3428.qxd 12/5/06 6:47 M age 1 BASIC MEDICAL SCIENCE OF THE RENAL AND URINARY SYSTEMS Basic principles 3 Organization of the kidneys 13 Renal function 39 The kidneys in disease 65 The lower urinary

More information

Osmoregulation and Osmotic Balance

Osmoregulation and Osmotic Balance OpenStax-CNX module: m44808 1 Osmoregulation and Osmotic Balance OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this

More information

fluid in the muscles of the rat and the frog following violent

fluid in the muscles of the rat and the frog following violent 612.766.1: 612.014.461.3 THE CHANGES IN PLASMA AND TISSUE FLUID VOLUME FOLLOWING EXERCISE. By H. CULLUMBINE and A. C. E. KoCH. From the Department of Physiology and Pharmacology, University of Ceylon,

More information

Water compartments inside and outside cells maintain a balanced distribution of total body water.

Water compartments inside and outside cells maintain a balanced distribution of total body water. Chapter 9 Water Balance Chapter 9 Lesson 9.1 Key Concepts Water compartments inside and outside cells maintain a balanced distribution of total body water. The concentration of various solute particles

More information

Amjad Bani Hani Ass.Prof. of Cardiac Surgery & Intensive Care FLUIDS AND ELECTROLYTES

Amjad Bani Hani Ass.Prof. of Cardiac Surgery & Intensive Care FLUIDS AND ELECTROLYTES Amjad Bani Hani Ass.Prof. of Cardiac Surgery & Intensive Care FLUIDS AND ELECTROLYTES Body Water Content Water Balance: Normal 2500 2000 1500 1000 500 Metab Food Fluids Stool Breath Sweat Urine

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 27 Fluid, Electrolyte, and Acid Base Fluid Compartments and Fluid In adults, body fluids make up between 55% and 65% of total body mass. Body

More information

Cell Membrane Diagram

Cell Membrane Diagram Cell Membrane Diagram Draw a diagram of the cell membrane. Please include (and label): - Phospholipid bilayer (hydrophilic and hydrophobic) Protein channel An ion pump Cholesterol Gylcoproteins* Define

More information

Transport through membranes

Transport through membranes Transport through membranes Membrane transport refers to solute and solvent transfer across both cell membranes, epithelial and capillary membranes. Biological membranes are composed of phospholipids stabilised

More information

Transport of Solutes and Water

Transport of Solutes and Water Transport of Solutes and Water Across cell membranes 1. Simple and Facilitated diffusion. 2. Active transport. 3. Osmosis. Simple diffusion Simple diffusion - the red particles are moving from an area

More information

by the rate at which it disappears, since the proportion excreted

by the rate at which it disappears, since the proportion excreted 228 J. Physiol. (I940) 98, 228-238 6I2.oI5-34:547.262 DETERMINATION OF THE METABOLIC RATE OF ALCOHOL BY M. GRACE EGGLETON1 From the Department of Pharmacology, University College, London, and the Institute

More information

Body Water Content Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are

Body Water Content Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are Fluid, Electrolyte, and Acid-Base Balance Body Water Content Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are about 60%

More information

Lecture Overview. Cell Membrane. Marieb s Human Anatomy and Physiology. Chapter 3 Cell Membranes Movement Across the Cell Membrane Lecture 7

Lecture Overview. Cell Membrane. Marieb s Human Anatomy and Physiology. Chapter 3 Cell Membranes Movement Across the Cell Membrane Lecture 7 Marieb s Human Anatomy and Physiology Marieb Hoehn Chapter 3 Cell Membranes Movement Across the Cell Membrane Lecture 7 1 The cell membrane Lecture Overview Osmotic pressure and tonicity Movement of substances

More information

The average potassium content during the last 5. solids. This average decrease of 2.2 meq. per 100. initial potassium content of the arteries.

The average potassium content during the last 5. solids. This average decrease of 2.2 meq. per 100. initial potassium content of the arteries. THE EFFECT OF NOR-EPINEPHRINE ON THE ELECTROLYTE COMPOSITION OF ARTERIAL SMOOTH MUSCLE' By LOUIS TOBIAN 2 AND ADACIE FOX (From the Departments of Pharmacology and Internal Medicine, Southwesters Medical

More information

6I2.744.I5: e3. sufficiently high'. There exists in such cases a certain concentration of the. by direct analysis.

6I2.744.I5: e3. sufficiently high'. There exists in such cases a certain concentration of the. by direct analysis. 194 THE DIFFUSION OF ACTATE INTO AND FROM MUSCE. BY S. C. DEVADATTA. 6I2.744.I5:547.472e3 (From the Department of Physiology, Edinburgh University.) CERTAIN constituents of the voluntary muscles of the

More information

Body Water ANS 215 Physiology and Anatomy of Domesticated Animals

Body Water ANS 215 Physiology and Anatomy of Domesticated Animals Body Water ANS 215 Physiology and Anatomy of Domesticated Animals I. Body Water A. Water is the most abundant constituent comprising 60% of total body weight. 1. Solvent for many chemicals of the body

More information

Only a small amount of cations is lost from the cells. A considerable. (Received 5 September 1967)

Only a small amount of cations is lost from the cells. A considerable. (Received 5 September 1967) J. Physiol. (1968), 195, pp. 107-118 107 With 5 text-figures Printed in Great Britain THE EFFECT OF HYPO- AND HYPERTONIC SOLUTIONS ON VOLUME AND ION DISTRIBUTION OF SMOOTH MUSCLE OF GUINEA-PIG TAENIA COLI

More information

STEIN IN-TERM EXAM -- BIOLOGY FEBRUARY 15, PAGE

STEIN IN-TERM EXAM -- BIOLOGY FEBRUARY 15, PAGE STEIN IN-TERM EXAM -- BIOLOGY 3058 -- FEBRUARY 15, 2018 -- PAGE 1 of 8 There are 25 questions in this Biology 3058 exam. All questions are "A, B, C, D, E, F, G, H" questions worth one point each. There

More information

College of Medicine, Newcastle-upon-Tyne.)

College of Medicine, Newcastle-upon-Tyne.) GLUCOSE ABSORPTION IN THE RENAL TUBULES OF THE FROG. BY G. A. CLARK. (From the Physiological Laboratory of the University of Durham College of Medicine, Newcastle-upon-Tyne.) OPINION is divided on the

More information

Ch. 5 Homeostasis & Cell Transport

Ch. 5 Homeostasis & Cell Transport Ch. 5 Homeostasis & Cell Transport 5.1 Homeostasis & Permeability Homeostasis ability of cell to maintain balance needed for life To maintain balance: cells must transport needed materials into cells &

More information

Ch 3 Membrane Transports

Ch 3 Membrane Transports Ch 3 Membrane Transports what's so dynamic about cell membranes? living things get nutrients and energy from the envrionment this is true of the entire organism and each cell this requires transport in/out

More information

possibility of a secretion of adrenaline from the suprarenal glands resulting

possibility of a secretion of adrenaline from the suprarenal glands resulting 355 J Physiol. (I942) IOI, 355-36I 6i2.014.465:577 I74.5 THE EFFECT OF ANAESTHESIA ON THE ADRENALINE CONTENT OF THE SUPRARENAL GLANDS BY P. C. ELMES AND A. A. JEFFERSON From the Department of Pharmacology,

More information

Pharmaceutical calculation Chapter 11 Isotonic solutions. Assistant Prof. Dr. Wedad K. Ali

Pharmaceutical calculation Chapter 11 Isotonic solutions. Assistant Prof. Dr. Wedad K. Ali Pharmaceutical calculation Chapter 11 Isotonic solutions Assistant Prof. Dr. Wedad K. Ali Introduction When a solvent passes through a semipermeable membrane from a dilute solution into a more concentrated

More information

[S] [S] Hypertonic [H O] [H 2 O] g. Osmosis is the diffusion of water through membranes! 15. Osmosis. Concentrated sugar solution

[S] [S] Hypertonic [H O] [H 2 O] g. Osmosis is the diffusion of water through membranes! 15. Osmosis. Concentrated sugar solution Concentrated sugar solution Sugar molecules (Water molecules not shown) 100ml 100ml Hypertonic [S] g [H2 Hypotonic [H O] 2 O] [H 2 O] g Semipermeable Dilute sugar solution (100ml) Time 125ml Osmosis 75ml

More information

Medicine, Cambridge, England, and Wuppertal, B.A.O.R.

Medicine, Cambridge, England, and Wuppertal, B.A.O.R. 182 J. Physiol. (I948) I07, i82-i86 6I2.46I.62 PHOSPHATE CLEARANCES IN INFANTS AND ADULTS BY R. F. A. DEAN AND R. A. McCANCE From the Medical Research Council, Department. of Experimental Medicine, Cambridge,

More information

Section 4: Cellular Transport. Cellular transport moves substances within the cell and moves substances into and out of the cell.

Section 4: Cellular Transport. Cellular transport moves substances within the cell and moves substances into and out of the cell. Section 4: Cellular transport moves substances within the cell and moves substances into and out of the cell. Essential Questions What are the processes of diffusion, facilitated diffusion, and active

More information

simultaneously excreted. They also brought forward some evidence to

simultaneously excreted. They also brought forward some evidence to THE EXCRETION OF CHLORIDES AND BICARBON- ATES BY THE HUMAN KIDNEY. BY H. W. DAVIES, M.B., B.S., J. B. S. HALDANE, M.A. AND G. L. PESKETT, B.A. (From the Laboratory, Cherwell, Oxford.) AM BARD and PAPI

More information

Part 1 The Cell and the Cellular Environment

Part 1 The Cell and the Cellular Environment 1 Chapter 3 Anatomy and Physiology Part 1 The Cell and the Cellular Environment 2 The Human Cell The is the fundamental unit of the human body. Cells contain all the necessary for life functions. 3 Cell

More information

DIFFUSON AND OSMOSIS INTRODUCTION diffusion concentration gradient. net osmosis water potential active transport

DIFFUSON AND OSMOSIS INTRODUCTION diffusion concentration gradient. net osmosis water potential active transport DIFFUSON AND OSMOSIS NAME DATE INTRODUCTION The life of a cell is dependent on efficiently moving material into and out of the cell across the cell membrane. Raw materials such as oxygen and sugars needed

More information

Disclaimer. Chapter 3 Disorder of Water, Electrolyte and Acid-base Professor A. S. Alhomida. Disorder of Water and Electrolyte

Disclaimer. Chapter 3 Disorder of Water, Electrolyte and Acid-base Professor A. S. Alhomida. Disorder of Water and Electrolyte Disclaimer King Saud University College of Science Department of Biochemistry The texts, tables, figures and images contained in this course presentation (BCH 376) are not my own, they can be found on:

More information

HYPOTHALAMIC ELECTRICAL ACTIVITIES PRODUCED BY FACTORS CAUSING DISCHARGE OF PITUITARY HORMONES

HYPOTHALAMIC ELECTRICAL ACTIVITIES PRODUCED BY FACTORS CAUSING DISCHARGE OF PITUITARY HORMONES HYPOTHALAMIC ELECTRICAL ACTIVITIES PRODUCED BY FACTORS CAUSING DISCHARGE OF PITUITARY HORMONES TERUO NAKAYAMA* Institute of Physiology, School of Medicine, University of Nagoya It is known that electrical

More information

factors. directly. There are many, however, who regard the hydrochloric acid degree of stimulation of the stomach cells [Roseman, 1927; Katsch &

factors. directly. There are many, however, who regard the hydrochloric acid degree of stimulation of the stomach cells [Roseman, 1927; Katsch & 308 J. Physiol. (I940) 97, 308-3I5 6I2.323.3 ON THE PRIMARY ACIDITY OF THE GASTRIC JUICE BY TORSTEN TEORELL From the Department of Medical Chemistry, University of Uppsala, Sweden (Received 10 July 1939)

More information

The importance of clearance

The importance of clearance The importance of clearance The calculation of clearance can be especially useful in optimizing dosing of patients The clearance includes both the volume of distribution and the elimination rate The clearance

More information

The Discovery of the Cell

The Discovery of the Cell The Discovery of the Cell 7-1 Life Is Cellular Review the cell in relation to: - Its definition - The origin of life - The characteristics of life - The hierarchy of biological organization - The science

More information

FIGURE A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water).

FIGURE A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water). PLASMA MEMBRANE 1. The plasma membrane is the outermost part of a cell. 2. The main component of the plasma membrane is phospholipids. FIGURE 2.18 A. The phosphate end of the molecule is polar (charged)

More information

IV Fluids. I.V. Fluid Osmolarity Composition 0.9% NaCL (Normal Saline Solution, NSS) Uses/Clinical Considerations

IV Fluids. I.V. Fluid Osmolarity Composition 0.9% NaCL (Normal Saline Solution, NSS) Uses/Clinical Considerations IV Fluids When administering IV fluids, the type and amount of fluid may influence patient outcomes. Make sure to understand the differences between fluid products and their effects. Crystalloids Crystalloid

More information

STEIN IN-TERM EXAM -- BIOLOGY FEBRUARY 18, PAGE

STEIN IN-TERM EXAM -- BIOLOGY FEBRUARY 18, PAGE STEIN IN-TERM EXAM -- BIOLOGY 3058 -- FEBRUARY 18, 2016 -- PAGE 1 of 8 There are 25 questions in this Biology 3058 exam. All questions are "A, B, C, D, E, F, G, H" questions worth one point each. There

More information

RENAL SYSTEM 2 TRANSPORT PROPERTIES OF NEPHRON SEGMENTS Emma Jakoi, Ph.D.

RENAL SYSTEM 2 TRANSPORT PROPERTIES OF NEPHRON SEGMENTS Emma Jakoi, Ph.D. RENAL SYSTEM 2 TRANSPORT PROPERTIES OF NEPHRON SEGMENTS Emma Jakoi, Ph.D. Learning Objectives 1. Identify the region of the renal tubule in which reabsorption and secretion occur. 2. Describe the cellular

More information

THE WATER AND ELECTROLYTE EXCHANGE OF NEREIS DIVERSICOLOR (MULLER)

THE WATER AND ELECTROLYTE EXCHANGE OF NEREIS DIVERSICOLOR (MULLER) 34 THE WATER AND ELECTROLYTE EXCHANGE OF NEREIS DIVERSICOLOR (MULLER) BY W. G. ELLIS Zoology Department, University College of North Wales, Bangor {Received g December 1936) (With Nine Text-figures) IT

More information

THE ACTION OF ANTISYMPATHOMIMETIC DRUGS ON THE URINARY EXCRETION OF ADRENALINE AND NORADRENALINE

THE ACTION OF ANTISYMPATHOMIMETIC DRUGS ON THE URINARY EXCRETION OF ADRENALINE AND NORADRENALINE Brit. J. Pharmacol. (1959), 14, 380. THE ACTION OF ANTISYMPATHOMIMETIC DRUGS ON THE URINARY EXCRETION OF ADRENALINE AND NORADRENALINE BY B. G. BENFEY, G. LEDOUX, AND M. SEGAL From the Department ofpharmacology,

More information

1.14. Passive Transport

1.14. Passive Transport Passive Transport 1.14 Simple Diffusion Cell s are selectively permeable only certain substances are able to pass through them. As mentioned in section 1.2, cell s are largely composed of a phospholipid

More information

Water, Electrolytes, and Acid-Base Balance

Water, Electrolytes, and Acid-Base Balance Chapter 27 Water, Electrolytes, and Acid-Base Balance 1 Body Fluids Intracellular fluid compartment All fluids inside cells of body About 40% of total body weight Extracellular fluid compartment All fluids

More information

2) This is a Point and Click question. You must click on the required structure.

2) This is a Point and Click question. You must click on the required structure. Class: A&P2-1 Description: Test: Excretory Test Points: 144 Test Number: 28379 Printed: 31-March-10 12:03 1) This is a Point and Click question. You must click on the required structure. Click on the Bowman's

More information

014 Chapter 14 Created: 9:25:14 PM CST

014 Chapter 14 Created: 9:25:14 PM CST 014 Chapter 14 Created: 9:25:14 PM CST Student: 1. Functions of the kidneys include A. the regulation of body salt and water balance. B. hydrogen ion homeostasis. C. the regulation of blood glucose concentration.

More information

Each cell has its own border, which separates the cell from its surroundings and also determines what comes in and what goes out.

Each cell has its own border, which separates the cell from its surroundings and also determines what comes in and what goes out. 7.3 Cell Transport Wednesday, December 26, 2012 10:02 AM Vocabulary: Diffusion: process in which cells become specialized in structure and function Facilitated diffusion: process of diffusion in which

More information

Fluids and electrolytes

Fluids and electrolytes Body Water Content Fluids and electrolytes Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are about 60% water; healthy females

More information

Lesson Overview. 7.3 Cell Transport

Lesson Overview. 7.3 Cell Transport 7.3 THINK ABOUT IT When thinking about how cells move materials in and out, it can be helpful to think of a cell as a nation. The boundaries of a nation are its borders, and nearly every country tries

More information

establishing perfusion and of collecting and analysing the effluent fluid 1934]. Comparable increases in serum potassium were obtained when

establishing perfusion and of collecting and analysing the effluent fluid 1934]. Comparable increases in serum potassium were obtained when 303 577.I74.5:612.I26 ACTION OF ADRENALINE ON THE SERUM POTASSIUM BY J. L. D'SILVA From the Department of Physiology, King's College, London (Received 24 March 1937) IN a previous communication it was

More information

Diffusion, Osmosis and Active Transport

Diffusion, Osmosis and Active Transport Diffusion, Osmosis and Active Transport Part A: Diffusion A living cell interacts constantly with the environmental medium that surrounds it. The plasma membrane surrounding a cell is a living, selectively

More information

The table indicates how changing the variable listed alone will alter diffusion rate.

The table indicates how changing the variable listed alone will alter diffusion rate. Rate of Diffusion (flux) Concentration gradient substance x surface area of membrane x lipid solubility = Distance (thickness of membrane) x molecular weight Table 3-1: Factors Influencing the Rate of

More information

Membrane Transport. Anatomy 36 Unit 1

Membrane Transport. Anatomy 36 Unit 1 Membrane Transport Anatomy 36 Unit 1 Membrane Transport Cell membranes are selectively permeable Some solutes can freely diffuse across the membrane Some solutes have to be selectively moved across the

More information

Membrane transport. Small molecules. pumps. Large molecules

Membrane transport. Small molecules. pumps. Large molecules Cell Membrane and Transport Review Sheet Transport of nutrients, ions, and excretory substances from one side to the other is a major function of the cell membrane. A number of different means have been

More information

The Transport of Materials Across Cell Membranes

The Transport of Materials Across Cell Membranes The Transport of Materials Across Cell Membranes EK 2.B.1.b. LO 2.10 The Plasma Membrane 2 EK 2.B.1.b. LO 2.10 The Plasma Membrane The cell membrane is said to be semi permeable or selectively permeable

More information

CH 7.2 & 7.4 Biology

CH 7.2 & 7.4 Biology CH 7.2 & 7.4 Biology LABEL THE MEMBRANE Phospholipids Cholesterol Peripheral proteins Integral proteins Cytoskeleton Cytoplasm Extracellular fluid Most of the membrane A phospholipid bi-layer makes up

More information

Major intra and extracellular ions Lec: 1

Major intra and extracellular ions Lec: 1 Major intra and extracellular ions Lec: 1 The body fluids are solutions of inorganic and organic solutes. The concentration balance of the various components is maintained in order for the cell and tissue

More information

STEIN IN-TERM EXAM -- BIOLOGY APRIL 19, PAGE

STEIN IN-TERM EXAM -- BIOLOGY APRIL 19, PAGE STEIN IN-TERM EXAM -- BIOLOGY 3058 -- APRIL 19, 2018 -- PAGE 1 of 9 There are 25 questions in this Biology 3058 exam. All questions are "A, B, C, D, E, F, G, H" questions worth one point each. There is

More information

Equilibrium is a condition of balance. Changes in temperature, pressure or concentration can cause a shift in the equilibrium.

Equilibrium is a condition of balance. Changes in temperature, pressure or concentration can cause a shift in the equilibrium. Copy into Note Packet and Return to Teacher Cells and Their Environment Section 1: Passive Transport Objectives Relate concentration gradients, diffusion, and equilibrium. Predict the direction of water

More information

Acid-Base Balance 11/18/2011. Regulation of Potassium Balance. Regulation of Potassium Balance. Regulatory Site: Cortical Collecting Ducts.

Acid-Base Balance 11/18/2011. Regulation of Potassium Balance. Regulation of Potassium Balance. Regulatory Site: Cortical Collecting Ducts. Influence of Other Hormones on Sodium Balance Acid-Base Balance Estrogens: Enhance NaCl reabsorption by renal tubules May cause water retention during menstrual cycles Are responsible for edema during

More information

Membrane Transport. Biol219 Lecture 9 Fall 2016

Membrane Transport. Biol219 Lecture 9 Fall 2016 Membrane Transport Permeability - the ability of a substance to pass through a membrane Cell membranes are selectively permeable Permeability is determined by A. the phospholipid bilayer and B. transport

More information

Hypertonic intravenous fluid therapy administration in acutely sick cattle

Hypertonic intravenous fluid therapy administration in acutely sick cattle Vet Times The website for the veterinary profession https://www.vettimes.co.uk Hypertonic intravenous fluid therapy administration in acutely sick cattle Author : ADAM MARTIN Categories : Vets Date : April

More information

Passive Transport: Practice Problems PAP BIOLOGY

Passive Transport: Practice Problems PAP BIOLOGY Passive Transport: Practice Problems PAP BIOLOGY #1 Draw a diagram where the cell has low concentration of salt molecules and the environment it is in has a high concentration of salt molecules in a water

More information

INVESTIGATION : Determining Osmolarity of Plant Tissue

INVESTIGATION : Determining Osmolarity of Plant Tissue INVESTIGATION : Determining Osmolarity of Plant Tissue AP Biology This lab investigation has two main components. In the first component, you will learn about the osmolarity of plant tissues and the property

More information

Functions of Proximal Convoluted Tubules

Functions of Proximal Convoluted Tubules 1. Proximal tubule Solute reabsorption in the proximal tubule is isosmotic (water follows solute osmotically and tubular fluid osmolality remains similar to that of plasma) 60-70% of water and solute reabsorption

More information

UNIVERSITY OF MEDICAL SCIENCES, ONDO DEPARTMENT OF PHYSIOLOGY PHS 212: BLOOD AND BODY FLUID PHYSIOLOGY LECTURER: MR A.O. AKINOLA

UNIVERSITY OF MEDICAL SCIENCES, ONDO DEPARTMENT OF PHYSIOLOGY PHS 212: BLOOD AND BODY FLUID PHYSIOLOGY LECTURER: MR A.O. AKINOLA UNIVERSITY OF MEDICAL SCIENCES, ONDO DEPARTMENT OF PHYSIOLOGY PHS 212: BLOOD AND BODY FLUID PHYSIOLOGY LECTURER: MR A.O. AKINOLA OBJECTIVES Introduction Definition of body fluids and body fluid compartments

More information

Bio10 Lab 2: Cells. Using your text and the cell models and posters in the lab, sketch an animal cell and a plant cell on the group results sheet.

Bio10 Lab 2: Cells. Using your text and the cell models and posters in the lab, sketch an animal cell and a plant cell on the group results sheet. Bio10 Lab 2: Cells Cells are the smallest living things and all living things are composed of cells. They are able to perform all necessary metabolic functions as well as specialized tasks such as moving,

More information

CHAPTER. Movement Across Plasma Membrane. Chapter 6 Outline. Diffusion Osmosis. Membrane Potential Cell Signaling

CHAPTER. Movement Across Plasma Membrane. Chapter 6 Outline. Diffusion Osmosis. Membrane Potential Cell Signaling CHAPTER 6 Interaction Between Cells and the Extracellular Environment Chapter 6 Outline Extracellular Environment Diffusion Osmosis Carrier-Mediated Carrier Mediated Transport Membrane Potential Cell Signaling

More information

Lujain Al_Adayleh. Amani Nofal. Mohammad khatatbeh

Lujain Al_Adayleh. Amani Nofal. Mohammad khatatbeh 4 Lujain Al_Adayleh Amani Nofal Mohammad khatatbeh Recap : Filtration: the movement according to the differences of pressure. **note: not all particles have the same solubility through plasma membrane.

More information

WHY... 8/21/2013 LEARNING OUTCOMES PHARMACOKINETICS I. A Absorption. D Distribution DEFINITION ADME AND THERAPEUIC ACTION

WHY... 8/21/2013 LEARNING OUTCOMES PHARMACOKINETICS I. A Absorption. D Distribution DEFINITION ADME AND THERAPEUIC ACTION PHARMACOKINETICS I Absorption & Distribution LEARNING OUTCOMES By the end of the lecture students will be able to.. Dr Ruwan Parakramawansha MBBS, MD, MRCP(UK),MRCPE, DMT(UK) (2013/08/21) Define pharmacokinetics,

More information

only. Analysis of human muscle obtained by biopsy suggests that changes

only. Analysis of human muscle obtained by biopsy suggests that changes A PROPOSED MECHANISM OF EXTRACELLLAR REGLATION OF MSCLE COMPOSITION* ROBERT E. COOKE** AND WILLIAM E. SEGAR The changes in muscle composition which occur in disturbances of extracellular electrolyte composition

More information

Cellular Physiology. Body Fluids: 1) Water: (universal solvent) Body water varies based on of age, sex, mass, and body composition

Cellular Physiology. Body Fluids: 1) Water: (universal solvent) Body water varies based on of age, sex, mass, and body composition Membrane Physiology Body Fluids: 1) Water: (universal solvent) Body water varies based on of age, sex, mass, and body composition H 2 O ~ 73% body weight Low body fat; Low bone mass H 2 O ( ) ~ 60% body

More information

Osmosis and Diffusion: How biological membranes are important This page is a lab preparation guide for instructors.

Osmosis and Diffusion: How biological membranes are important This page is a lab preparation guide for instructors. Osmosis and Diffusion: How biological membranes are important This page is a lab preparation guide for instructors. **All solutions and dialysis bags can easily be prepared prior to lab start to maximize

More information

5.6 Diffusion, Membranes, and Metabolism

5.6 Diffusion, Membranes, and Metabolism 5.6 Diffusion, Membranes, and Metabolism Concentration of a substance Number of atoms or molecules in a given volume Concentration gradient of a substance A difference in concentration between two regions

More information